
Lifted Stackelberg Planning

Philipp Sauer1, Marcel Steinmetz1, Robert Künnemann2, Jörg Hoffmann1,3

1 Saarland University, Saarland Informatics Campus, Germany
2 CISPA Helmholtz Center for Information Security, Germany

3 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
s8phsaue@stud.uni-saarland.de, robert.kuennemann@cispa.saarland, {steinmetz,hoffmann}@cs.uni-saarland.de

Abstract

In Stackelberg planning, a leader and a follower each choose
a plan in the same planning task, the leader’s objective be-
ing to maximize plan cost for the follower. This formula-
tion naturally captures, among others, security-related scenar-
ios where the leader defends an infrastructure against subse-
quent attacks by the follower. Indeed, Stackelberg planning
has been applied to the analysis of email infrastructure secu-
rity. At web scale, however, the planning tasks involved easily
contain tens of thousands of objects (hosts), so that ground-
ing becomes the bottleneck. Here we introduce a lifted form
of Stackelberg planning to address this. We devise leader-
follower search algorithms working at the level of the PDDL-
style input model to the extent possible. Our experiments
show that, in Stackelberg tasks with many objects, including
in particular models of web infrastructure security, our lifted
algorithms outperform grounded Stackelberg planning.

Introduction
Stackelberg planning (Speicher et al. 2018a) is a framework
inspired by Stackelberg security games (Tambe 2011). It
models a single exchange of adversarial plan choice between
two agents acting in the same planning task, the leader and
the follower. The follower has a goal while the leader pur-
sues the objective to maximize the follower’s plan cost. The
solution to such a task is the Pareto front of leader/follower
plan pairs where the leader cannot decrease their own cost
without also decreasing the optimal follower-plan cost. Spe-
icher et al. (2018a) introduced leader-follower search to find
such solutions, for inputs modeled in an extension of PDDL.
This algorithm interleaves two search levels, running state-
space search at the leader level, where each state spawns
a classical planning task at the follower level. Speicher et
al. also devised branch-and-bound style pruning and partial-
order reduction for the leader-level search.

Stackelberg planning is a natural tool for analyzing coun-
termeasures in security applications, e.g., network penetra-
tion testing (Boddy et al. 2005; Hoffmann 2015) or email-
infrastructure threat analysis (Speicher et al. 2018b), the
leader modeling defense mechanisms against attack vectors
represented by the follower. Recently, Tizio et al. (2022)
used Stackelberg planning for analyzing the open web in-
frastructure, but found that off-the-shelf planners suffer from
poor scalability. With instances that easily contain many

thousands of objects, Tizio et al. quickly identified the
grounding preprocess as a major bottleneck.

Lifted planning methods, which work at the level of the
PDDL input as much as possible, and hence do not require
a grounding preprocess, are the natural remedy to this prob-
lem. The approach has a long history (e.g., Penberthy and
Weld 1992; Russell and Norvig 1995; Younes and Simmons
2003; Ridder and Fox 2014). It has recently moved into fo-
cus in heuristic search planning, based on the effective lifted
forward state-space search algorithm by Corrêa et al. (2020),
which enabled the investigation of lifted heuristic functions
(e.g., Corrêa et al. 2021; Lauer et al. 2021).

Here, we show how to apply these ideas to Stackel-
berg planning. We devise leader-follower search algorithms
working at the lifted level to the extent possible. To this end,
we leverage Corrêa et al.’s (2020) lifted search methodol-
ogy in both leader and follower search. For leader search,
we devise lifted variants of Speicher et al.’s (2018a) branch-
and-bound pruning and partial-order reduction methods.

We run experiments on Speicher et al.’s (2018a) Stackel-
berg variants of IPC and pentesting benchmarks, on variants
of these benchmarks scaled to have many objects, and on
web infrastructure defense-attack models as per Tizio et al.
(2022). Our experiments show that, while lifted Stackelberg
planning is inferior on small tasks, it is typically vastly supe-
rior on large tasks. In particular, on the models of web infras-
tructure security, our lifted algorithms outperform grounded
Stackelberg planning.

