
Neural Policy Verification via Predicate Abstraction: CEGAR

Marcel Vinzent,1 Jörg Hoffmann1,2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

{vinzent, hoffmann}@cs.uni-saarland.de

Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies π. Recent work has shown how to
extend predicate abstraction to prove safety of such π, within
an abstract state space over-approximating all possible behav-
iors. Specifically, this work employs predicate abstraction,
where abstract states are characterized by the truth values of
a set P of constraints (the predicates) over the state variables.
Empirical results show that this approach is promising, out-
performing explicit enumeration and bounded-length verifi-
cation on a set of benchmarks with large non-deterministic
state spaces. However, the sets P underlying these results
were supplied manually. Here we show how to automate this
step. We extend the well-known counter-example guided ab-
straction refinement (CEGAR) paradigm to the new setting.
This involves dealing with a new source of spuriousness in
counter-examples (abstract unsafe paths), pertaining not to
transition behavior but to the decisions of the action policy
π. We introduce two methods tackling this issue, along with
a number of algorithmic optimizations. Our results show that
automatic safety verification of NN action policies is feasible
with this approach, thanks in particular to our optimizations
which often yield dramatic performance benefits.

Introduction
Neural networks (NN) are an increasingly important rep-
resentation of action policies, in particular in planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Garg, Bajpai, and Mausam 2019; Toyer et al. 2020). But
how to verify that such a policy is safe? Given a policy π,
a start condition φ0, and an unsafety condition φu, how
to verify whether a state su |= φu is reachable from a state
s0 |= φ0 under π? Such verification is potentially very hard
as it compounds the state space explosion with the difficulty
of analyzing even single NN decision episodes.

Research on this question still is in its early stages. A
prominent line of works addresses neural controllers of dy-
namical systems, where the NN outputs a vector u of re-
als forming input to a continuous state-evolution function
f (Sun, Khedr, and Shoukry 2019; Tran et al. 2019; Huang
et al. 2019; Dutta, Chen, and Sankaranarayanan 2019). Re-
cent work extends this thread to hybrid systems, addressing
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smooth (tanh/sigmoid) activation functions by compilation
into such systems (Ivanov et al. 2021). Another line of re-
search explores the use of bounded model checking and k-
induction for neural controller verification (Akintunde et al.
2018, 2019; Amir, Schapira, and Katz 2021).

Here we follow up on recent work by Vinzent et al. (2022)
(henceforth: Vea22) verifying safety of NN action policies π
taking discrete action choices in sequential decision making,
specifically non-deterministic state spaces over bounded-
integer state variables, via predicate abstraction (PA) (Graf
and Saı̈di 1997; Ball et al. 2001; Henzinger et al. 2004).

This approach builds an abstraction defined through a set
P of predicates, where each p ∈ P is a linear constraint
over the state variables (e.g. x = 7 or x ≤ y). Abstract
states are characterized by truth value assignments to P .
Like in other abstraction methods known in planning (e.g.
(Edelkamp 2001; Helmert et al. 2014; Seipp and Helmert
2018)), transitions are over-approximated to preserve all
possible behaviors. However, the method abstracts not the
full state space Θ, but the policy-restricted state space Θπ ,
i.e., the state-space subgraph containing only the transitions
taken by π. Vea22 build the fragment of the policy predi-
cate abstraction (PPA) Θπ

P – the predicate abstraction of
Θπ – reachable from φ0, and check whether φu is reached.
If this is not the case, then π is safe.

Vea22 run experiments on a collection of benchmarks
with large non-deterministic state spaces, adapted from Slid-
ingTiles, Blocksworld, and Transportation style problems,
with NN policies trained by deep Q-learning (Mnih et al.
2015). Their empirical results show that PPA is promising,
outperforming two baselines, namely explicit enumeration
(enumerating the reachable fragment of Θπ) and bounded-
length verification (compiling length-L safety into an SMT
formula (de Moura and Bjørner 2008)). However, the sets
P underlying these results were supplied manually. Vea22
examined performance as a function of |P|, with predicate
sets scaled according to simple manually designed schemes.
The positive results pertain to particular points in these scal-
ing schemes: particular instances of P that work well, which
are often located at sweetspots in the middle of the scaling
scheme. Hence it remained unclear 1. how to find suitable P
automatically, and 2. whether doing so incurs an infeasible
overhead from computing abstract state spaces outside the
sweetspot.



Here we show how to address 1. in a way answer-
ing 2. in the negative. We do so by extending the well-
known counter-example guided abstraction refinement (CE-
GAR) (Clarke et al. 2003) paradigm to the new PPA set-
ting. This involves dealing with a new source of spurious-
ness in counter-examples, i.e., abstract unsafe paths whose
concretization fails. Namely, say that the concretization of
the abstract unsafe path (processing that path step-by-step
to find a concrete unsafe path) has so far lead to the con-
crete state sc in the abstract state sP , and say that the next
transition on the abstract unsafe path is (sP , l, s

′
P). Then,

in standard predicate abstraction, the concretization of this
transition fails iff there is no concrete transition (sc, l, s

′)
s.t. s′ ∈ s′P . In PPA however, it can happen that such a tran-
sition does exist, yet the policy does not choose the right
action, π(sc) 6= l. In this case, the source of spuriousness is
the policy behavior (and not the transition behavior) in sc.

We introduce two methods tackling this issue: as a
straightforward naı̈ve solution, we introduce new predicates
allowing to distinguish sc from all other states; as a more tar-
geted solution, we consider a state sw ∈ sP with transition
(sw, l, s

′) and s′ ∈ s′P as a witness for the abstract tran-
sition (sP , l, s

′
P), and introduce new predicates allowing to

distinguish between sc and sw.
We also design a number of algorithmic optimizations

to avoid computational overhead in CEGAR. In particular,
we use heuristic search to find abstract counter-examples
quickly, and thus avoid to build large parts of the abstract
state space in all but the last iteration of CEGAR.

