Al Planning
3. PDDL

How to Explain Your Problems to a Computer

Alvaro Torralba, Cosmina Croitoru

SAARLAND
UNIVERSITY
—

COMPUTER SCIENCE

Winter Term 2018/2019

Thanks to Prof. Jorg Hoffmann for slide sources

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 1/30

Introduction
[o)

PDDL

What is PDDL?

@ Once you decided for STRIPS/FDR/whatever, you still need to
design an input syntax that your computer can read.

@ That input syntax in the planning area is PDDL: The Planning
Domain Definition Language.

@ In particular, PDDL is used in the International Planning
Competitons (IPC).

Why PDDL? It’s just a fact of life:

— PDDL is the de-facto standard input language in the planning area. J

— To complete this course (and for doing a BSc/MSc/PhD in the FAI
group) you must know this language.

(When | started to work in planning, everybody used their own input
language = needing an interpreter every time you talk to your neighbor.)

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 4/30

Agenda

@ Introduction

© Schematic Encodings

© PDDL Grammar

@ History and Extensions [for Reference]

© Conclusion

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 2/30

Introduction
oce

Our Agenda for This Chapter

@ Schematic Encodings: Explains the main design principle behind
PDDL.

© PDDL Grammar: Outlines the syntax, with example snippets.

@ History and Extensions: Summary of what’s out there and how we
got there. (I'll skip this and leave it for you to read at home; and
no, it's not exam-relevant.)

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 5/30

Schematic Encodings
@000

Schematic Encodings

Schematic encodings use variables that range over objects:

o Predicates instead of STRIPS propositions. Arity: number of vars.

@ Action schemas instead of STRIPS actions. Arity: number of vars.

@ Analogy: propositional logic vs. predicate logic (PL1).
@ Set of objects in PDDL is finite!

— Like predicate logic, PDDL describes the world in a schematic way
relative to a set of objects. This makes the encoding much smaller and
easier to write.

— Most planners translate the schematic input into (propositional)
STRIPS in a pre-process, by instantiating the variables in all possible
ways. This is called grounding.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 7/30

Schematic Encodings
[e]e] Je]

Schematic Actions: Quantification

Example

dx € {A,B,C} : at(x,SB) is a short-hand for?
at(A, SB)V at(B, SB)V at(C, SB).

Quantification in Formulas

| A

Finite disjunctions ¢(01) V -+ V ¢(0y,) represented as
Jz € {o1,...,0n}: @(x).
Finite conjunctions ¢(01) A -+ A p(0y,) represented as
Vo € {o1,...,0n} : o().

Quantification over Effects

Finite list of conditional effects WHEN ¢(0;) DO v(0;) represented as
Vo € {o1,...,0n} : WHEN ¢(0;) DO 9(0;).

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 9/30

Schematic Encodings
[e] lele]

Schematic Actions: Example

The schematic action:

x € {carl, car2}
Y1 € {SB?KL}a
y2 € {SB, KL}, y1 # y2

({at(z,y1)}, {at(z, y2)}, {at(z,91)})

corresponds to the actions:

({at(cart, SB)},{at(carl, KL)},{at(carl, SB)}),
({at(carl, KL)},{at(carl, SB)},{at(carl, KL)}),
({at(car2, SB)},{at(car2, KL)}, {at(car2, SB)}),
({at(car2, KL)},{at(car2, SB)},{at(car2, KL)})

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 8/30

Schematic Encodings
[e]e]e]]

Questionnaire

Is the grounding process polynomial in the size of its input?
(A): Yes (B): No

— If an action schema has k parameters, and there are n objects each of these
parameters can be instantiated with, then there are n* grounded actions. Same
for predicates. Grounding is exponential in operator and predicate arity.

@ In practice, this is often Ok, many domains have maximum arity 2 or 3.

@ However, this is NOT always so! (E.g., natural language generation
)

@ Grounding typically leads to more efficient planning in the cases where it is
feasible; in the other cases, lifted planning is needed.

@ There has been little research on lifted planning in the last 2 decades.

(BTW the worst-case complexity, relative to input size, is harder there
[Erol et al. (1995)].)

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 10/30

PDDL Grammar
000000000

PDDL Basics

The Planning Domain Definition Language (PDDL):

@ Variants used by almost all implemented planning systems.
@ Supports a formalism comparable to what we have outlined above
(including schematic operators and quantification).
@ Syntax inspired by the Lisp programming language: e.g., prefix
notation for formulas
(and (or (on A B) (on A C))
(or (on B A) (on B C))
(or (on C A) (on A B)))

@ The planner input is separated into a domain file (predicates, types,
action schemas) and a problem file (objects, initial state, goal).

