

Reminder: Our Program for Abstraction Heuristics

We take a look at abstractions and their use for generating admissible heuristic functions:

- In Chapter 11, we formally introduced abstractions and abstraction heuristics and studied some of their most important properties.
- In Chapter 12, we discussed a particular class of abstraction heuristics and its practical handling in detail, namely pattern database heuristics.
- In This Chapter, we discuss another particular class of abstraction heuristics and its practical handling in detail, namely merge-and-shrink abstractions.

 \rightarrow We handle all these methods in FDR, where they are most natural. We do not mention STRIPS at all (which is a special case anyway).

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 13: Merge-and-Shrink Heuristics	4/63
---	------

Introduction M&S Framework Power M&S Strategies A Full Example Mappings Conclusion References

1 Introduction

- 2 The Merge-and-Shrink Framework
- 3 The Expressive Power of Merge-and-Shrink Abstractions
- 4 Concrete Merge-and-Shrink Strategies [for Reference]
- 5 A Full Example: "Logistics mal anders" [for Reference]

AI Planning

- 6 M&S Abstraction Mappings [for Reference]
- 7 Conclusion

Álvaro Torralba, Cosmina Croitoru

Chapter 13: Merge-and-Shrink Heuristics 2/63

Introduction ○●○○○○	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
PDBs	in "Logist	ics m	al anders	11			

Logistics task with one package, two trucks, two locations:

AI Planning

- State variable package: $\{L, R, A, B\}$.
- State variable truck A: $\{L, R\}$.
- State variable truck B: $\{L, R\}$.

Introduction 00000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
PDBs i	in "Logist	ics m	al anders	": Projec	tion 1		

Project to {package}:

			enapter ist melge und emmit realistics			0/03	
	MRS Fromourul	Deview	MRS Stustorias		Monningo	Conclusion	References
000000	00000000	00000	0000000000	00000000000	00000000	000000	References

Chapter 13: Merge-and-Shrink Heuristic

6/63

On the Limitations of PDBs

How informed is the PDB heuristic?

- Consider generalization of the example: N trucks (still 1 package).
- Consider any pattern P that is proper subset of variable set V.
- Then $h^P(I) \leq$

Álvaro Torralba, Cosmina Croitori

- \rightarrow Can we improve this by max'ing over patterns?
- \rightarrow Can we improve this by sum'ing over orthogonal patterns?

 \rightarrow By contrast: Merge-and-shrink abstractions can, in time and space polynomial in N, represent the perfect heuristic!

Introduction 000●00	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
PDBs	in "Logist	ics m	al anders	": Projec	tion 2		

Project to {package, truck A}:

Álvaro Torra	alba, Cosmina Croito	ru	AI Planning	Chapter 13: Me	erge-and-Shrink	Heuristics	7/63
Introduction 00000●	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 000000	References
Our A	genda for	This	Chapter				

2 The Merge-and-Shrink Framework: Introduces the algorithm and discusses basic properties. Illustration on blackboard.

- **3** The Expressive Power of Merge-and-Shrink Abstractions: Not as scary as it sounds. We prove that merge-and-shrink can, with polynomial overhead, simulate PDBs: but not vice versa."
- Concrete Merge-and-Shrink Strategies: The algorithm has several important choice points. One can rely on the well-known concept of bisimulation, and approximations thereof, to intelligently take some of these choices.
- **6** A Full Example: "Logistics mal anders": Fully specified illustration of that example.
- **M&S Abstraction Mappings:** We disregard abstraction mappings in the above, and explain their treatment here.

Algorithm Outline:

- Initialize step: Compute the abstract state space $\Theta^{\{v\}}$ of atomic projections $\pi_{\{v\}}$ to form the initial abstraction collection.
- **(**) Merge step: Combine two abstractions Θ_1 and Θ_2 in the collection by replacing them with their synchronized product $\Theta_1 \otimes \Theta_2$.
- Shrink step: Make some abstraction in the collection (typically but not necessarily, the synchronized product Θ₁ ⊗ Θ₂ built in the previous step) smaller by abstracting it further, i.e., aggregating subsets of abstract states into block states.

Stop when only a single abstraction is left.

Álvaro Torralba, Cosmina Croitoru		Al Planning Chapter 13: Merge-and-Shrink Heuristics			leuristics	11/63	
Introduction 000000	M&S Framework 00●00000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 000000	References
Synchronized Products: 3 Trucks							

Atomic Projections and a Synchronized Product of: (Blackboard)

Introduction 000000	M&S Framework 0●000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References	
Sunchronized Products								

Definition (Synchronized Product of Transition Systems). For $i \in \{1, 2\}$, let $\Theta_i = (S_i, L, c, T_i, I_i, S_i^G)$ be transition systems with identical label set and cost function. The synchronized product of Θ_1 and Θ_2 , written $\Theta_1 \otimes \Theta_2$, is the transition system $\Theta_{\otimes} = (S_{\otimes}, L, c, T_{\otimes}, I_{\otimes}, S_{\otimes}^G)$ where:

- $\ \, \textcircled{0} \ \ \, T_{\otimes}:=\{((s_1,s_2),{\color{black}l},(t_1,t_2))\mid (s_1,{\color{black}l},t_1)\in T_1 \ \, \textit{and} \ (s_2,{\color{black}l},t_2)\in T_2\}.$
- $I_{\otimes} := (I_1, I_2).$
- $\textcircled{O} \quad S^G_\otimes := S^G_1 \times S^G_2.$

 \rightarrow The synchronized system can take a combined transition labeled with l if and only if both component systems can.

Álvaro Torra	alba, Cosmina Croito	ru	AI Planning	Chapter 13: Me	ge-and-Shrink I	Heuristics	12/63
Introduction 000000	M&S Framework 000€0000	Power 00000	M&S Strategies 000000000	A Full Example	Mappings 00000000	Conclusion 000000	References
Isomor	phic Tran	sition	Svstems				

Definition (Isomorphism). Let $\Theta = (S, L, c, T, I, S^G)$ and $\Theta' = (S', L', c', T', I', S'^G)$ be transition systems. We say that Θ is isomorphic to Θ' , written $\Theta \sim \Theta'$, if there exist bijective functions $\varphi : S \mapsto S'$ and $\psi : L \mapsto L'$ such that:

13/63

- $\ \, \textcircled{0} \quad s\in S^G \ \text{iff} \ \varphi(s)\in S'^G.$
- $\textcircled{0} \quad (s,l,t)\in T \ \text{iff} \, (\varphi(s),\psi(l),\varphi(t))\in T'.$
- For all $l \in L$, $c(l) = c'(\psi(l))$.

