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Abstract

This paper describes the SymPA planner that participated in
the 2016 unsolvability International Planning Competition
(IPC). SymPA is built on top of SymBA∗, the winner of
the optimal-track of the 2014 IPC. SymBA∗ combines sym-
bolic bidirectional search and perimeter abstraction heuris-
tics. However, despite to the close relation between cost-
optimal planning and deciding plan existence, SymBA∗ is not
suitable for proving unsolvability. SymPA is the result of tai-
loring symbolic perimeter abstraction heuristics for proving
unsolvability of planning problems.

Introduction
Symbolic search is a technique for state-space exploration
that uses efficient data-structures, usually Binary Decision
Diagrams (BDDs) (Bryant 1986), to represent and manip-
ulate sets of states. This has been a successful approach in
different areas in which algorithms must exhaustively search
the state space like model-checking (McMillan 1993), plan-
ning with uncertainty (Cimatti and Roveri 2000) or classical
planning. The pioneer in classical planning was the MIPS
planner (Edelkamp and Helmert 2001) that used bidirec-
tional search. Symbolic search was also used for computing
Pattern Database (PDB) heuristics (Edelkamp 2001; 2002).
The Gamer planner popularized the use of bidirectional
search and BDDA∗ with symbolic pattern databases (Kiss-
mann and Edelkamp 2011; Kissmann 2012). Moreover, re-
cent improvements (Torralba et al. 2013a; Torralba and
Alcázar 2013) have posed symbolic bidirectional search as a
state-of-the-art algorithm for cost-optimal planning. A clear
representative of this trend is the SymBA∗ planner, which
uses symbolic perimeter abstractions to inform a symbolic
bidirectional A∗ search (Torralba et al. 2016) and won the
optimal-track of IPC-14.

Proving unsolvability via search requires to completely
exhaust the state space so symbolic search is very promis-
ing. Moreover, abstractions are specially useful in unsolv-
able problems since it suffices to find an unsolvable ab-
stract problem (Bäckström et al. 2013). However, SymBA∗

is a cost-optimal planner so it focuses on searching plans
of lower cost. In this paper, we present SymPA (standing
for symbolic perimeter abstractions) that tailors symbolic
search and perimeter PDBs for proving unsolvability.

Symbolic Perimeter Abstractions
Abstraction heuristics map the state space into a smaller ab-
stract state space and use the optimal solution cost as an es-
timation for the original problem. There are different types
of abstraction heuristics depending on how the mapping is
defined. Pattern Databases (PDBs) (Culberson and Schaef-
fer 1998; Edelkamp 2001) are projections of the planning
task onto a subset of variables (called pattern), so that two
states are equivalent iff they agree on the value of variables
in the pattern. Merge-and-shrink (M&S) abstractions gener-
alize PDBs, allowing to derive abstractions that use all vari-
ables (Helmert et al. 2007; 2014).

Here we focus on PDBs so the abstraction mapping is de-
termined by a subset of variables, W ⊆ V . We will use T W

to denote a search that takes into account variables in W and
ignore the rest. Hence, T V represents a search on the state
space of the planning task. To distinguish the direction of the
search, we will use T W

fw and T W
bw to refer to searches in the

forward and backward direction, respectively. We denote a
search in an unspecified direction by T W

u .
Perimeter abstractions construct a perimeter around the

goal in the original state space and use it to seed the
search in the abstract state space (Felner and Ofek 2007;
Eyerich and Helmert 2013). The perimeter is constructed
by a backward search, T Vbw , which computes the perfect
heuristic for all states in closed(T Vbw ). For states outside the
perimeter, an abstract search, T W

bw computes the minimum
distance from each abstract state to the abstract perimeter.

Symbolic perimeter abstractions generalized this idea, in-
troducing the use of multiple levels of abstractions (Torralba
et al. 2013b; Torralba 2015). Contrary to other PDB ap-
proaches that start from single-variable PDBs and iteratively
add more variables into the pattern (Haslum et al. 2007;
Bäckström et al. 2013), symbolic perimeter PDBs aim to re-
lax the search as little as possible. Hence, they start building
a perimeter that considers all variables and, only when the
search is unfeasible, remove variables from the pattern one
by one until the search can be continued.

The SPM&S planner computes several perimeter M&S
and PDB heuristics in backward direction to inform an A∗

search. SPM&S participated in the cost-optimal track of
IPC14 and was competitive with other heuristic search plan-
ning, only behind of symbolic bidirectional search planners.