Our empirical results show that automatic safety verifi-
cation of NN action policies is feasible with this approach,
thanks in particular to our optimizations which often yield
dramatic performance benefits.

Preliminaries
State Space Representation A state space is a tuple
〈V,L,O〉 of state variables V , action labels L, and op-
erators O. For each variable v ∈ V the domain Dv is a
non-empty bounded integer interval. We denote by Exp the
set of linear integer expressions over V , i.e., expressions of
the form d1 · v1 + · · · + dr · vr + c with d1, . . . , dr, c ∈ Z.
C denotes the set of linear integer constraints over V , i.e.,
constraints of the form e1 ./ e2 with ./ ∈ {≤,=,≥} and
e1, e2 ∈ Exp, and all Boolean combinations thereof. An op-
erator o ∈ O is a tuple (g, l, u) with label l ∈ L, guard
g ∈ C , and (partial) update u : V → Exp.

A (partial) variable assignment s over V is a function
with domain dom(s) ⊆ V and s(v) ∈ Dv for v ∈ dom(s).
Given s1, s2, we denote by s1[s2] the update of s1 by s2, i.e.,
dom(s1[s2]) = dom(s1)∪dom(s2) with s1[s2](v) = s2(v)
if v ∈ dom(s2), else s1[s2](v) = s1(v). By e(s) we denote
the evaluation of e ∈ Exp over s, and by φ(s) the evaluation
of φ ∈ C . If φ(s) evaluates to true, we write s |= φ.

The state space of 〈V,L,O〉 is a labeled transition system
(LTS) Θ = 〈S,L, T 〉. The set of states S is the (finite) set of
all complete variable assignments over V . The set of transi-
tions T ⊆ S × L × S contains (s, l, s′) iff there exists an
operator o = (g, l, u) such that s |= g and s′ = s[u(s)], i.e.,
the guard is satisfied in the source state s, and the successor

state s′ results from applying the update to s. Here, u(s) de-
notes the partial variable assignment induced by u evaluated
over s, i.e., u(s) = {v 7→ u(v)(s) | v ∈ dom(u)}.We also
write s |= o for s |= g, and abbreviate sJoK for s[u(s)].

Observe that the separation between action labels and op-
erators allows both, state-dependent effects (different oper-
ators with the same label l applicable in different states); as
well as action outcome non-determinism (different operators
with the same label l applicable in the same state).

NN Action Policies. An action policy π is a function S →
L. The policy-restricted state space Θπ is the subgraph
〈S,L, T π〉 of Θ with T π = {(s, l, s′) ∈ T | π(s) = l}.

We consider action policies represented by neural net-
works (NN), specifically fully connected feed-forward NN.
These consist of an input layer with an input for each state
variable; arbitrarily many hidden layers; and an output layer
with an output for each action. The policy π is obtained by
applying argmax to the output layer. While the approach is,
in principle, agnostic to the activation functions used, Vea22
leverage optimizations specific to (piecewise-linear) recti-
fied linear units (ReLU), ReLU (x) = max(x, 0).

Safety. A safety property is a pair ρ = (φ0, φu), where
φ0, φu ∈ C . Here, φu identifies the set of unsafe states that
should be unreachable from the set of possible start states
represented by φ0. That is, Θ is unsafe with respect to ρ iff
there exists a path 〈s0, o0, s1, o1, . . . , sn, on, su〉 in Θ such
that s0 |= φ0 and su |= φu.1 Otherwise Θ is safe.

The notion above transfers to the policy-restricted case in
a straight-forward manner. That is, a policy π is safe with
respect to ρ, iff Θπ is safe with respect to ρ. Otherwise π
is unsafe. That said, for the remainder of this chapter, we
revisit predicate abstraction concepts for the verification of
standard (non-policy-restricted) safety.

Predicate Abstraction. Predicate abstraction (Graf and
Saı̈di 1997) is a well-established abstraction technique from
formal methods. Assume a set of predicates P ⊆ C . An ab-
stract state sP is a (complete) truth value assignment over
P . The abstraction of a (concrete) state s ∈ S is the abstract
state s|P with s|P(p) = p(s) for each p ∈ P . Conversely,
[sP ] = {s′ ∈ S | s′|P = sP} denotes the concretization of
abstract state sP , i.e., the set of all concrete state represented
by sP . Accordingly, we say that sP satisfies a constraint
φ ∈ C , written sP |= φ, iff there exists s ∈ [sP ] such
that s |= φ. The abstract state space now is defined in a
transition-preserving manner:

Definition 1 (Predicate Abstraction). The predicate ab-
straction of Θ over P is the LTS ΘP = 〈SP ,L, TP〉,
where SP is the set of all predicates states over P , and
TP = {(s|P , l, s′|P) | (s, l, s′) ∈ T }.

The computation of ΘP necessitates to solve the abstract
transition problem for every possible abstract transition:
(sP , l, s

′
P) ∈ TP iff there exists an operator o ∈ O with

label l and a concrete state s ∈ [sP ] such that s |= o,
and sJoK ∈ [s′P ]. Such transition problems are routinely

1Throughout the paper we consider operator-specific paths as
this is the path granularity used by our abstraction refinement.



addressed as satisfiability modulo theories (SMT) (Barrett
et al. 1994) formulas, which can be answered using existing
solvers (e.g. Z3 (de Moura and Bjørner 2008)).