 \rightarrow Isomorphic transition systems are identical modulo renaming states and labels.

Introduction M&S Framework 00000 Power 0000 M&S Strategies 000000000 A Full Example 000000000 Conclusion 000000 Reference 0000000000 Synchronized Products of Disjoint Projections

Terminology: Two projections Θ^{V_1} and Θ^{V_2} are said to be disjoint if $V_1 \cap V_2 = \emptyset$.

Theorem (Synchronized Products of Disjoint Projections). Let Π be an FDR planning task. If Θ^{V_1} and Θ^{V_2} are disjoint projections, then $\Theta^{V_1} \otimes \Theta^{V_2} \sim \Theta^{V_1 \cup V_2}$. (Proof omitted.)

Corollary (Recovering Θ_{Π} from Atomic Projections). Let Π be an FDR planning task with variable set V. Then $\Theta_{\Pi} \sim \bigotimes_{v \in V} \Theta^{\{v\}}$.

 \rightarrow We can construct the concrete state space of a planning task Π through the synchronized product of its atomic projections.

Alvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 13: Merge-and-Shrink Heuristics			15/63	
Introduction 000000	M&S Framework 000000●0	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 000000	References
Merge-	and-Shrin	k Al	gorithm:	3 Trucks			

Merge-and-Shrink Algorithm in: (Blackboard)

AI Planning

Introduction 000000	M&S Framework 00000●00	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 000000	References		
Merge-	-and-Shrin	ık Alş	gorithm						
Merge-and-Shrink for FDR Task II With Variables V									
(1) Initialize: $\mathcal{A} := \{\Theta^{\{v\}} \mid v \in P\}$ where $P \subseteq V$ /* Usually, $P = V$ */									
while \mathcal{A} contains more than one element: (11) Merger select $\Theta^{\alpha_1} = \Theta^{\alpha_2}$ from \mathcal{A}									
() .	$\mathcal{A} := \mathcal{A}$	$\setminus \{\Theta^{\alpha_1}$	$,\Theta^{\alpha_2}\}\cup\{\Theta^{\alpha_2}\}$	$\{1 \otimes \Theta^{\alpha_2}\}$					
(111)	Shrink: select	$\Theta^{\dot{\alpha}}$ from	πA	-					
$\mathcal{A}:=\mathcal{A}\setminus\{\Theta^lpha\}\cup\{\Theta^{lpha'}\}$ where $lpha'$ is an abstraction of Θ^lpha									
[Optionally: so that $size(\Theta^{\alpha'}) \leq N$] /* N: Parameter */									
return the remaining element Θ^{lpha} in ${\cal A}$									
					. 1				

Definition. Abstractions α constructed by this algorithm are called merge-and-shrink abstractions. The construction size of α is the maximum size of any abstraction contained in A sometime during α 's construction.

Note: If we apply a shrinking step to $\Theta^{\alpha_1} \otimes \Theta^{\alpha_2}$ after every merge step, then construction size is bounded polynomially in N and $\|\Pi\|$.

 $[\rightarrow$ There is a mathematical definition of "merge-and-shrink abstraction" [Helmert *et al.* (2014)], that I'll spare you here.]

Álvaro Torralba, Cosmina Croitoru Al Pla	anning Chapter 13: Merge	-and-Shrink Heuristics 16/63
--	--------------------------	------------------------------

Introduction 000000	M&S Framework 0000000●	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Questi	onnaire						

17/63

AI Planning Chapter 13: Merge-and-Shrink Heuristics

Introduction M&S Framework Power M&S Strategies A Full Example Mappings Conclusion Referen

Any Abstraction is a Merge-and-Shrink Abstraction!

Merge-and-Shrink steps

- (I) Initialize $\mathcal{A} := \{\Theta^{\{v\}} \mid v \in P\}$ where $P \subseteq V$ (II) Merge Θ^{α_1} and Θ^{α_2} to $\Theta^{\alpha_1} \otimes \Theta^{\alpha_2}$
- (III) Shrink Θ^{α} to $\Theta^{\alpha'},$ where α' is an abstraction of Θ^{α}

Any abstraction a merge-and-shrink abstraction. Why?

```
\rightarrow We can construct any abstraction with merge-and-shrink. The important part is, with which construction size.
```

Alvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 13: Merge-and-Shrink Heuristics			20/63	
Introduction 000000	M&S Framework 00000000	Power 00●00	M&S Strategies 000000000	A Full Example	Mappings 00000000	Conclusion 000000	References

Better than PDBs!

Theorem. The expressive power of merge-and-shrink is strictly greater than that of PDBs, even for orthogonal pattern collections.

Proof Sketch. There exist families of planning tasks in which merge-and-shrink can compute h^* in polynomial time, but PDBs, even additive ones, cannot. One example is "Logistics mal anders" when scaling the number of trucks (cf. slides 8 and 45).

 \rightarrow Some competition benchmarks are such families, too! (Gripper, Schedule, Dining-Philosopers, Optical-Telegraph.)

Word of caution:

• Note the "can" (compute h^* in time polynomial in $\|\Pi\|$)!

 \rightarrow The above assumes we are taking the right decisions: *Which* abstractions to merge next, and how to shrink their product?

 \rightarrow One of the main issues in practice, see next section.

Introduction 000000	M&S Framework	Power 0●000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References	
		`						

As Good as PDBs

Theorem (Merge-and-Shrink Can Simulate PDBs). Let Π be an FDR planning task and P a pattern. There exists a merge-and-shrink abstraction α with $h^{\alpha} = h^{P}$ and construction size polynomial in $\|\Pi\|$ and the size of Θ^{P} . **Proof.**

Terminology: By the expressive power of a technique γ for computing heuristic functions in planning, we refer to the class of planning tasks Π for which γ can compute h^* in time polynomial in $\|\Pi\|$.

