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Abstract

Both search-based and translation-based planning systems
usually operate on grounded representations of the problem.
Planning models, however, are commonly defined using lifted
description languages. Thus, planning systems usually gener-
ate a grounded representation of the lifted model as a pre-
processing step. For HTN planning models, only one method
to ground lifted models has been published so far. In this
paper we present a new approach for grounding HTN plan-
ning problems that produces smaller groundings in a shorter
timespan than the previously published method.

Introduction

Most modelling languages for planning problems (such as
PDDL (McDermott 2000) and HDDL (Höller et al. 2020))
allow for specifying planning problems in a lifted fashion,
e.g. by allowing the modeller to specify the model using a
first-order logical language. Actions are specified with pa-
rameters and the action’s preconditions and effects are spec-
ified using literals referring to these parameters. Using such
a lifted representation, a modeller can easily write models
with a large number of action instantiations without the need
to enumerate them explicitly. More importantly, a lifted rep-
resentation enables the modeller to specify a single planning
domain that can be used in multiple planning problems with-
out any change to the domain.

Unfortunately, to plan directly using only the lifted
model is quite difficult. Most planners transform the lifted
input-model into a grounded model before planning. Plan-
ning is then performed on the grounded representation, ei-
ther via search (Höller et al. 2018b; Bercher et al. 2017;
Helmert 2006) or via a translation into other problems, e.g.
SAT (Behnke, Höller, and Biundo 2019b; 2019a; 2018b;
Behnke and Biundo 2018; Behnke, Höller, and Biundo
2018a; Rintanen 2014; Rintanen, Heljanko, and Niemelä
2006). Naively grounding the lifted representation by sim-
ply instantiating all its elements is seldom feasible due to
the huge size of the naively grounded model. Instead, the
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grounding procedure aims to remove as many unneces-
sary instantiations as possible. Unnecessary here means that
grounding of e.g. actions can be removed if they cannot be
part of a solution to the planning problem. Smaller ground-
ings are generally advantageous to planners, as their per-
search-node effort or the size of any translation decreases.
Further, even the quality of computed heuristics can improve
if “distractor actions” are removed. Even a small decrease in
the size of the grounding can significantly impact the effi-
ciency of the planner. As such, grounding is a critical step in
the process of planning.

For Hierarchical Task Network (HTN) planning (Erol,
Hendler, and Nau 1996), there is – as far as we know –
only a single paper concerned with grounding HTN plan-
ning domains (Ramoul et al. 2017), which is used in the
planner GTOHP. However, several other HTN planners plan
using a grounded model (e.g. FAPE (Dvorak et al. 2014)
and PANDA (Bercher, Keen, and Biundo 2014; Bercher et
al. 2017)), but there are no publications on their grounding
procedures. Lastly, Tree-Rex (Schreiber et al. 2019) uses a
yet unpublished improvement of GTOHP’s grounder.

In this paper we describe the grounding procedure that as
so-far been used by the HTN planner PANDA and a recently
developed improved version of the grounder called pandaPI.
We start by describing the lifted HTN planning formalism,
then give an overview of grounding in planning in general
and in HTN planning in particular. We describe the ground-
ing procedure used by PANDA. Thereafter we present the
new and more systematic view on the HTN grounding pro-
cess, which allowed us to create the new and highly efficient
grounder pandaPI. Lastly, we compare the performance of
pandaPI with that of PANDA, GTOHP, and Tree-Rex.

Lifted HTN Planning Formalism

Before explaining the HTN grounding procedure, we start
by briefly describing the formalism of lifted HTN planning.
We have based our formalism on the lifted one by Alford,
Bercher, and Aha (2015), which in turn is based on the for-
malism by Geier and Bercher (2011).

Assume that L = (P, T, V, C) is a quantifier- and
function-free first-order predicate logic with the following
elements. P is a finite set of predicate symbols. A predi-
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navigate(?s, ?f)

pay-toll(?s, ?f)

load(?p, ?f)

navigate(?f, ?t)

pay-toll(?f, ?t)

unload(?p, ?t)

Figure 1: A task network in a transportation domain. If per-
formed, it will transport a package from its initial location to
its target location. The variables ?s (start location), ?f (ini-
tial package location), and ?t (target package location) are
of type location. The variable ?p is of type package. Paral-
lelism between the pay-toll and navigate tasks models that
the toll can be paid at any time while the transporter is on its
way from the one location to another.

cate’s arity defines its number of parameter variables (taken
from V ), each having a certain type (defined in T ). T is a
finite set of type symbols. V is a finite set of typed variable
symbols to be used by the parameters of the predicates in P .
C is a finite set of typed constants.

HTN planning problems specify two types of tasks: Prim-
itive tasks are identical to actions in classical planning and
are identified via a first-order atom action(?v1, . . . , ?vn)

1

(e.g. drive(?f, ?t)). Their semantics is given via their pre-
conditions pre – a conjunction of positive first-order literals
over L – and effects eff – a conjunction of (positive and
negative) first-order literals2. The variables occurring in pre
and eff must be parameters, i.e. members of {?v1, . . . , ?vn}.
Applicability and the state transition semantics of actions is
defined as in classical planning.