Safety Verification. Analogously to safety in Θ, the ab-
stract state space ΘP is said to be unsafe with respect
to a safety property ρ = (φ0, φu) iff there exists a path
〈s0P , o0, . . . , on, suP〉 in ΘP such that s0P |= φ0, suP |= φu.
Otherwise ΘP is safe. Due to the over-approximating nature
of ΘP , safety in Θ can be proven via safety in ΘP :

Proposition 2 (Safety in ΘP ). Let ρ be a safety property. If
ΘP is safe with respect to ρ, then so is Θ.

The opposite is not true, i.e., unsafety of ΘP does not
imply unsafety of Θ. That is, an abstract (unsafe) path in
ΘP may be spurious, i.e., without concretization in Θ. Here,
counter example guided abstraction refinement (CEGAR)
(e.g. (Clarke et al. 2000)) is a popular approach to refine P
to iteratively remove such spurious abstract paths, until ei-
ther the abstraction is proven safe, or a non-spurious abstract
path is found, hence certifying unsafety of Θ. CEGAR is ap-
plicable, in principle, as long as a technique for abstraction
refinement exists (e.g. interpolation (Henzinger et al. 2004),
unsat core extraction (Gupta and Strichman 2005) or weak-
est precondition (Podelski and Rybalchenko 2007)).

Policy Predicate Abstraction
In the previous section, we have revisited predicate abstrac-
tion for general safety verification. However, we consider
safety under a policy π. Accordingly, we are not interested
in the predicate abstraction of the full state space Θ but of
the policy-restricted subgraph Θπ . In this section, we revisit
the policy predicate abstraction approach of Vea22. In the
next section, we adapt CEGAR to enable policy verification
via policy predicate abstraction.

Definition 3 (Policy Predicate Abstraction). Let P ⊆ C be
a predicate set, and let π be a policy. The policy predicate
abstraction of Θπ over P is the LTS Θπ

P = 〈SP ,L, T πP 〉
where T πP = {(s|P , l, s′|P) | (s, l, s′) ∈ T , π(s) = l}.

In principle, the abstraction transition computation for
Θπ

P can still be handled via calls to SMT. The new source
of complexity is that one now additionally needs to check
whether the policy π actually selects label l in s ∈ [sP ].
Due to the non-linear structure of NN (specifically the acti-
vation functions) solving this abstract transition problem be-
comes computationally very expensive. Indeed, as observed
by Vea22, naively querying general purpose SMT solvers is
no longer feasible.

Algorithmic Enhancements by Vea22. To tackle this
challenge, they devise a range of algorithmic enhancements
based on relaxation and specialized NN analysis. Most no-
tably, continuous-relaxation of the discrete integer state vari-
ables allows to query SMT solvers tailored to NN analysis
(e.g. Marabou (Katz et al. 2017)). Vea22 then iterate relaxed
transition problems in a branch & bound search; recursively
branching over the state variables currently assigned to non-
integer values by the relaxed solver. A branch is terminated
once its relaxed (sub-)problem is found to be unsatisfiable,

Figure 1: Result extracted from Vea22. PPA is the best-
performing policy predicate abstraction variant (based on
Marabou in branch & bound), and PA corresponds to stan-
dard predicate abstraction. The x-axis ranges over the num-
ber of predicates |P| in % of maximal |P|.

or when the solution (found by the relaxed solver) becomes
integer. If no integer solution is found during the search, then
the exact problem in unsatisfiable.

Empirical Results. Vea22 found that their enhancements
– especially the branch & bound approach – improve perfor-
mance drastically. For their empirical evaluation, they used
manually designed predicate sets P following a simple box
constraint scheme v ≥ c with v ∈ V and c ∈ Dv . In
their analysis they then examined performance as a function
of the number of predicates |P|. The positive results per-
tain to particular instances of P , which are often located at
sweetspots in the scaling scheme of P .

Figure 1 shows an illustrative example of the results ob-
tained by Vea22. The x-axis scales over |P|. The y-axis
shows the time to compute the fragment of the abstract state
space reachable from φ0, i.e., the fragment relevant for an-
alyzing safety. One can clearly observe the sweetspot in the
middle of the scaling scheme. “To the left”, for smaller and
thereby coarser P , the possible NN input regions of each ab-
stract transition problem are significantly larger. Hence, the
transition computation becomes drastically more expensive
– especially for larger NN – and dominates the runtime to
compute the abstract state space. This effect is reduced as
P becomes finer. Additionally, for finer P , we profit from
the new gain in reachability reduction resulting from fixing
the policy together with φ0. In particular, for finer P , policy
predicate abstraction is less expensive than standard (non-
policy-restricted) predicate abstraction. “To the right”, for
growing |P|, the state space explosion kicks in and eventu-
ally outweighs these effects. As a consequence, we obtain
the sweet spot in the middle.

In summary, Vea22 leave us with two open questions: 1.
how to find suitable P automatically, and 2. whether doing
so incurs an infeasible overhead from computing abstract
state spaces outside the sweetspot. The latter is of particu-
lar relevance in the context of CEGAR schemes, as here one
usually starts with an initially coarse and thus in the policy-
restricted context particularly expensive predicate set.
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Figure 2: Illustration of standard spuriousness (a) and
policy-related spuriousness (b), with s as the only concrete
state in sP reachable from φ0 and sw as the witness of the
abstract transition (sP , l, s

′
P).