Detailed proofs and descriptions of our benchmark set are
available in a technical report (Sauer et al. 2023).

Preliminaries
A lifted classical planning task (Corrêa et al. 2020) is a tu-
ple Π = ⟨P,O,A, I,G⟩ where P , O, and A are finite sets of
predicate symbols, objects, and action schemas respectively,
I is the initial state, and G is the goal. Predicates symbols
p ∈ P are parameterized by variables xp. Objects and vari-
able symbols are called terms. Given a tuple of terms θ, with
|θ| = |xp|, pθ is an atom. pθ is a ground atom if θ contains
no variables. The set of all ground atoms PO is given by
the instantiations of all predicates with all possible combi-
nations of objects. |PO| is in general exponential in the size
of Π. Abusing notation, we typically refer to ground atoms
with letters p, q, omitting the parameter specification if not

relevant for the discussion. A state s ⊆ PO is a set of ground
atoms. The initial state and the goal both are states of Π.

Each action schema a ∈ A is associated with parame-
ter variables xa; a precondition prea, add effect adda and
delete effect dela, sets of atoms whose free variables are in
xa; and a positive cost ca ∈ R+ (we assume non-0 cost
for brevity’s sake). For a tuple of terms θ, with |θ| = |xa|,
we denote by aθ the instance of a, obtained by replacing
in all components of a the variables by the corresponding
terms. aθ is a ground action if θ contains no variables. For
an instance aθ, we write [aθ]

O for the set of all ground ac-
tions of a whose parameters match the θ object assignment.
The set of all ground actions is denoted AO. For brevity, we
omit the parameter specification if not relevant. A ground
action a ∈ AO is applicable in a state s if prea ⊆ s. The
set of all ground actions applicable in s is denoted AO(s).
For a ∈ AO(s), the application of a in s results in the state
sJaK = (s\dela)∪adda. For a set of ground atoms P ⊆ PO,
the regression of P by a is defined by Regress(P, a) =
(P ∪prea)\adda if dela∩P = ∅, and undefined otherwise.
We assume here that adda∩prea = ∅, which comes w.l.o.g.
because all ground atoms in adda∩prea can be equivalently
omitted from adda. All these definitions are extended to se-
quences of ground actions π in an iterative manner. The cost
of π is the sum of costs of its actions. If π is applicable in
s and G ⊆ sJπK, or equivalently if Regress(G, π) is defined
and Regress(G, π) ⊆ s, then π is a plan for s. π is optimal
if it has minimal cost. A plan for Π is a plan for the initial
state I. If Π has no plan, we say that Π is unsolvable.

Lifted Stackelberg Planning

Prior works on Stackelberg planning have exclusively con-
sidered the grounded case. For brevity’s sake, we do not
provide a separate definition of ground Stackelberg planning
tasks, but directly introduce our lifted variant. Our definition
straightforwardly extends the one by Speicher et al. (2018a).

A lifted Stackelberg planning task is a tuple ΠLF =
⟨P,O,AL,AF, I,GF⟩ with similar components as before,
except that the action schemas are partitioned into ones be-
longing to the leader, AL, and ones belonging to the follower
AF. Let s be a state of ΠLF. A leader plan for s is a sequence
of ground leader actions πL such that πL is applicable in I
and IJπLK = s. We denote by L∗(s) the cost of the cheap-
est leader plan for s, if such a plan exists, and we define
L∗(s) = ∞ otherwise. The s-follower task is the lifted clas-
sical planning task ΠF(s) = ⟨P,O,AF, s,GF⟩, i.e., the task
with s as initial state and including only action schemas as-
sociated with the follower. A follower plan in s is a plan πF
for ΠF(s). We denote by F ∗(s) the cost of an optimal fol-
lower plan; F ∗(s) = ∞ if ΠF(s) is unsolvable. A pair of
cost values ⟨l, f⟩ dominates another pair ⟨l′, f ′⟩ if l ≤ l′ and
f ≥ f ′ and one of the inequalities is strict. A state s dom-
inates a state t if ⟨L∗(s),F ∗(s)⟩ dominates ⟨L∗(t),F ∗(t)⟩.
The solution to ΠLF is the Pareto frontier F∗ consisting of
all leader-reachable non-dominated states.