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 12/30

PDDL Grammar
00@000000

Domain File Types and Predicates: Example Blocksworld

PDDL Grammar
0®0000000

PDDL Domain Files

A PDDL domain file consists of:

(define (domain <name>)
A requirements definition (use “:adl :typing” by default).
Definitions of types (each object variable has a type).

Definitions of predicates.

©6 0066

Definitions of action schemas.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 13/30

PDDL Grammar
[e]e]e] lelele]ele]

Action Schema: Example Blocksworld

(define (domain Blocksworld)
(:requirements :adl :typing)
(:types block - object
blueblock smallblock - block)
(:predicates (on ?x - smallblock 7y - block)
(ontable ?x - block)
(clear 7x - block))

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 14/30

(raction fromtable
:parameters (7x - smallblock 7y - block)
:precondition (and (not (= ?x 7y))
(clear 7x)
(ontable ?7x)
(clear 7y))
reffect
(and (not (ontable 7x))
(not (clear ?y))
(on ?x ?7y)))

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 15/30

PDDL Grammar PDDL Grammar
000080000 [e]e]e]e]e] lelele]

PDDL Grammar: Action Schema PDDL Grammar: Action Schema, ctd.

@ (:action <name>

@ List of parameters: @ The effect is a combination of literals, conjunction, conditional

(?x - typel 7y - type2 7z - type3) effects, and quantification over effects:
@ The precondition is a formula: <predicate>
<predicate> (not <predicate>)
(and <formula> ... <formula>) (and <effect> ... <effect>)
(or <formula> ... <formula>) (wvhen <formula> <effect>)
(not <formula>) (forall (?x1 - typel ... ?xn - typen) <effect>)
(forall (?x1 - typel ... ?xn - typen) <formula>)
(exists (?7x1 - typel ... 7xn - typen) <formula>)
Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 16/30 Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 17/30

PDDL Grammar PDDL Grammar
[e]e]e]e]ele] lele} 000000080

PDDL Problem Files Problem File: Example Blocksworld

(define (problem example)
A PDDL problem file consists of: (:domain Blocksworld)
(:objects a b ¢ - smallblock)
d e - block
f - blueblock)
(:init (clear a) (clear b) (clear c)

@ (define (problem <name>)

@ (:domain <name>)
— to which domain does this problem belong?

@ Definitions of objects belonging to each type. (clear d) (clear e) (clear f)
@ Definition of the initial state (list of ground predicates initially true). (ontable a) (ontable b) (ontable c)
@ Definition of the goal (a formula like action preconditions). (ontable d) (ontable e) (ontable f))

(:goal (and (on a d) (on b e) (on c £)))
)

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 18/30 Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 19/30

PDDL Grammar
00000000e

History and Extensions
[leJele]e]

Example Run of FF PDDL History

In sub-directory “hanoi” of: The development of PDDL is mainly driven by the International
Planning Competition (IPC):

http://fai.cs.uni-saarland.de/hoffmann/PlanningForDummies.zip

Executing “../ff -o domain.pddl -f p-n3.pddl” gives: © 1998: PDDL [McDermott and others (1998)]

STRIPS and ADL.
ff: found legal plan as follows e 2000: "PDDL subset for the 2000 competition” [Bacchus (2000)]
step : MOVE D1 D2 PEG3 STRIPS and ADL.

: MOVE D2 D3 PEG2
: MOVE D1 PEG3 D2

0

1

5 e 2002: PDDL2.1, Levels 1-3 [Fox and Long (2003)]
3: MOVE D3 PEG1 PEG3

4

5

Numeric and temporal planning.

: MOVE D1 D2 PEG1 e 2004: PDDL2.2 [Hoffmann and Edelkamp (2005)]
: MOVE D2 PEG2 D3 Derived predicates and timed initial literals.

