
Classical Planning with Avoid Conditions: Technical Appendix

Marcel Steinmetz1, Jörg Hoffmann1, Alisa Kovtunova2, Stefan Borgwardt2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Institute of Theoretical Computer Science, Technische Universität Dresden, Germany

steinmetz@cs.uni-saarland.de, hoffmann@cs.uni-saarland.de, alisa.kovtunova@tu-dresden.de,
stefan.borgwardt@tu-dresden.de

Proofs: ϕ-Traps
Some of our claims use Progress(φ, a) for general fact for-
mulae φ. In our proofs, we use the following semantic defi-
nition:

[Progress(φ, a)] := {sJaK | s ∈ S, prea ⊆ s, s |= φ} (1)

We write s |= Progress(φ, a) if s ∈ [Progress(φ, a)]. Pro-
gression can be defined syntactically along the lines of Rin-
tanen’s (2008) regression definition.

Proof of Theorem 2
Let Ψ be some DNF formula of facts without negation. We
need to show that the set of states [Ψ] represented by Ψ is a
ϕ-trap if every element ψ ∈ Ψ satisfies

(tϕ1) ∀s ∈ S, if s |= ψ ∧ G then s |= ϕ; and
(tϕ2) ∀s ∈ S and ∀a ∈ A, if s |= Progress(ψ ∧ ¬ϕ, a)

then s |= (Ψ ∨ ϕ).

Assume that both conditions are satisfied for all elements
of Ψ. Let s ∈ [Ψ] be any state that satisfies Ψ, and let ψ ∈
Ψ be some conjunction for which s |= ψ. If s is a goal
state, then s |= ψ ∧ G, i.e., s |= ϕ as per (tϕ1). Therefore,
[Ψ] must satisfy (Tϕ1). If s |= ϕ, s cannot possibly violate
(Tϕ2). Assume that s 6|= ϕ, i.e., s |= ¬ϕ. Let a be any
action that is applicable in s. Plugging φ = ψ ∧ ¬ϕ into
(1) gives sJaK |= Progress(ψ ∧ ¬ϕ, a). As per assumption
(tϕ2), hence sJaK ∈ [Ψ] or sJaK |= ϕ. In either case, (Tϕ2)
is satisfied.

(tϕ2a) and (tϕ2b) are not necessary for (tϕ2) to hold
Consider two binary variables x and y, an action a with pre-
condition 〈x, 0〉 and effect 〈x, 1〉, ψ = 〈x, 0〉, and Φ =
(〈x, 0〉 ∧ 〈y, 1〉) ∨ (〈x, 1〉 ∧ 〈y, 0〉). (tϕ2) is satisfied since
[Progress(ψ ∧ ¬Φ, a)] = {{〈x, 1〉, 〈y, 0〉}}, which satisfies
Φ. In contrast, (tϕ2a) and (tϕ2b) are not satisfied since nei-
ther 〈x, 0〉 implies Φ, nor does 〈x, 1〉 imply Φ.

Proof of Theorem 4
We first show that the ϕ-trap refinement procedures termi-
nates with a ϕ-trap Ψ̂, if the set of states Ŝ used for the re-
finement satisfies
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(i) Ψ ∨
∨

s∈Ŝ s is a ϕ-trap, and

(ii) Ŝ does not contain a goal state.
Condition (ii) is necessary to guarantee that such variable

as in line 2 of Algorithm 2 exists. By adding the correspond-
ing fact toψs,ψs∧G can no longer be satisfied, i. e., everyψs

satisfies (tϕ1). The second loop only adds facts to the con-
junctions. These modifications cannot make (tϕ1) become
false again. Hence, all ψs satisfy (tϕ1) after termination.

