Automatic Planning
14. Partial-Order Reduction
Which Should I Do First, the Right Shoe or the Left Shoe?

Jörg Hoffmann

SAARLAND UNIVERSITY
COMPUTER SCIENCE

Winter Term 2017/2018

Introduction
Act Prune
S3 Ingredients
S3 Theory
S3 Practice
STRIPS
Conclusion
References

1. Introduction
2. Action-Pruning Functions
3. Strong Stubborn Sets: Ingredients
4. Strong Stubborn Sets: Theory
5. Strong Stubborn Sets: Practice
6. What about STRIPS?
7. Conclusion

The Pitfalls of Optimal Heuristic Search

Jörg Hoffmann

The Gripper benchmark:
 Carry \(n \) balls from \(L \) to \(R \)

Proposition. Let \(\Pi_n \) be the Gripper task with \(n \) balls. Then \(N^1(\Pi_n) \) grows exponentially in \(n \).

Proof sketch.

→ In other words: What’s killing us here are plan permutations.
Pruning Methods

To the rescue: Optimality-preserving pruning methods.

- **State Pruning**: Reduces search effort by cross-state comparisons. Prunes states whose exploration can be shown to be unnecessary.
- **Action Pruning**: Reduces search effort by analyzing applicable actions. Prunes actions whose exploration can be shown to be unnecessary.

We cover one such pruning method: **Partial-order reduction** via action pruning.

Partial-Order Reduction (POR) Methods: Overview

- Partial-order reduction (POR) methods identify, and prune, permutable parts of the search space.

- They do so via action pruning (cf. slide 6).

There are different kinds of POR methods:

- **Transition-reduction methods**: Prune applicable actions while preserving the reachable state space.
 - Sleep Sets, Ample Sets, etc. Not considered here (useful mainly in depth-first search algorithms).
- **State-reduction methods**: Prune applicable actions while preserving at least one optimal solution.
 - Strong Stubborn Sets (S3).

Our Agenda for This Chapter

- **Action-Pruning Functions**: We define and briefly analyze what an action-pruning function is, and when such pruning is safe.
- **Strong Stubborn Sets: Ingredients**: The strong stubborn sets technique (and POR more generally) relies on a number of basic concepts, that we introduce here.
- **Strong Stubborn Sets: Theory**: We define what a strong stubborn set is, and we prove safety as an action-pruning function.
- **Strong Stubborn Sets: Practice**: We consider how to operationalize the definition.
- **What about STRIPS?**: In the above, our definitions are agnostic to STRIPS/FDR where it doesn’t matter; where it does matter, we use FDR. Here we explain that very little changes for STRIPS.
Jörg Hoffmann Automatic Planning Chapter 14: Partial-Order Reduction 10/40

Safe Action-Pruning Functions

Definition (Safe ρ). Let Π be a planning task with state space $\Theta = (S, L, c, T, I, S^G)$, and let ρ be an action-pruning function for Π. We say that ρ is safe if, for all $s \in S$, the cost of an optimal solution for s in Θ_ρ equals $h^*(s)$.

→ A safe action-pruning function ρ preserves optimality.

Proposition. Let Π be a planning task with states S, and let ρ be an action-pruning function for Π. If, for every solvable non-goal $s \in S$, $\rho(s)$ contains at least one action starting a shortest optimal plan for s, then ρ is safe.

Proof. By induction on the length n of a shortest optimal plan for s. Base case $n = 1$: Direct from definition. Inductive case $n \rightarrow n + 1$: The first action a of a shortest optimal plan for s is preserved. Say the transition is $s \xrightarrow{a} s'$. Then the shortest optimal plan for s' is shorter than that for s, so the claim follows by induction hypothesis.

→ Why “shortest”? We may bother you with an exercise.

→ What about unsolvable s?

Jörg Hoffmann Automatic Planning Chapter 14: Partial-Order Reduction 12/40

Before We Begin . . .

Ingredients? Action dependencies.

→ How actions affect each other’s applicability and/or outcome state.

→ We define this semantically here. For practice, we will later define syntactic characterizations.

Illustrative example: “1/2-Log”

→ V: $\{\text{truck}_1, \text{truck}_2 : \{\text{A}, \text{B}, \text{C}, \text{D}\}; \text{pack}_1, \text{pack}_2 : \{\text{A}, \text{B}, \text{C}, \text{D}, \text{T}_1, \text{T}_2\}\}$

→ I: $\{\text{truck}_1, \text{truck}_2, \text{pack}_1, \text{pack}_2 = \text{A}; \text{G}; \text{pack}_1, \text{pack}_2 = \text{D}\}$

→ A: $\text{drive}(i, x, y)$ (for $x \neq y$ neighbors); $\text{pre} \text{truck}_i = x$, effect $\text{truck}_i = y$

→ $\text{load}(i, x)$: $\text{pre} \text{pack}_i = x \text{, truck}_i = x$, effect $\text{pack}_i = \text{T}_i$

→ $\text{unload}(i, x)$: $\text{pre} \text{pack}_i = \text{T}_i \text{, truck}_i = x$, effect $\text{pack}_i = x$

→ Note: Package i load/unload only with truck i.