SymBA∗: Bidirectional Search with Perimeter
Abstraction Heuristics

SymBA∗ performs several symbolic bidirectional A∗

searches on different state spaces. First, SymBA∗ starts a
bidirectional search in the original state space, T V . At each
iteration, the algorithm performs a step in a selected direc-
tion, i.e. expands the set of states with minimum f -value
in the frontier. Since no abstraction heuristic has been de-
rived yet, it behaves like symbolic bidirectional uniform-cost
search. This search continues until the next layer in both
directions is deemed as unfeasible, because SymBA∗ esti-
mates that it will take either too much time or memory. Only
then, a new bidirectional search is started in an abstract state
space, T W , W ⊂ V , initialized with the current frontiers
of T V . The abstract searches provide heuristic estimations,
increasing the f -value of states in the original search fron-
tiers. Eventually, the search in the original state space will
be simplified and it will be continued.

The overall strategy of SymBA∗ is motivated by the great
results of symbolic bidirectional uniform-cost search in cost-
optimal planning. Therefore, SymBA∗ is configured to run
as much search as possible in the original state space, only
resorting to use abstractions when the unabstracted search
becomes unfeasible. Hence, most theory of SymBA∗ is de-
voted to how evaluate the heuristics in a lazy way, minimiz-
ing the amount of search performed in abstract state spaces.

However, SymBA∗ is not completely suitable for proving
unsolvability for several reasons:

1) Bidirectional search is less effective In problems with
a solution bidirectional search is effective because, instead
of searching a direction until the depth of the optimal so-
lution d, we perform two searches until depth d/2. This is
a great advantage since the number of explored states often
grows exponentially in the search depth. However, unsolv-
ability will only be proved whenever one of the frontiers is
completely exhausted. Hence, performing a forward and a
backward search just duplicates the planner effort.

2) Abstractions are more effective In cost-optimal plan-
ning, doing an abstract search cannot possibly solve the
problem. However, in the unsolvability case, often a sub-
set of variables is enough to prove unsolvability so it is
possible to prove unsolvability without doing any search in
the original state space. In the experimental analysis done
by Torralba et al. (2016), it was shown that SymBA∗ does
not always benefits from abstraction heuristics because it is
hard to find good abstractions that simplify the search while
preserving goal-distance information. However, as analyzed
by (Bäckström et al. 2013), often considering a (sometimes
small) subset of variables is enough to prove unsolvability.
Hence, searching small abstract state spaces can be expected
to be much more effective in problems without any solution.

3) Costs are ignored Action-costs, as well as distance to
the goal and/or the initial state are irrelevant in order to prove
unsolvability. This, allows to greatly simplify most parts of
the planner, such as ignoring the g-value of states and the
heuristic evaluation.

SymPA’s Algorithm
As SymBA∗, SymPA performs searches in forward and
backward direction in the original and abstract state spaces.
However, there are a number of differences with respect
to SymBA∗. First of all, since the cost of the path is not
relevant, symbolic breadth-first search is used instead of
uniform-cost or BDDA∗. This simplifies the representation
of the open list because a single BDD is used to contain all
the states in the frontier, instead of separated BDDs for dif-
ferent g-values.

Moreover, despite it performs searches in both directions,
searches in SymPA are not truly bidirectional because there
is no direct interaction between the two frontiers, i.e. the
planner does not need to check whether the frontiers inter-
sect. The planner benefits from doing searches in both direc-
tions because of two reasons. On the one hand, forward and
backward search may have different performance so by do-
ing both, the planner benefits of always using the best one for
the problem at hand, like portfolio approaches. On the other
hand, both directions have synergy when using abstractions
since states that are unreachable in one direction are dead-
ends in the opposite one.

Finally, while SymBA∗ fosters the bidirectional search
in the original state space until it is completely unfeasible,
SymPA performs multiple searches in smaller abstract state
spaces in order to discover dead-ends that will help with
searches in larger state spaces.

Algorithm 1 shows the pseudocode of SymPA. SymPA
maintains a set of ongoing searches, SearchPool , that is ini-
tialized to searches in both directions in the original state
space. It also keeps a set of dead-end states for forward,
Dfw , and backward, Dfw , search that are initialized empty.
A search is considered to be feasible if its frontier is repre-
sented with less than M BDD nodes, where M is a param-
eter of the algorithm. M is dynamically adjusted, starting in
a relatively low value to explore different abstract searches
and increased over time in order to explore less relaxed state
spaces. At every iteration, if any search in the pool is feasi-
ble, the search deemed as easiest (according to a time esti-
mation based on the time taken by the last step and the num-
ber of BDD nodes used to represent its frontier) is continued
one more step.

Whenever a search is terminated, if it did not find any
solution, the problem has been proved unsolvable and the
algorithm terminates. If the search in the original state space
(T Vu ) found a solution, then the problem has been proved
solvable. Otherwise, we eliminate the search from the pool
of ongoing searches, gather all unreachable states (which are
dead-ends for the opposite direction) and remove them from
all searches in the opposite direction.

