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Abstract

It is increasingly recognized that adding additional con-
straints to a planning domain can significantly enhance ex-
pressiveness and solvability. In this paper, we advocate for
bounding action repetitions, i.e., the number of times an ac-
tion occurs in a plan. We show that bounds on action repeti-
tions occur naturally in many domains and, when enforced,
reduce computational complexity. In particular, we show that
bounding all actions reduces the complexity of plan existence
to NP. We also identify planning tasks where plan existence
remains NP-complete when bounding only some actions.

1 Introduction

Research in automated planning focuses on developing one
algorithm (planner) that solves arbitrary problems from
a user-provided description. To describe these problems,
many different planning formalisms exist. A commonly con-
sidered formalism is classical planning where action de-
scriptions are limited to simple logical constraints. The main
selling point of classical planning is that planners achieve a
lot better performance than in more expressive formalisms.
To this day, research about solving classical planning tasks
mostly focuses on heuristic search!, which remains to be
most successful in general (Taitler et al. 2024). But, other
solvers may outperform heuristic search in specific settings,
especially when tailoring problem models in the right way.
E.g., if one can provide a close estimate on the plan length,
this allows for great performance for planning via SAT (Rin-
tanen 2014; Holler and Behnke 2022). The problem is that
providing this bound is in general as hard as planning itself.

In this work, we argue that while helpful bounds are hard
to infer in general, meaningful bounds can often be estab-
lished by the modeler in practice. In particular, by estab-
lishing a bound on how many times single actions may be
repeated in a plan. To illustrate our argument, we show that
the bounds are easy to establish in logistics-like tasks, which
have been a central focus in the planning community. To
test whether these bounds are too restrictive, we analyze
the complexity of plan existence with bounded action rep-
etitions. The complexity drops from PSPACE-complete in
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the unbounded case (Erol, Nau, and Subrahmanian 1995) to
NP-complete, matching complexity of unary-bounded plan
existence (Bickstrom and Jonsson 2011) and SAT solving.
This is exactly what we want: We lower complexity, to make
solving easier, without limiting us to too simple problems.

We extend this result by showing that bounding only some
action repetitions is often enough to reduce the complex-
ity of plan existence to NP. Our results suggest that model-
ers can significantly reduce planning time by providing very
limited information that is easy to obtain.

2 Background

Classical Planning Tasks A classical planning task is
atuple Il = (F, A, so,G). F is a finite set of proposi-
tional facts. We associate the set of literals L with F', which
add fact negations, ie., L := FU{~f | f € F}. An
action a = (pre(a), eff (a)) consists of the precondition
pre(a) C L and the effect eff (a) C L, which are both sets
of literals. A is the finite set of actions in the task. A state
s C F represents the facts that are true in that state. The set
of all states is denoted by S := 2F. The literal extension
sbli=sU{~f| f € S\ s} of state s contains all positive
facts of s and the negation of all others. so C F'is a state,
called initial state. G C L is the goal condition.

For action a € A: add(a) := {f € F | f € eff(a)}
are the positive effects, and del(a) := {f € F | -f €
eff (a)} the negative effects. A fact f is called non-deletable
iff there is no action a € A with f € del(a). An action a is
applicable in a state s € S iff pre(a) C s”. Applying a to s
results in the successor state progr(s,a) := (s \ del(a)) U
add(a). progr(s,a) is undefined if a is not applicable in s.

A state s, is reachable by a sequence of actions m =
(a1,...,an) if each a; is applicable in the state resulting
from applying a1, ..., a;_1, starting from sq. That is: s, =
progr(...progr(progr(se, a1), az), ..., an). The sequence 7
is a plan iff s,, satisfies the goal G, i.e., G C s&.

Running Example: Logistics To illustrate our results, we
use a simplified Logistics domain as running example. It
captures typical features of Logistics domains while remain-
ing concise enough for presentation within this paper. The
domain consists of trucks moving on a directed graph, pick-
ing up and delivering packages to their target locations.

