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Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 15: Combining Heuristic Functions 2/53



Introduction Cost Partitioning Domination How To Find It? General CP Hitting Sets Conclusion References

We Need to Combine Heuristic Functions!

We have covered the 4 different methods currently known:

Critical path heuristics: Done. → Chapter 8

Delete relaxation: Basically done. → Chapters 9 and 10

Abstractions: Done. → Chapters 11–13

Landmarks: Done. → Chapter 14

→ Every h yields good performance only in some domains.

Can we exploit their complementary strengths?
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Combining Lower-Bound Heuristics: Our Story So Far

Q: Say somebody gives you lower-bounds h1, . . . , hn. How can you
always obtain a lower-bound h that dominates each of them?
A: By h := maxi=1...n hi.

Q: Say somebody gives you lower-bounds h1, . . . , hn. What would be
much better than taking their max?
A: Taking their sum.

But how to ensure the sum is still a lower bound?

For PDBs hPi : Require the patterns Pi to be orthogonal.

For elementary landmark hLM
Li

: Require the Li to be orthogonal.

→ What about all the other possible h? And what about combinations
across different methods? Is there something we can do in general?

The rest of this chapter points out that the answer is “Yes!!!”
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A Curious Observation in the 15-Puzzle

1 2 3 4

5 6 7

3

8

9 10 11 12

13 14 15

→ Is the sum of the abstraction heuristics admissible? No, because the
same moves of tile 3 may be counted by both abstractions.

→ But what if, on each side, I count only 0.5 moves? Then yes, because
“duplicate moves” will be accounted for as cost 1.
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Cost Partitioning in a Nutshell

→ Cost partitionings distribute the cost of each action across a set of
otherwise identical planning tasks. This technique can be used to
admissibly combine arbitrary admissible heuristic functions.
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Our Agenda for This Chapter

2 Cost Partitioning: We introduce the concept, illustrate it, and
prove admissibility of the partitioned sum.

3 Domination of Previous Orthogonality Criteria: We prove that
there always exists a cost partitioning dominating our orthogonality
criteria for PDBs and LMs.

4 How To Find a Cost Partitioning? We prove that, for PDBs and
LMs and their combination, we can always find the best possible
cost partitioning in polynomial time.

5 General Cost Partitioning: Generalization that improves cost
partitioning.

6 ps. Landmarks and Hitting Sets: Departing from the fully general
combination technique of cost partitioning, we have a look back at
LMs and consider a technique even stronger than cost partitioning
for combining this particular class of heuristic functions.
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Cost Partitioning

Definition (Cost Partitioning). Let Π be a planning task with actions
A and cost function c. An ensemble of functions c1, . . . , cn : A 7→ R+

0 is
a cost partitioning for Π if, for all a ∈ A,

∑n
i=1 ci(a) ≤ c(a). The cost

partitioning is full if, for all a ∈ A,
∑n

i=1 ci(a) = c(a).

Notes and Notations:

“=” (full cost partitioning) is more intuitive; but only “≤” is
required for admissibility, and some practical cost partitioning
methods are more naturally described that way.

If h is a heuristic for Π, then h[ci] denotes the same heuristic but
computed on the modification of Π where c is replaced by ci.
→ We assume that h[ci] is defined, for any h.

If h1, . . . , hn is an ensemble of heuristic functions for Π, then the
partitioned sum of h1, . . . , hn given c1, . . . , cn is

∑n
i=1 hi[ci], for

which we use the short-hand
∑
h[c].
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A Simple Example: Driving a Car

Planning task: Drive a car from left to right.

Heuristics: Two times the same heuristic. h1: PDB for P1 = {car}; h2:
PDB for P2 = {car}.

P1:

P2:

Cost partitioning: For each action a, c1(a) = 0.2 and c2(a) = 0.8.

→ h1[c1](I) + h2[c2](I) = 0.6 + 2.4 = 3 = h∗(I). Same for any other
full cost partitioning.
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Not So Simple: The Attack of the Zombie Tomatoes

Planning task: Goal: A and B both true. Initial state: A and B both false.
Actions: carA effect A cost 1; carB effect B cost 1; fancyCar effect A and B
cost 1.5.

Heuristics: h1: hLM
L1

for L1 = {carA, fancyCar}; h2: hLM
L2

for
L2 = {carB, fancyCar}.

→ hLM
L1

(I) = hLM
L2

(I) = 1. L1 and L2 are not orthogonal.