CEGAR
The safety result for standard predicate abstraction, i.e., in
the non-policy-restricted case, translates to policy predicate
abstraction in a straight forward manner.
Proposition 4 (Soundness). Let ρ = (φ0, φu) be a safety
property. If Θπ

P is safe with respect to ρ, then so is π.
Like for ΘP , paths in Θπ

P may be spurious. However,
compared to standard predicate abstraction, we can distin-
guish an additional source of spuriousness, namely policy-
related spuriousness. Figure 2 illustrates the difference. In
the standard case (a), the transition from sP to s′P is spuri-
ous due to the transitional behavior of the underlying system
(in our case described by the operators O). That is, while
the abstract transition is witnessed by the concrete transition
from sw ∈ [sP ] to s′ ∈ [s′P ], there does not exist a witness
in the subset {s} of [sP ], that is reachable from φ0 in Θ (un-
der the possible concretizations of some considered abstract
path prefix). Now compared to (a), in the policy-related case
(b), there may actually exist a reachable witness in [sP ], yet
not under policy-restriction, i.e., π(s) 6= l.

In principle, refining P to remove policy-related spuri-
ousness is still amenable to standard refinement techniques.
π(s) = l is essentially a highly complex transition guard,
that, for instance, can be fed into weakest precondition com-
putation. However, each computed “selection predicate” ef-
fectively adds an additional NN structure to the abstract tran-
sition problem. As observed by Vea22, solving such “multi
NN” problems via SMT quickly becomes infeasible.2

Hence, we instead tackle policy-refinement via a more
scalable approach that is based on the approximation of
the policy selection condition via simple (linear) predicates.
This has the decisive advantage, that the resulting abstract
transition problems remain amenable to the algorithmic en-
hancements as already provided by Vea22. For the remain-
der of this section, we first describe two specific methods for
policy-refinement via approximation. Afterwards, we com-
bine these with a complete abstraction refinement algorithm
based on weakest precondition computation.

2Strictly speaking, the SMT problems in Vea22 (used for their
bounded-length verification baseline) are more complex, as, unlike
for selection predicates, the NN structures are not constraint to a
specific label. Still handling multi-NN SMT problems (as well as
the selection predicates themselves) efficiently remains non-trivial
(substantial implementation and engineering at least).
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Figure 3: Illustration of policy-related refinement based on
concretization exclusion (c) and witness splitting (d), with
sw as the witness of the abstract transition (sP , l, s

′
P) and

sc as the corresponding state in the concretization of the ab-
stract path.

Policy-Related Refinement
Both of our methods for policy-related refinement assume a
specific concretization 〈s0c , o0, . . . , on, suc 〉 of a correspond-
ing (spurious) abstract path 〈s0P , o0, . . . , on, suP〉. Figure 3
serves as illustration.

As a kind of naı̈ve baseline concretization exclusion
(c) removes the concretization state sc, in which the pol-
icy selection π(sc) = l′ disagrees with the correspond-
ing abstract transition label l, as a singleton from the ab-
stract block state sP . In other words, the selection condition
is over-approximated as ¬sc. In our current approach, we
achieve this using the (more fine-grained) box constraint set
{v ≤ sc(v)− 1, sc(v) + 1 ≤ v | v ∈ V}.

As a more targeted method, witness splitting (d) addi-
tionally takes the witness sw of the spurious abstract tran-
sition into account. It splits the abstract state into one half
containing sc and another containing sw. The underlying
idea is that the selection condition is approximated by the
split containing sw. The split can be achieved via any con-
straint φ such that φ(sc) 6= φ(sw). In our current ap-
proach, we use box constraints of the form sw(v) {≤,≥} v
for sc(v) {<,>} sw(v) (see procedure WS line 23 in Algo-
rithm 1 for details). Future work will investigate how to se-
lect linear constraints different from box constraints but also
how to optimize the state variable subset used for the split.

Abstraction Refinement
Algorithm 1 shows the pseudo-code for our abstraction re-
finement. Given an abstract unsafe path 〈s0P , o0, . . . , on, suP〉
(found by search in Θπ

P ) we check spuriousness and refine
with respect to the operator path 〈o0, . . . , on〉 and abstract
start state s0P . That is, while our method ignores spurious-
ness with respect to the abstract state postfix 〈s1P , . . . , suP〉,
s0P is necessary to guarantee completeness (see below).

Algorithm 1 starts by checking standard spuriousness, i.e.,
without the policy. It incrementally checks whether there
exists a start state (grouped to the abstract start state s0P )
such that a prefix of the operator path can be taken (line 2
et sqq). Similar to the abstract transition computation such
path existence checks can be encoded as SMT queries. If
some prefix cannot be concretized, we refine with respect to
this (smallest) spurious prefix (line 3). If the complete path
can be concretized, Algorithm 1 checks whether there exists



Algorithm 1: Abstraction Refinement.
Input: s0P |= φ0 and 〈o0, . . . , on〉 with oi = (gi, li, ui).

// Check standard spuriousness.
1 for i ∈ {0, . . . , n} do
2 if ¬∃〈s0, o0, . . . , si, oi〉 ∈ Θ : s0 ∈ [s0P ] ∧ s0 |=

φ0 ∧ si |= gi then
3 P ← P ∪ WP(gi, 〈o0, . . . , oi−1〉 )
4 return SPURIOUS

5 if ¬∃〈s0, o0, . . . , on, su〉 ∈ Θ : s0 ∈ [s0P ] ∧ s0 |=
φ0 ∧ su |= φu then

6 P ← P ∪ WP(φu, 〈o0, . . . , on〉 )
7 return SPURIOUS

// Check π-spuriousness.
8 let 〈s0c , o0, . . . , on, suc 〉 ∈ Θ : s0c ∈ [s0P ] ∧ s0c |=

φ0 ∧ suc |= φu in
9 for i ∈ {0, . . . , n} do

10 if π(sic) 6= li then
11 if π-Refinement = WS then
12 φappr ← WS(sic, s

i
witness)