Note that (Ψ∨
∨

s∈Ŝ s) implies Ψ̂ during the entire refine-
ment call, because each s ∈ Ŝ implies ψs by construction.
Hence, if some ψs and action a ∈ A exist for which the con-
dition in line 4 is satisfied, it must hold that ψs ⊂ s as per
the assumption (i) above. A variable as required in line 5 ex-
ists. The same argument shows that the loop must terminate
eventually, namely when ψs = s for all s ∈ Ŝ at the latest.
The loop termination condition ensures that all ψs satisfy
(tϕ2a) and (tϕ2b) for all a ∈ A, i. e., all ψs satisfy (tϕ2).

The previous elements in ψ ∈ Ψ are not affected. As per
assumption (i), they (still) must satisfy (tϕ1). Exchanging s
by ψs in (i) cannot make (tϕ2) become false either, as Φ re-
mains part of Ψ̂, and membership in (Ψ ∨

∨
s∈Ŝ) implies

membership in Ψ̂. In conclusion, every element in Ψ̂ satis-
fies (tϕ1) and (tϕ2). By Theorem 2, Ψ̂ constitutes a ϕ-trap.

We finally need to show that every Ŝ identified dur-
ing search satisfies (i) and (ii). Steinmetz and Hoff-
mann’s (2017) identification of Ŝ is left unchanged, i.e.,
search calls a trap refinement once states Ŝ have been ex-
plored, whose successors leaving Ŝ were pruned due to the
current Ψ. Since search terminates upon finding a (non-
pruned) goal state, all goal states in Ŝ must satisfy Ψ. Given
that Ψ is a ϕ-trap — which holds initially, and is guaran-
teed by the refinements, as shown above — all goal states in
Ŝ must hence satisfy ϕ. With the constraints on the succes-
sors, (i) is hence guaranteed by the identification method. Ŝ
satisfies (ii) because every goal state in Ŝ must be identified
by Ψ, and states that satisfied Ψ are not explored by search,
i. e., they cannot appear in Ŝ.

The REDONE Benchmarks
CaveDiving The goal requires to hire every initially avail-
able diver eventually. There is an (acyclic) preclude relation-

COVERAGE SEARCH REDUCTION FACTORS (left: geometric mean, right: max)
Compil.

pr
un

e-
ϕ ϕ-Prediction ϕ-Prediction vs. prune-ϕ

¬
ϕ

LT
L

X

k-trap Ŝ-trap aOri aInt aDet k-trap Ŝ-k-trap aOri aInt aDet
Domain # 2 3 k2 25k 100k 25k 100k 25k 100k k=3 k=2 100k 100k 100k

Satisficing

CaveDiving-REDONE 20 0 7 7 7 7 7 6 6 7 7 7 7 0 0 1.0 1.0 1.4 1.5 1.6 3.1 1.0 1.1
Fridge-REDONE 24 1 6 20 21 21 11 21 21 21 21 21 21 13 11 1 1 1 1 1 1 1 1 1 1
Miconic-REDONE 178 0 25 20 117 117 117 120 120 117 117 111 111 72 67 1.6 415 2.5 415 1 1 1.3 145 1.3 145
Nurikabe-REDONE 20 0 2 12 11 11 8 11 11 9 9 7 6 4 0 1.4 3.7 2.1 86.1 1 1 1.0 1.1
Openstacks-REDONE 60 0 4 12 13 13 13 13 13 13 13 13 13 8 7 1 1 1 1 1 1 1 1 1 1
Trucks-REDONE 30 0 7 8 18 18 18 18 18 18 18 18 18 15 15 1 1 1.2 1.7 1.1 2.2 1.0 1.2 1.0 1.1
Driverlog-ROAD 21 8 4 9 11 11 11 11 11 11 11 11 11 6 5 1.4 23.6 1.0 1.3 1 1 1.0 1.0 1 1
Rovers-ROAD 64 4 2 7 12 14 17 12 14 12 12 12 12 12 12 4.4 310.3 3.8 310.3 1 1 1.4 75.0 1 1
TPP-ROAD 40 4 4 8 9 9 7 10 10 9 8 10 9 9 8 3.0 258.2 2.4 258.2 1 1 1.3 9.9 1.9 258.2
Transport-ROAD 116 26 32 49 52 58 64 47 55 50 50 52 52 23 14 5.5 76.0K 3.5 76.0K 1 1 1.3 6.2 1.4 412.5∑

