
Tight Bounds for Lifted HTN Plan Verification and Bounded Plan Existence

Pascal Lauer1,2, Songtuan Lin1,2, Pascal Bercher1

1School of Computing, The Australian National University, Canberra, Australia
2Saarland Informatics Campus, Saarland University, Saarbrücken, Germany

1firstname.lastname@anu.edu.au 2lastname@cs.uni-saarland.de

Abstract

Plan verification is a canonical problem within any planning
setting to ensure correctness. This problem is closely linked
to the bounded plan existence problem. We analyze the com-
plexity of these problems on lifted representations for Hier-
archical Task Network (HTN) Planning. On top of the gen-
eral analysis, we impose constraints on method orderings and
the amount of tasks that methods decompose to. This pin-
points subclasses with lower complexity. Our results confirm
the existence of more efficient algorithms when operating on
the lifted, instead of grounded, representation.

1 Introduction
The most fundamental problem in planning is the plan exis-
tence problem, which asks whether a given planning prob-
lem has a solution (called a plan). In this work, we con-
sider the closely related problem of plan verification, which
asks whether a given action sequence is indeed a plan to a
given planning problem. Once we can verify a plan, there
is always an associated guess-and-check procedure. More
importantly, plan verification is of huge practical impor-
tance. Without verification we had to trust the respective sys-
tems’ implementation. While making use of an additional
assurance should be “good practice” for any planning sys-
tem developer, it becomes especially important for safety-
critical applications, such as activity recognition while driv-
ing (Fernandez-Olivares and Perez 2020) or flying (Jamaka-
tel et al. 2023). Or, when planning competitions are held, to
not declare wrong/undeserved winners.

We focus on the complexity of plan verification in the
context of Hierarchical Task Network (HTN) planning, a
very expressive framework to describe planning problems
(Erol, Hendler, and Nau 1996), that has gained significant
attention in recent years (Bercher, Alford, and Höller 2019).
Here, plan verification is also important, because some plan-
ners intrinsically rely on it as a subroutine. E.g. the TOAD
planner (Höller 2021) overestimates the set of plans and then
verifies if the computed action sequence was a plan.

In light of all mentioned use-cases, multiple approaches
have been devised for plan verification. Examples include
compilations to SAT (Behnke, Höller, and Biundo 2017;

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lin, Behnke, and Bercher 2023), a compilation to HTN plan
existence, (Höller et al. 2022), and adaptations of grammar
parsing algorithms (Barták, Maillard, and Cardoso 2018;
Barták et al. 2020; Ondrcková et al. 2023; Lin et al. 2023;
Pantůčková and Barták 2023). Almost all approaches1 op-
erate on a grounded representation, where plan verification
is known to be NP-complete in general and in PTIME if
the entire model is totally ordered (Behnke, Höller, and Bi-
undo 2015; Bercher, Lin, and Alford 2022; Lin and Bercher
2023). Although in practice problems are defined in a lifted
representation like HDDL (Höller et al. 2020). We know
that grounding a task can often become a bottleneck in
large-scale tasks (Masoumi, Antoniazzi, and Soutchanski
2015; Wichlacz, Torralba, and Hoffmann 2019; Corrêa et al.
2020), which is why the standard verifier in classical (non-
hierarchical) planning (Howey, Long, and Fox 2004) oper-
ates on the lifted representation. This highlights a significant
gap between the theoretical framework and the practical ap-
proach most HTN verifiers take. It raises the question if and
how complexity changes when using the lifted HTN repre-
sentation directly.

Lin et al. (2024) initiated an investigation to answer this
question, by analyzing the complexity of verification for
grounded and lifted HTN planning problems. The analysis
goes hand in hand with an analysis of the bounded plan ex-
istence problem, which is to determine whether there exists
a plan that does not exceed a certain length bound. Their
analysis distinguishes between unary and binary bounds,
as discussed by Erol, Nau, and Subrahmanian (1991) and
Bäckström and Jonsson (2011) in classical planning. The
unary-bounded plan existence problem is particularly impor-
tant, as it aligns with practical requirements: In real-world
applications, a planner must output each action of the plan.
To make up for the time this takes from the perspective of
complexity theory, an appropriate solution is to provide a
plan-length-sized parameter in the input.

However, Lin et al. (2024) only provided loose upper and
lower bounds for the lifted case, and did not take important
special cases into account, such as total order (which reduces
the computational complexity in the ground setting (Behnke,

1The only exception is Barták et al. (2020). Though, empirical
evidence suggests a benefit when adapting it to the grounded setting
(Ondrcková et al. 2023).

Problem Method Computational Hardness Membership Extended to Extended to
Size Complexity Proof Proof TO- / UO- / PO- TIHTN

Plan
Verification

≥ 0 EXPTIME Thm. 5 Prop. 1, Thm. 9 Cor. 11 Thm. 17
≥ 1 PSPACE Lin et al. (2024) Prop. 1, Thm. 6 Cor. 8 Thm. 16
= 1 PSPACE Cor. 4 Prop. 1, Thm. 6 Cor. 8 Thm. 16

Unary-Bounded
Plan Existence

≥ 0 EXPTIME Prop. 1, Thm. 5 Thm. 9 Cor. 11 Thm. 17
≥ 1 PSPACE Lin et al. (2024) Thm. 6 Cor. 8 Thm. 16
= 1 PSPACE Prop. 1, Cor. 4 Thm. 6 Cor. 8 Thm. 16

Binary-Bounded
Plan Existence

≥ 0 NEXPTIME Lin et al. (2024) Thm. 12 Thm. 13 Cor. 21
≥ 1 NEXPTIME Thm. 13 Thm. 13 Thm. 13 Cor. 21
= 1 PSPACE Thm. 14 Thm. 14 Thm. 14 Cor. 22

Table 1: A summary of our complexity results. The Computational Complexity column lists completeness results. An extension
means that tasks can be constrained to the according property without changing the complexity.

Höller, and Biundo 2015)). We fill this gap by providing
tight bounds and taking such special cases into account. In
addition to that, we even identified a new one of practical
importance: Domains with non-empty methods, i.e. method
size ≥ 1, for which verification drops in complexity. We
note their practical relevance since an investigation of all
IPC 2023 domains revealed that 11/24 total-order domains
and 8/11 partial-order domains do not admit empty methods.
In particular, we make the following contributions:
• For all loose bounds identified by Lin et al. (2024), we

provide tight (matching) bounds.
• We provide tight bounds for the special cases of: To-

tally ordered and totally unordered methods (on top
of the general case of partially ordered methods) and
(non-)empty methods.

• We also investigate the complexity of classes for HTN
problems with task insertion (TIHTN planning, (Geier
and Bercher 2011; Alford, Bercher, and Aha 2015b)).