When all current searches are unfeasible, a symbolic
perimeter abstraction is constructed. We randomly select the
forward or backward direction and start from the perimeter
on the original state space. The search is relaxed by abstract-
ing some variables away, until it becomes feasible. The pro-
cess interleaves abstraction and search steps until the search
is finished, storing intermediate results in the search pool to
be continued later if they become feasible.



Algorithm 1: SymPA
Input: Planning problem: Π = 〈V,A, I,G〉
Output: “Solvable” or “Unsolvable”

1 SearchPool ← {T Vfw , T Vbw} ;
2 Dfw , Dbw ← ∅, ∅ ;
3 Loop
4 if ∃T X

u ∈ SearchPool s.t. Is-Feasible(T X
u )

then
5 T X

u ← Easiest-Search(SearchPool) ;
6 Expand-frontier(T X

u , Du) ;
7 else
8 T X

u ← RandomSelection({T Vfw , T Vbw}) ;
9 while T X

u is not finished do
10 if Is-Feasible(T X

u ) then
11 Expand-frontier(T X

u , Du) ;
12 else
13 SearchPool ← SearchPool ∪ {T X

u } ;
14 T X

u ← Relax-frontier(T X
u ) ;

15 if T X
u is finished then

16 if not Found-Solution (T X
u ) then

17 return “Unsolvable” ;
18 if X = V then
19 return “Solvable” ;

20 SearchPool ← SearchPool \ {T X
u } ;

21 D¬u ← D¬u∪Unreachable-States(T X
u )

;
22 Remove-DeadEnds(D¬u, T Θ

¬u);

Abstraction Strategy
The abstraction selection strategy is decisive for the overall
performance. Symbolic perimeter PDBs start considering all
variables and relax one variable at a time, until the BDD rep-
resentation of the search frontier has been simplified. To pick
which variable to relax, we generate a set of candidate pat-
terns in the following way. Given the pattern to relax, W , we
have a candidate for each variable vi ∈W , Wi := W \{vi}.
As pointed out by Haslum et al. (2007), patterns that do
not contain any goal variable or whose variables form more
than one connected component in the causal graph can be
ignored because they are not more informed than patterns
with strictly less variables. Even though this does not al-
ways holds when using perimeter abstractions (because the
perimeter might induce a relation between the variables), it
is still a good heuristic criterion to focus on useful patterns.
Hence, we eliminate candidates that do not contain any goal
variable. If a candidate pattern consists of multiple discon-
nected components in the causal graph, we consider each of
them an independent candidate. Finally, we discard all pat-
terns that are subsets of other candidates, in order to relax
the search the least possible. Among all candidates, we pre-
fer those that have not previously been selected and pick one
of them at random.

IPC configuration
SymPA is built on top of the Fast Downward Planning Sys-
tem (Helmert 2006) and uses h2 relevance analysis in order
to eliminate operators and simplify the planning task prior to
the search (Alcázar and Torralba 2015). We submit two dif-
ferent configurations SymPA and SymPA-irr. Both use the
procedure described in this paper. The maximum number of
BDD nodes for a search to be feasible, M , is set to 10 000
at the beginning. Then, after 300 seconds, is incremented by
10 000 nodes every second. This strategy guarantees that, at
the beginning, many variable subsets will be tried and, at the
end, the planner will focus on less abstract state spaces using
the information discovered by the previous runs.

The only difference between SymPA and SymPA-irr is
that the latter also uses a simulation-based irrelevance analy-
sis in order to eliminate operators and simplify the planning
task prior to the search (Torralba and Kissmann 2015). This
irrelevance analysis constructs a set of transition systems by
using M&S with the DFP merge strategy (Dräger et al. 2006;
Sievers et al. 2014) and bisimulation shrinking (Nissim et al.
2011) with a limit of 50 000 transitions. Then, it computes
a label-dominance simulation relation (Torralba and Hoff-
mann 2015), which is used to eliminate transitions that can
be proved unnecessary to reach the goal. All actions whose
transitions are removed this way can be removed from the
planning task without affecting plan existence.

Conclusions
This paper has presented the SymPA and SymPA-irr plan-
ners that participated in the 2016th edition of the unsolv-
ability IPC. They adapt for proving unsolvability the sym-
bolic bidirectional search and perimeter abstractions tech-
niques successfully used in cost-optimal planning.
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Álvaro Torralba, Stefan Edelkamp, and Peter Kissmann.
Transition trees for cost-optimal symbolic planning. In
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati,
and Angelo Oddi, editors, Proceedings of the 23rd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’13), pages 206–214, Rome, Italy, 2013. AAAI
Press.
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