13 else
14 φappr ← ¬sic
15 P ← P ∪ WP(φappr , 〈o0, . . . , oi−1〉 )
16 return π-SPURIOUS for s0

17 return NON-SPURIOUS

18 Procedure WP(φ, 〈o0, . . . , oi〉):
19 φi+1

wp ← φ
20 for j ∈ {i, . . . , 0} do
21 φj

wp ← wpuj (φj+1
wp )

22 return
{
φ0
wp , . . . , φ

i
wp

}
23 Procedure WS(sc, sw):
24 φ← {}
25 for v ∈ V s.t. sc(v) 6= sw(v) do
26 if sc(v) < sw(v) then φ← φ ∪ {sw(v) ≤ v}
27 if sc(v) > sw(v) then φ← φ ∪ {sw(v) ≥ v}
28 return φwp

a concretization such that additionally the target state su is
unsafe (line 5 et sqq). Again, if no, we refine (line 6).

If the path is non-spurious without the policy, Algorithm 1
proceeds by checking policy-related spuriousness. It picks a
specific concretization path in Θ, i.e., a path already valid
up to π (line 8), and then incrementally checks whether the
path is also valid under π. If no (line 10 et sqq), the path is
π-spurious for s0c and we refine either according to witness
splitting (line 12) or according to concretization exclusion
(line 14) and with respect to the spurious prefix (line 15).3
If yes (line 17), we have found a concrete unsafe path, thus

3Since we only consider a specific concretization, a path π-
spurious for s0c may still be non-spurious for some other s′c ∈ [s0P ].
However, our π-refinement methods assume a specific concretiza-
tion. Moreover, as argued before, handling mulit-NN SMT prob-
lems (in the form of path existence) efficiently is non-trivial and
remains future work.

proving unsafety.
Given an operator prefix σ = 〈o0, . . . , oi〉 and a constraint

φ, procedure WP (line 18) describes the weakest precondi-
tion computation that is used to refine standard spuriousness
(lines 3 & 6) as well as policy-related spuriousness (line 15).
Here, wpu(φj), denotes the syntactical weakest precondi-
tion for φj applying update u, which is computed by sub-
stituting each v ∈ dom(u) in φj by u(v). In essence, WP
computes the set

{
φ0wp , . . . , φ

i+1
wp

}
where φjwp is the weak-

est precondition for φ taking 〈oj , . . . , oi〉. Intuitively, this
enables the refined abstraction to explicitly trace the truth
value of φ taking σ. For the remainder of this section, we
investigate formally how this achieves completeness.

Proposition 5 (Standard). Let
{
φ0wp , . . . , φ

i+1
wp

}
⊆ P as

computed by WP(φ, 〈o0, . . . , oi〉), i.e., φi+1
wp = φ: For

any 〈s0P , o0, . . . , oi, s
i+1
P 〉 in ΘP with si+1

P |= φi+1
wp , if

〈s0, o0, . . . , oi, si+1〉 in Θ with s0 ∈ [s0P ], then also si+1 |=
φi+1
wp .

Proof. Since si+1
P |= φi+1

wp , we have si+1
P (φi+1

wp ) = 1 and
thus, by weakest precondition, also s0P(φ0wp) = 1. Hence,
since s0 ∈ [s0P ], s0 |= φ0wp , and therefore, again by weakest
precondition, si+1 |= φi+1

wp .

In essence, Proposition 5 tells us, that if there still exists
a (spurious) path prefix σ = 〈s0P , o0, . . . , oi, s

i+1
P 〉 such that

si+1
P |= φi+1

wp after the refinement step, then it is spurious due
to a prefix of σ. This prefix can be detected in subsequent it-
erations. Since in each iteration, the size of the spurious pre-
fix is “at least” strictly decreased, it is removed completely
within finitely many steps.4 Moreover, since the guarantees
provided by Proposition 5 are bound to concretization paths
from s0P , we now can also see that constraining the incre-
mental path existence check in Algorithm 1 by s0P is actually
necessary to guarantee progress.

Proposition 6 (Concretization Exclusion). Let{
φ0wp , . . . , φ

i+1
wp

}
⊆ P as computed by WP(sc, 〈o0, . . . , oi〉),

with π(sc) 6= l: For any 〈s0P , o0, . . . , oi, s
i+1
P 〉 in Θπ

P with
l ∈ π(si+1

P ), and any 〈s0c , o0, . . . , oi, sc〉 in Θ, it holds
s0c /∈ [s0P ].

Proof. Since l ∈ π(si+1
P ), while sc|P = {sc} and π(sc) 6=

l, we have sc /∈ [si+1
P ] and thus sP(φi+1

wp ) = 1 (where
φi+1
wp = ¬sc). Hence, by weakest precondition, s0P(φ0wp) =

1. Moreover, since, again by weakest precondition, s0c 6|=
φ0wp , it follows s0c /∈ [s0P ].

Proposition 6 formalizes the intuition behind concretiza-
tion exclusion, i.e., sc (respectively the path to sc) is ex-
cluded from the set of concretizations – again, this only
holds for path existence constrained to the abstract start state

4A more aggressive refinement approach would also include
the prefix’s guards during the weakest precondition computation;
then removing the spurious prefix within a single iteration. Pre-
liminary experiments indicate that this adds to many non-relevant
predicates, thereby decreasing performance significantly.



s0P . Since in each iteration we remove “at least” one state
from the set of possible concretizations, within finitely many
iterations, we either find a concretization that is valid under
π, or remove the abstract (spurious) path completely.
Proposition 7 (Witness Splitting). Let

{
φ0wp , . . . , φ

i+1
wp

}
⊆

P as computed by WP(WS(sc, sw), 〈o0, . . . , oi〉), For any
path 〈s0P , o0, . . . , oi, s

i+1
P 〉 in Θπ

P such that there exists s0c ∈
[s0P ] with 〈s0c , o0, . . . , oi, sc〉 in Θ, it holds sw /∈ [si+1

P ].