Cost partitioning: c1(carA) = 1, c2(carA) = 0; c1(carB) = 0, c2(carB) = 1;
c1(fancyCar) = 0.75, c2(fancyCar) = 0.75. Then
hLM
L1

[c1](I) = hLM
L2

[c2](I) = 0.75 so hLM
L1

[c1](I) + hLM
L2

[c2](I) = 1.5 = h∗(I).
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Partitioned Sums are Admissible

Theorem (Partitioned Sums are Admissible). Let Π be a planning task, and
let h1, . . . , hn be heuristic functions for Π. If c1, . . . , cn is a cost partitioning for
Π, and if hi[ci] is consistent and goal-aware for all i, then the partitioned sum∑
h[c] is consistent and goal-aware, and thus also admissible and safe.

Proof. Goal-awareness: Trivial because all component heuristics are goal-aware.

Consistency: We need to show that whenever (s, a, t) ∈ T ,
∑
h[c](s) ≤∑

h[c](t)+ c(a).

For all i, hi[ci] is consistent. That is, hi[ci](s) ≤ hi[ci](t)+ ci(a) because the
cost function underlying hi[ci] is ci (rather than c).

But then,
∑
h[c](s) =

∑n
i=1 hi[ci](s) ≤

∑n
i=1(hi[ci](t) + ci(a)) =∑n

i=1 hi[ci](t)+
∑n
i=1 ci(a). Since c1, . . . , cn is a cost partitioning,∑n

i=1 ci(a) ≤ c(a) from which the claim follows.

→ Typical case: hi[ci] is consistent and goal-aware because hi ∈ Hi where Hi

is a family of heuristics (a class of heuristics h computed using the same
framework, e.g. PDB heuristic) that are consistent and goal-aware.
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Simple Again? Driving Two Cars

Planning task: Drive both cars from left to right, using actions
drive(carA,X, Y ) and drive(carB,X, Y ) (unit costs).

carA:

carB:

Question!

What is the value of hmax(I) for this task?

(A): 3 (B): 6

→ hmax(I) = 3: As we consider single-fact subgoals only, the two cars are
treated separately. Each of the respective goal facts costs 3, so (A) is correct.
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Questionnaire

Planning task: Drive both cars from left to right, using actions
drive(carA,X, Y ) and drive(carB,X, Y ) (unit costs).

carA:

carB:

Question!

hmax(I) = 3. Can we improve this using cost partitioning?

→ Yes! Set h1 := hmax and h2 := hmax. Then partition the costs so that all
carA-moves have their full cost in h1 and 0 cost in h2, and all carB-moves have
their full cost in h2 and 0 cost in h1. The resulting heuristic is

∑
h[c](I) = 6.

(This kind of technique was first proposed by [Haslum et al. (2005)])
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So What?

We can admissibly combine arbitrary heuristic functions.

→ But for the particular methods we have, is that any better than the
admissible combinations we defined earlier?

Yes! (provided we manage to find the right cost partitionings)

Given a collection L1, . . . , Ln of action sets, there always exists a
cost partitioning that dominates the canonical (LM) heuristic, i.e.,
the best sum of orthogonal hLM

Li
.

Given a pattern collection P1, . . . , Pn, there always exists a cost
partitioning that dominates the canonical (PDB) heuristic, i.e., the
best sum of orthogonal hPi .

In both settings, there are cases where the domination is strict.

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 15: Combining Heuristic Functions 17/53



Introduction Cost Partitioning Domination How To Find It? General CP Hitting Sets Conclusion References

Dominating Orthogonal Landmarks

Reminder: → Chapter 14

If L ⊆ A is a disjunctive action landmark for s then
hLM
L (s) = min {c(a) | a ∈ L}; else, hLM

L (s) = 0.

Action sets L1, . . . , Ln ⊆ A are orthogonal if Li ∩ Lj = ∅ for i 6= j.
Then,

∑n
i=1 h

LM
Li

is admissible.

Theorem (Cost Partitionings Can Dominate the Sum of
Orthogonal Landmarks). Let Π be a planning task, and let
L1, . . . , Ln ⊆ A be orthogonal action sets. For each i and a ∈ A, define
ci(a) := c(a) if a ∈ Li, and ci(a) := 0 otherwise. Then c1, . . . , cn is a
cost partitioning, and for all states s we have

∑n
i=1 h

LM
Li

(s) =
∑
h[c](s).

→ Orthogonality for landmarks is subsumed by “0/1” cost partitionings,
putting the entire cost of each action into the landmark it is a member of.
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Dominating Orthogonal Landmarks, ctd.