Background: Leader-Follower Search
We briefly revisit Speicher et al.’s (2018a) leader-follower
search (LFS) algorithm and pruning optimizations for com-
puting the pareto frontier of grounded Stackelberg tasks.

LFS is a two-fold search method. The outer (the “leader”)
search performs a Dijkstra-like exploration of the leader
state space, visiting all states s reachable from I by apply-
ing leader actions only, and computing L∗(s) along the way.
For every visited state s, the associated follower classical
planning task ΠF(s) is solved optimally (the inner “follower
search”). During this process, the algorithm maintains the
set of states F not dominated so far. Upon termination, the
algorithm has considered all leader-reachable states, guaran-
teeing that F = F∗. Speicher et al. (2018a) extend this basic
algorithm by three correctness-preserving pruning methods:

Follower-search pruning The F ∗(s) computation is
skipped if some entry in F dominates ⟨L∗(s), uF(s)⟩, where
uF(s) ≥ F ∗(s) is given by the cost of s’s parent follower
plan if that remained valid, and ∞ otherwise.

Leader-search pruning s is pruned from the leader
search entirely if L∗(s) > uL, where ⟨uL, u

∀
F⟩ estimates

the F∗ entry with maximal follower-plan cost. The upper
bound u∀

F on the maximal follower-plan cost is obtained
prior to the LFS by computing F ∗(I−), where I− ⊆ I
and I− ∩ dela = ∅ for all a ∈ AO

L that are delete-relaxed-
reachable from I via ground leader actions. uL is computed
in a branch-and-bound fashion during the leader search,
starting with uL = ∞, and setting uL = L∗(s) whenever
a state s with F ∗(s) = u∀

F is encountered.

Partial-order reduction Speicher et al. (2018a) devised a
variant of strong stubborn sets (SSSs) (Valmari 1989; Wehrle
and Helmert 2014) to further prune the leader search space.
An SSS in a state s characterizes a set of ground leader ac-
tions G ⊆ AO

L , whose consideration at s in the leader search
suffices for preserving the F = F∗ termination guarantee.

Strong Stubborn Sets
An SSS G in s is a fixed point of the following iterative
procedure: (1) starting from a set of ground leader actions
necessarily appearing on any path from s to any state in F∗;
iteratively consider all ground actions a ∈ G, (2) if a is not
applicable in s, include all ground leader actions potentially
needed to enable a; (3) otherwise, include all ground leader
actions whose application is not commutative with a. The
actions to add in (2) and (3) are characterized via the same
notions as in classical planning SSSs: let a1, a2 ∈ AO

L , and
p ∈ prea2

. a1 disables a2 if dela1 ∩ prea2
̸= ∅; a1 enables

a2 on p if a1 does not disable a2 and p ∈ adda1 ; a1 and
a2 conflict if addai ∩ delaj ̸= ∅ for i ̸= j; and a1 and a2
interfere if they conflict or one disables the other.

To seed the computation, Speicher et al. (2018a) made the
following observation. Consider any state s∗ whose optimal
leader plan passes through s. Let π∗

F be an optimal follower
plan for s. Due to the selection of s∗, L∗(s∗) > L∗(s). So,
if s∗ ∈ F∗, then F ∗(s∗) > F ∗(s). But then, π∗

F cannot be a
leader plan for s∗, i.e., for (1), one can simply start with the
ground leader actions that invalidate Regress(GF, π

∗
F):

Definition 1. Let s be a state of ΠLF, and let π∗
F be an op-

timal follower plan for s. Let G ⊆ AO
L be a set of ground

leader actions. Then G is an SSS in s for π∗
F if

(1) Let a ∈ AO
L be any ground leader action. If dela ∩

Regress(GF, π
∗
F) ̸= ∅, then a ∈ G.