All results are provided for lifted plan verification and
bounded plan existence, both for unary encoded bounds and
binary encoded ones. Table 1 summarizes our findings.

2 Background
Classical Planning We start by defining (lifted) planning
problems similar to Lauer et al. (2021) to mirror the STRIPS
(Fikes and Nilsson 1971) part of PDDL (McDermott et al.
1998). We will then define HTN planning as an extension of
the classical planning formalism. A lifted planning problem
Π is a tuple (P, X,O,A, sI ,G). P is the finite set of predi-
cates. Each predicate p ∈ P is associated with a fixed arity
|p| ∈ N. X is the finite set of variables in the problem. O
is the finite set of objects in the problem. We call the com-
bination of p(x⃗) of a predicate symbol p with a sequence x⃗
of |p| variables or objects (lifted) atom. The set of all lifted
atoms is denoted by PX . An atom p(x⃗) is called grounded if
x⃗ is a sequence of objects. The set of all grounded atoms is
denoted by PO. A state s is a set of grounded atoms. The set
of all states is denoted by S. sI is a state called initial state.
The goal G is a set of grounded atoms. A (lifted) action a
is a tuple (sym(a), pre(a), add(a), del(a)). sym(a) is the
unique action symbol. pre(a), add(a), and del(a) are sets
of lifted atoms. A is the set of actions in the problem.

An action is called grounded if all of its atoms are
grounded. A planning problem is called grounded if all of
its actions are grounded. AO is the set of all grounded ac-
tions that can be obtained by replacing the variables of the
actions inA. We ground a problem by replacingAwithAO.
A grounded action a ∈ AO can be applied to a state s ∈ S iff
pre(a) ⊆ s. In this case we follow the notation of Hoffmann
and Nebel (2001) to denote the (progressive) successor state
as progr(s, a) := (s \ del(a)) ∪ add(a). progr(s, a) is un-
defined if a can not be applied in s. The consecutive applica-
tion of a1, . . . , an ∈ A to s ∈ S and respective subsequent
states is denoted by progr(a1, ..., an, s). A plan is an action
sequence a1, . . . , an that leads from sI to a state containing
the goal, i.e. progr(a1, . . . , an, sI) ⊇ G. A planning prob-
lem is solvable iff there exists a plan. The amount of actions
in the plan is called plan length.

HTN Planning HTN planning is an extension of classical
planning that allows to restrict the solution (plan) space us-
ing a hierarchical structure. We define (lifted) HTN planning
problems similar to Lin et al. (2024). A (lifted) HTN plan-
ning problem Π is a tuple (P, C,X,O,A,M, sI , tnI ,G).
P , X ,O,A, sI and G are defined as in classical planning. In
the context of HTN planning we will also refer to actions as
primitive tasks. The other type of tasks are compound tasks.
Compound tasks are defined akin to atoms. C is the finite
set of compound task symbols. Each c ∈ C has a fixed as-
sociated arity |c| ∈ N. A (lifted) compound task c(x⃗) is the
combination of a compound task symbol c with a sequence
x⃗ of |c| variables or objects. The set of all (lifted) compound
tasks is denoted as CX . A compound task c(x⃗) is grounded
if x⃗ consists only of objects. We indicate this, where rele-
vant, by c(o⃗). The set of all grounded compound tasks is de-
noted CO. A (lifted) task network is a tuple (T ,≺, α) where
T is a finite set of task identifiers, ≺⊆ T ×T a partial order
over T , and α : T → A∪ CX maps each identifier to a task.
A task network is grounded iff all of its tasks, i.e. the tasks
occurring in the image of α, are grounded. tnI is a grounded
task network called the initial task network. A method m is a
tuple (c(x⃗), tn), where c(x⃗) ∈ CX and tn is a task network.
M denotes a finite set of methods.

A method is called grounded if both its head c(x⃗) and
its task network tn are grounded. A planning problem is

grounded if all of its methods and actions are grounded. Like
with actions,MO denotes the set of all grounded methods
that can be obtained by replacing the variables of the meth-
ods inM. We ground an HTN planning problem by replac-
ing A with AO andM withMO.

A task network (T,≺, α) is called primitive if all tasks
α(T) are primitive. To find a plan, we first use methods to
replace all compound tasks in a task network until it be-
comes primitive. Each step is called a decomposition. Sim-
ilar to the action progression, we will formalize the decom-
position only for grounded methods. Formally, a decompo-
sition replaces a task id t ∈ T that maps to a compound task
α(t) = c(o⃗) in a grounded task network tn = (T,≺, α).
c(o⃗) can be decomposed using a grounded method with
matching head m = (c(o⃗), (Tm,≺m, αm)). In this case, we
define the resulting task network, in a similar style as progr,
as decomp(tn, t,m) := tn′. In the the following we de-
scribe the construction of tn′ := (T ′,≺′, α′): The main idea
is to remap the task identifiers Tm of the methods to “new”
ones Tnew that do not occur in the task identifiers T of the
network to be decomposed, i.e. Tnew ∩ T = ∅. To do so we
fix a Tnew and a bijective function σm : Tm → Tnew. The
replacement for T and α is straight-forward. Just remove the
replaced and add the remapped part:

T ′ := T \ {t} ∪ σm(Tm), α′ := α \ {(t, c)} ∪ σm(αm)

For ≺ we identify the relations of the replaced task:

≺t := {(t1, t2) ∈≺ | t ∈ {t1, t2}}
And the remapped new relations:

≺t↔m := {(σm(tm), t′) | t ≺ t′, tm ∈ Tm}
∪ {(t′, σm(tm)) | t′ ≺ t, tm ∈ Tm}

Which allows for a similar definition as for T and α:

≺′ :=≺ \ ≺t ∪ σm(≺m) ∪ ≺t↔m

A linearization of tasks in a task network is an ordering of
tasks that agrees with its partial order. An action sequence
a1, . . . , an is called an action refinement iff it is a lineariza-
tion of a primitive task network that is obtained as:

decomp(decomp(decomp(tnI , t1,m1), ..., ...), tk,mk)

I.e. by repeated decomposition starting from the initial
task network. The action sequence is a plan if it fur-
ther fulfills the plan criterion of classical planning, i.e.
progr(a1, . . . , an, sI) ⊇ G.

A commonly considered modification of HTN planning
is to allow the insertion of additional actions into the plan.
Formally, we modify the definition of a plan to so that a only
sub-sequence of its actions needs to be an action refinement.
We will refer to this extended problem as Task Insertion Hi-
erarchical Task Network (TIHTN) planning.