→ “1/2-Tele-Log”: $\text{teleport}(i, y)$: pre empty, effect $\text{truck}_i = y$

Jörg Hoffmann Automatic Planning Chapter 14: Partial-Order Reduction 15/40
Introduction

Necessary Enabling Sets

Definition (Necessary Enabling Set). Let Π be a planning task with actions A, goal G, and states S. Given $a \in A$ and $s \in S$ where $a \notin A(s)$ (i.e., $\text{pre}_a \not\subseteq s$), a **necessary enabling set** for a in s is a set $A_{s \rightarrow a} \subseteq A$ of actions so that for every action sequence $\langle a_1, \ldots, a_n \rangle$ applicable in s, if $a_i = a$ then $\{a_1, \ldots, a_{i-1}\} \cap A_{s \rightarrow a} \neq \emptyset$.

Given $s \in S$ where $G \not\subseteq s$, a **necessary enabling set for G in s** is a set $A_{s \rightarrow G} \subseteq A$ of actions so that for every action sequence $\langle a_1, \ldots, a_n \rangle$ applicable in s that achieves G, $\{a_1, \ldots, a_n\} \cap A_{s \rightarrow G} \neq \emptyset$.

A necessary enabling set is a set of actions at least one of which must be applied to enable an action a or the goal G.

Example: “1/2-Tele-Log”

- Example $s, a, A_{s \rightarrow a}$: $I; \{\text{drive}(1, B, C); \{\text{drive}(1, A, B), \text{teleport}(1, B)\}\}.$
- Example $s, A_{s \rightarrow G}$: $I; \{\text{unload}(1, D)\}$ or $\{\text{load}(1, A)\}$ or $\{\text{drive}(1, C, D), \text{teleport}(1, D)\}$.

Conclusion

References

Act Prune

S3 Ingredients

S3 Theory

STRIPS

S3 Practice

Act Prune

S3 Ingredients

S3 Theory

STRIPS

S3 Practice

Act Prune

S3 Ingredients

S3 Theory

STRIPS

S3 Practice

Act Prune

S3 Ingredients

S3 Theory

STRIPS

S3 Practice

Strong Stubborn Sets: Intuition

Example: “1/2-Log Small”

- \(V \): truck\(_1\), truck\(_2\), pack\(_1\), pack\(_2\).
- \(I \): As shown.
- \(G \): pack\(_1\) = B, pack\(_2\) = B.
- \(A \): drive\((i, x, y)\), load\((i, x)\), unload\((i, x)\).

Definition (Strong Stubborn Sets). Let \(\Pi \) be a planning task with actions \(A \), goal \(G \), and states \(S \). Let \(s \in S \) be a non-goal state. A strong stubborn set for \(s \) is a set \(A_{S3} \subseteq A \) of actions such that:

1. \(A_{S3} \) contains a necessary enabling set for \(G \) in \(s \);
2. For every \(a \in A_{S3} \setminus A[s] \), \(A_{S3} \) contains a necessary enabling set for \(a \) in \(s \);
3. For every \(a \in A_{S3} \cap A[s] \), \(A_{S3} \) contains all \(a' \in A \) that interfere with \(a \).

Definition (S3 Pruning). Let \(\Pi \) be a planning task with states \(S \). An action-pruning function \(\rho_{S3} \) for \(\Pi \) is called an S3 pruning function if, for every non-goal state \(s \in S \), there exists a strong stubborn set \(A_{S3} \) for \(s \) so that \(\rho_{S3}(s) = A(s) \cap A_{S3} \).

Theorem (S3 Pruning Safety). Let \(\Pi \) be a planning task, and let \(\rho_{S3} \) be an S3 pruning function. Then \(\rho_{S3} \) is safe.
Strong Stubborn Sets are Safe, ctd.

Questionnaire

Reminder: An S3 for s is a set $A_{S3} \subseteq A$ of actions such that:

(i) A_{S3} contains a necessary enabling set for G in s;
(ii) For every $a \in A_{S3} \setminus A[s]$, A_{S3} contains a necessary enabling set for a in s; and
(iii) For every $a \in A_{S3} \cap A[s]$, A_{S3} contains all $a' \in A$ that interfere with a.