(2) Let a ∈ (G \ AO
L (s)). There is some p ∈ (prea \ s) s.t.

G contains all ground leader actions that enable a on p.
(3) Let a ∈ (G ∩ AO

L (s)). G contains all ground leader ac-
tions that interfere with a.

Theorem 1 (Speicher et al. (2018a)). Let s∗ be a state
with an optimal leader plan passing through s. Consider a
leader-action sequence with s∗ = sJ⟨a1, . . . , an⟩K. There is
an i: ai ∈ G and s∗ = sJ⟨ai, a1, . . . , ai−1, ai+1, . . . , an⟩K.

In other words, the leader actions applicable in s but not
contained in G can simply be reordered after the actions in
G, so can be skipped during s’s expansion in the search.

Lifted Leader-Follower Search
The LFS algorithm interfaces with the planning task at ex-
actly three places: (1) the successor state computation during
the leader state-space traversal; (2) generating and solving
the follower tasks, and (3) the pruning methods. To lift LFS,
we need to provide appropriate interface replacements op-
erating at the lifted task description directly. The remaining
algorithm steps work as before.

(1) and (2) are straightforward. For (1), we can immedi-
ately plug in the lifted forward-search methods developed
by Corrêa et al. (2020) for classical planning. Regarding (2),
naturally, lifted LFS will generate lifted follower tasks. Solv-
ing them can be delegated to any off-the-shelf lifted classical
planner without necessitating any grounding preprocess.

The challenging part is (3). Follower-search pruning
works out-of-the-box. To adapt leader-search pruning, we
leverage prior work in (a) replacing in the computation
of I− the grounded delete-relaxed exploration by Corrêa
et al.’s (2021) lifted variant, and afterwards (b) computing
F ∗(I−) by calling a lifted classical planner on ΠF(I−).

Lifted Strong Stubborn Sets
To be able to construct an SSS directly from the lifted task
description, we devise conditions on leader-action-schema
instances S, rather than ground actions, guaranteeing that
the represented ground actions [S]O satisfy Definition 1.

We characterize relevant parameter instantiations through
FOL substitutions. This is, for a set of atoms P with free
variables x and a (partial) assignment θ of x to objects,
Pθ denotes the set of atoms resulting from replacing vari-
ables by objects according to θ. We say that θ joins P with
a ground atom p if p ∈ Pθ. θ is minimal if there is no θ′ that
joins P with p and θ′ ⊂ θ. The set of all minimal joins is
denoted as J∗(P, p), which can be computed efficiently by
finding the unifiers of p with the corresponding atoms in P .

We lift the SSS conditions via three sets: For p ∈ PO, we
denote by Pre(p) = {aθ | a ∈ AL, θ ∈ J∗(prea, p)} the
set of action-schema instances aθ whose parameters are in-
stantiated just enough for the ground atom p to appear in the
precondition of aθ. Add(p) and Del(p) are defined similarly.

Definition 2 (Lifted SSS). Let s be a state with optimal fol-
lower plan π∗

F . A set of leader-action-schema instances S is
a lifted SSS in s for π∗

F if

(i) For every p ∈ Regress(GF, π
∗
F), Del(p) ⊆ S.

(ii) Let aθ ∈ ([S]
O \ AO

L (s)). There is some p ∈ (preaθ \ s)
such that for all a′θ′ ∈ Add(p), it holds that a′θ′ ∈ S or
θ′ joins dela′ with some q ∈ preaθ.

(iii) Let aθ ∈ ([S]
O∩AO

L (s)). For every p ∈ (preaθ∪addaθ),
Del(p) ⊆ S. Vice versa, for every p ∈ delaθ, (Add(p) ∪
Pre(p)) ⊆ S.