Corollary. The expressive power of merge-and-shrink is at least as large as that of pattern databases.

Word of caution:

- Specialized PDB algorithms are much faster than "merge-and-shrink without shrinking steps".
- This performance difference is "only polynomial", but that doesn't mean it's not important in practice!

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 13: Merge-and-Shrink Heuristics	21/63
-----------------------------------	-------------	---	-------

Theorem. Let Π be a unit-cost FDR planning task and $\{P_1, \ldots, P_k\}$ be an orthogonal pattern collection. There exists a merge-and-shrink abstraction α whose construction size is polynomial in $\|\Pi\|$ and the sizes of Θ^{P_i} , and where $\sum_{i=1}^k h^{P_i} \leq h^{\alpha}$. (Proof omitted.)

Remarks:

- One could, in principle, derive a similar *theory of orthogonality/ additivity* for merge-and-shrink abstraction as we did for pattern databases in Chapter 12.
- However, the above theorem shows that this is "not necessary": Orthogonality can be exploited by single merge-and-shrink abstractions.
- BUT that does not mean that summing over multiple merge-and-shrink abstractions couldn't be useful in practice! (Hasn't been tried yet → FAI BSc/MSc/HiWi)

Introduction 000000	M&S Framework 00000000	Power 0000●	M&S Strategies	A Full Example 0000000000	Mappings 00000000	Conclusion 000000	References
Questi	onnaire						

Alvaro Torralda, Cosmina Croitoru			AI Planning	Chapter 15: Mer	24/03		
Introduction	M&S Framework	Power	M&S Strategies	A Full Example	Mappings	Conclusion	Reference

Shrinking Strategies, Take 1: Bisimulation

Reminder:

\rightarrow Chapter 11

Let $\Theta = (S, L, c, T, I, S^G)$ be a transition system, and let $\alpha : S \mapsto S'$ be a surjective function. Then by \sim^{α} we denote the induced equivalence relation on Θ , defined by $s \sim^{\alpha} t$ iff $\alpha(s) = \alpha(t)$.

 $\rightarrow \Theta/\sim^{\alpha}$ is isomorphic to Θ^{α} .

- We can characterize classes of abstractions by properties of their induced equivalence relations.
- Bisimulations are a particular kind of equivalence relation, *that do not incur any information loss*.
- The idea is for each shrinking step to set α' to a bisimulation of $\Theta^{\alpha_1}\otimes\Theta^{\alpha_2}.$

How To Instantiate the Merge-and-Shrink Framework?

Merge-and-Shrink Algorithm: Choice Points

(I) Initialize $\mathcal{A} := \{\Theta^{\{v\}} \mid v \in P\}$ where $P \subseteq V$ while \mathcal{A} contains more than one element: (II) Merge: select $\Theta^{\alpha_1}, \Theta^{\alpha_2}$ from \mathcal{A} $\mathcal{A} := \mathcal{A} \setminus \{\Theta^{\alpha_1}, \Theta^{\alpha_2}\} \cup \{\Theta^{\alpha_1} \otimes \Theta^{\alpha_2}\}$ (III) Shrink: select Θ^{α} from \mathcal{A} $\mathcal{A} := \mathcal{A} \setminus \{\Theta^{\alpha}\} \cup \{\Theta^{\alpha'}\}$ where α' is an abstraction of Θ^{α} [Optionally: so that $size(\Theta^{\alpha'}) \leq N$] return the remaining element Θ^{α} in \mathcal{A}

• Which abstractions to select? \rightsquigarrow Merging strategy.

 \rightarrow Not covered in what follows. (For shrinking, all current implementations select the last synchronized product built i.e. $\Theta^{\alpha} = \Theta^{\alpha_1} \otimes \Theta^{\alpha_2}$.)

• How to shrink an abstraction? \rightsquigarrow Shrinking strategy.

 \rightarrow Overview up next.

- How to choose N, if used? (We don't use it in what follows)
 - \rightarrow Nobody knows \ldots currently, if N is used, fix some value by hand.

Álvaro Torralba, Cosmina Croitoru Al F	Planning Chapter 13	3: Merge-and-Shrink Heuristics	26/63
--	---------------------	--------------------------------	-------

Introduction M&S Framework Power 00000 M&S Strategies A Full Example Mappings Conclusion References Shrinking Strategies, Take 1: Bisimulation, ctd.

Definition (Bisimulation). Let $\Theta = (S, L, c, T, I, S^G)$ be a transition system, and let $\alpha : S \mapsto S'$ be a surjective function. We say that α is a bisimulation of Θ if, for all $s, t \in S$, $s \sim^{\alpha} t$ implies that:

() either $s, t \in S^G$ or $s, t \notin S^G$;

 \rightarrow States s, t are bisimilar iff (i) they agree on whether or not the goal is true, and (ii) every action leads into equivalent outcome states.

Theorem (Bisimulation Heuristics are Perfect). Let Θ be a transition system, and let α be a bisimulation of Θ . Then h^{α} is perfect.

(Proof omitted.)

A bisimulation¹ in a Logistics variant:

¹ For the pedantic reader: This is a bisimulation only under conservative label reduction, that I won't describe here; for the purpose of understanding the picture, just ignore the distinctions between labels

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 13: Merge-and-Shrink Heuristics	29/63
---	-------

000000000 Bisimulation: Example Logistics, ctd.

(a) Bisimulation³ of $\Theta^{\{\text{pack1},\text{pack2}\}}$, and (b) its product with $\Theta^{\{\text{truck}\}}$:

³For the pedantic reader: This is a bisimulation only under conservative label reduction, that I won't describe here; for the purpose of understanding the picture, just ignore the distinctions between labels.

Shrinking Strategies, Take 1: Bisimulation, ctd.