Proof. c1, . . . , cn is a cost partitioning:
∑n
i=1 ci(a) ≤ c(a) because, with

L1, . . . , Ln being orthogonal, a is contained in at most one Li.

For any s,
∑n
i=1 h

LM
Li

(s) =
∑
h[c](s): By definition,

∑
h[c](s) =∑n

i=1 h
LM
Li

[ci](s) so it suffices to show that, for each i, hLM
Li

(s) = hLM
Li

[ci](s).
The latter holds because every action contained in Li has its original cost in ci.

Corollary (Cost Partitionings Can Dominate the Canonical LM Heuristic).
Let Π be a planning task, let C be a collection of action subsets, and let s be a
state. Then there exists a cost partitioning for Π so that hC(s) ≤

∑
h[c](s).

There are cases where hC(s) <
∑
h[c](s).

Proof. “≤”: Apply theorem to the independent {L1, . . . , Lk} ⊆ C yielding the
maximum in s. “<”: See next slide.

→ State-dependence: hC selects the maximum additive {L1, . . . , Lk} ⊆ C
depending on the state. Hence we have to select the cost partitioning depending
on the state. That is, we can’t in general select a cost partitioning once and
dominate hC on all states. Example see next slide.
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Strictly Dominating the Canonical LM Heuristic

Goal: A and B both true.

Initial state: A and B both false.

Actions: carA effect A cost 1; carB effect B
cost 1; fancyCar effect A and B cost 1.5.

Landmarks L1 = {carA, fancyCar} and
L2 = {carB, fancyCar}.

Reminder (cf. slide 12): hLM
L1

(I) = hLM
L2

(I) = 1, and L1, L2 are not

orthogonal, so hC(I) = max(hLM
L1

(I), hLM
L2

(I)) = 1. But, partitioning
c(fancyCar) evenly across L1 and L2, we get

∑
h[c](I) = 1.5 = h∗(I).

→ This shows “<” on previous slide.

Regarding state-dependence: Consider the same L1, L2, and states s = {A}
and s′ = {B}. Then hC(s) = hC(s′) = 1.

→ We cannot achieve the same based on a single cost partitioning, as
fancyCar would have to have cost ≥ 1 in both landmarks.
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Dominating Orthogonal PDBs

Reminder: → Chapter 12

An action a affects a projection πP if there exists a variable v ∈ P on
which eff a is defined. Patterns P1, . . . , Pn are orthogonal if every action
affects at most one Pi. Then,

∑n
i=1 h

Pi is admissible.

Theorem (Cost Partitionings Can Dominate the Sum of
Orthogonal PDBs). Let Π be a planning task, and let {P1, . . . , Pn} be
an orthogonal pattern collection. For each i and a ∈ A, define ci(a) :=
c(a) if a affects αi, and ci(a) := 0 otherwise. Then c1, . . . , cn is a cost
partitioning, and for all states s we have

∑n
i=1 h

Pi(s) =
∑
h[c](s).

→ Orthogonality for PDBs is subsumed by “0/1” cost partitionings,
putting the entire cost of each action into the PDB it affects.

(→ Yes, this works for arbitrary abstractions, not just for PDBs.)
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Dominating Orthogonal PDBs, ctd.

Proof. c1, . . . , cn is a cost partitioning:
∑n
i=1 ci(a) ≤ c(a) because ci(a) is 0

unless a affects αi, which by prerequisite is the case for at most one i.

For any s,
∑n
i=1 h

αi(s) =
∑
h[c](s): By definition,

∑
h[c](s) =∑n

i=1 h
αi [ci](s) so it suffices to show that, for each i, hαi(s) = hαi [ci](s). The

latter holds because every action that affects αi has its original cost in ci.

Corollary (Cost Partitionings Can Dominate the Canonical PDB
Heuristic). Let Π be a planning task, let C be a pattern collection, and let s be
a state. Then there exists a cost partitioning for Π so that hC(s) ≤

∑
h[c](s).

There are cases where hC(s) <
∑
h[c](s).

Proof. “≤”: Apply theorem to the additive {P1, . . . , Pk} ⊆ C yielding the
maximum in s. “<”: See next slide.

→ State-dependence: hC selects the maximum additive {P1, . . . , Pk} ⊆ C
depending on the state. Hence we have to select the cost partitioning depending
on the state. That is, we can’t in general select a cost partitioning once and
dominate hC on all states. Example see next slide.
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Strictly Dominating the Canonical PDB Heuristic

Goal: A and B both true.

Initial state: A and B both false.