Within both HTN and TIHTN planning we will analyze
restrictions regarding the orderings in methods and how
many tasks the method decomposes to. We start by defining
the later. The size of a method (t, (T,≺, α)) ∈ M is |T |.
For a given task, we will refer to method size ≥ c and = c
for c ∈ N, if all methods have methods size≥ c, = c respec-
tively. Additionally, we will consider the following ordering
constraints. A method (t, (T,≺, α)) ∈M is called:

• totally ordered , if ≺ is a total order
• unordered, if ≺= ∅

A task is called totally ordered, or respectively unordered,
if all of its methods are. The general case without further
restriction is called partially ordered. We will prepend TO-
/UO-, and PO where relevant, to indicate this. E.g. TO-HTN
or TO-TIHTN planning for totally ordered.

We follow the definition by Lin et al. (2024), with mi-
nor adjustments, as one of our contributions is to tighten the
open bounds from their work. As a result, we naturally build
on their formalism. This formalism differs slightly from the
original HTN formalism (Erol, Hendler, and Nau 1996). At
least when considering only ordering constraints in task net-
works, which is common, our result extend to their formal-
ism. We provide an elaborate discussion in section 8.

Analyzed Decision Problems For HTN planning (and its
variations) we consider the following decision problems:
• Plan Verification: Given a planning problem Π and an

action sequence π, is π a solution for Π?
• Unary-Bounded Plan Existence: Given a planning prob-

lem Π, b∈N+
0 in unary representation, is there a plan for

Π of length ≤ b?
• Binary-Bounded Plan Existence: Given a planning prob-

lem Π, b∈N+
0 in binary representation, is there a plan for

Π of length ≤ b?

Turing Machines In line with multiple preceding works
on HTN planning (Alford, Bercher, and Aha 2015a; Alford
et al. 2016b; Chen and Bercher 2022), multiple of our re-
sults are proven by a reduction from Turing machines. We
define Turing machines similar to Rintanen (2004). We start
by defining an Alternating Turing Machine (ATM) and re-
strict it to deterministic and non-deterministic Turing Ma-
chines as special cases. We assume w.l.o.g. that any Turing
Machine controls one tape that is infinitely long only to the
right-hand side. We restrict the tape alphabet, i.e. elements
on the tape, to Γ := Bits ∪ {⊔}. ⊔ is the blank symbol
and Bits := {0, 1} the input alphabet. An ATM is a tuple
M = (Q, ▷, q0, ğ). Q is a finite set of states. ▷ : Q × Γ →
2Q×Γ×{L,R} is the transition function, where L denotes a
left head movement, and R represents a right movement.
q0 ∈ Q is the initial state. ğ : Q → {∀,∃, accept, reject} la-
bels each state: ∀ for an alternating transition from the state,
∃ for a non-deterministic transition, accept for an accepting
state and reject for a rejecting state. We assume that states
q ∈ Q with label ğ(q) ∈ {accept, reject} have no outgoing
transitions, i.e. ▷(q) = ∅. And also that states q ∈ Q with la-
bel ğ(q) ∈ {∀,∃} have outgoing transition(s), i.e. ▷(q) ̸= ∅.

A configuration of M is a tuple Ξ = (q, p, w) ∈ (Q×N×
Γ∗). q is the current state. w ∈ Γ∗ is the smallest word cap-
turing all non-blank symbols and the head position. p is the
head position within w. Transitions between configurations
are performed according to ▷. The concrete construction is
omitted due to space constraints. Ξ is accepting in n ∈ N
steps if one of the following conditions holds:
• if ğ(q) = accept
• ğ(q) = ∀ and all successors are accepting in n− 1 steps
• ğ(q) = ∃ and one successor is accepting in n− 1 steps

0 1 1

head
(pos: 2)

... 0 0 1

head
(pos: 3)

...

program rule

read: 1
pre-state: s1

write: 0
move: R

post-state: s2

tape(
head︷︸︸︷
2 ,

state︷︸︸︷
s1 ,

tape︷ ︸︸ ︷
0, 1, 1, ..︸ ︷︷ ︸
b objects

) tape(
head︷︸︸︷
3 ,

state︷︸︸︷
s2 ,

tape︷ ︸︸ ︷
0, 0, 1, ...︸ ︷︷ ︸
b objects

)

method

tape(2,s1,x1,1,x3,...,xb)

⇝
tape(3,s2,x1,0,x3,...,xb)

Figure 1: Illustration of a task decomposition simulating a
transition of a Turing machine with space bound b ∈ N.

Ξ is rejecting in n ∈ N steps if one of the following condi-
tions holds:
• ğ(q) = reject
• ğ(q) = ∀ and one successor is rejecting in n− 1 steps
• ğ(q) = ∃ and all successors are rejecting in n− 1 steps

If Ξ is accepting or rejecting in n steps, we say it halts in n
steps. Finally, a Turing machine is accepting/rejecting/halt-
ing in n steps for input wI iff configuration (q0, 0, wI) is.

A nondetermistic Turing Machine (NTM) is an ATM with
the restriction that there is no q ∈ Q so that ğ(q) = ∀. A (de-
terministic) Turing Machine (DTM) is an NTM with the re-
striction that for all q ∈ Q and w ∈ Γ it holds | ▷ (q, w)| = 1.

3 The Relation of HTN Plan Verification and
Unary-Bounded Plan Existence

We start by relating plan verification and unary-bounded
plan existence. This simplifies proofs in the following sec-
tion. Lin et al. (2024) showed that the complexity of verifi-
cation and unary-bounded plan existence in grounded HTN
planning are the same. This sparks question if there is a di-
rect relation of both problems that generalizes over certain
constraints. Höller et al. (2022) partially answered the ques-
tion by presenting an encoding of verification via plan exis-
tence. Though, the construction is on grounded HTN plan-
ning tasks and relies on a modification of concrete grounded
actions. Thus there is no canonical extension to the lifted en-
coding. In the following we present an alternative construc-
tion for lifted HTN planning.
Proposition 1. Plan verification for lifted HTN planning
tasks is polynomial-time reducible to the Unary-bounded
plan existence for lifted HTN planning tasks.

Proof. For action sequence π = a1(o⃗1), ..., an(o⃗n), HTN
planning problem Π = (P, C,X,O,A,M, sI , tnI ,G), we
will modify Π to allow only plans that resemble π. To do so
we introduce a predicate used pred of arity maxa∈A |a|+2
which will mark the actions used in the task. To track each
application action a ∈ A, we define an atom useda as:

used pred(xstep, sym(a), inst1, ..., inst|used pred|−2)

Where inst1, ..., inst|X(a)| are the |X(a)| pair-wise distinct
variables X(a) of a. And inst|X(a)|+1, ..., inst|used pred|−2

is the new object ⊥ /∈ O.

