
Continuing the Quest for Polynomial Time Heuristics in PDDL Input Size:
Tractable Cases for Lifted hadd

Pascal Lauer1,2, Álvaro Torralba3, Daniel Höller1, Jörg Hoffmann1,4

1Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
2School of Computing, The Australian National University, Canberra, Australia

3Aalborg University, Aalborg, Denmark
4German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

1lastname@cs.uni-saarland.de 2firstname.lastname@anu.edu.au 3alto@cs.aau.dk

Abstract
Recent interest in solving planning tasks where full ground-
ing is infeasible has highlighted the need to compute heuris-
tics at a lifted level. We turn our attention to the evaluation of
the hadd heuristic, which is an important cornerstone in many
classical planning approaches, including the best performing
lifted planning approach. We show that hadd ’s grounded effi-
ciency does not extend to lifted tasks, where the computation
is EXPTIME-complete. This prompts to identify tractability
islands matching practical use cases. We identify two, where
a lifted computation is feasible while grounding may fail: The
first constraints to acyclic action schemata and bounds pred-
icate arity. For the second case we introduce a novel compu-
tation, operating without grounding. Assuming the extraction
encounters only acyclic conditions, and hadd values per sub-
goal are bounded, it remains tractable, even if predicate and
action arity is unbounded. In an empirical evaluation of the
new technique, we observe complementary behavior to the
existing lifted forward hadd evaluation. Combining both sets
a new state of the art in pure-heuristic performance on the
hard-to-ground benchmarks.

1 Introduction
Since the introduction of STRIPS (Fikes and Nilsson 1971)
planning tasks are specified in a lifted format, where vari-
ables act as placeholders for objects in all grounded vari-
ants. Today, most planners accept PDDL (McDermott et al.
1998) as lifted input and then ground the task. Grounding
enables the use of polynomial-time heuristics (Hoffmann
and Nebel 2001; Helmert and Domshlak 2009; Seipp and
Helmert 2018). However, grounding can come at exponen-
tial cost and has long been recognized as a theoretical bot-
tleneck (Erol, Nau, and Subrahmanian 1995; Helmert 2009).
In recent years, this bottleneck has become increasingly ev-
ident in various applications (Areces et al. 2014; Masoumi,
Antoniazzi, and Soutchanski 2015; Wichlacz, Torralba, and
Hoffmann 2019). This has driven focus towards creating
planners that circumvent grounding to the extent possible.
In particular, Corrêa et al. (2020) introduced an effective for-
ward search by linking state expansion to conjunctive query
evaluation. To replicate the success of grounded heuristics,
it is necessary to not only adapt the heuristic to the lifted set-
ting but also maintain the polynomial-time guarantee. So far,

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it was only observed how to: Recreate grounded heuristics
exactly, without a polynomial-time guarantee (Corrêa et al.
2021, 2022). Or, apply a relaxation to ensure a polynomial-
time computation, but resulting in weaker heuristics (Lauer
et al. 2021). In this paper, we investigate to which extent it
is possible to compute hadd (Bonet and Geffner 2001) in
polynomial-time at the lifted level.

hadd is a cornerstone of classical planning computations,
such as hFF (Hoffmann and Nebel 2001). The lifted variant
by Corrêa et al. (2021) is particularly significant in our set-
ting. It creates the top-performing configuration when used
in BFWS (Lipovetzky and Geffner 2017; Corrêa and Seipp
2022) on the hard-to-ground benchmarks. Here, hadd vastly
dominates the overall runtime, making it the prime target for
improvements. Unlike in the grounded setting, reducing the
runtime of lifted hadd is crucial. The current lifted-forward
evaluation can take minutes for a single state evaluation on
hard-to-ground benchmarks. We show that this bottleneck is
generally unavoidable, as computing hadd at a lifted level is
EXPTIME-complete. Though, in some domains, the com-
putation of Corrêa et al. (2021) is notably fast. Consider-
ing these cases, we identify a tractable subclass by bounding
predicate arity and restricting to acyclic action schemata.