That (i) – (iii) form sufficient conditions to Definition 1
follows from the definitions of Pre, Add, and Del. Consider
(i). Suppose aθ ∈ AO

L is a ground leader action such that
delaθ ∩ Regress(GF, π

∗
F) ̸= ∅. Consider any p ∈ (delaθ ∩

Regress(GF, π
∗
F)). As p ∈ delaθ, there must exist a minimal

join θ∗ of dela with p that agrees with θ on all object as-
signments, i.e., aθ ∈ [aθ∗]

O. By definition, aθ∗ ∈ Del(p),
so due to (i), aθ∗ ∈ S. In other words, aθ ∈ [S]

O, showing
that [S]O satisfies (1). With the same argument, the action-
schema instances added in (ii) cover all ground actions en-
abling aθ on the selected ground atom p, and the ones added
in (iii) cover the interfering ground actions.

Theorem 2. If S is a lifted SSS, then [S]
O is an SSS.

In the construction of S, conditions (ii) and (iii) pro-
cess every ground action represented by S. Although the
Pre/Add/Del parameter preselections confine the space of
possible groundings, our experiments showed that this step
can sometimes cause a severe overhead. We have explored
an alternative, which attempts to reduce this overhead by
considering in (ii) and (iii) possibly non-ground specializa-
tions aθ′ of each aθ ∈ S rather than ground actions. The
specializations that partition aθ into inapplicable/applicable
instances can be computed efficiently by choosing parame-
ters disconnecting/connecting the atoms preaθ and the state
s. With appropriate extensions of the sets Pre,Add,Del to
arbitrary atoms, the remaining steps then apply unchanged.
In our experiments, this variant, however, resulted in signifi-
cantly less pruning. We stick to Definition 2 in the following.

Experimental Evaluation
Our implementation is based on the PowerLifted (PL)
(Corrêa et al. 2020) lifted planner. We compare to Spe-
icher et al.’s (2018a) LFS implementation in Fast Downward
(FD) (Helmert 2006), which grounds Stackelberg tasks as a
preprocess. By default, we enable all LFS-pruning methods,
which Speicher et al. report to work best. For ablation study
purposes, we additionally run our PL implementation with-
out lifted-SSS pruning. Like Speicher et al., we consider op-
timal and satisficing planner configurations to solve the fol-
lower tasks. For FD, we reuse the same configurations: A∗

with LM-cut (Helmert and Domshlak 2009) for optimal, and
GBFS with hFF (Hoffmann and Nebel 2001) and preferred
operators for satisficing planning. We mirror these configu-
rations in PL, but due to unavailability, replace LM-cut by
the weaker hmax heuristic (Haslum and Geffner 2000).

FD-Grounding Coverage
Optimal Satisficing

PL PL
Domain # #

gr
nd

.

|AO
L | |AO

F | FD S ¬S FD S ¬S
Logist 290 290 91.7 447.1 160 0 0 260 248 235
NoMyst 284 284 77.3 6.9k 181 0 0 195 82 81
Pentest 643 426 80.7 72.8k 423 48 48 423 563 501
Rovers 264 264 100.0 490.3 104 0 0 264 264 264
TPP 282 282 91.6 449.4 165 2 2 257 252 248
Transp 296 296 100.2 1.8k 195 42 40 291 287 285

A

VisitAll 290 290 86.5 116.6 204 59 59 274 278 278

Logist 300 172 210.1k 211.5k 23 24 31 25 161 288
Pipesw 50 12 12.2k 165.4k 0 10 10 1 21 23
Rovers 360 144 8.9k 15.0k 133 103 101 142 333 333B

VisitAll 750 348 4 149.1k 105 143 144 153 259 259

C Web 1240 295 104.6 242.9k 180 408 408 249 1108 1054

Table 1: Per-domain aggregated statistics. “#” total number
of instances; “# grnd.” instances successfully grounded by
FD with “|AO

L |” and “|AO
F |” average number of generated

ground leader/follower actions; and coverage results for op-
timal and satisficing Stackelberg planning: “FD” grounded
LFS with all pruning methods, “PL” lifted LFS w/ “S”and
w/o “¬S” lifted-SSS pruning. Best results per track in bold.