To map xstep /∈ X(a) to the number corresponding to
the amounts of actions applied already, we use a predicate
count to track the current action count and predicate next
to identify the next higher counter. The final construction is:

P ′ = P ∪ {count, next, used pred}
with |count| = 1, |next| = 2, |used pred| = max

a∈A
|a|+ 2

O′ = O ∪ {0, ..., n− 2} ∪ {⊥}
sI

′ = sI ∪ {next(i, i+ 1) | i ∈ {0, ..., n− 2}}
∪ {count(0)}

X ′ =
⋃
a∈A

X(useda) ∪X ∪ {xstep, xstep′}

A′ = {(sym(a), pre(a) ∪ {count(xstep), next(xstep, xstep′)},
add(a) ∪ {useda, count(xstep′)},
del(a) ∪ {count(xstep)}, c(a)) | a ∈ A}

Here we can apply at most n actions and each application
of an action a(o⃗) in step i ∈ {1, ..., n} will add the atom
used pred(i, sym(a), o⃗) to the state. We denote this atom
by usedi,a(o⃗) and modify the goal to require action applica-
tions according to π. I.e., we define the set Gused as:

{used1,a1(o⃗1), ..., usedn,an(o⃗n)}

And output an HTN planning problem Π′ =
(P ′, C,X ′,O′,A′,M, sI

′, tnI ,G ∪ Gused) and unary
plan length n. Here a plan exists iff π was a plan in Π.

Note that the task produced as outcome of the reduction pre-
serves all analyzed restrictions w.r.t. the input task.
Corollary 2. The reduction provided in Proposition 1 pre-
serves the following constraints (if applicable): unordered,
totally ordered, methods size = 1 and method size ≥ 1 .

4 HTN Plan Verification
Here, we analyze the complexity of HTN plan verification
for lifted HTN planning tasks under different restrictions.
As per Section 3 we will here only present hardness proofs
and tighten the bound via membership proofs for the unary-
bounded plan existence problem in Section 5. All proofs in
this Section reduce from differently constrained Turing ma-
chines. To understand the main intuition, take a look at Fig-
ure 1. It illustrates how to simulate a transition of a space-
bounded Turing machine using a single task decomposition.
In particular, it illustrates a transition for a program rule
where the head moves to the right after reading 1 and writing
0. We encode the tape as a compound task with arity b + 2.
The first position is used to annotate the head position, the
second is the state. The remaining b objects resemble the
relevant part of the tape. The Turing machine rule writes a 0
after reading 1 and then moves to the right. The decomposi-
tion rule is encoded for head position 2 and enforces 1 to be
at this position. It then changes the task to have a 1 at this
position and changes the Turing state accordingly. Note that
this method only depends on the value of the head position,
the head position itself and the state. As we generate one
method per tape position and transition rule, this allows to
generate an at most quadratic amount of methods per Turing
rule (cubic w.r.t. the input).

We start by providing a reduction of deterministic
PSPACE Turing machines. This also serves as alternate
proof of Theorem 1 from Lin et al. (2024). More impor-
tantly, it will canonically extend to a reduction from al-
ternating polynomial space restricted Turing machines in
Theorem 5, which will prove hardness for APSPACE =
EXPTIME (Chandra, Kozen, and Stockmeyer 1981).
Theorem 3. Plan verification for lifted HTN planning tasks
is PSPACE-hard.

Proof. We reduce from the acceptance problem for a de-
terministic Turing Machine that is space-bounded w.r.t. a
polynomial p. This is: Given a Turing machine M =
(Q, ▷, q0, ğ), input w, and two bounding parameters 1c, 1n,
does M accept w within space b := p(n) + c?

As in Figure 1 we will model the tape using a compound
task with id tape and arity b + 2 where: The first argument
to the compound task denotes the head position of the Tur-
ing machine. The second denotes the current Turing Ma-
chine state. The remaining arguments capture the tape con-
tent. (b elements starting from the leftmost position.) So, set
C = {⟨tape, (xhead, xstate, xt1 , ..., xtb)⟩}. We extend input
w, by adding ⊔, or cut it, by omitting the end, to length b.
The result is denoted by w∗. This allows to create the ini-
tial task as tI = tape(0, q0, w

∗
1 , ..., w

∗
b). With tI we as-

sociate the initial task network tnI that only contains tI .
This means the objects in our task are O = {0, 1, ..., b} ∪Q
for the bits and head position and the Turing states respec-
tively. We will not need any predicates, i.e. P = ∅, sI = ∅.
And set the primitive tasks A = {a} to one empty action
a := ⟨0, {}, {}, {}⟩.

We will now encode tape transitions using task decompo-
sitions. For convenience we will first define tasks tw,i,q that
are tape compound tasks with fixed state q ∈ Q, head posi-
tion i ∈ {1, ..., b} and bit w ∈ {0, 1} at tape position i. All
other arguments are distinct variables. Formally we define:

tw,i,q =


tape(1, q, w, x2, ..., xb) , if i = 1

tape(b, q, x1, ..., xb−1, w) , if i = b

tape(i, q, xx1
, ..., xi−1, w, xi+1, ..., xb) , o/w

Now we will encode the decomposition for each transi-
tion rule r = {(q1, w1) 7→ {(q2, w2, lr)}} ∈ ▷ and
each tape position i ∈ {1, ..., b} (except for (lr, i) ∈
{(L, 1), (R, b)}). This is that we encode a method mr,i :=
⟨tw1,i,q1 , ({1}, ∅, {1 7→ t})⟩ that decomposes into the one
new task t, defined as:

t =


a , if ğ(q2) = accept
tw2,i+1,q2 , if lr = R

tw2,i−1,q2 , if lr = L

M denotes the collection of all such methods. X is the
collection of all variables occurring in M. We output
(P, C,X,O,A,M, sI , tnI ,G). and plan a(). Our con-
struction allows mirroring any configuration of a b-space-
bounded Turing machine as a composite task. Each decom-
position directly corresponds to the mirrored configuration’s
transitions of the Turing machine. A task can be decomposed
into a iff the according configuration would be accepting.

Thus the action sequence a is a plan iff the Turing machine
is accepting.

In the planning task constructed in the proof, each com-
pound task is decomposed into exactly one task. This allows
us to conclude:

Corollary 4. Plan verification for lifted HTN planning tasks
with method size = 1 is PSPACE-hard.

We will now extend the proof to alternating Turing ma-
chines. The alternation will be covered by methods produc-
ing multiple compound tasks that resemble all alternating
outcomes. To be able to map a correct decomposition to a
plan, we will decompose to the empty task network if the
compound task transitions to an accepting state. This allows
to verify the empty plan as valid plan.