Recognizing this strength, we turn to the approach’s main
weakness: Its tie to exploring all facts. Therefore we intro-
duce an alternative lifted hadd computation that avoids this
bottleneck. Our approach works backwards (using regres-
sion). Starting from the goal, it gradually builds new condi-
tions, represented by lifted atoms, until one is satisfied. This
allows to generate only one grounded certificate to show a
condition is true, and eliminates the tie to all facts. Many
early approaches in planning operated on the lifted represen-
tation and used regression (McDermott 1996; Penberthy and
Weld 1992; Vieille 1986; Younes and Simmons 2003). But
they faced bottlenecks from partial grounding. Our approach
circumvents this bottleneck by operating without grounding.

We implement our computation with optimizations to
make it practical and observe complementary behavior to
the forward evaluation. Our method is significantly faster in
some domains, while the latter remains dominant in over-
all performance. We introduce a simple combination of
both, leveraging their individual strengths. This advances
the state-of-the-art in pure-heuristic performance on hard-
to-ground benchmarks. The results indicate that other lifted

approaches utilizing hadd could significantly benefit from
this in future work, such as the top-performer using BFWS.

2 Background
A lifted planning task is a tuple Π = (P,O,A, I,Γ), where
P is a set of predicates, O is a set of objects, A is a set of
lifted actions, I is called initial state and Γ is called goal. A
predicate p ∈ P has a fixed arity |p|. We assume an infinite
set of variables X . The combination p(x⃗) of a predicate p
with a tuple x⃗, of |p| variables or objects is called lifted atom.
PX is the set of all lifted atoms. X(p(x⃗)) denotes the set of
variables of p(x⃗). For a set of lifted atoms L ⊆ PX , the set
of all contained variables is X(L). p(x⃗) is called grounded
(or fact) if X(p(x⃗)) = ∅. We indicate this, where relevant,
by p(o⃗). The set of all grounded atoms is denoted as PO.
A state, including I, is a set of grounded atoms. The set
of all states is S. The goal Γ is a set of grounded atoms.
An action a ∈ A is a tuple (pre(a), add(a), del(a), c(a)),
where pre(a), add(a), del(a) are sets of lifted atoms. c(a) ∈
R+

0 is the action cost. X(a) := X(pre(a)∪add(a)∪del(a))
denotes the variables occuring in a. An action a is grounded
if all of its atoms are grounded. A task is grounded if all of
its actions are grounded.

Actions and atoms can be grounded by substituting their
variables with objects. We formalize the substitution similar
to McDermott (1996) by defining the possible substitutions
match(δ) := {θ : X(δ) → O} for the variables in some
structure δ ∈ PX∪A∪2PX

with objects O. θ(δ) denotes the
application of θ ∈ match(δ) to δ. X(θ) denotes the domain
of θ. This definition extends to substitutions σ : X(δ) →
O ∪X , that are not guaranteed to ground. A grounded task
is obtained by replacing the actions a by all grounded actions
AO := {θ(a) | a ∈ A, θ ∈ match(a)}.

A grounded action θ(a) ∈ AO can be applied to
a state s ∈ S if pre(θ(a)) ⊆ s to obtain the suc-
cessor progr(s, a) := (s \ del(θ(a)) ∪ add(θ(a))).
We denote progr(progr(progr(s, θ1(a1)), ...), θn(an)) by
progr(s, θ1(a1), ..., θn(an)). A plan is an action sequence
θ1(a1), . . . , θn(an) so that progr(I, θ1(a1), . . . , θn(an)) ⊇
Γ. A task is solved by finding a plan.

A predicate p ∈ P (or atom p(x⃗)) is static iff no action
a ∈ A has an atom p(y⃗) ∈ add(a) ∪ del(a). For a set of
lifted atoms L ⊆ PX the set of its static atoms is static(L).
An action a ∈ A has distinct precondition groundings, iff
for all of its groundings θ(a) ∈ AO the number of its non-
static preconditions remains the same after grounding, i.e.,
|pre(a)\static(pre(a))| = |pre(θ(a)) \static(pre(θ(a)))|.
We assume all actions to have distinct precondition ground-
ings. Otherwise, the value of lifted hadd computations, in-
cluding that by Corrêa et al. (2021), may deviate.