573 43 93 152 271 279 273 269 279 267 266 262 260 162 139 2.0 76.0K 2.2 76.0K 1.0 3.1 1.2 145 1.2 412.5

Optimal

CaveDiving-REDONE 20 0 7 7 7 7 7 7 7 7 7 7 0 0 1.0 1.0 1.0 1.0 1.3 2.0 1.0 1.0
Fridge-REDONE 24 1 6 10 10 10 10 10 10 10 10 10 2 2 1.0 1.0 1 1 1 1 1.0 1.0 1 1
Miconic-REDONE 178 0 25 68 68 68 70 70 62 61 62 62 28 23 1.7 415 1.9 415 1 1 1.3 145 1.4 145
Nurikabe-REDONE 20 0 2 10 10 8 10 10 9 9 7 6 3 0 1.4 1.9 1.4 2.1 1 1 1.0 1.3
Openstacks-REDONE 60 0 4 25 25 25 25 25 25 24 25 25 20 19 1 1 1 1 1 1 1 1 1 1
Trucks-REDONE 30 0 10 11 11 11 11 11 11 11 11 11 8 8 1 1 1.1 1.2 1.0 1.1 1.0 1.1 1.0 1.0
Driverlog-ROAD 21 7 12 13 13 13 13 13 13 13 13 13 8 7 1.7 9.0 1.1 1.5 1 1 1.0 1.0 1.1 1.5
Rovers-ROAD 64 3 3 3 3 3 3 3 3 3 3 3 3 3 1.5 2.5 1.5 2.5 1 1 1.2 1.4 1 1
TPP-ROAD 40 0 0 0 0 0 0 0 0 0 0 0 0 0
Transport-ROAD 116 23 41 45 49 49 45 49 45 45 46 46 16 7 2.7 1.4K 2.0 1.4K 1 1 1.2 3.2 1.2 19.1∑

573 34 110 192 196 194 194 198 185 183 184 183 88 69 1.6 1.4K 1.5 1.4K 1.0 2.0 1.2 145 1.2 145

Unsolvability

CaveDiving-REDONE 20 0 4 7 7 20 16 7 20 7 7 7 7 16 16 17.4K 29.5K 17.4K 29.5K 1.1 1.2 17.4K 29.5K 17.4K 29.5K
Miconic-REDONE 28 0 0 0 18 19 18 16 16 18 18 16 16 16 16 1.6 1.7 10.0 15.4 1 1 15.0 46.6K 17.3 46.6K
Driverlog-ROAD 22 8 4 8 8 9 12 5 8 8 8 8 8 8 8 0.45M 36.4M 0.45M 36.4M 1 1 52.2K 36.4M 0.45M 36.4M
Rovers-ROAD 64 0 0 0 0 16 22 14 21 0 0 2 2 1 1
TPP-ROAD 40 4 0 4 4 8 8 6 10 4 4 5 5 4 4 315.7 0.45M 3.2K 0.45M 1 1 0.10M 0.45M 0.10M 0.45M
Transport-ROAD 116 25 32 46 46 53 61 59 64 46 45 48 46 55 56 163.1 28.7M 65.7 28.7M 1 1 35.0 46.8K 913.4 28.7M∑

290 37 40 65 83 125 137 107 139 83 82 86 84 100 101 196.4 36.4M 215.9 36.4M 1.0 1.2 154.4 36.4M 1.3K 36.4M

Table 1: Left half: coverage results, best in bold. Results for the compilations are shown for the base configurations only. The
configuration names are described in the text. Right half: ratio of states visited by prune-ϕ versus states visited with a ϕ-
predictor on top (K for thousand, M for million). Larger values indicate more pruning. For each method per-domain geometric
mean (left) and maximum values (right) are shown. Values between different configurations are not directly comparable.

ship between the divers, according to which hiring certain
divers will no longer be possible depending on which divers
have been hired before. Our avoid condition reformulation
models this relation explicitly by ensuring that the diver that
has been hired last is not precluded by any diver that has al-
ready been hired. To generate the unsolvable instances, we
extended the standard IPC instances by adding a cycle to the
preclude relationships.