Theorem 5. Plan verification for lifted HTN planning tasks
is EXPTIME-hard.

Proof. We extend the proof of Theorem 3 to Alternating
Turing Machines. We assume the same context as in The-
orem 3 except that M is an Alternating Turing machine.
We will now also ignore actions, i.e. A′ = ∅. The only
other thing we change about the reduction are the methods
M. Before we adjust the method definition, we want to ex-
tend the task shorthand notation to tq1,w1,q2,w2,lr for fixed
states q1, q2 ∈ Q, the head position i ∈ {1, ..., b} and bits
w1, w2 ∈ {0, 1} as:

tq1,w1,q2,w2,lr =


⊥ , if ğ(q2) = accept
tw2,i+1,q2 , if lr = R

tw2,i−1,q2 , if lr = L

Now for each transition rule r = {(q1, w1) 7→
{(q2, w2, lr2), ..., (qn, wn, lrn)}} ∈ ▷ we build the follow-
ing methods depending on the transition label:

1. If ğ(q1) = ∃ we define for k ∈ {2, ..., n}, i ∈ {1, ..., b} a
method mr,k,i that decomposes the tasks tw1,i,q1 into Tk,
defined as:

Tk = {tq1,w1,qk,wk,lrk} \ {⊥}

2. If ğ(q1) = ∀ we define for i ∈ {1, ..., b} a method mr,i

that decomposes the tasks tw1,i,q1 into Tk, defined as:

Tk = {tq1,w1,q2,w2,lr2 , ..., tq1,w1,qn,wn,lrn} \ {⊥}

M′ denotes the collection of all such methods. We replace
the primitive tasks by A′ and methods by M′ in the task
from Theorem 3 to obtain Π′. We output Π′ and the empty
plan. As in Theorem 3 we ensure that any decomposition
mirrors the transitions in the Turing machine vice versa. The
decomposition to multiple tasks ensures that all tasks need
to be decomposed to the empty tasks which is the case if
and only if all corresponding configurations lead to an ac-
cepting state. As APSPACE = EXPTIME (Chandra, Kozen,
and Stockmeyer 1981) the reduction proves the claim.

Algorithm 1: NTM Verifier Unary-Bounded Plan Existence

1: Input: Unary bound b, an HTN problem Π =
(P, C,X,O,A,M, sI , tnI ,G) with method size ≥ 1

2: rb ← |CO|+ 1, rc ← 0
3: tn← tnI

4: while tn is not primitive do
5: guess compound task t from tn, m ∈MO

6: if m can not decompose t then
7: reject
8: end if
9: rc ← rc + 1 if method size of m is 1 else 0

10: if rc > rb then
11: reject
12: end if
13: tn← decomp(tn, t,m)
14: if tn has more than b tasks then
15: reject
16: end if
17: end while
18: guess linearization a1, . . . , an of tn
19: accept if a1, . . . , an is a plan, otherwise reject

5 Unary-Bounded HTN Plan Existence
Here we provide the membership proofs for the lifted
unary-bounded plan existence problem. This will tighten the
bounds for both this problem and lifted plan verification. We
will start with the special cases when there exists no method
that decomposes to an empty task network.

Theorem 6. Unary-bounded plan existence for lifted HTN
planning tasks with method size ≥ 1 is in PSPACE.

Proof. We implement a non-deterministic guess-and-check
algorithm for unary-bounded plans as presented in Algo-
rithm 1. The condition in line 14 ensures that no more than b
elements are added to the task network tn. This ensures that
any considered action sequence in line 18 has size at most
b. It does not reject any plan, as the task network size is a
lower bound on sequence length (which in this case would
exceed b).

Now, if we would ignore line 10, we would already have
an algorithm that returns a solution of size b if one exists as
it non-deterministically considers all possibilities for action
sequences of size at most b (that can be obtained via de-
composition and obey ordering restrictions). The condition
of line 10 makes sure that the recursion count rc exceeds the
recursion bound rb. (If this doesn’t happen then the algo-
rithm is terminated after the check in line 14 as the task net-
work grows.) This ensures that the algorithms encounters no
endless loop when always decomposing to exactly one com-
pound task. If the condition were to reject a plan, an earlier
guess can always lead to a valid plan, as the amount of de-
compositions to one tasks exceeds the amount of grounded
compounds tasks. Thus the algorithm always terminates and
accepts/rejects correctly.

It remains to show that the algorithm takes only polyno-
mial space. We can bound the binary representation |CO| ≤

(|C|+ |O|)maxc∈C |c|+1 which allows to bound rb’s bi-
nary representation with O(log((|C|+ |O|)maxc∈C |c|

)) ⊆
O(log((|C|+ |O|)) · maxc∈C |c|). This is polynomially
bounded w.r.t. Π. Guessing grounded method m ∈ MO is
possible in linear space and time by first guessing method
schema, then method replacements. As tn never exceeds b it
can be stored in polynomial space. Thus the algorithm is in
NPSPACE = PSPACE (Savitch 1970).

Note that method size =1 is a more constraining case of≥ 1.
Thus the combination of Cor. 2, Cor. 4 and Thm. 6 allows to
obtain the following complexity result:

Corollary 7. Plan verification and unary-bounded plan ex-
istence for lifted HTN planning tasks with methods size = 1
or ≥ 1 is PSPACE-complete.

When considering ordering constraints, complexity can only
decrease because any proof of membership for the general
case also applies to the restricted case. The hardness proof
in Thm. 3 has one task in the initial task network and method
size =1. Thus it is unordered and totally ordered, which al-
lows to conclude:

Corollary 8. Cor. 7 extends to TO- & UO-HTN planning.

The grounded representation can be exponentially larger
than the lifted input. This makes its creation generally more
costly than verifying and finding bounded plans directly on
the lifted representation for this subclass. As there is no HTN
plan verification that does not ground except for Barták et al.
(2020), which takes exponential time (and does not use in-
formed heuristics yet). Our novel PSPACE result now gives
hope for better approaches.

E.g. by hinting an encoding into grounded classical plan-
ning, where plan existence is PSPACE-complete (Erol, Nau,
and Subrahmanian 1991). Utilizing this connection in differ-
ent contexts of HTN planning, has proven to be very promis-
ing before (Höller et al. 2018, 2019). Thus it is reasonable to
believe that this hints yet another way to benefit from the var-
ious successful approaches (Seipp and Helmert 2013; Fišer,
Torralba, and Hoffmann 2022; Corrêa and Seipp 2022) de-
veloped in classical planning.

We will now continue to analyze the general case, where
a task may be decomposed to the empty task network.

Theorem 9. Unary-bounded plan existence for lifted HTN
planning tasks is in EXPTIME.