Merge-and-Shrink with Shrinking by Bisimulation

(I) Initialize $\mathcal{A} := \{ \Theta^{\{v\}} \mid v \in V \}$ (II) Merge Θ^{α_1} and Θ^{α_2} to $\Theta^{\alpha_1} \otimes \Theta^{\alpha_2}$ (III) Shrink Θ^{α} to $\Theta^{\alpha'}$, where α' is a bisimulation of Θ^{α}

Notation: Identify α with Θ^{α} .²

Lemma (Invariance over Merging Steps). For disjoint projections Θ^{V_1} and Θ^{V_2} , if Θ^{α_1} is a bisimulation for Θ^{V_1} and Θ^{α_2} is a bisimulation for Θ^{V_2} , then $\Theta^{\alpha_1} \otimes \Theta^{\alpha_2}$ is a bisimulation for $\Theta^{V_1 \cup V_2}$. (Proof omitted.)

Theorem (Shrinking by Bisimulation is Perfect). If α is a merge-and-shrink abstraction constructed using shrinking by bisimulation, then $h^{\alpha} = h^*$.

Proof. Show by induction: Every Θ^{α} in α is a bisimulation for $\Theta^{V'}$ where $V' \subseteq V$ are the variables merged into Θ^{α} . Base case and invariance over shrinking steps are trivial, invariance over merging steps by above Lemma. Thus the returned Θ^{α} is a bisimulation for $\Theta^{V} = \Theta_{\Pi}$. Done with slide 27 Theorem.

²I have so far glossed over the role of the abstraction mapping α . See Section M&S Abstraction Mappings. 30/63 **Chapter 13: Merge-and-Shrink Heuristics**

Álvaro Torralba. Cosmina Croitoru AI Planning

00000	00000000	00000	0000000000	0000000000	00000000	000000	
troduction	M&S Framework	Power	M&S Strategies	A Full Example	Mappings	Conclusion	References

Computing Perfect Heuristics:

The good news: There are significant families of planning tasks where merge-and-shrink with shrinking by bisimulation has polynomial runtime.⁴

 \rightarrow Some competition benchmarks are such families! In Gripper and Schedule, Merge-and-shrink with shrinking by bisimulation computes the perfect heuristic in polynomial time.

 \rightarrow This provides a partial solution to the issue posed on slide 22 (how to realize the expressive power in practice, efficiently computing h^* where merge-and-shrink in principle has the ability to do that).

The bad news: Typically, merge-and-shrink with shrinking by bisimulation has exponential runtime. Practical performance is poor except in very few domains.

⁴Provided we use conservative label reduction, that I won't describe here. Álvaro Torralba. Cosmina Croitoru AI Planning Chapter 13: Merge-and-Shrink Heuristics

How to Relax a Bisimulation?

Bisimulation is too ambitious: Of course we can't typically compute h^* effectively. So we need to "approximate more":

- (a) Impose a size bound N and "stop splitting non-bisimilar states when that size is reached".
- Define a less restrictive (relaxed) class of equivalence relations.

 \rightarrow Both (a) [Dräger et al. (2006); Nissim et al. (2011)] and (b) [Katz et al. (2012)] have been done. We briefly consider (b).

Definition (K-Catching Bisimulation). Let $\Theta = (S, L, c, T, I, S^G)$ be a transition system, let $K \subseteq L$, and let $\alpha : S \mapsto S'$ be a surjective function. We say that α is a K-catching bisimulation of Θ if, for all $s, t \in S$, $s \sim^{\alpha} t$ implies that:

- () either $s, t \in S^G$ or $s, t \notin S^G$;

 \rightarrow Instead of accurately reflecting *all* actions, we reflect only a subset K.

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 13: Merge-a	nd-Shrink Heuristics 33/63
---	----------------------------

Introduction M&S Framework Power M&S Strategies A Full Example Mappings Conclusion References

We zoom in on synchronized products in "Logistics mal anders":

- Hence we now look at the transition systems for atomic projections of this example, including the transition labels as they are important for synchronized products.
- We abbreviate action names as in these examples:
 - MALR: move truck A from left to right
 - DAR: drop package from truck A at right location
 - PBL: pick up package with truck B at left location
- We abbreviate parallel transitions (same start, end vertices) with commas and wildcards (*) in the labels as in these examples:
 - PAL, DAL: two parallel arcs labeled PAL and DAL
 - MA**: two parallel arcs labeled MALR and MARL

Shrinking Strategies, Take 2: K-Catching Bisimulation

Merge-and-Shrink with Shrinking by K-Catching Bisimulation

Select a subset of actions \boldsymbol{K}

(I) Initialize $\mathcal{A} := \{\Theta^{\{v\}} \mid v \in V\}$ (II) Merge Θ^{α_1} and Θ^{α_2} to $\Theta^{\alpha_1} \otimes \Theta^{\alpha_2}$ (III) Shrink Θ^{α} to $\Theta^{\alpha'}$, where α' is a *K*-catching bisimulation of Θ^{α}

Lemma (*K*-**Catching Bisimulation is Invariant over Merging Steps).** For disjoint projections Θ^{V_1} and Θ^{V_2} , if Θ^{α_1} is a *K*-catching bisimulation for Θ^{V_1} and Θ^{α_2} is a *K*-catching bisimulation for Θ^{V_2} , then $\Theta^{\alpha_1} \otimes \Theta^{\alpha_2}$ is a *K*-catching bisimulation for $\Theta^{V_1 \cup V_2}$. (Proof omitted.)

 \implies (*) The abstraction returned is a $K\text{-catching bisimulation of }\Theta_{\Pi}.$

- $\bullet~$ Selection of K controls accuracy/overhead trade-off.
 - $K = L \implies$
 - $K = \emptyset \implies$
- With (*), guarantees on quality of h^α can be ensured by selecting appropriate K. Two significant concepts exist [Katz et al. (2012)].