Actions: carA effect A cost 1; carB effect B
cost 1; fancyCar effect A and B cost 1.5.

Patterns P1 = {A} and P2 = {B}.

→ What is hC(I)? hP1(I) = hP2(I) = 1, and P1, P2 are not orthogonal. So
hC(I) = max(hP1(I), hP2(I)) = 1.

→ Can we improve this using cost partitioning? Yes: Setting
c1(fancyCar) = c2(fancyCar) = 0.75 we get

∑
h[c](I) = 1.5 = h∗(I).

→ This shows “<” on previous slide.

State-dependence: Say fancyCar has effect p (not affecting A or B), and p
is a precondition of carA and carB. Say P1 = {p,A} and P2 = {p,B}.
Consider the states s = {A} and s′ = {B}. We have hC(s) = hC(s′) = 2.5.

→ We cannot achieve the same based on a single cost partitioning, as
fancyCar would have to have cost 1.5 in both patterns.
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Questionnaire

Planning task: Drive both cars from left to right.

P1 =
{carA}:

P2 =
{carB}:

Question!

Which cost partitioning corresponds to the canonical PDB
heuristic here?

→ All carA-moves have their full cost in hP1 and 0 cost in hP2 , and all
carB-moves have their full cost in hP2 and 0 cost in hP1 .

→ Orthogonality corresponds to particular cost partitionings that can be
computed very efficiently and that put action costs only where needed.
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What is the Problem?

Given: A collection h1, . . . , hn of admissible heuristics, and a state s.

Wanted: A cost partitioning c1, . . . , cn.

Number of candidates: Infinite.

→ Do all of these yield a good overall lower bound on h∗(s)? No! E.g.,
say hP1(s) = 0 and hP2(s) = 100 in the original task, where P1 and P2

are not additive. We could choose c1, c2 so that, for all a, c1(a) = c(a)
and c2(a) = 0. This would yield

∑
h[c](s) = 0.

→ Many (most) cost partitionings are bad. Our challenge is to
automatically find good ones.

→ The challenge is particularly vexing because ideally we want to do this
for every search state s! (In particular, if we wish to dominate the
canonical heuristics, cf. slides 21 and 18.)
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Optimal Cost Partitioning

Definition (Optimal Cost Partitioning). Let Π be a planning task, let
h1, . . . , hn be admissible heuristic functions for Π, and let s be a state.
An optimal cost partitioning for s and h1, . . . , hn is any cost partitioning
c1, . . . , cn for which

∑
h[c](s) is maximal.

→ Optimal cost partitionings distribute costs in a way that yields the
best possible lower bound, for a given state.

Question!

Does this definition sound completely impractical?

(A): Yes (B): No

→ Yes it does. However, it isn’t! In many cases, we can compute an
optimal cost partitioning efficiently.
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Questionnaire

V : Glass1,Glass2 : {Table,Hand}; Empty1,Empty2 : {0, 1};
Wodka,Tomato : {Bottle,Glass1,Glass2, Shaker}; BloodyMary,Alive : {0, 1}.
Initial state I: Glass1 = Table, Glass2 = Table, Empty1 = 1, Empty2 = 1,
Wodka = Bottle, Tomato = Bottle, BloodyMary = 0, Alive = 1.
Goal G: BloodyMary = 1, Alive = 1.
Actions A:
Take(x): pre Glassx = Table; eff Glassx = Hand
Drop(x): pre Glassx = Hand ; eff Glassx = Table
Fill(x, y): pre Glassx = Hand , Emptyx = 1, y = Bottle; eff y = Glassx
Pour(x,Wodka): pre Glassx = Hand , Wodka = Glassx; eff Wodka = Shaker ,
Emptyx = 1
Pour(x,Tomato): pre Glassx = Hand , Tomato = Glassx; eff Tomato = Shaker ,
Emptyx = 1, Alive = 0
Shake(): pre Wodka = Shaker , Tomato = Shaker ; eff BloodyMary = 1

Heuristics: h+; landmarks {Shake()}, {Pour(1,Wodka),Pour(2,Wodka)},
{Pour(1,Tomato),Pour(2,Tomato)}; PDB h{Tomato,BloodyMary,Alive}.

Question!

What are the optimal cost partitionings for I here?

→ Any arbitrary cost partitioning is optimal for I, because
h{Tomato,BloodyMary,Alive}(I) =∞ regardless of what the cost partitioning is.
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Optimal Cost Partitioning for Landmarks

Theorem (Polynomial-Time Optimal Cost Partitioning for Landmarks).
Let Π be a planning task, let s be a state, and let L1, . . . , Ln be disjunctive
action landmarks for s. Then an optimal cost partitioning for s and
hLM
L1
, . . . , hLM

Ln
can be computed in time polynomial in ‖Π‖ and n.