Abstract tasks are also described via first-order atoms
task(?v1, . . . , ?vn). Their semantics is given in terms of
pre-defined means for performing them, which are described
by decomposition methods M . A decomposition method
m ∈ M is a tuple (c, tn) consisting of an abstract task c
and a task network tn. A task network is a partially ordered
multi-set of actions and tasks.
Definition 1. A task network tn over a set of primitive and
abstract tasks X (first-order atoms) is a tuple (I,≺, α) with:
1. I is a finite set of task IDs.
2. ≺ is a strict partial order over I .
3. α : I → X × V maps task IDs to task and parameters

Note that pandaPI does also allow for specifying variable
constraints, i.e. equals and not-equals constraints on vari-
ables and constants. We handle them naively by checking
them and do not discuss them further in the paper for the
sake of brevity. As an example for a task network consider
the one shown in Fig. 1.

An HTN planning problem is then given by the problem’s
initial state sI (a set of ground positive literals or facts), a
set of available decomposition methods M , and the initial
abstract task cI which specifies the goal.

1We adopt the convention of PDDL (McDermott 2000) to de-
note variables with a prefixed question mark. I.e. ?a is a variable,
while a denotes a constant.

2More complex representations are common in domain specifi-
cation languages, but can be compiled into this simplistic format.

navigate(?f, ?t) unload(?p, ?t)

navigate(?a, ?c) �→ drive(?a, ?b) navigate(?b, ?c)

drive(?f, ?b) navigate(?b, ?t) unload(?p, ?t)

Figure 2: The first row shows a task network tn1. The sec-
ond row shows a method for the navigate task. The result of
applying this method to the navigate task in tn1 results in
the task network shown in the third row.

The aim in an HTN planning problem is to refine a given
initial abstract task cI into an executable, ground, primitive
task network. A task network is primitive if all tasks in it are
primitive. It is ground if all variables are assigned to con-
stants. It is further executable if there is a linearisation of its
tasks that is executable in the initial state. Refining the ini-
tial task network is performed via applying decomposition
methods to the abstract tasks contained in it and the resulting
task networks. Applying a decomposition method (c, tnc) to
a task network tn means to replace an occurrence of the task
c in tn by the contents of the task network tnc.

Definition 2. Let m = (c(?x1, . . . , ?xn), tnm) with tnm =
(Im,≺m, αm)) be a decomposition method, and tn1 =
(I1,≺1, α1) a task network. We assume that Im ∩ I1 = ∅
and that the sets of variables occurring in tn1 and tnm

are disjunct, which can be achieved by renaming. Then, m
decomposes a task identifier i ∈ I1 into a task network
tn2 = (I2,≺2, α2) iff α1(i) = c(?y1, . . . , ?yn) and

I2 = (I1 \ {i}) ∪ Im

≺2 = (≺1 ∪ ≺m∪
{(i1, i2) ∈ I1 × Im | (i1, i) ∈ ≺1} ∪
{(i1, i2) ∈ Im × I1 | (i, i2) ∈ ≺1})
\ {(i′, i′′) ∈ I1 × I1 | i′ = i or i′′ = i}

α2 = α1 ∪ \{(i, c(?y1, . . . , ?yn))} ∪
{(i, c(?z∗1 , . . . , ?z∗m)) | (i, c(?z1, . . . , ?zm)) ∈ αm,

∀j :?z∗j =?yk iff ?zj =?xk, and ?z∗j =?zj else}
As an example for applying a decomposition method,

consider the task networks and the method shown in Fig. 2.

Grounding Planning Problems

Both theoretical research (Alford et al. 2016; Behnke et
al. 2016; Bercher et al. 2016; Höller et al. 2016; Behnke,
Höller, and Biundo 2015; Höller et al. 2014) and practi-
cal research (Schreiber et al. 2019; Höller et al. 2018b;
Behnke et al. 2019) on hierarchical planning is usually
done on grounded, i.e. variable-free models, instead of
lifted models. Especially newer search-based HTN plan-
ners like FAPE (Dvorak et al. 2014), GTOHP (Ramoul et
al. 2017), or PANDA (Bercher, Keen, and Biundo 2014;
Bercher et al. 2017) ground a given lifted planning problem
prior to search. A grounded model allows for both a more ef-
ficient implementation and for easier to compute and more
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concise heuristics. In contrast, the translation technique by
Alford et al. (2016) is executed on the lifted model – ground-
ing is only performed on the resulting classical model.

In theory, computing a grounded model based on a given
lifted model is easy. One has to compute all possible instan-
tiations of lifted predicates, primitive actions, abstract tasks,
and methods and replace their lifted versions appropriately
by them. For details regarding this full grounding process we
refer to Alford, Bercher, and Aha (2015). Such a grounding
will be exponential in size. Thus, a fully grounded model
is not useful in many practical cases, as handling it within
given memory and time limits is hard or even impossible.

In many planning problems, computing all instantiations
of all predicates, tasks, and methods is not necessary. For ex-
ample, it is not necessary to create a grounding drive(l1, l2)
of the drive action if there is no road between the locations
l1 and l2. For such an instantiation drive(l1, l2), we know
a priori that its precondition can never be fulfilled3. Thus
this action cannot be part of any plan. Ideally, we would like
to compute only those groundings of predicates, tasks, and
methods that occur in some solution to the planning prob-
lem. Determining whether this is the case is undecidable.
Theorem 1. The problem of deciding whether an action a
is part of some plan for a given HTN planning problem is
undecidable.

Proof. We can show the claim via a reduction from the
plan existence problem for HTN planning problems, which
is known to be undecidable (Erol, Hendler, and Nau 1996;
Geier and Bercher 2011). Let P be an HTN planning prob-
lem. We add a primitive action a without any precondition
and effects. Further, we add a new initial abstract task c∗I ,
which has only a single decomposition method yielding one
instance of a and the old initial abstract task cI of P without
any ordering constraint. Now, P has a solution if and only if
a is part of some plan for P .