2.1 Grounded Computation of hadd
hadd (Bonet and Geffner 2001) is the point-wise greatest
function fulfilling for a state s ∈ S and G ⊆ PO:

hadd(s,G) =

0 , if G ⊆ s∑

p(o⃗)∈G hadd(s, {p(o⃗)}) , if |G| ≠ 1

min
θ(a)∈ach(G)

c(a) + hadd(s, pre(θ(a))), o/w

Where ach({p(o⃗)}) = {θ(a) ∈ AO | p(o⃗) ∈ add(θ(a))}
defines the achievers for a grounded atom p(o⃗) ∈ PO.

The heuristic value of s is hadd(s) := hadd(s,Γ). In
grounded planning, hadd is computed by a bottom up dy-
namic programming approach, tagging each propositional
fact p(o⃗) ∈ PO with a value converging to hadd(s, {p(o⃗)}).
It begins by initializing all facts p(o⃗) ∈ s with value 0. All
other facts are set to an initial value ∞. Iteratively, for a fact
p(o⃗) ∈ PO and grounded action a ∈ AO that achieves the
fact, i.e. p(o⃗) ∈ add(a), we update the fact value to be the
sum of the hadd values of its preconditions, plus the action
cost, if that results in lower value. Performing this update in
a uniform-cost manner, where only the fact with the small-
est new value is updated, ensures that each fact is updated
only once and ensures to run in polynomial time (w.r.t. the
ground task). Finally, the heuristic value for s is determined
by summing the hadd values of all goal facts p(o⃗) ∈ Γ.

As the computation ignores delete effects, it is called
delete-relaxed. The delete relaxation Π+ of task Π is ob-
tained by removing the delete lists of all actions.

2.2 Satisfiability and Query Evaluation
The set of substitutions match(δ) := {θ : X(δ) → O}
for structures δ ∈ PX ∪ A ∪ 2P

X

grows exponentially
in the size of δ. So, generating the entire set is asymptoti-
cally as expensive as grounding the task. Though, in most
cases only a small subset of variable replacement functions
is relevant. These functions are restricted by some condition
expressed as a set of lifted atoms L ⊆ PX and evaluated
over a given state s ∈ S. Formally we set match(s, L) :=
{θ ∈ match(L) | θ(L) ⊆ s}. A good example for
such a restriction is given in Corrêa et al. (2020). They
use match(s, pre(a)) to determine applicable grounded ac-
tions for some lifted a ∈ A in a state s ∈ S. Here we
link this evaluation to terminology and well-known theo-
retical results from database theory, which are commonly
found in introductory books, including Abiteboul, Hull, and
Vianu (1995). To provide context, a conjunctive query in
these texts is essentially a set of lifted atoms L ⊆ PX , our
states serve as database, tables are a collection of variable
replacement functions and match(s, L) is the answer to the
query L. We say that some state s satisfies L, denoted by
s ⊨ L iff match(s, L) ̸= ∅. Checking satisfiability s ⊨ L
is NP-complete (Chandra and Merlin 1977) indicating the
existence of a polynomial-sized certificate θ ∈ match(s, L)
iff match(s, L) ̸= ∅. Moreover, there exist many practical
criteria for L, that if fulfilled, ensure that the computation
of some θ ∈ match(s, L) runs in polynomial time (Flum,
Frick, and Grohe 2002; Grohe, Schwentick, and Segoufin
2001). Still, the enumeration of all results match(s, L) can
be exponential in |X(L)|, even in these tractable cases. This
advantage of easy satisfaction over an intractable enumera-
tion is a key motivation for the hadd computation we intro-
duce in Section 4.

A commonly exploited tractable case is acyclicity, e.g.
see Beeri et al. (1981). A set of lifted atoms L ⊆ PX is
acyclic iff there exists a tree with nodes L so that for all
p1(x⃗1), p2(x⃗2) ∈ L, x ∈ X(p1(x⃗1))∩X(p2(x⃗2)), x occurs