Proof Sketch. The problem of finding an optimal cost partitioning c1, . . . , cn
can be formulated as a Linear Programming (LP) problem. We use LP variables
ci,a encoding the partitioned costs, and variables hLi

encoding the weight the
final heuristic will count for the landmark Li. Simple constraints ensure that
ci,a is indeed a cost partitioning, and that the weights hLi

are not larger than
allowed. Maximizing

∑n
i=1 hLi results in an optimal cost partitioning.

→ Selection of the cheapest action from a landmark Li can be encoded into LP,
giving a weight to each Li. An optimal cost partitioning corresponds to an LP
solution maximizing the summed-up weights.

→ Note: We assume here that the Li are LMs for s. Corresponds to standard
methods determining a set of LMs for each search state (cf. Chapter 14).
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Optimal Cost Partitioning for Landmarks: Proof

LP variables:

For all i and a ∈ Li: ci,a [value to be assigned to ci(a)].

For all i: hLi
[weight to be counted for LM Li].

Maximize:
∑n
i=1 hLi

subject to LP constraints:
(i) For all a ∈

⋃
Li:

∑
Li:a∈Li

ci,a ≤ c(a). [Ensures that the solution
corresponds to a cost partitioning.]

(ii) For all Li and a ∈ Li: hLi
≤ ci,a. [Ensures that the weight counted for

each LM is at most the cost of its cheapest action.]

Let ci,a and hLi
be the values in an optimal solution to this LP. Define ci :=

{(a, ci,a) | a ∈ A}. We show that c1, . . . , cn is an optimal cost partitioning.

By (i) c1, . . . , cn is a cost partitioning. By (ii) hLi ≤ mina∈Li ci(a) =
hLM
Li

[ci](s). As
∑n
i=1 hLi

is maximal and there are no other constraints on hLi
,

we have hLi
= mina∈Li

ci(a) and thus
∑n
i=1 hLi

=
∑
h[c](s).

Now let c′1, . . . , c
′
n be any cost partitioning. Then we obtain a solution to the

LP by defining c′i,a := c′i(a) and h′Li
:= mina∈Li

c′i(a). Thus∑
h[c′](s) ≤

∑
h[c](s), QED.
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The Tomato Zombies Strike Again!

Goal: A and B both true.

Initial state: A and B both false.

Actions: cA effect A cost 1; cB effect B cost
1; fC effect A and B cost 1.5.

Landmarks L1 = {cA, fC} and
L2 = {cB, fC}.

LP variables: c1,cA, c1,fC , c2,cB , c2,fC , hL1 , hL2 .

LP constraints:

(i) c1,cA ≤ 1; c2,cB ≤ 1; c1,fC + c2,fC ≤ 1.5.

(ii) hL1
≤ c1,cA; hL1

≤ c1,fC ; hL2
≤ c2,cB ; hL2

≤ c2,fC .

Solution maximizing hL1 + hL2 : For example, c1,cA = 1, c1,fC = 0.75,
c2,cB = 1, c2,fC = 0.75, hL1

= 0.75, hL2
= 0.75. In general, any assignment

where c1,fC + c2,fC = 1.5, c1,fC ≤ c1,cA ≤ 1, c2,fC ≤ c2,cB ≤ 1, hL1
= c1,fC

and hL2
= c2,fC .
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Optimal Cost Partitioning for PDBs

Theorem (Polynomial-Time Optimal Cost Partitioning for PDBs). Let Π
be a planning task, let s be a state, and let {P1, . . . , Pn} be a pattern
collection. Then an optimal cost partitioning for s and hP1 , . . . , hPn can be
computed in time polynomial in ‖Π‖ and ‖ΘP1‖, . . . , ‖ΘPn‖.
Proof Sketch. LP formulation: Constraints

∑n
i=1 ci,a ≤ c(a) ensure that we

get a cost partitioning. For each i, constraints ci,s = 0 and ci,t′ ≤ ci,t + ci,a for

each transition t
a−→ t′ in ΘPi ensure that ci,t for any state t in ΘPi is at most

the abstract cost to reach t from s (using the partitioned costs ci,a).
Constraints hPi

≤ ci,t for all abstract goal states t in ΘPi ensure that the
weight hPi counted for each Pi is at most the real abstract remaining cost of s.