We experiment with three Stackelberg-PDDL benchmark
sets: (A) that by Speicher et al. (2018a) (mostly easy
to ground); (B) variants of Lauer et al.’s (2021) hard-to-
ground (HTG) classical-planning benchmarks with Speicher
et al.’s (2018a) Stackelberg adaptations, but ignoring do-
mains where the adaptations did not make sense. (C) Tizio
et al.’s (2022) web infrastructure security model. We gen-
erated 1240 synthetic instances, systematically scaling the
number of URLs and other entities.

All experiments were run on Intel Xeon E5-2650 v3
CPUs, with time and memory limits of 30 min and 4 GB.
Source code and benchmarks are publicly available1.

Table 1 and Figure 1 show the results. Consider coverage
(Table 1). We make three observations: 1. for optimal plan-
ning, PL is completely outclassed by FD on the (A) bench-
marks, while it has slight edge on (B) and a considerable one
on (C); 2. for satisficing planning, PL is generally competi-
tive with FD, and starts to outclass FD the harder grounding
becomes; and 3. the effect of lifted-SSS pruning is mixed.

Regarding 1., the performance difference on (A) is not
surprising, given that the instances are mostly easy to
ground, while PL uses a much weaker optimal follower
search configuration. PL was in many cases not even able to
solve the initial follower task. On the other hand, many in-
stances of parts (B) and (C) are infeasable for FD’s ground-
ing method, some of which, however, remain comparatively
easy to solve, and this is where PL’s optimal configuration
can shine. Regarding 2., the inadmissible but much stronger
satisficing follower search configuration significantly boosts
the performance of PL. On (A), PL performs marginally
worse than FD, the more expensive lifted search taking its

1https://doi.org/10.5281/zenodo.7701541

104 105 106

∞104

105

106

∞

FD [satis.]

PL
[s

at
is

.]

(i) FD vs. PL: memory (KB)

10−1 100 101 102 103

∞10−1

100
101
102
103
∞

FD [satis.]

PL
[s

at
is

.]

(ii) FD vs. PL: runtime (s)

A
B
C

10−1 100 101 102 103

∞10−1

100
101
102
103
∞

PL w/o SSS [satis.]

PL
w

/S
SS

[s
at

is
.]

(iii) Lifted SSS: runtime (s)

10−1 100 101 102 103

∞10−1

100
101
102
103
∞

FD [satis.]

PL
[s

at
is

.]

(iv) FD vs. PL in Web: runtime (s)

25

100

200

300

400

Figure 1: Per-instance comparisons of memory/runtime (i),
(ii), (iv): between satisficing FD and PL using all pruning
methods; and (iii) between satisficing PL w/ and w/o SSS
pruning. Mark colors in (i)–(iii) distinguish the benchmark
sets; (iv) the URL-number instance parameter. “∞” out of
time or memory.

toll, but the difference is significant only in NoMyst. On the
other hand, PL yields the much better performance when
grounding becomes a factor. Notably, the latter is the case
in the Pentest domain of Speicher et al.’s (2018a) original
benchmark set (A). On parts (B) and (C), PL vastly out-
performs FD. Peak memory usage and runtime (displayed
in Figure 1 (i) respectively (ii) and (iv)) reflect these obser-
vations. Regarding 3., attributed to the weak baseline per-
formance, SSS pruning shows no notable effect on optimal
PL. For satisficing PL, SSS pruning is beneficial in parts
(A) and (C), with significant coverage wins in Pentest and
Web. The mentioned grounding overhead becomes appar-
ent on (B), where the lifted-SSS construction often leads to
runtime slowdowns of several orders of magnitude (cf., Fig-
ure 1 (iii)). That overhead grows with the number of ground
leader actions. The latter is largest in Logist and Pipesw,
where the overhead also manifests in coverage.