Fridge Fridges must be repaired by swapping compres-
sors. The action conditions ensure that (1) compressors can-
not be removed if not all screws have been unfastened; (2) a
new compressor cannot be attached to a fridge if the old one
has not been removed; (3) compressors cannot be attached if
some of their screws are fastened; and (4) a fridge can only
be started if all screws of the new compressor are fastened.
All four conditions translate directly into ϕ, satisfied if (1/3)
a compressor is moved while some screw is still fastened;

(2) a fridge contains multiple compressors; and (4) a fridge
is running whose compressor has some unfastened screws.

Miconic An elevator benchmark with complex constraints
on the passengers. The elevator can move up, down, and stop
at the current floor. Stopping at a floor departs all passengers
in the elevator whose destination is that floor, and boards all
passengers which are waiting at that floor. Our reformulation
allows to board and depart each passenger individually. The
avoid condition ensures that the elevator does not move be-
fore having boarded/departed all passenger as just described.
Additionally, the avoid condition takes the role of enforcing
the passenger constraints, removing action preconditions ac-
cordingly: (1) the elevator may only move up (down) if no
passenger is boarded that wants to go down (up); (2) passen-
gers of conflict classAmust not be boarded at the same time
as passengers of the conflict class B; (3) some passengers
must never be alone in the elevator; (4) the elevator must not

stop at a floor if a passenger is boarded which should not
have access to this floor; (5) some passengers have a “non-
stop” requirement that once boarded disallow the elevator to
stop at any floor other than the passenger’s destination; (6)
VIP passengers must be served before all others. To encode
these constraints into the avoid condition, we added addi-
tional facts representing whether the elevator has stopped,
moved up, or moved down.

We generated additional Miconic instances of the follow-
ing kind. We split n passengers and m floors into half. One
half of the passengers is assigned to conflict class A, and the
other to conflict class B. The class A passengers are placed
in the bottom half of the floors, the B passengers at the up-
per part. The goal is to swap their places. To not satisfy ϕ
eventually, each stop of the elevator must flip the class of
the passengers in the elevator (departing A and board B, or
vice versa depart B and board A). An instance is made un-
solvable by introducing an additional A passenger, whose
initial position and goal make this flip impossible. We gen-
erated 28 solvable and 28 unsolvable instances of this form,
scaling passengers n from 12 to 36 and floors m from 16 to
28 with increments of 4.

Nurikabe Nurikabe distributes numbers on a 2D grid. The
goal is to find for every numbered cell, a contiguous re-
gion surrounding this cell that contains exactly so many cells
as given by the number. Different regions must be discon-
nected. The latter constraint can be trivially encoded as an
avoid condition: adjacent cells must not be assigned to dif-
ferent regions.

Openstacks One needs to create products to serve orders.
A product must not be made until all orders are started
that include this product. Vice versa, an order must not be
shipped before all its products were made. Both constraints
are naturally expressed as an avoid condition.

Trucks Each truck has a limited storage area, with posi-
tions ordered from front to back. A position can only be ac-
cessed if no position closer to the front is occupied. We add
facts for each truck that represent which of the truck’s stor-
age area positions has been accessed last. The constraint is
replaced by the avoid condition that checks whether some
position in front of the one accessed last is occupied.

Extended Results Table
See Table 1.

References
Rintanen, J. 2008. Regression for Classical and Nonde-
terministic Planning. In Ghallab, M., ed., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI’08), 568–572. Patras, Greece: Wiley.
Steinmetz, M.; and Hoffmann, J. 2017. Search and Learn:
On Dead-End Detectors, the Traps they Set, and Trap Learn-
ing. In Sierra, C., ed., Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’17),
4398–4404. AAAI Press/IJCAI.