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 13: Merge-and-Shrink Heuristics	34/63

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Atomic	: Projectio	ons					

 $\Theta^{\{\text{package}\}}$:

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Atomic	Projectio	ons					

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Atomic	c Projectio	ons					

$\Theta^{\text{truck } A}$:

$\Theta^{\text{truck B}}$:

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 13: Merge-and-Shrink Heuristics	37/63

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 00€0000000	Mappings 00000000	Conclusion 000000	References
Synchr	onized Pr	oduct	. Comput	ation			

 $\Theta^{\{\text{package}\}} \otimes \Theta^{\{\text{truck A}\}}$:

AI Planning

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 00€0000000	Mappings 00000000	Conclusion	References
			-				

Chapter 13: Merge-and-Shrink Heuristics

AI Planning

Synchronized Product Computation

 $\Theta^{\{\texttt{package}\}}\otimes\Theta^{\{\texttt{truck A}\}}:\ S_{\otimes}=S_1\times S_2$

Álvaro Torralba, Cosmina Croitoru

AI Planning

38/63

 $\Theta^{\{\texttt{package}\}}\otimes\Theta^{\{\texttt{truck A}\}}:\ s_{0\otimes}=(s_{01},s_{02})$

A Full Example 0000000000 Synchronized Product Computation

 $\Theta^{\{\texttt{package}\}} \otimes \Theta^{\{\texttt{truck A}\}}: \ T_{\otimes} := \{((s_1, s_2), l, (t_1, t_2)) \mid \dots \}$

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 00●0000000	Mappings 00000000	Conclusion	References

Synchronized Product Computation

 $\Theta^{\text{package}} \otimes \Theta^{\text{truck A}}: S^G \otimes = S^G_1 \times S^G_2$

A Full Example 000000000

Synchronized Product Computation

AI Planning

38/63

Introduction M&S Framework Power 00000 M&S Strategies 00000000 Mappings Conclusion References 000000000 Synchronized Product Computation

 $\Theta^{\{\texttt{package}\}} \otimes \Theta^{\{\texttt{truck A}\}}: \ T_{\otimes} := \{((s_1, s_2), l, (t_1, t_2)) \mid \dots \}$

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 000€000000	Mappings 00000000	Conclusion	References
Disjoin	t Synchro	nized	Product	S			

 $\Theta\{\mathsf{package}\} \otimes \Theta\{\mathsf{truck} \mathsf{A}\} \sim \Theta\{\mathsf{package},\mathsf{truck} \mathsf{A}\}.$

AI Planning

0000000	·	00000	000000000	000000000	00000000	000000	
000000	0000000	00000	00000000	000000000	00000000	000000	
Introduction	M&S Framework	Power	M&S Strategies	A Full Example	Mappings	Conclusion	References

 $\Theta^{\{\texttt{package}\}} \otimes \Theta^{\{\texttt{truck A}\}}: \ T_{\otimes} := \{((s_1, s_2), l, (t_1, t_2)) \mid \dots \}$

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Step (I) Initialize	е					

Current collection \mathcal{A} : { Θ {package}, Θ {truck A}, Θ {truck B}}

39/63

 $\Theta^{\{\text{package}\}}$

Chapter 13: Merge-and-Shrink Heuristics 40/63

$\Theta^{\text{truck A}}$:

Current collection \mathcal{A} : { Θ {package}, Θ {truck A}, Θ {truck B}}

Álvaro Torralba, Cosmina Croitoru			AI Planning	Chapter 13: Mer	40/63		
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 00000000000	Mappings 00000000	Conclusion	References
Step (I	II) Merge						

 $\Theta_1 := \Theta^{\{\text{package}\}} \otimes \Theta^{\{\text{truck } \mathsf{A}\}}:$

Introduction M&S Framework Power M&S Strategies A Full Example Mappings Conclusion References 000000 Step (I) Initialize

$\Theta^{\text{truck B}}$:

Current collection \mathcal{A} : { Θ {package}, Θ {truck A}, Θ {truck B}}

Álvaro Torralba, Cosmina Croitoru		u	AI Planning	Chapter 13: Merge-and-Shrink Heuristics			40/63
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 000000	References
To Shr	rink Or No	ot to	Shrink?				

Shrinking is needed only to keep abstraction size at bay:

- If we have sufficient memory available, we can now compute $\Theta_1 \otimes \Theta^{\{\text{truck B}\}}$, which would recover the complete transition system of the task, and thus yield the perfect heuristic $h^{\alpha} = h^*$.
- However, to illustrate the general idea, let us assume that we do not have sufficient memory for this product.
- Specifically, we assume that N = 4, i.e., after each merge step we need to replace the product abstraction with a coarsening that has only four abstract states.

\rightarrow So, in the present example, we need to reduce Θ_1 to four states.

 \rightarrow Lots of freedom in *how exactly* to abstract Θ_1 . Here, we use a simple abstraction whose outcome heuristic is Ok, and that's easy to illustrate.

Álvaro Torralba, Cosmina Croitoru Al Planning

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Step (I	III) Shrink						

 $\Theta_2 :=$ some abstraction of Θ_1 , obtained by aggregating states:

Álvaro Torralba, Cosmina Croitoru			AI Planning	Chapter 13: Mer	Heuristics	43/63	
Introduction	M&S Framework	Power	M&S Strategies	A Full Example	Mappings	Conclusion	References

000000	00000000	00000	000000000	00000000000	00000000	000000	
Step (I	II) Shrink						

 $\Theta_2 :=$ some abstraction of Θ_1 , obtained by aggregating states:

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Step (III) Shrink						

 $\Theta_2 :=$ some abstraction of Θ_1 , obtained by aggregating states:

Alvaro Torralba, Cosmina Croitoru		u	AI Planning	Chapter 13: Mer	ge-and-Shrink I	leuristics	43/63
Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example 0000000€00	Mappings 00000000	Conclusion 000000	References
Step (I	III) Shrink						

 $\Theta_2 :=$ some abstraction of Θ_1 , obtained by aggregating states:

Álvaro Torral	lba, Cosmina Croitor	u	AI Planning	Chapter 13: Mer	ge-and-Shrink H	leuristics	43/63
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 0000000€00	Mappings 00000000	Conclusion 000000	References

$\Theta_2 := \text{some}$	abstraction	of 6	-)1	obtained	hv	aggregating sta	tes
$O_2 = Some$	abstraction		$\mathcal{I}_{1},$	oblameu	Dy	aggregating sta	LES.