Proof. We adjust Algorithm 1. We change the check in line
9 to also increase on method size 0. We extend the code
before line 13 with a guess of some tasks that we remove
from m’s decomposition result. (m is treated as a locally
created object. Modifying it does not affect the original
method structure.) We check via an oracle if the selected
tasks for deletion can be deleted, if not, we reject. By al-
lowing this deletion of tasks, we extend the correctness ar-
gument from Theorem 6 to the general case. In particular,
tasks that would be removed through decomposition can
now be deleted by this guess. Consequently, assuming a non-
deterministic guess that deletes all such tasks establishes the

number of tasks in tn as a lower bound on the number of ac-
tions in the plan. As in Theorem 6 we yield a PSPACE algo-
rithm (under assumption of a constant cost oracle). It follows
that there is also an EXPTIME algorithm (under assump-
tion of a constant cost oracle). We will now argue that we
can replace the oracle with an EXPTIME algorithm. Calling
an EXPTIME algorithm exponentially times remains EXP-
TIME. So, the final construction yields an EXPTIME veri-
fier (even if methods can decompose to the empty task).

To construct an EXPTIME algorithm for this oracle we
utilize a result from Behnke, Höller, and Biundo (2015).
They show that checking if a task can be decomposed to
the empty task network is in P for grounded HTN planning
tasks2. Thus, grounding the task (in exponential time) and
using the polynomial time check on the grounded task yields
the EXPTIME algorithm.

As we have now proven the lower bound for unary-bounded
plan verification and upper bound for plan verification, it al-
lows us to conclude by Prop. 1:

Corollary 10. Plan verification and unary-bounded plan
existence for lifted HTN planning tasks is EXPTIME-
complete.

Again, to extend the result to consider ordering constraints,
we only need to analyze the hardness proof. In the gen-
eral case, again any ordering is completely irrelevant, as the
plans are empty.

Corollary 11. Cor. 10 extends to TO- & UO-HTN planning.

Verification and finding a bounded plan, on the poten-
tially exponentially large grounded representation, is NP-
complete (Lin et al. 2024). Assuming that P ̸= NP, we can
now observe that it is generally easier to use the lifted repre-
sentation directly, as the grounder output may be exponen-
tial. Additionally, this hints another encoding into classical
planning. In particular, into delete-free lifted classical plan-
ning, where the plan existence is known to be EXPTIME-
complete (Erol, Nau, and Subrahmanian 1991). This partic-
ular fragment of classical planning has received a lot of at-
tention and progress lately (Corrêa et al. 2021, 2022; Lauer
et al. 2025). Thus it could serve as yet another performant
way for verification in practice.

6 Binary-Bounded Plan Existence
We continue to analyze the complexity of plan existence
with a binary bound. Lin et al. (2024) have only proven this
problem to be NEXPTIME-hard. Here, we will show it is
NEXPTIME-complete. Further, we will extend the analysis
to our analyzed constraints. We will see that here complexity

2Def. 1 of Behnke, Höller, and Biundo (2015) shows how to
identify the tasks that can be decomposed to the empty task net-
work in ≤ k steps in time polynomial time w.r.t. the planning
problem and k. Lem. 1 of their work then concludes that there is a
choice for k, that is polynomially bounded by the size of the plan-
ning problem, so that the identified tasks for all k+ i for i > 0 are
the same. This concludes that detecting whether a task is decom-
posable to the empty task network is in PTIME.

does not change for method size ≥ 1. We start by analyzing
the general case without restrictions.

Theorem 12. Binary-bounded plan existence for lifted HTN
planning tasks is NEXPTIME-complete.

Proof. Hardness is proven by Lin et al. (2024). For
membership we use the following NEXPTIME verifier:
Given length bound k, guess an action sequence of length
at most k. Ground the task (in exponential time). We
pass the (exponentially-sized) action sequence with the
(exponentially-sized) grounded task to the NP verifier of
Behnke, Höller, and Biundo (2015) from the grounded set-
ting. This remains NEXPTIME. By considering every plan
of length k the verification is trivially correct.

This allows us to determine the same complexity for the case
when restricting to methods size ≥ 1.

Theorem 13. Binary-bounded plan existence for lifted HTN
planning tasks is NEXPTIME-complete. This result extends
to method size ≥ 1 in TO-, UO- and PO-HTN planning.

Proof. Membership is proven by Thm. 12, as we consider
a more constrained case. For hardness we reduce from the
binary-bounded plan existence problem for lifted classi-
cal planning, which is known to be NEXPTIME-complete
(Erol, Nau, and Subrahmanian 1991). The bound remains
the same. To simulate a classical planning task with HTN
planning we use the construction from Erol, Hendler, and
Nau (1996, Sec. 3.3). This is to have one compound task
that can be decomposed into an arbitrary action or twice this
compound task. On this construction one can impose arbi-
trary ordering constraints, without restricting the action re-
finements, as any arbitrary sequence remains to be a refine-
ment. Further it never decomposes to the empty task net-
work, which proves the claim.

Lastly there is a difference for methods size =1, which we
can observe from combinations of our previous results.

Theorem 14. Binary-bounded plan existence for lifted HTN
planning tasks with method size = 1 is PSPACE-complete.
This result extends to method TO- & UO- HTN planning.

Proof. Hardness follows from a reduction from the problem
with a unary bound. We output the same task with the bound
converted to binary.

To observe membership we use Alg. 1 (with a binary
bound instead of unary). As we never decompose to more
than 1 task, tn will not increase in size and the algorithm
uses only polynomial space.

7 TIHTN Planning
Here we extend the previous result to TIHTN planning. We
will start with the results for plan verification and unary-
bounded plan existence. We provide the same hardness rela-
tion as in Prop. 1, which can just be observed by the same
construction.

Corollary 15. Prop. 1 and Cor. 2 extend to TIHTN planning.

This allows us to provide a hardness lower-bound for plan
verification and membership upper-bound like in Sections
3, 4 and 5, which we will closely adhere to.

Theorem 16. Plan verification and unary-bounded plan ex-
istence for lifted TIHTN planning tasks with method size = 1
or ≥ 1 is PSPACE-complete. The result extends TO-, UO-
and PO-TIHTN planning.

Proof. For hardness we can use exactly the same argumen-
tation as in the case without task insertion (Thm. 3, Cor. 4).

For membership adjust the Verification procedure pre-
sented in Alg. 1 to non-deterministically guess whether to
add a (guessed) task or continue decomposing.

Theorem 17. Plan verification and unary-bounded plan
existence for lifted TIHTN planning tasks is EXPTIME-
complete. This extends TO-, UO- and PO-TIHTN planning.