Instead, we aim at computing an approximation of this
property. We are looking for a subset of all ground instances
of predicates, tasks, and methods such that all ground in-
stances not included in that set are not contained in any so-
lution. I.e., we disregard a ground instance if we can prove
that it cannot be contained in a solution. This approximation
entails a trade-off: with higher computation time, a better
approximation might be found.

This technique of approximate grounding is widely used
in classical planning. In general, an action is not included in
the grounding if it cannot be part of any executable plan in
the delete-relaxation of the problem. The delete-relaxation
of a planning problem is a copy of the problem in which all
negative effect literals are removed. Any action that is not
part of a plan in a delete-relaxed problem cannot be part of a
plan in the original problem. For a given action one can de-
termine in polynomial time whether it is part of any delete-
relaxed classical plan (Bylander 1994). The set of these ac-
tions is usually computed via a planning graph (Blum and
Furst 1997). Often, this reduction leads to a significant de-
crease in the size of the grounded problem. Some planning

3Assuming that there is no means to build new roads.

systems, like FF (Hoffmann and Nebel 2001), first com-
pute the full grounding and subsequently prune actions4.
This, however, does not eliminate the bottle-neck of ground-
ing, but makes the grounding smaller for the planning pro-
cess itself. An efficient implementation based on DATALOG
was proposed by Helmert (2009), which does not have this
bottle-neck of a full instantiation.

To the best of our knowledge there is currently only one
publication in the field of HTN planning devoted to ground-
ing, which is the grounder of GTOHP (Ramoul et al. 2017).
It uses a grounding procedure similar to that of FF – i.e. it
computes a full instantiaton and prunes subsequently – and
similarly uses the concept of inertia to prune tasks early dur-
ing instantiation (Koehler and Hoffmann 2000). Inertia of a
predicate describe the ways its truth value can change while
a plan is executed – not at all, only from negative to positive
(or vice versa), or in both directions. In inertia-based sim-
plification, a primitive task whose precondition evaluates to
false under the computed inertia values is removed from the
planning problem, as it can never become executable. Sub-
sequently, all methods it is contained in are removed as well.
If an abstract task has no applicable method remaining it is
likewise removed.

The recently published planner Tree-Rex (Schreiber et al.
2019) uses GTOHP’s grounding procedure but also prunes
abstract tasks that cannot be refined into primitive actions
any more – even though they have applicable decomposition
methods. This leads to generally smaller groundings.

Note that GTOHP removes effectless actions from the
methods they are contained in (Ramoul et al. 2017). The re-
spective methods are not pruned afterwards, but considered
part of the correct grounding without the removed effect-
less actions. According to the formalisation of HTN plan-
ning, these actions can however be contained in plans – and
pose constraints in them. As such it makes any found solu-
tion (potentially) invalid as it may not adhere to the solution
criteria of HTN planning. Secondly, the implementation of
GTOHP does not allow for two parameters of an action or
method to be instantiated with the same constant. Consider
as an example a method that paints two wooden boards ?b1
and ?b2 in colours ?c1 and ?c2. GTOHP enforces that ?c1
and ?c2 are different without this constraint being a part of
the domain. This leads to an incomplete grounding, this time
when the (only) solution uses the method where both colours
are, e.g. red, as we only have red paint. For our evaluation,
we have fixed both issues in the code of GTOHP.

PANDA’s Grounding

The HTN planning system PANDA has used a grounded
representation for planning since 2014. All techniques that
were published and evaluated using PANDA (e.g. (Behnke,
Höller, and Biundo 2019a; 2019b; Höller et al. 2018b;
Höller et al. 2018a; 2018c; Bercher et al. 2017; Behnke,
Höller, and Biundo 2017; Bercher, Keen, and Biundo 2014))
based upon a grounded model, while the benchmark in-

4Note that FF uses the concept of inertia (Koehler and Hoff-
mann 2000) to simplify the preconditions and effects before full
grounding.
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stances used in evaluations of PANDA are defined using the
lifted language HDDL (Höller et al. 2020). Most of the tech-
niques developed for PANDA (and pandaPI) originate in the
need to solve specific planning domains. Notably, the need
to handle the Monroe domain (Blaylock and Allen 2005),
which is plan recognition domain, lead to the development
of most of PANDA’s grounding algorithm.

So far, we have not published any description of PANDA’s
grounding process. We correct this shortcoming with this
paper and describe how the grounding procedure that has
been used in the previous evaluations of PANDA works. In
this section, we will give a short overview of the grounding
techniques used by PANDA. The grounding procedure used
by PANDA still had its shortcomings and problems. Thus,
we have developed a new grounder: pandaPI. It is based on
a new and more generic view on PANDA’s grounding pro-
cedure. This enables us to significantly improve the perfor-
mance compared PANDA’s grounder.

PANDA’s grounding procedure comprises three steps: a
lifted domain simplification, a delete-relaxed reachability
analysis, and a hierarchical reachability analysis based on
the Task Decomposition Graph (TDG) (Elkawkagy et al.
2012; Bercher et al. 2017). The second and third step are ex-
ecuted once on the lifted input domain in order to ground
the domain. Thereafter they are repeated in order to re-
duce the size of the grounding even further. Algorithm 1
shows the overall mechanism of PANDA’s grounder. Iter-
ating the reachability analysis is one of the major features of
PANDA’s grounder, as it enables finding smaller and more
concise groundings. Note that this is also the main differ-
ence between the grounding results found by PANDA and
Tree-Rex’s improved grounding (Schreiber et al. 2019). It is
based on the following observation: The TDG-based analy-
sis can remove groundings of primitive actions, as they are
not reachable through the hierarchy any more. Such an ac-
tion in turn might have been the only one that enables the
execution of other – yet unremoved – actions in the plan-
ning graph. Removing them might cause grounded decom-
position methods to be removed. This again, might remove
other primitive actions.