Question!
Do strong stubborn sets have anything to do with commutative actions?

(A): Yes (B): No

The S3 Definition as an Algorithm (compare slide 22)

input: Planning task Π, state s.
output: Strong stubborn set $S3$ for s.

(i) $S3 := A_{s} \rightarrow G$ /* a necessary enabling set for G in s */
Done := \emptyset /* actions already processed */
while $S3 \not\subseteq$ Done do
 select $a \in S3 \setminus$ Done
 if $a \not\in A[s]$ then
 (ii) $S3 := S3 \cup A_{s} \rightarrow a$ /* a necessary enabling set for a in s */
 else
 (iii) $S3 := S3 \cup \{a' \mid a \text{ and } a' \text{ interfere}\}$
Done := Done $\cup\{a\}$
return $S3$

How to operationalize this?

- How to find the interfering actions?
- How to find the necessary enabling sets?

→ Syntactic approximation/characterization of these semantic definitions.
Interference: Syntactic Characterization, Part 1

Terminology: In an FDR task, say that partial assignments p and q agree if $p(v) = q(v)$ for all $v \in V[p] \cap V[q]$, and say that p and q disagree otherwise.

Reminder: a_1 disables a_2 in s if both are applicable in s but a_2 is no longer applicable after applying a_1.

Proposition. Let $\Pi = (V, A, c, I, G)$ be an FDR planning task with states S. Let $a_1, a_2 \in A$. Then there exists $s \in S$ s.t. a_1 disables a_2 in s if and only if (i) pre_{a_1} and pre_{a_2} agree, and (ii) eff_{a_1} and pre_{a_2} disagree.

Done, because (reminder): a_1 and a_2 interfere if there exists $s \in S$ such that a_1 and a_2 either conflict in s, or one disables the other in s.

Interference: Syntactic Characterization, Part 2

Reminder: a_1 and a_2 conflict in s iff they can be applied in both possible orders, but the outcome state differs depending on the order.

Proposition. Let $\Pi = (V, A, c, I, G)$ be an FDR planning task with states S. Let $a_1, a_2 \in A$. Then there exists $s \in S$ s.t. a_1 and a_2 conflict in s if and only if (i) pre_{a_1} and pre_{a_2} agree, (ii) eff_{a_1} and pre_{a_2} agree, (iii) eff_{a_2} and pre_{a_1} agree, and (iv) eff_{a_1} and eff_{a_2} disagree.

Necessary Enabling Sets: Choosing an Open Subgoal

Reminder: $p \in \text{pre}_{a} \setminus s$ or $p \in G \setminus s$; $A' := \{ a' | p \in \text{eff}_{a'} \}$

\rightarrow But which p should we select?

Answer given by [Wehrle and Helmert (2014)]:

- Across the computation of $S3$ for different states, it is preferrable to select the same facts p as much as possible.
- Static strategy: Fix an ordering over the FDR state variables (or, in STRIPS, over the facts), and always select the first p in this order.
- Dynamic strategy: Where the choice depends on s and the actions that have already been included into $S3$. For example, select p minimizing the number of new actions added to $S3$.

BTW: Necessary enabling set = “disjunctive action landmark”

- A key concept we will introduce for landmark heuristics in Chapter 15.
- There, we will also see more advanced methods for finding such landmarks.
Summary

- Exponential blow-ups may occur in optimal search even with almost perfect heuristic functions h.
- Optimality-preserving pruning methods reduce search by means orthogonal to h, through state pruning or action pruning.
- Partial-order reduction (POR) is a family of action pruning methods targeting permutable parts of the search space, arising from commutative actions.
- Commutative actions occur frequently in planning: actions which neither interfere nor enable each other, and that can hence be applied in any order giving the same result.
- Strong stubborn sets (S3) is a POR technique that can reduce the reachable state space, avoiding the generation of states that would otherwise be reachable.
- A strong stubborn set $S3$ for a state s contains a necessary enabling set for G, necessary enabling sets for pre_a where $a \in S3 \setminus A[s]$, and interfering actions for $a \in S3 \cap A[s]$.

Reading

- About Partial Order Reduction in Planning and Computer Aided Verification [Wehrle and Helmert (2012)].

Available at:

Content: Introduces, to planning, two partial-order reduction methods originally defined for model-checking: stubborn sets and sleep sets. Discusses their relation with other pruning methods previously proposed in planning.
- **Efficient Stubborn Sets: Generalized Algorithms and Selection Strategies** [Wehrle and Helmert (2014)].

Available at:

Content: More general definition of the strong stubborn sets technique, and empirical comparison of different strategies to find strong stubborn sets.