Proof. By weakest precondition, from sc 6|= φj+1
wp (where

φi+1
wp = WS(sc, sw)) it follows s0c 6|= φ0wp . Hence, if s0c ∈

[s0P ] then s0P(φ0wp) = 0. Thus, again by weakest precondi-
tion, si+1

P (φi+1
wp ) = 0, and, since sw |= φi+1

wp , we thereby
have sw /∈ [sP ].

Proposition 7 captures the idea behind witness splitting.
That is, while there still may be an abstract path with the path
to sc as a possible concretization (prefix), such an abstract
path may no longer contain sw as a witness to the transition
from si+1

P . Again, also here, constraining the abstract start
state is actually necessary. Since in each iteration we remove
“at least” one witness from the abstract state to which sc
is grouped, the path to sc is excluded as a concretization
candidate within finitely man steps.

In summary, a refinement loop using Algorithm 1 re-
moves in each iteration not necessarily “all” but “at least
some” spuriousness; hence guaranteeing completeness of
the verification approach:
Proposition 8 (Completeness). Starting with an arbitrary
predicate set P , an iterative search for a path from φ0 to
φu in Θπ

P with refinement as per Algorithm 1 will in finitely
many iterations either find such a path that is non-spurious,
or terminate with refined P for which such a path does not
exist.

Optimizations
Independent of the specific method used for abstraction re-
finement, CEGAR allows for various optimizations to im-
prove on the abstract state space computation itself. In our
current work, we explore two of these.

Heuristic Search. In the context of our abstraction refine-
ment loop, there is no need to re-compute the complete ab-
stract state space Θπ

P in each iteration. Instead, we can ini-
tiate an abstract search from φ0 (i.e., the set of abstract start
states

{
s0P ∈ SP | s0P |= φ0

}
) and stop as soon as an un-

safe path has been found. The complete fragment (reachable
from s0P ) is then computed only for the final predicate set
(and only if π is actually safe).

Following this standard idea, we want to improve even
further. In the spirit of AI planning, we run a heuristic
search. That is, given a heuristic h estimating the distance to
an abstract unsafe state, we expand (reached) abstract states
greedily according to the smallest distance estimated by h.
While the idea seems quite natural, we are not aware of prior
work using heuristic search in a CEGAR context.

In our work so far, we use a simple hamming distance
heuristic:

Definition 9 (Hamming Distance). Let P0
u =

{p ∈ P | φu ` ¬p} and P1
u = {p ∈ P | φu ` p}.

The hamming distance of abstract state sP ∈ SP is
hd(sP) =

∣∣{p ∈ P0
u | sP(p)

}∣∣ +
∣∣{p ∈ P1

u | ¬sP(p)
}∣∣.

Intuitively, hd is similar to the goal counting heuristic
known from AI planning. It counts the predicates for which
sP differs from the truth value entailed by the unsafety con-
dition φu, P0

u are the predicates entailed to be false and P1
u

are the predicate entailed to be true. As our experiments
show, already this simple heuristic often improves perfor-
mance drastically.

Incremental Computation of Θπ
P . Another optimization,

that we deploy, is the incremental computation of the ab-
stract state space Θπ

P . Similar optimizations have already
been utilized in other CEGAR contexts (e.g., (Henzinger
et al. 2002)). Intuitively, rather than starting from scratch,
we can reuse the transition information of already computed
coarser abstractions when computing the refined abstract
state space. Proposition 10 states the underlying preserva-
tion properties:
Proposition 10. Given predicate sets P ⊆ P ′ and abstract
states s1P ⊆ s1P′ , s2P ⊆ s2P′ then:
1. (s1P′ , l, s2P′) /∈ T πP′ , if (s1P , l, s

2
P) /∈ T πP .

2. (s1P′ , l, s2P′) ∈ T πP′ , if (s1P , l, s
2
P) ∈ T πP with witness

(sw, l, s
′) ∈ T π such that sw ∈ [s1P′ ] and s′ ∈ [s2P′ ].

By construction, T πP over-approximates T πP′ . Hence, as
captured by (1.), we can immediately skip all transition
problems that correspond to transitions not possible un-
der coarser abstractions. For instance, given P = {p} and
P ′ = {p, p′}. If ({p 7→ 1} , l, {p 7→ 0}) /∈ T πP then also
({p 7→ 1, p′ 7→ 0} , l, {p 7→ 0, p′ 7→ 1}) /∈ T πP′ . Conversely,
as captured by (2.), we can also reuse any transition witness
already during the computation of coarser abstractions. Cru-
cially, the (source) witness sw as well as its successor s′ have
to be in the concretization of the abstract source respectively
abstract successor state in the refined abstraction.

Experiments
Experiments Setup
For our empirical evaluation, we extended the implementa-
tion of Vea22 to support our CEGAR approach. Through-
out our experiments we use their best-performing con-
figuration for abstract transition computation (based on
querying Marabou (Katz et al. 2019) in branch & bound
for continuously-relaxed transition problems). For all other
SMT queries we use Z3 (de Moura and Bjørner 2008). All
experiments were run on machines with Intel Xenon E5-
2650 processors with a clock rate of 2.2 GHz, with time and
memory limits of 12 h and 4 GB respectively.