As an example, consider the methods and primitive tasks
shown in Fig. 3. If we assume that the initial state is empty,
then only the actions a, c and d are delete-relaxed reachable.
Thus, the second method B �→ a, b is not reachable as it
contains a task – b – that can never become executable. It
will thus be pruned from the grounded model. The remain-
ing methods however still remain in the model after the TDG
has been computed. One however notices that removing the
method B �→ a, b also removes the only possibility to ob-
tain the action a via decomposition. It can thus be removed
from consideration, i.e. only c and d remain in the ground-
ing. This is where GTOHP and Tree-Rex stop their analysis.
PANDA runs an additional delete-relaxed reachability anal-
ysis after a and b are pruned. Now, d is not reachable any
more, since it is not possible to achieve its precondition x
any more. Thus d can be pruned as well and consequently all
remaining methods, as well as c. This pruning might again
remove other actions from consideration and has thus to be
repeated until convergence to achieve a minimal model –

A �→ B,C

B �→ a, b

B �→ c

C �→ d

pre
a : {}
b : {z}
c : {}
d : {x}

add
{x}
{}
{y}
{}

del
{}
{}
{}
{}

Figure 3: Sample Decomposition Methods on the left, and
four actions with their preconditions and effects on the right.

which PANDA does.

Data: lifted HTN planning problem P
P = lifted domain simplifications(P);
Pg = planning graph(P);
(Ag,Mg, Pg) = tdg(P ,Pg);
Pg = (Pg, Ag,Mg);
while true do

Pg = planning graph(Pg);
(Ag,Mg, Pg) = tdg(Pg ,Pg);
P∗
g = (Pg, Ag,Mg);

if Pg = P∗
g then

break
end

end

Algorithm 1: PANDA’s grounding procedure – Overview.
Variables are: Pg – grounded primitive actions, Ag –
grounded abstract tasks, Mg – grounded methods

Next we will describe the individual steps of PANDA’s
grounder.

Parameter Splitting

As a first step, PANDA performs simplification operations
on the lifted model. For example, we compile disjunctions
in preconditions and conditional effects into additional ac-
tions, and compile away negative preconditions. Similarly,
we compile away variables occurring in preconditions and
effects (i.e. those that are contained in quantified expres-
sions) into additional parameters.

Besides these common simplifications, PANDA performs
an HTN-specific simplification operation on the lifted model
with the aim of reducing the size of the grounding. In some
HTN planning domains, lifted decomposition methods con-
tain variables that are (1) used only as parameters of a sin-
gle subtask and (2) which are not parameters of the ab-
stract task. As an example, consider an abstract task A(?x)
with a method decomposing it into the tasks B(?x, ?y) and
C(?x, ?z). Further assume that all variables have the same
type t which contains the constants {c1, . . . , cn}. If we
ground this method, it has up to n3 ground instances. No-
tably, we have to ground every possible combination of the
otherwise independent parameters ?y and ?z.

We can equivalently represent this method by three new
methods while introducing two new abstract tasks. Let these
abstract tasks be B∗(?x) and C∗(?x). The three decompo-
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sition methods are A(?x) �→ B∗(?x), C∗(?x)5, B∗(?x) �→
B(?x, ?y), and C∗(?x) �→ C(?x, ?z). For these three meth-
ods, there are at most 2n2+n groundings plus an additional
2n new groundings of abstract tasks (B∗ and C∗), which is
a significant improvement over the original model.

This splitting technique is related to the splitting tech-
niques for action schemas presented by Areces et al. (2014).
Their splitting technique also splits lifted actions into multi-
ple ones in order to reduce the number of necessary ground-
ings. They however needed to introduce a mechanism to “co-
ordinate” common parameters between the split actions –
i.e. additional state variables (PROCNONE, DO, and PAR(.)).
Contrary to their work, pandaPI’s splitting has an automatic
way to “coordinate” the values of common parameters of
split actions: the methods. But in a sense, their technique
is a generalisation of ours as we only allow the split if
no coordination between the “hidden” variables is needed.
Thus adapting their technique might enable more aggressive
splits, which is however future work.

Delete-Relaxed Reachability

After the initial simplification of the domain, PANDA per-
forms a delete-relaxed reachability analysis to determine
which groundings of primitive tasks can possibly occur in
any executable plan. PANDA’s implementation is based on
the efficient planning graph implementation of STAN (Long
and Fox 1999). It is succinct in the sense that it never consid-
ers groundings that are not delete-relaxed reachable, similar
to the DATALOG-based implementation by Helmert (2009).