in every node on the shortest path from p1(x⃗1) to p2(x⃗2).
In this case it is possible to check satisfiability in polyno-
mial time via the GYO algorithm (Graham 1979; Yu and Oz-
soyoglu 1979). We call a planning task acyclic if all pre(a)
for a ∈ A are acyclic. The successor generation of Corrêa
et al. (2020) capitalized of the fact that acyclic planning
tasks are common in the International Planning Competition
(IPC) benchmark set by using Yannakakis algorithm (Yan-
nakakis 1981), which is polynomially bounded in both input
and output. To limit the output, we define the projection over
variables Y ⊆ X(θ) as πY (θ) = {(x 7→ o) ∈ θ | x ∈ Y }.
If Y is restricted in size, then the output is guaranteed to
be bounded w.r.t. the lifted task representation and Yan-
nakakis algorithm can evaluate πY (match(s, L)) in polyno-
mial time. If we associate a weight w : s → R with every el-
ement of a state s ∈ S, e.g. be the hadd cost of each atom in
the state, Yannakakis algorithm can be adapted to compute
the cheapest cost minθ∈match(s,L)

∑
p(x⃗)∈L w(θ(p(x⃗))) in

polynomial time.
PX+ is the set of all multisets over PX . All introduced

definitions, including algorithms for satisfiability and query
evaluation, transfer canonically from sets to multisets as the
number of elements in multisets is irrelevant in this context
(but will be relevant for our algorithm).

3 The Complexity of Computing Lifted hadd

In this section, we prove that computing hadd on lifted plan-
ning tasks is EXPTIME-complete, identify a task restric-
tion that allows tractable forward computation, and discuss
when and why such forward evaluations, including Corrêa
et al.’s (2021) approach, encounter significant limitations.
Due to space constraints, we present proof sketches through-
out the whole paper. Full proofs are provided in the Ap-
pendix (Lauer et al. 2025).

Theorem 1. Computing hadd on lifted planning tasks is
EXPTIME-complete.

Proof sketch. Hardness follows by reduction from delete-
relaxed plan existence which is EXPTIME-complete (Erol,
Nau, and Subrahmanian 1995). (A delete-relaxed plan ex-
ists for s ∈ S iff hadd(s) ̸= ∞.) Membership is proven by
grounding the task in time exponential in the lifted represen-
tation to compute grounded hadd .

We now identify a task restriction that makes the compu-
tation tractable using a forward fix-point approach. We adapt
the idea of the grounded computation to generate the reach-
able facts on demand from the lifted action representation.
In particular, we use Yannakakis algorithm under acyclicity.
Additionally fixing predicate arity, to limit the number of
facts, makes the computation tractable.

Theorem 2. hadd can be computed in polytime on acyclic
lifted planning tasks with predicate arity at most k ∈ N.

Proof sketch. We adapt the grounded hadd computation
from Section 2.1 to consider grounded facts, but not
grounded actions. For each action schema, we can generate
the cheapest sum of hadd values for any precondition of a

make sandwich(xc1 . . . xcn – content):
pre : {inKitchen(xc1), . . . , inKitchen(xcn)}

add : {sandwich(xc1, . . . , xcn)}

del : {inKitchen(xc1), . . . , inKitchen(xcn)}

serve sandwich(xch – child xc1 . . . xcn – content):
pre : {likes(xch, xc1), . . . , likes(xch, xcn), sandwich(xc1, . . . , xcn)}

add : {served(xch)}

del : {sandwich(xc1, . . . , xcn)}

Figure 1: Actions for the Childsnack running example.

grounded operator of the schema, by Yannakakis algorithm.
The restriction to acyclic preconditions allows a single eval-
uation to run in polynomial time. The limit on predicate ar-
ity constrains the number of facts, resulting in polynomially
many iterations and an overall polynomial runtime.

Corrêa et al. (2021) use a similar approach to compute
hadd . To handle actions with large arity they transform the
task, decomposing actions according to Helmert (2009) into
smaller ones, with fewer parameters. In the transformed
task, each fact produced by the forward evaluation mir-
rors an intermediate result of a query evaluation. If the ar-
ity of intermediate results is bounded, the computation re-
mains tractable; just as query evaluations like GYO and Yan-
nakakis achieve tractability by bounding intermediate re-
sults if the query is acyclic. We conducted an analysis on
hard-to-ground benchmarks to determine cases where using
Yannakakis algorithm would reduce this bound and found
that, even though they are not necessarily equal in the worst-
case, they are practically indistinguishable on these bench-
marks. Thus, our proof does not only mark a new tractability
fragment, but also clarifies where the forward evaluation by
Corrêa et al. (2021) works well.