Algorithmic Configurations. We evaluated different con-
figuration of our CEGAR approach. WS uses witness split-
ting to refine policy-related spuriousness and applies all op-
timizations (heuristic search and incremental computation).
hd disables the heuristic search, while inc disables the incre-
mental computation. Alternatively, CE uses concretiaztion-
exclusion to refine policy-related spuriousness (with all op-



Benchmark NN Time in s %Pmax # It. π-Ref. Safe BMC
WS|hd |inc|CE WS|hd |inc|CE WS|hd |inc|CE WS|hd |inc|CE

NN 16 8.6|12.6|10.9|4.1 10|10|11|10 10|10|10|6 3|3|3|1 X -
4 Blocks NN 32 13.4|22.3|14.2|6.9 11|11|11|9 9|9|9|5 3|3|3|1 X -
(cost-ignoring) NN 64 81.9|310.4|112.5|53.5 11|11|10|10 10|10|9|7 2|2|2|1 X -

NN 16 255.3|959.5|302.7|360.0 33|31|33|29 23|20|23|19 4|4|4|1 X -
6 Blocks NN 32 280.7|3659.5|337.2|208.6 31|31|31|27 18|17|18|17 5|5|5|2 X -
(cost-ignoring) NN 64 5934.2| - |8929.9|1147.8 28|10|28|25 19|4|19|12 7|1|7|1 X -

NN 16 29155.7| - |20036.0|31234.4 44|41|46|43 32|28|38|40 7|7|6|1 X -
8 Blocks NN 32 - | - | - | - 43|28|42|40 36|14|34|36 4|4|4|1 - -
(cost-ignoring) NN 64 - | - | - | - 10|8|10|22 5|4|5|10 1|1|1|1 - -

NN 16 280.5|3936.3|300.9|221.5 36|40|36|31 26|31|26|13 18|21|18|9 × 73.9
8 Puzzle NN 32 39868.1| - |42098.4|31168.1 90|45|90|95 72|28|72|58 14|13|14|7 X -
(cost-ignoring) NN 64 42285.7| - |42813.3| - 93|42|93|72 66|30|66|38 12|14|12|7 X -

NN 16 370.4|442.6|378.8|88.5 14|14|14|11 11|11|11|7 4|4|4|1 X -
4 Blocks NN 32 604.2|827.5|5041.1|599.1 14|15|23|12 11|12|18|7 5|5|9|1 X -
(cost-aware) NN 64 25081.5| - |25893.1| - 16|15|16|12 10|9|10|6 4|4|4|1 X -

NN 16 2413.2| - |2524.1|27314.0 35|31|35|37 21|17|21|23 6|6|6|2 X -
6 Blocks NN 32 1323.7|8650.9|1344.6| - 35|36|35|28 17|18|17|12 5|5|5|1 X -
(cost-aware) NN 64 - | - | - | - 21|15|16|26 6|4|5|8 2|1|1|2 - -

NN 16 169.2|28756.8|207.5|10.0 43|43|43|25 13|13|13|4 8|8|8|1 × 61.9
8 Blocks NN 32 - | - | - | - 43|32|43|28 20|10|20|9 8|5|8|1 - -
(cost-aware) NN 64 - | - | - | - 14|14|14|27 4|4|4|7 1|1|1|2 - -

NN 16 8039.2| - |9342.9|7383.4 64|61|64|41 30|27|30|24 15|15|15|8 × 32965.7
8 Puzzle NN 32 - | - | - | - 63|59|61|53 34|25|33|38 13|14|13|5 - -
(cost-aware) NN 64 - | - | - | - 58|10|58|52 25|5|25|21 11|1|11|9 - -

NN 16 1.3|1.2|1.2|335.4 9|9|9|20 4|4|4|6 3|3|3|5 × 57.0
Transport NN 32 63.7|68.0|67.4|360.7 22|22|22|20 22|22|22|8 20|20|20|7 × 20487.1

NN 64 1.4|1.4|1.4|608.6 7|7|7|22 3|3|3|9 2|2|2|8 × -

Table 1: Results for the evaluated CEGAR configurations and the BMC competitor over different benchmarks and NN policies
(distinguishing cost-aware policies and cost-ignoring policies where applicable.) For CEGAR we compare runtime, % of final
|P| relative to maximal |P|, the number of cegar iterations and the number of iterations with π-related refinement. - indicates
timeouts (exceeding the 12h time limit).

timizations enabled). All configurations are initialized with
the empty predicate set P = ∅.

Competing Approach. As a competitor we picked up the
bounded model checking (BMC) implementation of Vea22,
which encodes bounded-length path existence from φ0 to φu
into SMT queries, incrementally increasing the path length
L until an unsafe path is found. To enable BMC to also prove
safety, we combine it with k-induction (Sheeran, Singh, and
Stålmarck 2000). That is, additionally to the unsafety check,
we also incrementally check the existence of a loop-free path
of length L via SMT queries. The non-existence of such a
path constitutes a sufficient condition for reaching a fix-point
in the set of states reachable via paths up to length L. In
other words, if there is does not exist an unsafe state reach-
able within L− 1 steps, then φu is unreachable and safety is
proven. To the advantage of the BMC competitor, we run the
fix-point and unsafety check independently of each other;
reporting the runtime of first successful check as the one of
BMC. In fact, on the considered benchmarks, BMC never
reaches a path length at which the fix-point check succeeds.
In other words it never achieves to prove safety.

Benchmarks. We experimented with non-deterministic
variants of the planning domains Blocksworld, SlidingTiles
and Transport as introduced by Vea22. In Blocksworld

and SlidingTiles, actions moving a block/tile x may non-
deterministically fail, and when this happens the cost of
moving x (represented by an additional state variable) is in-
cremented. The start conditions impose a partial order on
the block/tile positions. In Blocksworld, a state is unsafe if
the number of blocks on the table exceeds a fixed limit. In
SlidingTiles, unsafe states are specified in terms of a set of
unsafe tile positions. Here, we use an 8-puzzle instance. In
Transport, a truck must deliver packages on a straight-line
road; (safely) crossing a bridge with limited capacity.