Maximizing
∑n
i=1 hPi

results in an optimal cost partitioning.

→ Cheapest paths in abstract state spaces can be encoded into LP, giving a
weight to each PDB. An optimal cost partitioning corresponds to an LP solution
maximizing the summed-up weights.

(→ Yes, this works for arbitrary abstractions, not just for PDBs.)
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Killer-LP Tomato ZomPDBs

Goal: A and B both true.

Initial state: A and B both false.

Actions: cA effect A cost 1; cB effect B cost
1; fC effect A and B cost 1.5.

Patterns P1 = {A} and P2 = {B}.

LP variables: c1,cA, c2,cA; c1,cB , c2,cB ; c1,fC , c2,fC ; c1,¬A, c1,A; c2,¬B , c2,B ;
hP1

, hP2
.

LP constraints:
c1,cA + c2,cA ≤ 1; c1,cB + c2,cB ≤ 1; c1,fC + c2,fC ≤ 1.5.
c1,¬A = 0; c1,A ≤ c1,¬A + c1,cA; c1,A ≤ c1,¬A + c1,fC .
c2,¬B = 0; c2,B ≤ c2,¬B + c2,cB ; c2,B ≤ c2,¬B + c2,fC .
hP1
≤ c1,A; hP2

≤ c2,B .

Solution maximizing hP1
+ hP2

: For example, c1,cA = 1, c1,cB = 0,
c1,fC = 0.75, c1,A = 0.75, hP1

= 0.75; c2,cA = 0, c2,cB = 1, c2,fC = 0.75,
c2,B = 0.75, hP2

= 0.75.
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Optimal Cost Partitionings for Landmarks and PDBs

Theorem (Polynomial-Time Optimal Cost Partitioning). Let Π be a
planning task, let s be a state, and let h1, . . . , hn be heuristic functions for Π
such that each hi either is given by hi = hLM

Li
for a disjunctive action landmark

for s, or is given by hi = hPi for a pattern Pi with abstract state space ΘPi .
Then an optimal cost partitioning for s and h1, . . . , hn can be computed in time
polynomial in ‖Π‖ and the size of the representation of h1, . . . , hn.

Proof Sketch. Simply put all the LP variables and constraints described
previously into a single formulation.

→ Selection of the cheapest action from a landmark Li can be encoded into LP,
giving a weight to each Li. Cheapest paths in abstract state spaces can be
encoded into LP, giving a weight to each PDB. An optimal cost partitioning
corresponds to an LP solution maximizing the summed-up weights.

(→ Yes, this works for arbitrary abstractions, not just for PDBs.)
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(Optimal) Cost Partitioning in Practice

Sometimes, optimal just isn’t good enough: LPs can be solved in
polynomial time, however may not be fast enough especially if we do it for every
state during a search.

Some possible fixes:

Ditch all this and use our previous orthogonality criteria (not bad, really, at
least at the moment). [Haslum et al. (2007)]

Use uniform cost partitioning, distributing the cost of each action evenly
over all LMs it is a member of/over all PDBs it affects (not that bad
either). [Karpas and Domshlak (2009)]

Just live with it and solve an LP in every search state (useful for highly
challenging tasks if you got lots of time). [Katz and Domshlak (2010)]

Solve an LP for initial state and/or sample states, use
combination/selections of the resulting cost partitionings during search.
[Katz and Domshlak (2010); Karpas et al. (2011)]

For a set of abstractions, fix an order α1, . . . αn; saturate α1, giving it
enough costs to preserve hα1 ; then proceed for α2, . . . αn with the left-over
costs. [Seipp and Helmert (2014); Seipp et al. (2017)]
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Questionnaire

Planning task: Drive both cars. (Can move only to the right)

P1 =
{carA}:

P2 =
{carB}:

Question!

According to slide 32, the optimal cost partitioning LP has 22
variables (4 for the states t within each abstract state space, plus
hP1 and hP2, plus ci,a for all i and a). How many variables do we
actually need to find an optimal cost partitioning?

→ We don’t need ci,a if a does not affect Pi, removing 6 variables. If a affects only a
single Pi then we don’t need any ci,a, so just 10. ci,s = 0 is fixed so just 8.

→ Orthogonality criteria help to keep cost partitioning LPs small.
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Where Optimal Cost Partitioning Is Not Good Enough

00

01

10

11

1 1 1

0∗ 1∗

∗0

∗1

Initial state: {A = 0, B = 0}.
Goal: {A = 1}.
Actions:
cB pre {B = 0} eff {B = 1} ;
cA pre {A = 0, B = 1} eff
{A = 1, B = 0}
Patterns P1 = {A} and P2 = {B}.