Conclusion
Stackelberg planning constitutes a versatile framework that
enjoys wide applicability in security. As a remedy to the
inability of existing, grounding-based, approaches of deal-
ing with increasingly large instances, we introduced lifted
Stackelberg planning: a lifted variant of the leader-follower
search algorithm and suitable adaptations of the branch-and-
bound pruning and partial-order reduction methods. Our ex-
periments demonstrated the supremacy of lifted Stackelberg
planning on large benchmark instances. Notably, our SSS
adaptations are not restricted to Stackelberg planning. Ex-
ploring lifted-SSS pruning in lifted classical planning is an
interesting line of future work. Regarding lifted Stackelberg
planning, a promising way to further improve the LFS algo-
rithm is Torralba et al.’s (2021) information-sharing scheme.

Acknowledgments
This work was supported by the Air Force Office of Sci-
entific Research under award number FA9550-18-1-0245,
and by the German Research Foundation (DFG) under grant
389792660 as part of TRR 248 (see https://perspicuous-
computing.science).

References
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of Action Generation for Cyber Security Using Classical
Planning. In Proceedings of the 15th International Confer-
ence on Automated Planning and Scheduling (ICAPS-05),
12–21. AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation using Query Opti-
mization Techniques. In Proceedings of the 30th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’20), 80–89. AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling (ICAPS’21),
94–102. AAAI Press.
Haslum, P.; and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. In Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS’00), 140–149. AAAI Press, Menlo Park.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Crit-
ical Paths and Abstractions: What’s the Difference Any-
way? In Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS’09), 162–
169. AAAI Press.
Hoffmann, J. 2015. Simulated Penetration Testing: From
“Dijkstra” to “Turing Test++”. In Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS’15), 364–372. AAAI Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.

Lauer, P.; Torralba, Á.; Fiser, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In Proceedings of the 30th International Joint Confer-
ence on Artificial Intelligence (IJCAI’21), 4119–4126.
Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In Principles of
Knowledge Representation and Reasoning: Proceedings of
the 3rd International Conference (KR-92), 103–114. Mor-
gan Kaufmann.
Ridder, B.; and Fox, M. 2014. Heuristic Evaluation based
on Lifted Relaxed Planning Graphs. In Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14), 244–252. AAAI Press.

Russell, S.; and Norvig, P. 1995. Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.
ISBN 0-13-103805-2.
Sauer, P.; Steinmetz, M.; Künnemann, R.; and Hoffmann,
J. 2023. Lifted Stackelberg Planning (ICAPS’23):
Technical Report, Source Code, and Benchmarks.
https://doi.org/10.5281/zenodo.7701541.
Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.; and
Künnemann, R. 2018a. Stackelberg Planning: Towards Ef-
fective Leader-Follower State Space Search. In Proceed-
ings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI’18), 6286–6293. AAAI Press.
Speicher, P.; Steinmetz, M.; Künnemann, R.; Simeonovski,
M.; Pellegrino, G.; Hoffmann, J.; and Backes, M. 2018b.
Formally Reasoning about the Cost and Efficacy of Secur-
ing the Email Infrastructure. In Proceedings of the 2018
IEEE European Symposium on Security and Privacy (Eu-
roS&P’18), 77–91.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press. ISBN 978-1-10-709642-4.
Tizio, G. D.; Speicher, P.; Simeonovski, M.; Backes, M.;
Stock, B.; and Künnemann, R. 2022. Pareto-Optimal De-
fenses for the Web Infrastructure: Theory and Practice. ACM
Transactions on Privacy and Security.
Torralba, Á.; Speicher, P.; Künnemann, R.; Steinmetz, M.;
and Hoffmann, J. 2021. Faster Stackelberg Planning via
Symbolic Search and Information Sharing. In Proceed-
ings of the 35th AAAI Conference on Artificial Intelligence
(AAAI’21), 11998–12006. AAAI Press.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, 491–515.
Wehrle, M.; and Helmert, M. 2014. Efficient Stubborn
Sets: Generalized Algorithms and Selection Strategies. In
Proceedings of the 24th International Conference on Au-
tomated Planning and Scheduling (ICAPS’14), 323–331.
AAAI Press.
Younes, H. L. S.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research, 20: 405–430.