Note that acyclic conditions and bounded predicate arity
need to be combined. If we would just bound predicate arity,
delete-relaxed plan existence remains NP-hard since condi-
tions could be cyclic (Lauer et al. 2021). Acyclic conditions
alone do not guarantee tractability, as any planning task can
be made acyclic by increasing predicate arity.

Proposition 3. For any lifted planning task Π, there is an
acyclic planning task Π′ with size at most O(|Π|) such that
any plan in Π can be rewritten to a plan in Π′ and vice versa.

Proof sketch. Obtain Π′ from Π by making the precondition
of each action a with X(a) = {x1, ..., xn} acyclic by adding
an atom pa(x1, ..., xn). Further, add new actions upa of cost
0 that make pa(x1, ..., xn) achievable by having one add el-
ement pa(x1, ..., xn), but no precondition. Thus a plan in Π
can be converted to a plan in Π′ by adding upa

(o1, ..., on)
before each a(o1, ..., on) in the plan. The plan conversion
from Π′ to Π works by dropping all upa

actions.

The lifted search by Corrêa et al. (2020) already as-
sumes acyclic preconditions, which makes this requirement
natural. Though, the restriction to bounded predicate ar-
ity does not always match reality. We will examine this

served(och)

likes(och, x1), . . . , likes(och, xn),
sandwich(x1, . . . , xn)

...
likes(och, oc1),. . . ,
likes(och, oc2),

sandwich(oc1 , ..., oc2)

likes(och, oc1),. . . ,
likes(och, oc1),

sandwich(oc1 , ..., oc1)

likes(och, ocn−1),. . . ,
likes(och, ocn),

sandwich(ocn−1 , ..., ocn)

likes(och, ocn),. . . ,
likes(och, ocn),

sandwich(ocn , ..., ocn)

serve sandwich

...

G
rounded L

ifted
L

ifted
(G

rounded)

{x1 7→ocn , ..., xn 7→ocn}{x1 7→ocn−1
, ..., xn 7→ocn}{x1 7→oc1 , ..., xn 7→oc2}{x1 7→oc1 , ..., xn 7→oc1}

make sandwich make sandwich make sandwich make sandwich

served(och)

likes(och, x1), . . . , likes(och, xn),
sandwich(x1, . . . , xn)

likes(och, x1), . . . , likes(och, xn),
inKitchen(x1), . . . , inKitchen(xn)

serve sandwich

m
a
k
e
sa
n
d
w
ich

(no grounding)
▶

In
te

rm
.g

ro
un

di
ng

(o
th

er
s)

Fully
lifted

(ours)

▶

Figure 2: The lext regression graph (left). Related approaches with exponential node explosion in one intermediate grounding
step (right).

on a simplified version of Childsnack from the hard-to-
ground benchmark set, as shown in Figure 1. The task is to
make sandwiches with multiple contents oc1 , . . . , ocn con-
nected by the sandwich predicate and serve them, denoted
by the served predicate, to children och based on their
preferences denoted by likes. In order to serve a child
with serve sandwich, the sandwich has to be created using
make sandwich. The available contents are denoted by the
predicate inKitchen.

A lifted forward exploration would first create all possible
combinations for sandwich atoms sandwich(oc1 , . . . , ocn).
This grows exponentially in n, making the forward evalu-
ation infeasible. The problem is closely linked to the bot-
tleneck a grounder encounters when grounding all actions.
Proposition 3 makes this link explicit by using predicates
of same arity as actions. Here the challenge is to identify
a subset of relevant actions rather than all applicable ones.
However, all hadd evaluations thus far are tied to exploring
all facts. In the remainder of the paper, we will develop an
evaluation without this drawback.