A logistics task IT;, = (F, A, so, G) is defined based on a



Truck ¢; at A Package p; at D

Figure 1: Logistic task with Trucks = {71}, Packages =
{p1}, Roads = {(A, B),(B,C),(C,B),(C,D),(D,C)},
and Locations = {A, B,C, D}. The initial state is sp =
{at(t1, A),at(p1,D)}. A goal condition that could be ful-
filled by a plan would be G1 = {at(p1, D)}. The goal con-
dition G2 = {at(p1, A)} could never be reached.

directed graph RoadSystem = (Locations, Roads), a set of
packages Packages, and a set of trucks Trucks.

The fact set F' includes atoms at(t, ) for each truck ¢ €
Trucks and location I € Locations, at(p,1) for each pack-
age p € Packages and location | € Locations, and in(p, t)
for each package p € Packages and truck ¢t € Trucks.
There are two actions:

Load(p,t,l) : pre: at(p,l), at(t,l)
eff: —at(p,l), in(p,t)

Unload(p,t,1) : pre:in(p,t), at(t,l)
eff: —in(p,t), at(p,l)
for every package p, truck ¢, and location {. And also:

Drive(t, from,to) : pre: at(t, from)

eff: —at(t, from), at(t,to)

for each (from,to) € Roads and truck ¢. The initial state
so and goal G are specified per task instance. A concrete
instantiation is shown in Figure 1, containing a single truck
t1, package p1, and four locations: A, B, C, D.

Mutexes Facts f1,..., f,, € F are mutex if no reachable
state contains more than one of them, i.e., |{f1,..., fn} N
s| < 1 for all reachable states s. Deciding whether two
facts are mutex is, in general, as hard as planning it-
self?, i.e., PSPACE-complete (Erol, Nau, and Subrahma-
nian 1995). To avoid this complexity, there exist different
polynomial-time algorithms for detecting mutexes (Helmert
2009; Fiser and Komenda 2018). We assume a fixed finite
set of polynomial-time algorithms to identify mutexes. We
call facts f1,..., fn € F poly-mutex if they are mutex and
detected by this set of polynomial-time algorithms. E.g., it
is easy to identify that in the Logistics example at(t, 1),
at(t,ly) for Iy # lo is mutex by simply realizing that there
is one initial truck location and each action adds and deletes
exactly one fact designating the truck location.

Petri Nets We will use Petri Nets to prove our claims in
Section 5. We adopt the notation of Esparza (1995), adapting
the terminology to better align with classical planning tasks,
to help readers more familiar with planning.

2This can be shown by adding a new fact f to the initial state
and replacing the goal with a new fact g, which is achieved by an
action whose precondition encodes the original goal. Then, f and
g are mutex iff there is no plan.

A Petrinet is a tuple N' = (P, T, W), where P is a finite
set of places (similar to facts), T is a finite set of transitions
(similar to actions), and W : (P x T) U (T x P) — Nis
a weight function that defines directed arcs between places
and transitions. These arcs determine how transitions con-
sume tokens from input places and produce tokens in output
places. For a transition ¢ € T, its pre-set is pre(t) := {p €
P | W(p,t) > 0}. A marking is a function M: P — N,
similar to a state, assigns a non-negative number of tokens
to each place. A Petri net system is a pair (N, M) where
M is the initial marking. A transition ¢ € T is enabled (ap-
plicable) in marking M if for all p € pre(t) it holds that
M(p) > W(p,t). If t is enabled, it can fire (be applied),
producing a new marking trans(M,t) := M’ defined by
M'(p) .= M(p) — W(p,t) + W(t,p) forallp € P.If t is
not enabled, then trans(/, t) is undefined.

The reachability problem asks: given a Petri net sys-
tem (INV,My) and a marking M, does there exist a
sequence of transitions m = (t1,...,t,) such that
applying them successively leads to M, ie., M =
trans(...trans(trans(Mo, t1),t2), ..., t,)? This problem is
Ackermann-complete in general (Leroux and Schmitz
2019), therefore we consider a constrained class:

A Petrinet N = (P, T, W) is called communication-free
if each transition consumes at most one token from at most
one place. Le., for or every ¢ € T it holds that | pre(t)| <1
and W(p,t) < 1forall p € P. A Petri net system (N, Mp)
is communication-free iff N is. For this class of nets, the
reachability problem is in NP-complete (Esparza 1995).