6: MOVE D1 PEG1 D2 o 2006: PDDL3 [Gerevini et al. (2009)]
0.00 seconds total time . .
Soft goals and trajectory constraints.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 20/30 Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 22/30

History and Extensions
(o] Jelele)

History and Extensions
[e]e] Tele]

PDDL in 2002 PDDL in 2004
Maria Fox and Derek Long promoted numeric and temporal planning: PDDL2.1 was (and is still today) considered a challenge, so Stefan
Edelkamp and | made only two relatively minor language extensions for

o PDDL2.1 level 1: As in IPC00. PDDL2.2:

e PDDL2.1 level 2: Level 1 plus numeric fluents. Comparisons

_ _ _ @ Derived predicates: Predicates that are not affected by the actions.
between numeric expressions are allowed as logical atoms:

Their value is instead derived via a set of derivation rules of the

(>= (fuel) (x (dist 7x 7y) (consumption))) form IF (z) THEN P(z).
Effects can modify fluents by numeric expressions: Example: Flow of current in an electricity network.
(decrease (fuel) (* (dist 7x 7y) (consumption))) (:derived (fed 7x)

)]]) (exists 7y (and (connected ?7x 7y) (fed 7y))))
o PDDL2.1 level 3: Level 2 extended with action durations. Actions

take an amount of time given by the value of a numeric expression: e Timed Initial Literals: Literals that will become true, independently
(= ?duration (/ (dist 7x 7y) (speed)) of the actions taken, at a pre-specified point in time.
Conditions/effects are applied at either start or end of action: Example: Opening/closing times.

(at start (not (at 7x))) (at end (at ?y)) (at 9 (shop-open)) (at 18 (not (shop-open)))

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 23/30 Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 24/30

http://fai.cs.uni-saarland.de/hoffmann/PlanningForDummies.zip

History and Extensions
[e]e]e] le)

PDDL in 2006

History and Extensions
0000e

PDDL for Planning under Uncertainty

Actually, Gerevini & Long thought that PDDL2.2 is still not enough, and
extended it with various complex constructs for expressing preferences
over soft goals, as well as trajectory constraints, to obtain PDDL3 ...

. which | am not gonna describe here :-)

In 2008, Malte Helmert offered to introduce an FDR encoding as the
front-end language.

Only few people wanted to invest the work of replacing their planner

front-end, and the language ended up not being used. (Legacy system
STRIPS, remember?)

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 25/30

Conclusion
[]

Summary

@ PDDL is the de-facto standard for classical planning, as well as
extensions to numeric/temporal planning, soft goals, trajectory
constraints.

e PDDL is used in the International Planning Competition (IPC).

@ PDDL uses a schematic encoding, with variables ranging over
objects similarly as in predicate logic. Most implemented systems
use grounding to transform this into a propositional encoding.

@ PDDL has a Lisp-like syntax.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 28/30

There are numerous formalism variants, and numerous people made their
own private PDDL extensions as needed for their work.
— PDDL is less standardized for planning under uncertainty.

As used in the uncertainty tracks of the IPC:

e 2004, 2006, 2008: Probabilistic PDDL (PPDDL) [Younes et al.
(2005)]. Probability distributions over action effects:
(probabilistic 0.166 (dice-1)

0.166 (dice-2) ... 0.17 (dice-6))

e 2006, 2008: PPDDL with non-deterministic extension [Bonet and
Givan (2006)]. Non-deterministic action effects:
(oneof (dice-1) (dice-2) ... (dice-6))

@ 2011: Relational Dynamic Influence Diagram Language (RDDL)
[Sanner (2010)]. Describes probabilistic planning in terms of dynamic
Bayesian networks ... [not considered here].

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 26/30

References

References |

Fahiem Bacchus. Subset of PDDL for the AIPS2000 Planning Competition. The
AIPS-00 Planning Competition Comitee, 2000.

Blai Bonet and Robert Givan. 5th international planning competition:
Non-deterministic track — call for participation. In Proceedings of the 5th
International Planning Competition (IPC’06), 2006.

Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artificial Intelligence,
76(1-2):75-88, 1995.

Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61-124, 2003.

Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis
Dimopoulos. Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Artificial Intelligence,
173(5-6):619-668, 2009.

Jorg Hoffmann and Stefan Edelkamp. The deterministic part of ipc-4: An overview.
Journal of Artificial Intelligence Research, 24:519-579, 2005.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 29/30

References

References |l

Drew McDermott et al. The PDDL Planning Domain Definition Language. The
AIPS-98 Planning Competition Comitee, 1998.

Scott Sanner. Relational dynamic influence diagram language (rddl): Language
description. Available at
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf, 2010.

Hakan L. S. Younes, Michael L. Littman, David Weissman, and John Asmuth. The
first probabilistic track of the international planning competition. Journal of
Artificial Intelligence Research, 24:851-887, 2005.

Alvaro Torralba, Cosmina Croitoru Al Planning Chapter 3: PDDL 30/30

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

	Introduction
	

	Schematic Encodings
	

	PDDL Grammar
	

	History and Extensions [for Reference]
	

	Conclusion
	

	
	References