4 A Lifted Regressive Formulation for hadd

In this section, we provide an alternative hadd formulation.
As it builds the foundation for our Lifted Regressive compu-
tation, we call it hLRadd . Proceeding backwards, i.e. using
regression, allows to omit the intermediate grounding step
forward approaches are linked to. This allows hLRadd to op-
erate independent of the number of delete-relaxed reachable
atoms. To define hLRadd , we introduce the lext (lifted ex-
tension) function, representing a lifted regression tree where
nodes are multisets of lifted atoms L ∈ PX+. Each node
represents a sufficient condition for delete-relaxed plan ex-
istence. Starting from the goal, lext recursively defines new
conditions by replacing exactly one atom with the lifted pre-
condition of an action that can achieve it. This ensures that if
s ⊨ L for any node, a (relaxed) plan exists. When each node
is linked to the total cost of actions along its creation path
(lext path), hLRadd represents the lowest cost for a node
to be satisfied. We prove in Section 5 that hLRadd(s) =
hadd(s) for all s ∈ S.

Figure 2 (to the left) shows the lext tree for our run-
ning example, with one goal served(och). The only action
that may achieve the goal served(och) is serve sandwich.
We replace the atom served(och) with the precondition

of serve sandwich, replacing the first parameter to match
served(och). If the node is satisfied, then the heuristic value
is 1. Otherwise, we need to explore the tree by considering
all options of achieving an atom in the node by some ac-
tion. In this case, the only predicate appearing in the add
list of an action and the node is sandwich. The correspond-
ing atom sandwich(x1, . . . , xn) is subsequently replaced by
make sandwich in the next step.

The tree to the right of Figure 2 illustrates the exponen-
tial blow up that would occur in a single step, when inte-
grating intermediate grounding step into the backwards ap-
proach. We will prove in Theorem 5 of section 5, that the
fully lifted tree to the left implicitly represents the complete
grounded tree to the right. The lifted representation allows
to be more compact by shifting complexity from search to
node evaluation. In many planning tasks, the additional eval-
uation introduces at most polynomial overhead, as it aligns
with tractable evaluation cases, like in our running exam-
ple where all nodes are acyclic. The grounded case makes it
more obvious that this closely aligns with a delete-relaxed
plan extraction. A delete-relaxed plan corresponds exactly
to the grounded actions used to replace atoms along the path
to a satisfied node, compare Suda (2016).

Before defining the regression graph, we must address the
technicality of remapping variables of an action a ∈ A, so
that the add(a) variables match the replaced p(x⃗) ∈ L of the
condition L ∈ PX+ to extend (C1). Any other pre(a) vari-
ables should be each replaced by a unique new variable that
is not already part of L ∈ PX+, to avoid additionally restric-
tions among variables (C2,C3). For convenience, we assume
|add(a)| = 1 for a ∈ A. This is achievable by a simple task
transformation preserving hadd (Corrêa et al. 2021).

Definition 1. Let p(x⃗) ∈ L ∈ PX+ and a ∈ A. A mapping
σ : X(a) → X ∪ O is valid for a, p(x⃗) and L if:

(C1) p(x⃗) ∈ add(σ(a))
(C2) X(σ(a)) ∩X(L) = X(p(x⃗))
(C3) σ|X(a)\X(add(a)) is injective

The set VarRemap(L, p(x⃗), a) denotes all valid variable
mappings for p(x⃗) ∈ L, a ∈ A.

To define the regression graph via lext for a set L ∈ PX+,
we define concrete transitions lext(L, p(x⃗), a) if a ∈ A
achieves some p(x⃗) ∈ L and their collection lext(L). A path
in the graph starting at L is called an lext-path from L.

Definition 2. lext(L, p(x⃗), a), i.e. the lifted regressive ex-
tension for p(x⃗) ∈ L ∈ PX+ over a ∈ A, is defined as:

lext(L, p(x⃗), a) =

{
⊥ , if ∄σ ∈ VarRemap(L, p(x⃗), a)

L \ {p(x⃗)} ∪ σ(pre(a)) , o/w

We extend this to obtain all applications ̸= ⊥ as lext(L) :=
{(a, L′) | ⊥ ̸= lext(L, p(x⃗), a) = L′, a ∈ A, p(x⃗) ∈ L}.

Note that the choice σ ∈ VarRemap(L, p(x⃗), a) is not
unique. In particular, names of variables that were not part of
L before are undetermined. We fix the choice to the smallest
xi for i ∈ N that are not part of L, like in the running exam-
ple. Any other choice creates an isomorphic structure that
only differs in the names chosen for new variables. We de-
fine hLRadd as the cheapest cost to a satisified node L when
adding up the action cost along the path to L.