TDG-based Hierarchical Reachability

PANDA’s hierarchical reachability analysis is based on a
data-structure called the Task Decomposition Graph (TDG).
It was first introduced by Bercher, Keen, and Biundo (2014)
and later refined (Bercher et al. 2017). On the one hand, the
TDG is designed to compute all groundings of abstract tasks
and methods that are reachable from the initial abstract task.
Only those groundings can ever occur during the planning
process, as any other grounding can never be obtained via
decomposition as required by the solution criteria of HTN
planning. On the other hand, the TDG also removes abstract
tasks (and connected methods) which cannot be decomposed
into a primitive plan. If this is not possible, a task network
containing such a task can never be refined into a solution,
as this solution must only contain primitive actions. A TDG
is a directed graph. Nodes represent either ground tasks or
ground methods. A task node has outgoing edges to each
applicable ground method, and each method has outgoing
edges to its ground subtasks. This means the graph is a repre-
sentation of hierarchical reachability, i.e. which ground tasks
and methods can possibly be reached via decomposition.
Definition 3. Let P be an HTN planning problem. The bi-
partite graph G = 〈VT , VM , ET→M , EM→T 〉, consisting of
a set of task vertices VT , method vertices VM , and edges
ET→M and EM→T is called the TDG of P if it holds:
1. Base Case (task vertex for the given task)
cI ∈ VT , the TDG’s root.
5To remain correct, B∗ and C∗ have the order of B and C.

2. Method Vertices (derived from task vertices)
Let c ∈ VT and there is a method (c, tn) ∈ M . Then, for
all groundings vm it holds that:
• vm ∈ VM

• (vt, vm) ∈ ET→M .
3. Task Vertices (derived from method vertices)

Let vm ∈ VM with vm = (c, tn) and tn = (I,≺, α).
Then, for all tasks i ∈ I with α(i) = vt the following
holds:
• vt ∈ VT

• (vm, vt) ∈ EM→T .
4. Tightness G is minimal, such that 1. to 3. hold.

Note that the TDG can represent HTN planning problems
that contain cyclic methods. A cyclic decomposition is a se-
quence of decompositions of a grounded task c that results
in a task network containing c again. If the planning problem
contains such a cycle, the edge representing the method that
produces the recursive occurrence of c simply points back to
the vertex created for the first occurrence of c.

TDGs constructed based on the definition contain only
those groundings reachable from the initial task by decom-
position. As proposed by Elkawkagy, Schattenberg, and Bi-
undo (2010) one can delete those method nodes that con-
tain a primitive task not reachable in a state-based reach-
ability analysis like the planning graph. As a consequence
of removing those methods, there may be abstract tasks in
the TDG that cannot be decomposed into a task network
containing only primitive actions any more. For example,
removing a method containing a not delete-relaxed reach-
able action might remove the only option to exit a recursive
method structure. If such an abstract task occurs in a task
network during decomposition, we know that it is impossi-
ble to refine that task network into a solution. We can thus
prune the abstract task – and consequently all methods it
is contained it. Removing these methods may again allow
us to remove other abstract tasks, thus one can repeat this
process until convergence (Def. 4, Nr. 2b). These tasks can
be identified in polynomial time by relying on a bottom-up
reachability analysis (Alford et al. 2014, proof of Thm. 3.1).

To capture this pruning, we parametrize the previous def-
inition of a TDG by specifying an additional set of primitive
ground tasks: these are the actions that are potentially exe-
cutable, i.e. those tasks that resulted from the delete-relaxed
reachability analysis.
Definition 4. Let P be an HTN planning problem and G =
〈VT , VM , ET→M , EM→T 〉 the respective TDG according to
Def. 3. Let X be the set of executable ground actions.

Then, the pruned TDG GX = 〈V ′
T , V

′
M , E′

T→M , E′
M→T 〉

is given as the minimal connected subgraph containing cI
such that:
1. Remove Useless Method Vertices

A method vertex vm = (c, tn) ∈ VM with tn = (I,≺, α)
is in V ′

M if and only if I does not contain a task i with
α(i) �∈ X in case α(i) is primitive or with α(i) being
useless, in case it is abstract (see below).

2. Identify Useless Abstract Task Vertices
An abstract task vertex vt ∈ V ′

T is called useless if one of
the following holds:
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A

m1

B

m2

C

m3

m4 a

b

c

Figure 4: Sample Task Decomposition Tree.

(a) the pruned TDG GX does not contain children for vt
(i.e., all successors of vt were pruned)

(b) there is no acyclic connected subgraph of the pruned
TDG GX with root vt, in which every abstract method
vertex has exactly one outgoing edge and no vertex is
useless (i.e., the task vt cannot be decomposed into a
set of primitive tasks)

As an example for pruning the grounded domain using the
TDG, consider the TDG depicted in Fig. 4. It contains three
abstract tasks A, B, and C, three primitive ones a, b, and
c, as well as four methods. If all primitives are reachable,
no task or method will be pruned. Now consider, as the first
case, that the primitive task c is not executable, i.e. that the
set of executable ground actions is X = {a, b}. Then the
method m2 will be removed via condition 1. of Def. 4. Since
m2 has been pruned, B will be pruned as well, as it has
no children (condition 2. (a)). This removal cascades and
also removes m1, A, and m3. Note that b is not removed
by Def. 4, but can be removed as it is not contained in any
method any more. Thus only C, m4 and a remain.

As a second example, consider the case where a is not
executable, i.e. X = {b, c}. Here the method m4 is immedi-
ately removed via condition 1. Now, each of the remaining
tasks has still applicable methods. It is however not possible
to “escape” the cycle formed by the abstract tasks A, B, and
C. Thus all three can be pruned from the TDG according to
condition 2. (b).

pandaPI’s Grounding Procedure

Recent work (Wichlacz, Torralba, and Hoffmann 2019) has
shown that PANDA’s grounding procedure can be extremely
slow on some larger, practical planning instances. Further
the analysis has shown that the runtime performance of
PANDA’s grounder scales extremely badly with increasing
size of the input problem.