3 Action Repetition Bounds

We now describe a way to formally capture bounds on action
repetitions. To this end we introduce the notion of a bound
map which maps actions to a bound on their repetitions.

Definition 1 (Bound Map). Let 11 = (F, A, so, G) be a clas-
sical planning task. A bound map is a function b : A —
N U {oo} indicating the maximum number of times b(a) an
action a € A may be applied. A plan 7 respects a bound
map b iff for every action a € A the number of occurrences
of a in w does not exceed b(a).

In some planning tasks, limiting the number of times ac-
tions may be applied does not affect solvability. This moti-
vates a semantic notion of when a bound is non-restrictive.

Definition 2 (Non-Restrictive Bound Map). Abound map b
is non-restrictive for a planning task 11 iff: There exists a
plan that respects b or there is no plan for 11.

We now observe that non-zero bounds on Load and
Unload actions are non-restrictive for Logistics tasks.

Example 1. Let I}, and let b be a bound map such that
b(a) = 1 for all actions a of the form Load(p,t,1) or
Unload(p,t,1), and b(a) = oo for all other ( Drive) actions.

In any valid plan for Py, one can remove all Load ac-
tions for a package p after its first load at the source, and all
Unload actions before its final unload at the destination.
Preconditions remain satisfied, so these repetitions are un-
necessary. The resulting plan respects b, showing that Py, is
solvable if and only if a b-respecting plan exists.



4 Planning with Constantly Bounded Action
Repetitions is NP-Complete

Reconsider Figure 1, a simple logistics task with only one
package to deliver. If there is only one package, each road
(edge) needs to be used at most once. So a constant bound
of 1 on drive actions suffices. A similar situation arises in
the well-known Gripper domain, where a robot moves balls
from one room to another: The robot only needs to move to
a room at most twice, once to collect and once to deliver.
These examples show that there are planning tasks, that
are commonly used in our community, where all actions can
be bounded by a small constant. We now formalize this in-
sight and show that plan existence becomes NP-complete
when all action repetitions are bounded by a fixed constant.

Theorem 1. Deciding whether there is a plan for a classical
planning task 11 = (F, A, so, G) that respect bound b, where
each b(a) is at most some constant k € N* is NP-hard.

Proof. Membership: Since each action a € A can oc-
cur at most b(a) < k times, any plan has length at most
|A| - k, which is polynomial in the size of the input. A
non-deterministic polynomial-time algorithm can guess the
a plan and reject if it does not match b’s bounds.

Hardness: We reduce from the NP-complete problem
3SAT. Let ¢ be a 3-CNF formula over variables x1,...,x,
with clauses C', . .., Cy,. We define a planning task P, =
(F, A, 59, G) solving the 3SAT formula as follows, akin to
Bylander (1994, Thm. 3.5). Facts F' include facts true,,,
false, ., and unassigned, for each variable x;; and also
a fact satc, for each clause Cj. The initial state so =
{unassigned,, | i = 1,...,n} marks all variables unas-
signed. And the goal G = {satc, | j = 1,...,m} requires
all conjunctions to be fulfilled. The actions are:

» Two assignment actions for each variable x;:

al = ({unassigned, },{~unassigned, ,true,,})

Zq

al = ({unassigned, }, {~unassigned,, false, })

X4

* For each clause C}, positive occurrence z; in C}:
aci, = ({trueg, }, {satc,})

* For each clause C}, negative occurrence —z; in C;:
ac,' = ({false,, }, {satc,})

Each variable assignment action is applicable once, since
unassigned,, is deleted. Thus, exactly one of a’, or aX’ can
be applied for each z;, encoding a truth assignment. Each
clause action ac;, is applicable only if at least one of its liter-
als is satisfied by the chosen assignment. Hence, there exists
a valid plan iff ¢ is satisfiable. Since each action is applied
at most once, a bound map b with b(a) = 1 foralla € A
suffices, completing the construction. 0

S Planning with Simple Actions is
NP-Complete

In the previous section, we assumed the modeler being able
to identify constant bounds for Drive actions. But, this may

not always be obvious or possible. To show that sometimes,
the bounds are not needed, we now show that if the action
structure of a planning task is simple enough, the complexity
of plan existence still decreases to NP. In the next section, we
combine both ideas by bounding only non-simple actions.