Definition 3. The value of hLRadd is defined as the point-
wise greatest function satisfying the following equation:

hLRadd(s, L) =

{
0 , if s ⊨ L

min
(a,L′)∈lext(L)

c(a) + hLRadd(s, L′), o/w

Furthermore, we set: hLRadd(s) = hLRadd(s,Γ).

5 Equality to hadd

Here we will prove that hadd and hLRadd produce the same
heuristic values. We distinguish between the value hadd(s)
being infinity or not for a fixed state s ∈ S. We start with
hadd(s) = ∞.

Proposition 4. ∀s ∈ S : hadd(s)=∞ ⇒ hLRadd(s)=∞

Proof sketch. It is known that hadd(s) ̸= ∞ if and only
if there is a delete-relaxed plan for s. If hLRadd(s) ̸=
∞, then there is a sequence of L0, . . . , Ln ∈ PX+ such
that Ln = Γ, Li−1 = lext(Li, p(x⃗)i, ai) (using σi), and
s |= L0 (with θ0 ∈ match(s, L0)). Then, the sequence
θ0(σ1(a1)), . . . , θn−1(σn−1(an)) with θi ⊇ θi−1|X(θi) for
i ∈ N+ is a delete-relaxed plan for s, contradicting
hadd(s) = ∞.

We now consider the case hadd(s) ̸= ∞. Lemma 5 shows
that the value of hLRadd does not change under intermediate
grounding as illustrated in Figure 2.

Lemma 5. ∀s ∈ S, L ∈ PX+:
hLRadd(s, L) = minθ∈match(L) h

LRadd(s, θ(L))

Proof sketch. It holds that hLRadd(s, L) ≤
minθ∈match(L) h

LRadd(s, θ(L)), as any θ(L) is just a
more constrained version of L. To show the other direc-
tion, consider any lext-path L0, . . . , Ln where Ln = Γ,
Li−1 = lext(Li, p(x⃗)i, ai) with

∑
i c(ai) = hLRadd(s, L)

and s |= L0. Let θ∗ be a variable replacement under which
s |= L0. Then, hLRadd(s, L) = hLRadd(s, θ∗(L)) ≥
minθ∈match(L) h

LRadd(s, θ(L)).

Now we prove that for grounded sets we can split up the
computation like in the hadd definition. Combining this re-
sult with Lemma 5 proves our main claim.

Lemma 6. ∀s ∈ S, G ∈ PO+:
hLRadd(s,G) =

∑
p(o⃗)∈G hLRadd(s, {p(o⃗)})

Proof sketch. For convenience, we denote single atom sets
{p1(o⃗1)}, ..., {pn(o⃗n)} composing G = {p1(o⃗1)} ∪ · · · ∪
{pn(o⃗n)} by G1, ..., Gn, rewriting the equation to:

hLRadd(s,G) =
∑n

i=1
hLRadd(s,Gi)

The proof relies on the fact that sets without shared vari-
ables, and their replacements, can be independently split and
recombined. There are no shared variables between the sets
G1, . . . , Gn as each set contains exactly one grounded atom,
so no variables at all. We begin by making three observations
for a generic set of lifted atoms L = LA ∪ LB with disjoint
variables, i.e. X(LA) ∩ X(LB) = ∅, which generalize to
G1, . . . , Gn and their replacements.

(Obs1): If two set of lifted atoms do not share any vari-
ables, then satisfiability can be evaluated independently. In
particular, it holds that s |= L ⇔ s |= LA ∧ s |= LB .

(Obs2): If two atoms do not share variables, their replace-
ments never will. The reason is that variables in the replace-
ment are either those already used in the predicate being re-
placed or completely new variables. From this it follows that
replacements of LA and LB will never share variables.

(Obs3): In a set of lifted atoms variable names are arbi-
trary. So we can always apply any bijective variable substitu-
tion to a new set of variables. For example, p(x1, x2), q(x2)
is equivalent to p(x2, x3), q(x3), i.e. they are satisfied in the
same states.