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Step (I	III) Shrink						

 $\Theta_2 :=$ some abstraction of Θ_1 , obtained by aggregating states:

Álvaro Torralba, Cosmina Croitoru		'U	AI Planning	Chapter 13: Mer	ge-and-Shrink I	Heuristics	43/63
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 000000000000	Mappings 00000000	Conclusion	References
Step (III) Shrink						

Step (III) Shrink

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion	References
Step (III) Shrink						

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example 0000000€00	Mappings 00000000	Conclusion 000000	References
Step (III) Shrink						

 $\Theta_2 :=$ some abstraction of Θ_1 , obtained by aggregating states:

 $\Theta_2 :=$ some abstraction of Θ_1 , obtained by aggregating states:

Current collection \mathcal{A} : { $\Theta_2, \Theta^{\text{truck B}}$ }

Alvaro Torralba, Cosmina Croitoru			AI Planning	Chapter 13: Merge-and-Shrink Heuristics			43/63
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example 000000000000	Mappings 00000000	Conclusion 000000	References
Step (I	I) Merge						

 $\Theta_3 := \Theta_2 \otimes \Theta^{\{\operatorname{truck} \mathsf{B}\}}:$

AI Planning

Current collection \mathcal{A} : { Θ_3 }

44/63

Alvaro Torraba, Costilina Croitoru							43/03	
Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies 000000000	A Full Example 000000000●	Mappings 00000000	Conclusion 000000	References	
Shrink	Some Mo	ore?						

Chanter 12. Marris and Shrink Hausistia

12/62

Assume we skip the next shrinking step, and use remaining cost in the final abstraction Θ_3 as our heuristic function.

 \rightarrow What is the value of $h^{\alpha}(I)$?

Alure Towellos Cooming Cusitow

Assume we do not skip the shrinking step, and instead shrink Θ_3 down to size N = 4, e.g. leading to the following abstraction:

Remark: We can get $h^{\alpha}(I) = h^*$ with polynomial construction size (but N > 4). Intuition: In each shrinking step, we can aggregate all states that have the same number of trucks on either side; and that agree on which truck (if any) the package is in, and on which side that truck is.

Introduction M&S Framework Power M&S Strategies A Full Example Mappings Conclusion Reference

Abstraction Mappings vs. Abstract State Spaces

Abstraction mappings? Recall: α vs. Θ^{α}

- I have so far completely glossed over everything relating to abstraction mappings.
- We need to maintain the mappings α along with the abstract state spaces $\Theta^{\alpha}.$
- We need to prove that the Θ^{α} we compute using the synchronized product is indeed the abstract state space of the mapping α it is associated with.
 - \rightarrow Without this property, we could not "identify α with $\Theta^{\alpha "}$ (compare slide 28).
- \bullet We need to efficiently represent and maintain $\alpha.$

 \rightarrow See [Helmert *et al.* (2014)] for full details. In what follows, we detail the last point, how to efficiently represent and maintain α .

Álvaro Torralba, Cosmina Croitoru	AI Planning	Chapter 13: Merge-and-Shrink Heuristics	47/63

For $\Theta^{\pi_{\{v\}}}$, number the states (domain values) consecutively, and generate a table of references to the states:

AI Planning

How do we actually represent α ?

By cascading tables. During merge-and-shrink:

- For atomic abstraction $\pi_{\{v\}}$, generate a one-dimensional table mapping values in D_v to states in $\Theta^{\pi_{\{v\}}}$.
- () For merge step $\mathcal{A} := \mathcal{A}_1 \otimes \mathcal{A}_2$, generate a two-dimensional table mapping pairs of states in \mathcal{A}_1 and \mathcal{A}_2 to states in \mathcal{A} .
- For shrink steps, make sure to keep the table in sync with the abstraction choices.

After merge-and-shrink has stopped with $(\Theta^{\alpha}, \alpha)$:

- Compute all remaining costs in Θ^{α} and store them in a one-dimensional table.
- Throw away all the abstractions just keep the tables.

AI Planning

• To compute $h^{\alpha}(s)$ for any state s during search, do a sequence of table look-ups from the atomic abstractions down to the final abstraction state and heuristic value.

Álvaro Torralba, Cosmina Croitoru

Chapter 13: Merge-and-Shrink Heuristics 48/63

For $\Theta^{\pi_{\{v\}}}$, number the states (domain values) consecutively, and generate a table of references to the states:

AI Planning

For $A_1 \otimes A_2$, number the product states consecutively and generate a table mapping pairs of states in A_1 and A_2 to states in A:

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 0000€000	Conclusion 000000	References
Mainte	nance ove	r Shr	inking Ste	eps			

 \rightarrow How to "make sure to keep the table in sync with the abstraction choices"?

Naïve solution:

- When aggregating states *i* and *j*, arbitrarily use one of them (say *i*) as the number of the new state.
- Find all table entries, in the table for this abstraction, that map to *j*; change these to *i*.

 \rightarrow Every time we aggregate two states, we must make a pass over the entire table, i.e., over the whole abstract state space :-(

 \rightarrow We can do the same operation in constant time per state aggregation, using splicing.

For $A_1 \otimes A_2$, number the product states consecutively and generate a table mapping pairs of states in A_1 and A_2 to states in A:

Introduction M&S Framework Power M&S Strategies A Full Example Mappings Conclusion References

Before the shrink operation:

- Associate each abstract state with a linked list, representing all table entries that map to this state.
- Initialize the lists by one pass over the table. Then discard the table.

During the shrink operation:

- When aggregating *i* and *j*, splice the list elements of *j* into the list elements of *i*.
 - \rightarrow That is, move the elements of list j to the end of list i.
 - \rightarrow For linked lists, this takes how much runtime?

After the shrink operation:

- Renumber the abstract states so there are no gaps in the numbering.
- Regenerate the mapping table from the linked list information.