Question!

What is the optimal cost partitioning for I?

h(I) = 0 + 1 = 1 < 2 = h∗(I)
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Where Optimal Cost Partitioning Is Not Good Enough

00

01

10

11

1 1 1

0∗ 1∗

∗0

∗1

0 0

1

1

0

Initial state: {A = 0, B = 0}.
Goal: {A = 1}.
Actions:
cB pre {B = 0} eff {B = 1} ;
cA pre {A = 0, B = 1} eff
{A = 1, B = 0}
Patterns P1 = {A} and P2 = {B}.

Question!

What is the optimal cost partitioning for I?

h(I) = 0 + 1 = 1 < 2 = h∗(I)
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General Cost Partitioning

Cost functions usually non-negative

Makes intuitively sense: original costs are non-negative

But: not necessary for cost-partitioning!

Definition (General Cost Partitioning). Let Π be a planning task with
actions A and cost function c. An ensemble of functions c1, . . . , cn : A 7→
R is a general cost partitioning for Π if, for all a ∈ A,

∑n
i=1 ci(a) ≤ c(a).

Theorem (General Partitioned Sums are Admissible). Let Π be a
planning task, and let h1, . . . , hn be heuristic functions for Π. If
c1, . . . , cn is a general cost partitioning for Π, and if hi[ci] is admissible
for all i, then the partitioned sum

∑
h[c] is admissible.

(Proof omitted.)

→More powerful than non-negative cost partitioning (optimal cost partitioning

maximizes the objective value so removing constraints can only increase the

heuristic value)
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General Cost Partitioning: Example

Example

00

01

10

11

1 1 1

0∗ 1∗

∗0

∗1

00 0

1

1

0

Heuristic value: 0 + 1 = 1

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 15: Combining Heuristic Functions 40/53



Introduction Cost Partitioning Domination How To Find It? General CP Hitting Sets Conclusion References

General Cost Partitioning: Example

Example

00

01

10

11

1 1 1

0∗ 1∗

∗0

∗1

00 0

1

2

−1

Heuristic value: 0 + 2 = 2
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General Cost Partitioning: Example

Example

00

01

10

11

1 1 1

0∗ 1∗

∗0

∗1

00 0

1

3

−2

Heuristic value: −∞+ 3 = −∞
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Where Cost Partitioning Fails

Goal: A,B,C true.

Initial state: A,B,C false.

Actions (unit cost):

carAB effect A and B;

carBC effect B and C;

carAC effect A and C.

Landmarks L1 = {carAB, carAC},
L2 = {carAB, carBC},
L3 = {carAC, carBC}.

Optimal cost partitioning: h(I) = 1.5 < h∗(I) (for hL1 = hL2 = hL3 = 0.5).

Minimum cost hitting set: h(I) = 2 = h∗(I)! E.g., H := {carAB, carAC}.

Hitting sets are admissible: Let L1, . . . , Ln be disjunctive action landmarks
for s. Let H be a minimum-cost hitting set. Then

∑
a∈H c(a) ≤ h∗(s).

(Simply because by definition every plan must hit every Li.)
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From Landmarks to h+!

Theorem. Let s be a state, and let L1, . . . , Ln be the collection of all delete
relaxation disjunctive action landmarks for s. Let H be a minimum-cost hitting
set. Then

∑
a∈H c(a) = h+(s).

Proof. “≤”: Every relaxed plan must hit every Li. For “≥”, we prove that any hitting
set H contains a relaxed plan. With RH := {p | p can be reached in delete relaxa-
tion using only H}, assume to the contrary that G 6⊆ RH . Choose 1 fact from the
goal and each action precondition, using a fact outside RH where possible. Consider
the graph over facts with arcs (p, a, q) where p ∈ prea and q ∈ eff a, and consider the
cut L defined by RH , RH :

s G

a (1)

a (1)

a (2)

a (2)

L

L

RH RH

L is a LM for s: We cannot reach the goal without using one of these actions.
However, consider any a ∈ H. Case (1): If prea ⊆ RH , then adda ⊆ RH because
a ∈ H. So a 6∈ L. Case (2): If prea 6⊆ RH , then we selected p ∈ prea \RH . So,
again, a 6∈ L. Altogether, H does not hit L, in contradiction.
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So What?

Hitting sets over LMs were first proposed by [Bonet and Helmert (2010)].