We have thus developed a new grounder, pandaPI, which
we designed to fully replace PANDA’s current grounder.
The code of pandaPI is publicly available at https://github.
com/galvusdamor/pandaPIgrounder. pandaPI and PANDA’s
grounder differ in three important aspects:

1. pandaPI treats delete-relaxed reachability and TDG-
based reachability uniformly

2. pandaPI uses more efficient code for pruning once the
domain has been grounded, while PANDA always used
the clunky code necessary for a (potentially) lifted domain

3. pandaPI is written in C++, while PANDA is written in
Scala

As we will describe in this section, the way in which the
planning graph computes the delete-relaxed reachability of a
classical planning problem and the computation of a pruned
TDG bear striking similarities. We will generalise both pro-
cedures into a common framework, the Generalised Plan-
ning Graph (GPG). Using it, pandaPI computes both the
delete-relaxed reachability and the TDG-based reachability
with exactly the same code. Thus both parts of the grounding
procedure benefit from improvements to the GPG.

Planning Graph vs TDG

The objective of the planning graph is to determine, based
on a given initial state sI , which actions can possibly be ap-
plied in any state that is delete-relaxed reachable from sI .
The planning graph maintains a set of facts F that can po-
tentially become true, which is initialised with sI . For that,
it repeatedly checks whether the preconditions of any lifted
action can be fulfilled with the facts in F . If so, that ac-
tion is instantiated accordingly, and its instantiated effects
are added to F . If no new action becomes applicable, the
computation stops.

For constructing the TDG, there are two opposing meth-
ods. One option is to start grounding with the initial abstract
task and ground the planning problem with a depth-first-
search-like procedure. In it, the planner essentially applies
rules 2. and 3. of Def. 3 until convergence. If this TDG has
been constructed, we can use a marker algorithm to perform
the pruning according to Def. 4. We start by marking all
primitive actions that were reached in the planning graph.
Then we recursively mark all methods for which all sub-
tasks are marked and the abstract tasks of a all marked meth-
ods. After convergence, we remove all non-marked tasks and
methods. This construction, however, can be problematic
as it will frequently construct groundings of abstract tasks
and methods that will be pruned afterwards – based on the
delete-relaxed reachability analysis which was performed
beforehand. The second way to construct the pruned TDG
tries to mitigate this problem by only constructing grounded
instances of methods and abstract tasks if they will not be
pruned due to Def. 4. For that, one instantiates methods and
abstract tasks only if the marker algorithm to compute de-
composable abstract tasks would mark them as well. The
algorithm maintains a set A of tasks (both primitive and ab-
stract) that will not be removed by the pruning according to
Def. 4. We start with setting A to the set of all actions that
are delete-relaxed reachable, i.e. to the result of the plan-
ning graph. Then, one repeatedly checks whether there is a
(lifted) decomposition method for which all subtasks have
ground instances in A. If so, the method is instantiated and
the grounding of its abstract task is added to A. This pro-
cess is repeated until no new methods can be instantiated.
This instantiation process might – on the down side – gen-
erate instantiations that cannot be reached from the initial
abstract task. We therefore perform a depth-first search to
discard all such instantiations. As this search is performed
on an already grounded model, it is quite fast.

Like the first method to compute the TDG, the second
can compute unnecessary groundings, namely those that will
be removed by the depth-first search. In order to keep these
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PG TDG
Instances facts tasks
Operators actions methods
Antecedants preconditions subtasks
Consequents add effects abstract task

Table 1: PG vs TDG

tasks to a minimum, we perform a relaxed depth-first search-
style propagation of types and constraints through the hier-
archy, prior to the actual instantiation process. We determine
for every parameter variable of every method, task, and ac-
tion which constants can be assigned to it – which is often
far less than the type of the variables allows. During the in-
stantiation phase, we then disregard all instances which do
not comply with the computed possible set of parameters.

Generalised Planning Graph

The computations performed by the planning graph (PG)
and the TDG described in the previous section are extremely
similar in nature. Both maintain a current set of instances
with which the preconditions (or antecedants) of lifted op-
erators are fulfilled. If so, the operator is added to the set
of reachable groundings and its effects (or consequents) are
added to the set of instances. This process is repeated un-
til no new ground instantiation of a lifted operator can be
generated. We show a comparison of the two algorithms in
Tab. 1. The only difference between the two algorithms is
that the TDG will perform a depth-first search for pruning
after grounding. Note that such a pruning step could also be
performed for the PG. Here we would remove all ground
actions that only produce effects that have no connection to
any goal fact, i.e. which can never contribute to reaching the
goal. This step is often not performed, as actions are seldom
pruned based on this criterion.

These similarities between the PG and TDG have caused
us to develop a common algorithm – the Generalised Plan-
ning Graph (GPG) – which pandaPI uses to perform both
the PG- and the TDG-based grounding. It is essentially an
implementation of the standard planning graph algorithm
which uses an generic interface to also operate on the in-
put data structures of the TDG. We have opted not to use
a DATALOG-based implementation, which is used by Fast
Downward (Helmert 2009), as this enables us to add opti-
misations into the planning graph algorithm that are specific
to planning problems. We process new instances (facts and
ground tasks, respectively) in a manner s.t. any ground in-
stantiation is only considered once. We split the set of in-
stances I into two: a set of already processed instances Ip
and a set of unprocessed instances Iu. We repeatedly remove
instances i from Iu and add them to Ip. pandaPI then con-
siders all lifted operators which have an antecedant which
can be fulfilled with i. We match the remaining antecedants
recursively with instances from Iu. This way, we never con-
sider the same ground instances of a lifted operator twice.