Proof. Like in Thm. 16, for hardness we can just recreate
the proof for normal HTN planning from Thm. 5.

And for membership adjust Alg. 1 to non-
deterministically guess whether to add a (guessed)
task or continue decomposing.

For binary-bounded plan existence we will show the hard-
ness for the more constrained case with method size≥ 1 and
membership for the general case. We start with hardness,
for which we can use exactly the same argument as in Thm.
13 where we generate arbitrary action sequences to simulate
classical planning. Allowing task insertion will not change
the set of plans, as any action sequence is a refinement.

Corollary 18. Binary-bounded plan existence for lifted TI-
HTN planning tasks with method size = 1 is NEXPTIME-
hard.

We first show NP membership for the grounded case to then
conclude with a similar argument as in Thm. 12.

Proposition 19. Plan verification for grounded TIHTN
planning tasks is in NP.

Proof. As rb in Alg. 1 is an upper bound on the amount of
tasks in the problem, in the grounded case, one can simply
adjust it to be the number of grounded tasks in the problem.
Then the verification algorithm is in NP. We can use the ad-
justments from Thm. 17 to extend it to TIHTN planning.
Thus unary-bounded plan existence for grounded TIHTN is
in NP. And so by Cor. 15 also plan verification.

Now we can basically reproduce the proof of Thm. 12 for
TIHTN planning.

Theorem 20. Binary-bounded plan existence for lifted TI-
HTN planning tasks is in NEXPTIME.

Proof. The membership check is: Guess a plan of size at
most k and uses the verifier from Prop. 19 to accept or reject.
The correctness argument is the same as in Thm. 12.

This concludes the final statement as we sandwich the result.
Note that like before we can impose ordering constraints in
the argumentation before without changing the result.

Corollary 21. Binary-bounded plan existence for lifted TI-
HTN planning tasks is NEXPTIME-complete. This extends
to problem with method size to ≥ 0 and ≥ 1 in TO-, UO-
and PO-TIHTN planning.

Thus it remains to show that we can extend this to method
size ≥ 1 Here we can mirror the argumentation for the case
without task insertion.

Theorem 22. Binary-bounded plan existence for lifted TI-
HTN planning tasks with method size = 1 is PSPACE-
complete. The result extends TO-, UO- and PO-TIHTN plan-
ning.

Proof. Hardness is proven by the unary case in in Thm. 16.
For membership we follow the same argument as for Thm.
14 holds. I.e. one can use Alg. 1 with a binary bound.

This observation concludes that complexity does not change
for TIHTN planning. However, it is unclear if the lifted rep-
resentation offers an advantage over the grounded one in TI-
HTN planning. Therefore we provide a classification for the
primary problems of interest in the grounded setting

Theorem 23. Plan verification and unary-bounded plan ex-
istence for grounded TIHTN planning tasks is NP-complete.

Proof. The membership upper-bound was proven in Prop.
19. The hardness lower-bound is can be created by reusing
the construction from Thm. 3 in Lin and Bercher (2023). In
the constructed HTN problem it holds for all a ∈ A that
pre(a) = add(a) = del(a) = ∅. Here the hardness lies
in the decomposition, as any action can be inserted without
change. Thus, the result extends to TIHTN planning.

The absence of a change in complexity highlights the chal-
lenge task decomposition poses. This suggests that, if we do
not want to impose limits on the decomposition, complexity
is unlikely to drop further. Transforming these problems into
classical planning could be a viable approach, as it at least
equips us with good performing solvers. Especially within
the PSPACE fragment, where it becomes possible to use a
plethora of state-of-the-art planners. Prior research has suc-
cessfully utilized bounded classical planning encodings to
find Hierarchical Task Network (HTN) plans (Alford, Kuter,
and Nau 2009; Alford et al. 2016a; Behnke et al. 2022).
Though their bounds relate to the decomposition directly.
Our results suggest that just bounding plan length can be a
promising alternative.

8 Relation to Other HTN Formalisms
To the best of our knowledge, the decision problems we
study in this paper were not studied for any HTN formal-
ism, including original HTN formalism (Erol, Hendler, and
Nau 1996). To draw conclusions about the complexity in the
original formalism, from our results, we point out the three
aspects in which our formalism deviates:
1. Our solution definition differs in being an action se-

quence, rather than a (partially ordered) task network that
admits such a sequence.

2. In our formalism, the initial task network is always
grounded, whereas Erol, Hendler, and Nau define it to
be lifted.

3. In our task networks, we consider only ordering con-
straints, whereas Erol, Hendler, and Nau additionally
consider arbitrary first-order logic constraints.

We start by arguing that (1.) and (2.) do not affect the
results. For (1.), solutions can be easily converted, as the
complexity classes are at least NP and thus can be resolved
by guessing the corresponding sequence, or testing all com-
binations for EXPTIME. Thus, the results are affected by
this distinction. We opted for a linearized sequence, as this
matches the format used for plans in practice. This makes it
closer to reality, which makes the most sense in the context
of plan verification.

For (2), one can use a compilation that introduces a
grounded compound task in the initial task network and a
method that decomposes into the original lifted task net-
work. Note that this may affect method size. Though, the
changed method size only affects Alg. 1 and its variations.
It can be adjusted by adding one guessing step to ground
the initial task network. Thus, the results are affected by this
distinction. We opted for enforcing a grounded initial task
network because it simplifies the definitions significantly in
our context.

We strongly believe that the results extend to (3) as well.
The complexity classes are high enough to allow the ad-
ditional constraints to be resolved through guessing in the
membership proofs, although we have not formally studied
this. For hardness, the results definitely extend, as the devi-
ation in (3) simply increases expressivity. We preferred to
analyze the problems without including (3), as this simpli-
fication is found in most works surrounding HTN planning.
Moreover, there are no benchmarks that use the constraints
unique to Erol, Hendler, and Nau’s formalism, so we found
this decision to be a natural choice.