We identify a notion of simple actions which aligns with
our running example and other IPC benchmarks.

Definition 3. An action a € A is called simple if it has
exactly one fact f € F in its precondition and delete list, i.e.,
{f} = pre(a) = del(a), and every add effect f' € add(a)
is poly-mutex with f or non-deletable. Actions that are not
simple are called non-simple.

E.g., all Drive actions in the running example are simple,
as truck locations are trivially mutex. Another example is
the VisitAll domain from the IPC benchmarks. It contains
only Move actions, which are similar to Drive actions but
additionally mark positions as visited using non-deletable
facts, which make them simple. We will now prove that this
restriction decreases the complexity of plan existence.

Theorem 2. Deciding whether there is a plan for a planning
task 11 = (F, A, so, G) where all actions a € A are simple
is NP-complete. (Even without bounding action repetitions.)

Proof. Membership: We follow the construction by Hick-
mott et al. (2007) to encode II into a communication-free
Petri net A" = (P, T, W), tailored to simple actions:

* For each fact f € F, include a place py in S.
» For each action a € A, include a transition ¢, in T" with:

- W(pys,ts) = 1 for the unique fact f with {f} =
pre(a) = del(a).
- W(tq,py) = 1forevery f € add(a).

All unspecified weights are zero. A token in py means fact
f is true. The transition construction preserves the seman-
tics of action application: Places f, for non-deletable facts
f can accumulate multiple token, which is no problem as
they are never deleted. For all other facts never accumulate
more than one token, since added facts are mutex with the
precondition and so always 0 when a token is placed there.
This means, the subtraction of one in firing transitions re-
moves all tokens in the place, like the action would negate
the fact. The initial marking M, is constructed by placing a
token on places corresponding to the facts in the state. That
is: Mo = {py — bool(f € so) | f € F'} where bool maps
true statements to 1 and false statements to 0.

We will now construct the mapping M, representing the
goal state, for which we want to check Petri-Net reachabil-
ity. By Esparza (1995), communication-free Petri net reach-
ability can be encoded as an ILP with columns and rows of
linear size, where some variables represent the final mark-
ing values. Thus, by Papadimitriou (1981), if the ILP is
solvable, then it has a solution with values bounded by an
exponential constant u. Hence, if a marking is reachable,
there exists one with the same values except for those ex-
ceeding u, which can be reduced to at value less or equal
u. This allows us to non-deterministically guess the mark-
ing M as follows: For each non-deletable fact f € F),
guess M(ps) € {1,...,u}, if f € Gif -f € G, set



M(py) = 0; otherwise guess M (py) € {0,...,u}. For all
other facts f € F,set M(py) = 1if f € G, M(py) = 01if
-f € G, and guess M (py) € {0, 1} otherwise. Then apply
the non-deterministic reachability check of Esparza (1995).
The marking is reachable iff a plan exists.

Hardness: We reduce from 3SAT as in Theorem 1, where
each variable assignment action satisfies the simple action
condition since variable values are trivially mutex. Clause
satisfaction actions add non-deletable facts and have no
delete effects, hence are also simple. Thus, the reduction fits
our setting, proving NP-hardness. O

6 Planning with Bounded Action Repetitions
or Simple Actions remains NP-Complete

We conclude that bounding only a subset of action repeti-
tions is sufficient when the remaining actions are simple.
This applies to tasks such as Logistics, where determining
a bound for Drive actions may be difficult, but Load and
Unload actions can naturally be bounded. Since Drive ac-
tions are simple, bounding only Load and Unload suffices
to use an algorithm with reduced complexity.

Theorem 3. Let k € N be a fixed constant. Given a classical
planning task 11 = (F, A, so, G), and a bound map b for 11,
such that every action a € A with b(a) > k is simple:

Deciding whether there exists a plan for 11 that respects b
is NP-complete.