We use a caching strategy to find matching antecedants
quickly. For that we process antecedants always in the same
fixed order. pandaPI constructs for every type of opera-

tor a table with is indexed with the antecedants that is to
be matched. The table contains the possible instances that
can be matched to the antecedant. For every antecedant, we
know which parameter variables have been set by matching
the prior antecedants. And thus, we know which of the vari-
able will already have constants assigned to them. pandaPI’s
table maps the possible instantiations of these variables to
the instances that they are compatible with. By construction,
all these lists are disjunct. Whenever pandaPI needs to find
all matching instances for an antecedant, it can access this
table and obtain only the instances that agree on the previ-
ously set variables. pandaPI actually does not have to check
whether the instance is compatible with the already assigned
variables, as it will be by construction. We can maintain this
table with little overhead and update it whenever a new in-
stance is added to Ip.

As an example, consider the operator a(?u, ?v, ?w, ?x)
with the following antecedants:
1. p(?v, ?w)
2. p(?w, ?x)
3. q(?v, ?x, ?u)
If we are looking to instances for the third antecedant, we
will have already matched – by construction of pandaPI’s
algorithm – the two prior antecedants. Thus values for ?v,
?w, and ?x will already be known. For the third antecedant,
only two variables ?v and ?x are relevant. Thus, we have a
table mapping assignments of these variables to constants.
For example, the entry for [?v = c1, ?x = c2] might con-
tain the instances q(c1, c2, c3) and q(c1, c2, c2), but not e.g.
q(c1, c1, c1) – as this instance does not agree with the values
of ?v and ?x.

Lastly, we also use a caching procedure to determine
whether yet unmatched, i.e. future, antecedants will have
no matching instance based on the currently assigned vari-
ables. Thus, pandaPI might be able to determine after fixing
an instance for the first antecedant, that the third antecedant
does not have a matching instance any more. pandaPI will
immediately backtrack in this case and thus save the com-
putation time needed for a potential exhaustive search until
antecedant three.

pandaPI uses the same general algorithm (Alg. 1) for
grounding as PANDA. I.e. we start with lifted domain sim-
plifications and parameter splitting6, then continue with
computing the planning graph and the TDG using the Gen-
eralised Planning Graph. The resulting domain is ground.
We continue checking delete-relaxed reachability and TDG
pruning until no further actions, tasks, and methods can be
removed using a specialised, efficient implementation which
operates on the grounded problem.

Evaluation

In order to ascertain the quality of the grounding found by
pandaPI and its runtime performance when doing so, we
have conducted an empirical evaluation. We have compared
pandaPI against three other grounders for HTN planning

6Note that PANDA’s parameter splitting sometimes did not split
parameters, due to a bug in the implementation. Hence the size of
the computed groundings can differ slightly.
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Figure 5: Runtime of pandaPI vs three other grounders. Time is measured in milliseconds. Scales are logarithmic. Domains are
colour-coded, the legend is contained in Figure 6.

Time
better equal worse min% max% min max avg.%

PANDA 330 0 0 94.56 99.72 1517 1172525 98.55
GTOHP 198 0 4 -74.53 99.59 -5488 34963 80.17
Tree-Rex 200 0 2 -28.81 99.67 -2874 43119 83.39

Primitive Tasks
better equal worse min% max% min max avg.%

PANDA 0 330 0 0.00 0.00 0 0 0.00
GTOHP 202 0 0 0.01 99.97 1 676891 50.62
Tree-Rex 96 101 5 -25.00 90.64 -31 205913 26.06

Abstract Tasks
better equal worse min% max% min max avg.%

PANDA 132 97 101 -47.43 93.48 -490 251 6.86
GTOHP 142 0 60 -68.14 99.11 -635 145016 43.46
Tree-Rex 108 3 91 -129.30 98.17 -871 11945 16.40

Methods
better equal worse min% max% min max avg.%

PANDA 132 97 101 -73.25 92.86 -17745 251 6.01
GTOHP 182 0 20 -0.01 99.91 -1 1049451 65.21
Tree-Rex 148 3 51 -5.00 98.15 -1 232082 36.19

Table 2: Comparison of time and grounding sizes. The bet-
ter, equal, and worse columns indicate in how many in-
stances pandaPI was better, equal, or worse than the denoted
planner. Min and Max refer to the minimum and maximum
improvement that pandaPI makes over all instances.

BARMAN BLOCKSWORLD
CHILDSNACK DEPOTS
ENTERTAINMENT GRIPPER
HIKING MINECRAFT-AREA
MINECRAFT-NORMAL PCP
ROVER-PANDA ROVER
SATELLITE SMARTPHONE
TRANSPORT UM-TRANSLOG
WOODWORKING

Figure 6: Colour-codes for the individual domains.

problems: PANDA’s grounder, GTOHP’s grounder (Ramoul
et al. 2017), and Tree-Rex’s grounder (Schreiber et al. 2019).
We have not compared against FAPE (Dvorak et al. 2014) as
it cannot handle HTN planning problems containing recur-
sion – while most benchmark instances contain recursion.