Representation before shrinking:

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 000000●0	Conclusion 000000	References
"Logist	ics mal ar	nders	": Splicin	g			

2. When combining i and j, splice list_j into list_i.

AI Planning

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 000000●0	Conclusion	References
"Logis	tics mal a	nders	" · Splicir	ισ			

1. Convert table to linked lists and discard it.

"Logistics mal anders": Splicing

2. When combining *i* and *j*, splice list_{*i*} into list_{*i*}.

2. When combining i and j, splice list_i into list_i.

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 000000€0	Conclusion 000000	References
"Logist	tics mal a	nders	": Splicir	ıg			

2. When combining i and j, splice list_i into list_i.

Álvaro Torralba, Cosmina Croitoru		u	AI Planning	Chapter 13: Mer	53/63		
Introduction 000000	M&S Framework	Power 00000	M&S Strategies 000000000	A Full Example	Mappings 000000●0	Conclusion 000000	References
"Logist	ics mal a	nders	": Splicin	ıg			

2. When combining *i* and *j*, splice list_{*i*} into list_{*i*}.

AI Planning

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 13: Merge-and-Shrink Heuristics			53/63	
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 000000●0	Conclusion 000000	References
"Logis	tics mal a	nders	s": Splicir	ıg			

2. When combining i and j, splice list_i into list_i.

 $list_0 = \{(0,0)\}$ $list_1 = \{(0,1)\}$ $list_2 = \{(1,0), (1,1)\}$ $list_3 = \emptyset$ $list_4 = \{(2,0), (2,1)\}$ $list_5 = \emptyset$ $list_6 = \{(3,0), (3,1)\}$ $list_7 = \emptyset$

Chapter 13: Merge-and-Shrink Heuristics

2. When combining i and j, splice list_j into list_i.

$list_0 = \{(0,0)\}$
$list_1 = \{(0,1)\}$
$list_2 = \{(1,0), (1,1)\}$
$list_3 = \emptyset$
$list_4 = \{(2,0), (2,1)\}$
$\textit{list}_5 = \emptyset$
$list_6 = \{(3,0), (3,1)\}$
$list_7 = \emptyset$

.

F2 /62

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 000000●0	Conclusion	References
"Logis	tics mal a	nders	": Splicir	ng			

2. When combining i and j, splice list_j into list_i.

list ₀ list ₁	=	$\{(0,0)\}\$ $\{(0,1)\}$
$list_2$	=	$\{(1,0),(1,1)\}$
$list_3$	=	Ø
$list_4$	=	$\{(2,0),(2,1),$
		$(3,0),(3,1)\}$
$list_5$	=	Ø
$list_6$	=	Ø
list7	=	Ø

Alvaro Torraiba, Cosmina Croitoru		AI Flamming	Chapter 15: Merge-and-Shrink Heuristics			55/05	
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 000000●0	Conclusion 000000	References
"Logist	tics mal a	nders	": Splicir	ıg			

12 ...

2. When combining i and j, splice list_j into list_i.

$$\begin{split} & \textit{list}_0 = \{(0,0)\} \\ & \textit{list}_1 = \{(0,1)\} \\ & \textit{list}_2 = \{(1,0),(1,1)\} \\ & \textit{list}_3 = \emptyset \\ & \textit{list}_4 = \{(2,0),(2,1), \\ & (3,0),(3,1)\} \\ & \textit{list}_5 = \emptyset \\ & \textit{list}_6 = \emptyset \\ & \textit{list}_7 = \emptyset \end{split}$$

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 13: Merge-and-Shrink Heuristics			53/63	
Introduction 000000	M&S Framework	Power 00000	M&S Strategies 000000000	A Full Example	Mappings 000000●0	Conclusion 000000	References
"Logistics mal anders": Spli			s": Splicir	וg			

3. Renumber abstract states consecutively.

٤.

3. Renumber abstract states consecutively.

$list_0 = \{(0,0)\}$
$list_1 = \{(0,1)\}$
$list_2 = \{(1,0), (1,1)\}$
$list_3 = \{(2,0), (2,1),$
$(3,0),(3,1)\}$
$\mathit{list}_4 = \emptyset$
$list_5 = \emptyset$
$\textit{list}_6 = \emptyset$
r, a

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 000000●0	Conclusion	References
"Logis	tics mal a	nders	": Splicir	ıg			

4. Regenerate the mapping table from the linked lists.

Álvaro Torralba, Cosmina Croitoru

$list_0 = \{(0,0)\}$
$list_1 = \{(0,1)\}$
$list_2 = \{(1,0), (1,1)\}$
$list_3 = \{(2,0), (2,1), $
$(3,0),(3,1)\}$
$\mathit{list}_4 = \emptyset$
$\textit{list}_5 = \emptyset$
$list_6 = \emptyset$
$list_7 = \emptyset$

Chapter 13: Merge-and-Shrink Heuristics

53/63

Alvaro Torralba, Cosmina Croitoru			AI Planning	Chapter 13: Mer	53/63		
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 000000●0	Conclusion 000000	References
"Logis	tics mal a	nders	: Splicir	ıg			

4. Regenerate the mapping table from the linked lists.

$list_0$	$= \{(0,0)\}$
$list_1$	$= \{(0,1)\}$
$list_2$	$= \{(1,0), (1,1)\}$
$list_3$	$=\{(2,0),(2,1),$
	$(3,0),(3,1)\}$
$list_4$	$= \emptyset$
$list_5$	$= \emptyset$
list ₆	— Ø
	= v
list7	$= \emptyset$

	$s_2 = 0$	$s_2 = 1$
$s_1 = 0$	0	1
$s_1 = 1$	2	2
$s_1 = 2$	3	3
$s_1 = 3$	3	3

53/63

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 0000000●	Conclusion	References
"Logist	cics mal a	nders	": The C	ascading	Tables		

For the example from the A Full Example Section:

• Three one-dimensional tables for the atomic abstractions:

AI Planning

$T_{package}$	L	R	A	B	$T_{\rm truckA}$	L	R	$T_{\rm truckB}$	L	R
	0	1	2	3		0	1		0	1

• Two tables for the intermediate abstractions Θ_1 and $\Theta_2 :$

T_1	$s_2 = 0$	$s_2 = 1$		T_2	$s_2 = 0$	$s_2 = 1$
$s_1 = 0$	0	1	_	$s_1 = 0$	1	1
$s_1 = 1$	2	2		$s_1 = 1$	1	0
$s_1 = 2$	3	3		$s_1 = 2$	2	2
$s_1 = 3$	3	3		$s_1 = 3$	3	3

• One table with goal distances for the final abstraction Θ_3 :

AI Planning

T_3	s = 0	s = 1	s = 2	s = 3
h(s)	3	2	1	0

Given a state $s = \{ package \mapsto p, truckA \mapsto a, truckB \mapsto b \}$, its heuristic value is then looked up as:

•
$$h(s) = T_3[T_2[T_1[T_{\mathsf{package}}[p], T_{\mathsf{truckA}}[a]], T_{\mathsf{truckB}}[b]]]$$

AI Planning Chapter 13: Merge-and-Shrink Heuristics

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion ●00000	References
Summ	ary						

- PDBs are limited because they are based on projections, a very restrictive class of abstractions.
- Merge-and-shrink can construct *any* abstraction, following the construction of the state space from atomic projections using their synchronized product, $\Theta_{\Pi} \sim \bigotimes_{v \in V} \Theta^{\{v\}}$: Starting from the atomic projections, merge steps build the synchronized product of two abstractions, and shrink steps replace an abstraction with a coarsening of itself.
- Merge-and-shrink *can*, in principle, polynomially simulate PDBs, and can efficiently compute h^* in some cases where PDBs cannot.
- To run merge-and-shrink in practice, we need a merging strategy and a shrinking strategy.
- Using bisimulation in the shrinking strategy, merge-and-shrink computes h*. This is polynomial-time in some IPC benchmarks, but infeasible in most. More approximate shrinking strategies are an active area of research.

Álvaro Torralba, Cosmina Croitoru			AI Planning	Chapter 13: Mer	56/63		
Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 00●000	References
Reading	g						

• Flexible Abstraction Heuristics for Optimal Sequential Planning [Helmert et al. (2007)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps07.pdf

Content: The first paper on merge-and-shrink in planning. Introduces the basic framework, in particular observing that $\Theta_{\Pi} \sim \bigotimes_{v \in V} \Theta^{\{v\}}$. Briefly states the theoretical results compared to pattern databases. Devises first simple merging and shrinking strategies (not covered here), and runs experiments in some IPC benchmarks of the time, concluding that PDBs are often outperformed.

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion ○●○○○○	References
Remar	ks						

- Merge-and-shrink abstraction has its origin in work applying heuristic search to the falsification of safety properties (i.e., finding error states) in model checking [Dräger *et al.* (2006)]. In difference to planning, the state space there is *defined* as the synchronized product of atomic state machines.
- The technique was adapted to planning one year later [Helmert *et al.* (2007)], also pointing out its relation to PDBs.
- Recent work [Nissim *et al.* (2011); Katz *et al.* (2012)] concentrated on meaningful ways to define shrinking strategies (see also next slides).
- The 2011 version of merge-and-shrink participated in IPC'11. It won a 2nd prize in the track for optimal planners, and was part of the portfolio winning the 1st prize.
- Merge-and-shrink heuristics are generally very competitive with other admissible heuristics for planning; in some domains, they are the best ones we currently have.

Álvaro Torralba, Cosmina Croitoru Al Planning Chapter 13: Merge-and-Shrink Heuristics 57/63

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 000●00	References
Readin	ig, ctd.						

• Computing Perfect Heuristics in Polynomial Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal Planning [Nissim et al. (2011)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/ijcai11.pdf

Content: Introduces the bisimulation-based shrinking strategy (bisimulation itself is a well-known concept and has for a very long time been used in other areas of in computer science). Observes its theoretical properties, devises some simple approximations, and runs experiments showing that it outperforms state-of-the-art optimal planners (in particular heuristic search with LM-cut, cf. \rightarrow Chapter 17) in some domains.

Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 0000●0	References
Readin	g, ctd.						

• Merge-and-Shrink Abstraction: A Method for Generating Lower Bounds in Factored State Spaces [Helmert et al. (2014)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/jacm14.pdf

Content: Subsumes the two previous papers. Treats the subject in full detail, giving lots of additional theoretical analysis, and comprehensive experiments.

Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 13: Merge-and-Shrink Heuristics			60/63	
Introduction 000000	M&S Framework 00000000	Power 00000	M&S Strategies	A Full Example 0000000000	Mappings 00000000	Conclusion 000000	References
Referer	nces I						

- Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking with distance-preserving abstractions. In Antti Valmari, editor, *Proceedings of the 13th International SPIN Workshop (SPIN 2006)*, volume 3925 of *Lecture Notes in Computer Science*, pages 19–34. Springer-Verlag, 2006.
- Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for optimal sequential planning. In Mark Boddy, Maria Fox, and Sylvie Thiebaux, editors, *Proceedings of the 17th International Conference on Automated Planning and Scheduling (ICAPS'07)*, pages 176–183, Providence, Rhode Island, USA, 2007. Morgan Kaufmann.
- Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. Merge & shrink abstraction: A method for generating lower bounds in factored state spaces. *Journal of the Association for Computing Machinery*, 61(3), 2014.
- Michael Katz, Jörg Hoffmann, and Malte Helmert. How to relax a bisimulation? In Blai Bonet, Lee McCluskey, José Reinaldo Silva, and Brian Williams, editors, *Proceedings of the 22nd International Conference on Automated Planning and Scheduling (ICAPS'12)*, pages 101–109. AAAI Press, 2012.

Introduction 000000	M&S Framework	Power 00000	M&S Strategies	A Full Example	Mappings 00000000	Conclusion 00000●	References
Readin	ig, ctd.						

• How to Relax a Bisimulation? [Katz et al. (2012)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps12b.pdf

Content: Introduces K-catching bisimulation and examines its properties. Devises two methods for selecting K in a way that guarantees A^* will not have to perform any search. Those label sets K cannot actually be found efficiently, so approximations are devised and tested in benchmarks. Experiments outcome basically shows that not much is gained. It is an open question whether that can be fixed by better approximations of K.

Álvaro Torra	Álvaro Torralba, Cosmina Croitoru		AI Planning	Chapter 13: Merge-and-Shrink Heuristics			61/63
Introduction 000000	M&S Framework	Power 00000	M&S Strategies 000000000	A Full Example	Mappings 00000000	Conclusion	References
Refere	nces II						

Raz Nissim, Jörg Hoffmann, and Malte Helmert. Computing perfect heuristics in polynomial time: On bisimulation and merge-and-shrink abstraction in optimal planning. In Toby Walsh, editor, *Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI'11)*, pages 1983–1990. AAAI Press/IJCAI, 2011.