9 Conclusion
In this work, we investigated the computational complexity
of the plan verification problem (is a given action sequence
a solution to a given planning problem?) and bounded plan
existence problem (is there an action sequence within a cer-
tain length bound that is a solution to a given planning prob-
lem?) in HTN planning. More specifically, we investigated
the complexity of the practically motivated scenario where a
grounded plan (as generated by any planning system) should
be verified, or respectively generated, but a lifted model is
provided as its input, specified by input languages such as
HDDL. Thus, our analysis fills an important gap in the HTN
theory, as most verification results were previously based on
a fully ground model. On top of providing tight complexity
bounds for this lifted setting, we also identified an important
novel special case, problems with only non-empty decom-
position methods, for which we were able to provide lower
bounds (complexity drops from EXPTIME-complete to just
PSPACE-complete). We furthermore provide tight complex-
ity bounds when task insertion is allowed as in TIHTN plan-
ning. Lastly, all investigations are done for partially ordered

(the general case), totally ordered, and also totally unordered
task networks (i.e. without ordering constraints). Interest-
ingly, while it is known from the literature that total or-
der drops the complexity from NP-complete to polynomial-
time for grounded problems, none of those three cases has
an influence of the computational complexity when the in-
put model is lifted. As a last (and minor) contribution, we
also point out the relationship between lifted plan verifica-
tion and bounded plan existence. Our results strongly sug-
gest that working directly on a lifted model can pay-off.
The results guarantee that lifted approaches at least prevail
when grounding becomes intractable, which was observed in
multiple domains recently. This paves the way for future re-
search avenues, to identify such lifted approaches in an em-
pirical setting. We point at a promising avenue as the use of
classical planning by linking decision problems of the same
complexity.

Acknowledgments
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Projec-
tID 232722074 – SFB 1102. Pascal Bercher is the recip-
ient of an Australian Research Council (ARC) Discovery
Early Career Researcher Award (DECRA), project number
DE240101245, funded by the Australian Government.

References
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. 2016a. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In ICAPS.
Alford, R.; Bercher, P.; and Aha, D. 2015a. Tight bounds for
HTN planning. In ICAPS.
Alford, R.; Bercher, P.; and Aha, D. W. 2015b. Tight Bounds
for HTN Planning with Task Insertion. In IJCAI.
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A Small Amount of Domain Knowledge
Can Go a Long Way. In IJCAI.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016b. Hierarchical Planning: Relating Task
and Goal Decomposition with Task Sharing. In IJCAI.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Vali-
dation of Hierarchical Plans via Parsing of Attribute Gram-
mars. In ICAPS.
Barták, R.; Ondrčková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A novel parsing-based approach for veri-
fication of hierarchical plans. In ICTAI.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a solu-
tion!(... but is it though?)-verifying solutions of hierarchical
planning problems. In ICAPS.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Com-
plexity of HTN Plan Verification and Its Implications for
Plan Recognition. In ICAPS.
Behnke, G.; Pollitt, F.; Höller, D.; Bercher, P.; and Alford, R.
2022. Making translations to classical planning competitive
with other HTN planners. In AAAI.

Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In IJCAI.
Bercher, P.; Lin, S.; and Alford, R. 2022. Tight Bounds for
Hybrid Planning. In IJCAI.
Bäckström, C.; and Jonsson, P. 2011. All PSPACE-complete
planning problems are equal but some are more equal than
others. In SOCS.
Chandra, A. K.; Kozen, D. C.; and Stockmeyer, L. J. 1981.
Alternation. Journal of the ACM, 28.
Chen, D. Z.; and Bercher, P. 2022. Flexible FOND HTN
Planning: A Complexity Analysis. In ICAPS.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-relaxation heuristics for lifted classical
planning. In ICAPS.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Frances,
G. 2020. Lifted successor generation using query optimiza-
tion techniques. In ICAPS.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Frances,
G. 2022. The FF heuristic for lifted classical planning. In
ICAPS.
Corrêa, A. B.; and Seipp, J. 2022. Best-First Width Search
for Lifted Classical Planning. In ICAPS.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity re-
sults for HTN planning. Ann. Math. Artif., 18.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1991.
Complexity, Decidability and Undecidability Results for
Domain-Independent Planning. Technical Report CS-TR-
2797, UMIACS-TR-91-154, UMD.
Fernandez-Olivares, J.; and Perez, R. 2020. Driver Activ-
ity Recognition by Means of Temporal HTN Planning. In
ICAPS.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. AIJ, 2.
Fišer, D.; Torralba, A.; and Hoffmann, J. 2022. Operator-
Potential Heuristics for Symbolic Search. In AAAI.
Geier, T.; and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In IJCAI.
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
fast plan generation through heuristic search. JAIR, 14.
Höller, D. 2021. Translating totally ordered HTN planning
problems to classical planning problems using regular ap-
proximation of context-free languages. In ICAPS.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An extension to
PDDL for expressing hierarchical planning problems. In
AAAI.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018. A
generic method to guide HTN progression search with clas-
sical heuristics. In ICAPS.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019. On
Guiding Search in HTN Planning with Classical Planning
Heuristics. In IJCAI.

Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN plan verification problems into HTN plan-
ning problems. In ICAPS.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In ICTAI.
Jamakatel, P.; Bercher, P.; Schulte, A.; and Kiam, J. J. 2023.
Towards Intelligent Companion Systems in General Avia-
tion using Hierarchical Plan and Goal Recognition. In HAI.
Lauer, P.; Torralba, Á.; Fiser, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In IJCAI.
Lauer, P.; Torralba, Á.; Höller, D.; and Hoffmann, J. 2025.
Continuing the Quest for Polynomial Time Heuristics in
PDDL Input Size: Tractable Cases for Lifted. In ICAPS.
Lin, S.; Behnke, G.; and Bercher, P. 2023. Accelerating SAT-
Based HTN Plan Verification by Exploiting Data Structures
from HTN Planning. In ECAI.
Lin, S.; Behnke, G.; Ondrcková, S.; Barták, R.; and Bercher,
P. 2023. On Total-Order HTN Plan Verification with Method
Preconditions - An Extension of the CYK Parsing Algo-
rithm. In AAAI.
Lin, S.; and Bercher, P. 2023. Was Fixing This Really That
Hard? On the Complexity of Correcting HTN Domains. In
AAAI.
Lin, S.; Olz, C.; Helmert, M.; and Bercher, P. 2024. On the
Computational Complexity of Plan Verification,(Bounded)
Plan-Optimality Verification, and Bounded Plan Existence.
In AAAI.
Masoumi, A.; Antoniazzi, M.; and Soutchanski, M. 2015.
Modeling Organic Chemistry and Planning Organic Synthe-
sis. In GCAI.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - the
planning domain definition language. Technical report.
Ondrcková, S.; Barták, R.; Bercher, P.; and Behnke, G. 2023.
On the Impact of Grounding on HTN Plan Verification via
Parsing. In ICAART.
Pantůčková, K.; and Barták, R. 2023. Using Earley Parser
for Recognizing Totally Ordered Hierarchical Plans. In
ECAI.
Rintanen, J. 2004. Complexity of Planning with Partial Ob-
servability. In ICAPS.
Savitch, W. J. 1970. Relationships between nondeterministic
and deterministic tape complexities. Journal of computer
and system sciences, 4.
Seipp, J.; and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In ICAPS.
Wichlacz, J.; Torralba, A.; and Hoffmann, J. 2019.
Construction-planning models in minecraft. In HPLAN.