The benchmark set comprises 330 problem instances
from 17 domains. 8 domains (BARMAN, BLOCKSWORLD,
CHILDSNACK, DEPOTS, GRIPPER, HIKING, ROVER-
GTOHP, SATELLITE-GTOHP) with 160 instances
stem from the evaluations of GTOHP and Tree-Rex. 2
domains (MINECRAFT-AREA, MINECRAFT-NORMAL)
with 26 instances stem from Wichlacz, Torralba, and
Hoffmann (2019). The remaining 7 domains (UM-
TRANSLOG, SATELLITE-PANDA, WOORWORKING,
SMARTPHONE, PCP, ENTERTAINMENT, ROVER-
PANDA, TRANSPORT) with 144 instances stem
from the evaluations of PANDA (Höller et al. 2018b;
Behnke, Höller, and Biundo 2019a). All instance are avail-
able for download at pandapi.hierarchical-task.net/domains.

Since GTOHP and Tree-Rex can only handle totally-
ordered HTN planning problems, both were executed only
on those 228 instances of the benchmark set that are totally-
ordered, i.e. their own 8 domains plus both MINECRAFT
domains, TRANSPORT, and ENTERTAINMENT. All experi-
ments were conducted on an Intel Xeon E5-2660 with a 20
GB RAM limit for each instance. We set no time-limit.

pandaPI was able to ground all 330 problem instances
with a maximum runtime of 38.166 seconds. The same is
true for PANDA, whose runtime reached up to 20 minutes
and 10 seconds. GTOHP was able to ground 202 of the 228
instances given to it with a maximum runtime of 41.609 sec-
onds. It failed to ground all 26 MINECRAFT instances by ex-
ceeding the memory limit after at least 11 minutes of com-
putation time per instance. Tree-Rex – as it uses GTOHP
as its first step – also grounds 202 instances and fails on
MINECRAFT with a maximum runtime of 58.935 seconds.

A per-instance comparison of the runtime between pan-
daPI, PANDA, GTOHP, and Tree-Rex is shown in Fig. 5. A
statistical summary of timings and grounding sizes is shown
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in Tab. 2. For PANDA and pandaPI we do not count the ac-
tions representing grounded method preconditions. GTOHP
and Tree-Rex consider them as part of grounded meth-
ods, thus counting them separately for PANDA and pan-
daPI would skew the results significantly – as this is sim-
ply a question of where to store these the method precondi-
tion. Notably, there are only two instances where pandaPI
is slower than GTOHP, and four where it is slower than
Tree-Rex, and it is always faster than PANDA. The instances
where pandaPI is slower than GTOHP and Tree-Rex all stem
from the SATELLITE-GTOHP domain and the difference is
at most 5.488 seconds.

Further, pandaPI creates a smaller grounding than
GTOHP in all instances, and in 96 instances compared to
Tree-Rex. The five instances in which it produces more
primitive tasks stem from the ENTERTAINMENT domain.
Here, pandaPI compiles conditional effects into multiple ac-
tions, while GTOHP and Tree-Rex can handle conditional
effects natively. When considering abstract tasks and meth-
ods, pandaPI often generates smaller groundings, but some-
times also generates larger groundings with respect to the
number of abstract tasks. This is due to our parameter split-
ting which may introduce additional abstract tasks. If it is
turned off (see supplemental material), our grounding is
never worse than that of GTOHP. Note that in those 20 /
51 instances in which pandaPI produces more methods, it
generates only one additional method. This is due to a com-
pilation performed by pandaPI in case the domain specifies
multiple initial abstract tasks. If so, pandaPI added a new ar-
tificial initial abstract task and a method decomposing it into
the specified tasks.

pandaPI generates on average a significantly smaller
grounding in a significantly smaller timeframe than the pre-
vious grounders of PANDA, GTOHP, and Tree-Rex. Espe-
cially, we think that we have overcome with pandaPI the
current problems of grounding in HTN planning as shown
by Wichlacz, Torralba, and Hoffmann (2019).

We’ve lastly compared pandaPI’s implementation of the
GPG with the currently state-of-the-art DATALOG-based
implementation in Fast Downward’s grounder (Helmert
2009). We have considered those instances that were identi-
fied as the most time-consuming to ground for Fast Down-
ward (Helmert 2009) as reported by Helmert. These in-
stances stem either from the domains SATELLITE or PSR.
Since pandaPI does not support derived predicates – which
are an essential part of the modelling of PSR – we have com-
pared our implementation of the planning graph against Fast
Downward’s DATALOG-based implementation on those
SATELLITE instances which they reported as problematic.
The results are shown in Tab. 3 and show that pandaPI is
significantly faster than Fast Downward on these instances.

Conclusion

Most recent systems in HTN planning realise the planning
process in a fully grounded way. A smaller grounding usu-
ally improves the performance of the planner. For example,
a smaller grounding allows for heuristics to be computed
faster – and for them to be more precise. Further, the search

FD pandaPI FD pandaPI
#31 15.410s 0.588s #32 25.840s 1.178s
#33 38.765s 1.339s #34 9.000s 0.338s
#35 13.590s 0.511s #36 17.200s 0.620s

Table 3: Time to ground instances of the classical SATEL-
LITE domain for Fast Downward (FD) vs pandaPI

mechanics of the planner is faster the smaller the ground-
ing is, as fewer actions and methods have to be considered.
Lastly, a smaller grounding also reduces the size of encod-
ings, e.g. into propositional logic, which makes the trans-
lated problem (potentially) easier to solve. Despite these ad-
vantages, little work has been published on grounding tech-
niques especially for HTN planning. We presented ground-
ing procedure of PANDA and pandaPI and discuss how to
compute them efficiently. Our empirical evaluation shows
that it leads to smaller groundings than other grounder and
uses less time to compute it.
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