Hitting sets over LMs dominate the optimal cost partitioning. This is
because, for any action a, the total weight (after cost partitioning) of all
LMs a participates in is bounded by c(a). So if we hit all LMs then we got
an upper bound on the cost-partitioning heuristic.

There are constructive methods to find “complete” sets of landmarks, i.e.,
methods which guarantee that the minimum-cost hitting set will deliver
h+. This is nowadays the state-of-the-art method to compute h+ [Haslum
et al. (2012)].

A similar result does not hold for h∗ even if we somehow found all
(non-delete-relaxed) disjunctive action LMs. This is because, in the original
planning task, we may have to apply the same action more than once.

In practice, hitting sets over LMs tend to be computationally too expensive
(for every state, apart from finding all the LMs we have to solve the
NP-hard minimum-cost hitting set problem . . . ).

Álvaro Torralba, Cosmina Croitoru AI Planning Chapter 15: Combining Heuristic Functions 44/53



Introduction Cost Partitioning Domination How To Find It? General CP Hitting Sets Conclusion References

Summary

A cost partitioning distributes the cost of each action across n
otherwise identical planning tasks. This can be used to admissibly
sum up any ensemble of admissible heuristic functions.

For every state and ensemble of PDB heuristics, there exists a cost
partitioning that dominates the canonical PDB heuristic; the
domination can be strict.

The same is true of the canonical LM heuristic.

Optimal cost partitionings distribute action costs such that the lower
bound for a given state is maximal.

For PDBs and LMs, and for their combination, optimal cost
partitionings can be computed in polynomial time by Linear
Programming.

In practice, computing optimal cost partitionings for every search
state typically is too costly, and we need to approximate.
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Historical Remarks

The admissible combination of lower bounds has a long history. Famous
instances pertain to additive PDBs in Game playing [Felner et al. (2004)].

In planning, this story also started with additive PDBs [Edelkamp (2001);
Haslum et al. (2007)], then was extended to hm among others [Haslum et
al. (2005)]. The intuition always was to design the heuristics in a way
making them independent.

When I was in some project meeting somewhere in about 2005, someone
from outside the area said “But what if we count each move only half in
each of the heuristics?”. The remark was received with confusion, then
forgotten about.

Then Michael & Carmel [Katz and Domshlak (2008)] suddenly came along
and told us we’d been looking at 0/1 cost partitionings all the time, and
how to find optimal general ones efficiently using LP.

Since then, various works towards making this practical, cf. slide 35.

Cost partitioning is not specific to planning, can be applied anywhere!
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Reading

Optimal Additive Composition of Abstraction-Based Admissible
Heuristics [Katz and Domshlak (2008)].

Available at:

http://fai.cs.uni-saarland.de/katz/papers/icaps08b.pdf

Content: Original paper proposing cost partitioning, and showing
that, for certain classes of heuristics, optimal cost partitionings can
be computed in polynomial time using Linear Programming.
Specifically, the paper established this for abstractions as handled in
this course, as well as for implicit abstractions represented through
planning task fragments identified based on the causal graph.
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Reading, ctd.

Cost-Optimal Planning with Landmarks [Karpas and Domshlak
(2009)].

Available at:

http://iew3.technion.ac.il/~dcarmel/Papers/Sources/ijcai09a.pdf

Content: The “alarm clock” waking LMs up to the modern age of
cost-optimal planning (cf. → Chapter 14). Introduces cost
partitioning for elementary landmarks heuristics, and the
computation of optimal cost partitionings for such heuristics using
Linear Programming. Introduces uniform cost partitioning, which is
used in the experiments due to being more runtime-effective.
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Reading, ctd.

Diverse and Additive Cartesian Abstraction Heuristics [Seipp and
Helmert (2014)].

Available at:

http://ai.cs.unibas.ch/papers/seipp-helmert-icaps2014.pdf

Content: Introduces the current state of the art technique for cost
partitioning with abstraction heuristics, saturated cost partitioning,
which partitions costs according to what is actually needed to
preserve the abstraction heuristic.
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Williams, editors, Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS’12), pages 353–357. AAAI Press, 2012.

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 1728–1733, Pasadena, California, USA, July 2009.
Morgan Kaufmann.

Erez Karpas, Michael Katz, and Shaul Markovitch. When optimal is just not good
enough: Learning fast informative action cost-partitionings. In Fahiem Bacchus,
Carmel Domshlak, Stefan Edelkamp, and Malte Helmert, editors, Proceedings of
the 21st International Conference on Automated Planning and Scheduling
(ICAPS’11), pages 122–129. AAAI Press, 2011.
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