Proof. Membership: We use a guess-and-check algorithm.
There are at most |A| - k non-simple actions in every plan
that respects |b|, so we guess:

1. Aninteger 0 < m < |A| -k

2. A sequence of m non-simple actions a1, . . ., G,.

3. A sequence of states si,..., S, where each s; is the
state in which a; can be applied.

ai,...,ap, is the subsequence of actions in the plan we are
guessing for. To ensure that simple actions can be inserted
between them, we verify, for each ¢ = 0,...,m, that state
Si+1 1s reachable from s; by constructing a planning task re-
stricted to the set of simple actions, with initial state s; and
goal s;41. We then apply the plan verification algorithm for
task with simple actions, as established in Theorem 2. Fi-
nally, we guess whether the goal is reached directly by the
last non-simple action a,,, in which case we verify that ap-
plying a.,, in s,, achieves G. Otherwise, we check that G is
reachable from s,,, using only simple actions, again by ap-
plying the verification algorithm for the simple action frag-
ment.

Hardness: We reduce from the special case of the
bounded planning problem where all actions are non-simple,
which is shown to be NP-complete in Theorem 2.

We drop the possibility of simple actions by adjusting all
actions to become non-simple. This is done by adding two
static preconditions, useless; and uselesss, to every action.
These facts are included in the initial state and are not af-
fected by any action. This ensures that all actions violate the
simplicity condition, while preserving their original seman-
tics. O

7 Related & Future Work

Model Constraints Prior work has formalized ways
of adding constraints and preferences to planning tasks
(Gerevini and Long 2005; Edelkamp 2006; Lauer et al.
2025b). However, the constraint frameworks are very gen-
eral. Offering a broad variety of constraints is not necessar-
ily an advantage. It leaves modelers uncertain about which
constraints are useful to include in the task. Our work shows
that bounds on action repetitions are one type of constraint
that modelers should include, as they are often easy to en-
code and seem likely to improve solver performance.

Bounding Plan Length Bounding action repetitions is
closely related to bounding plans directly, a topic thoroughly
studied in prior work (Bickstrom and Jonsson 2011; Lin
et al. 2024; Lauer, Lin, and Bercher 2025). This is similar
in theory, but quite different in practice: For a human it is
far easier to observe a bound on an individual action repeti-
tions than the total plan length. E.g., in our running example
any delivery driver knows that they Load and Unload every
package once. An estimate on the total plan length, requires
additional reasoning to add up several bounds and is more
error-prone. Moreover, a bound on the plan length always
bounds all repetitions, instead of possibly just some. Le.,
bounds on specific operators are more fine-grained, making
them easier to encode and exploit in practice.

Simple Actions There are alternatives for defining simple
actions to still capture our Drive actions. E.g. one could
use SAS-US (Béckstrom and Klein 1991), where plan ex-
istence is also NP-complete. The difference between SAS-
US and our definition is that SAS-US allows multiple pre-
conditions while we allow multiple effects. To the best our
knowledge our definition was not studied before. We chose
the definition, as it matches multiple (sub)tasks from past In-
ternational Planning Competitions. Since the Petri Nets con-
structed for tasks with simple actions can be encoded into
Integer Linear Programs (Esparza 1995), this points at inter-
esting future work.

Other Planning Formalisms We argue that constraint
solving approaches, especially SAT, could become more
competitive in solving classical planning task when provid-
ing additional constraints. The main reason is the drop in
plan existence complexity from PSPACE to NP. As there are
known PSPACE fragments of other formalism, e.g., numer-
ical planning (Shleyfman, Gnad, and Jonsson 2023; Lauer
et al. 2025b), it is reasonable to assume that this effect could
transfer to those settings as well.

8 Conclusion

We have shown that bounding action repetitions is an effec-
tive tool for reducing the complexity of plan existence. In
particular, it lowers the complexity from PSPACE-complete
to NP-complete. We have also that this remains the case
when bounding only some actions in many naturally occur-
ring planning problems, e.g., Logistics-like domains. This
highlights that bounding action repetitions is a powerful tool
that should be get more focus from both a modeler and plan-
ner perspective.
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