We also reused the policies of Vea22, i.e., for every con-
sidered domain instance three feed-forward NN policies
trained by Q-learning (Mnih et al. 2015), each with 2 hid-
den layers and 16, 32, respectively 64 neurons per layer.
Like Vea22, on Blocksworld and SlidingTiles, we consid-
ered policies hat do vs. do not take move costs into account.

On the considered planning domains, the refinement pred-
icates added by Algorithm 1 are all of the form v ≥ c where
v ∈ V and c ∈ Dv . We hence can compare the computed
predicate sets to the predicate set of maximal size, i.e., where
all variable values can be distinguished, cf., Table 1.

Experiments Results
We now discuss the results of our current evaluation. An
overview is provided in Table 1



Comparison of Policy-Related Refinement. Comparing
CE and WS, none clearly outperforms the other. WS has a
larger coverage (20 out of 27 problem instance compared to
17 by CE). Conversely, in terms of runtime, CE beats WS
more often (11 problem instance compared to 9 by WS).

Moreover, CE usually requires fewer policy-related re-
finements and fewer iterations in general. If so, it typically
also collects fewer predicates – even tough not necessarily
(see, e.g., 4 Blocks and NN 16 cost-ignoring). These ob-
servations are to be expected. Since, for policy-related re-
finement, we add the box constraint split of ¬sc, CE pur-
sues a rather aggressive refinement strategy, possibly adding
many predicates not actually needed. However, on smaller
instances, where such a strategy is still feasible, CE quickly
converges to a predicate set sufficiently fine grained to de-
cided safety. Indeed, CE wins on 5 out of 6 of the rather
small 4 Blocks instances. On larger instances, the more re-
strained witness splitting method dominates.

Optimizations. The heuristic search optimization im-
proves performance drastically. In particular, hd , i.e., the
configuration with heuristic search disabled, fails to termi-
nate on 7 instances covered by WS. As the only excep-
tion, hd is able to compete on the transport instances. How-
ever, this is due to the problem structure of the transport
domain. Here, φu is composed of a single flag that is set
when crossing the bridge too heavily loaded. As a con-
sequence, the hamming distance degenerates to a boolean
check for sP |= φu, and is thus completely useless. Clearly,
this is heuristic dependent and can be expected to change for
other/more advanced heuristics.

While incremental computation also tends to improve per-
formance, its impact seems to be less drastic. inc covers all
instances covered by WS. Moreover, there is actually one
instance on which inc dominates WS. This is possible as in-
cremental computation affects the used transition witnesses
and thereby the witness splitting. Indeed, on the instance
dominated by inc, it also requires fewer π-refinements. Still,
usually the impact of both optimizations to the predicate se-
lections seem to be rather limited.

BMC and Safety. Comparing our CEGAR approach to
BMC, the latter is usually outperformed by the former. There
is one instance where BMC is faster than both (WS and CE),
and two other instances where it is either faster than WS or
CE. It fails to find an unsafe path on 1 out of the 6 problem
instances proved unsafe by CEGAR and is, in parts, drasti-
cally outperformed (see, e.g., transport NN 32). Moreover,
BMC never achieves to prove safety. A major bottleneck is
here the absence of NN tailored techniques – as available for
abstract transition problems – that are applicable to the path
existence problems faced by BMC.5

Many of the policies considered in our evaluation are
proven unsafe (6 out of 20 covered instances). Following the

5(Amir, Schapira, and Katz 2021) use Marabou for BMC. This
is however in a NNCS setting, i.e., providing the NN output di-
rectly as input to a continuous state evolution function. In constrast,
in the context of multi-NN problems, Marabou provides no native
support for label selection as required for NN action policies.

ideas of Vea22, we note that our verification approach can, in
principle, be adapted to compute per-(abstract)-state safety.
That is, even if the policy is unsafe for a single start state,
there may still be many start states for which no unsafe path
exists. In the context of our CEGAR approach this means
that, even if we have found a non-spurious unsafe path for
some abstract start state s0P thus proving unsafety (say with
concretization s0c ∈ [s0P ]), we may continue to verify safety
for the remaining (abstract) start states (φ0 \

{
s0c
}

or more
coarsely φ0 \ [s0P ]). This is another advantage over BMC,
which, conceptually, can only be used to prove or disprove
unsafe path existence.

Conclusion
The verification of neural network behavior becomes more
and more important. We have extended the recent technique
of policy predicate abstraction to support fully automatic
verification via a CEGAR approach based on the approxi-
mation of policy selection conditions. Our empirical results
show that the approach is feasible, thanks in particular to
the usage of heuristic search during the abstract state space
exploration, and can outperform other methods.

Future work will continue to investigate the methods in-
troduced for policy-related refinement, e.g., fewer predicates
per refinement and predicates different from box constraints.
We might also explore the adaption to NN policies of other
refinement methods in literature (e.g. (Henzinger et al. 2004;
Gupta and Strichman 2005)).

Furthermore, we plan to use standard predicate abstrac-
tion to compute heuristics that improve on the hamming
distance used so far. Alternatively, one may try to reuse in-
formation obtained from coarser (policy-restricted) abstrac-
tions to guide the search in the refined state space. We may
also consider lazy abstraction (Henzinger et al. 2002), i.e.,
to only refine the abstraction in a region local to the de-
tected spuriousness. Additionally, one may experiment with
“on-demand” policy-restriction, i.e., to only compute pol-
icy predicate abstraction on abstract unsafe path found under
standard abstraction.
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