To prove ≥, we split any lext-path from G into subpaths,
each corresponding to the (possibly recursive) replacement
of one Gi for i ∈ {1, . . . , n}. By (Obs2), the result of each
such path introduces a unique set of variables disjoint from
the others. Hence, by (Obs1), satisfiability holds for each
path independently. For each i ∈ {1, . . . , n}, the cost ci of
the subpath originating from Li provides an upper bound on
hLRadd(s,Gi), as the path ends in a satisfied set of atoms.
Thus the sum over all subpaths hLRadd(s,G) =

∑n
i=1 ci ≥∑n

i=1 h
LRadd(s,Gi).

To prove ≤, we consider a cheapest lext-paths for
G1, . . . , Gn with costs c1, ..., cn individually. By (Obs3), we
can apply variable substitutions to align these paths into a
single lext-path from G. By (Obs1), the combined lext-path
leads to a satisfied set of atoms and thus provides an upper-
bound on hLRadd(s,G), i.e. hLRadd(s,G) ≤

∑n
i=1 ci =∑n

i=1 h
LRadd(s,Gi).

This concludes the proof. Note that in the full techni-
cal proof in the Appendix, this argument is applied in the
proof of Theorem 11, which states a more general version
of Lemma 6 for arbitrary sets of lifted atoms with disjoint
variables. By proving the general case once, we avoid a du-
plication of the technical proof in the Appendix.

Theorem 7. ∀s ∈ S : hadd(s) = hLRadd(s)

Proof sketch. Proposition 4 covers the case hadd(s) = ∞.
For hadd(s) ̸= ∞, L ∈ PX+ we prove hLRadd(s, L) =
minθ∈match(L) h

add(s, θ(L)) which proves the claim.

Proof via induction over the minimal recursion depth of
any hadd(s, θ(L)) computation. For the base case (depth 0)
we know that there is a θ ∈ match(L) so that θ(L) ⊆ s and
thus hLRadd(s, L) = 0 = minθ∈match(L) h

add(s, θ(L)).
For the induction step we distinguish between |L| = 1

and |L| > 1. For |L| = 1, i.e. just one atom, it is easy to
observe (Obs.) that (1) grounding the atom to determine the
precondition of the achiever action and (2) determining the
lifted precondition via lext to ground afterwards both return
the grounded precondition of an action that can achieve the
atom. 1 Thus:

min
θ∈match(L)

hadd(s, θ(L)) [Def. hadd]

= min
θ∈match(L)

min
θ′(a)∈ach(θ(L))

c(a) + hadd(s, pre(θ′(a))) [Obs.]

= min
(a,pre(a))∈lext(L)

min
θ′∈match(a)

c(a) + hadd(s, pre(θ′(a)))

= min
(a,pre(a))∈lext(L)

c(a) + hLRadd(s, pre(a)) [I.H.]

= hLRadd(s, L) [Def. hLRadd]

For |L| > 1:

min
θ∈match(L)

hadd(s, θ(L))

= min
θ∈match(L)

∑
p(x⃗)∈L

hadd(s, θ({p(x⃗)})) [Def. hadd]

= min
θ∈match(L)

∑
p(x⃗)∈L

min
θ′∈match(θ({p(x⃗)}))

hadd(s, θ′(θ({p(x⃗)})))

= min
θ∈match(L)

∑
p(x⃗)∈L

hLRadd(s, θ({p(x⃗)})) [I.H.]

= min
θ∈match(L)

hLRadd(s, θ(L)) = hLRadd(s, L) [Lemma 5,6]

6 Computation, Runtime and Complexity
To compute hLRadd on some s ∈ S, we find one cheapest
satisfied node in the lext regression graph using a uniform-
cost search. Upon expansion of each node L ∈ PX+, we
check whether its query is satisfied in s using a standard
database evaluation with a GYO-inspired order. If s ⊨ L, the
algorithm stops returning the node’s cost. Or, if the state is a
dead-end, we return ∞ whenever the search space has been
exhausted or if the search depth exceeds an upper bound on
the hadd value. We improve upon this naı̈ve search in Sec-
tion 7.

In the following, we identify a new fragment of lifted
planning tasks on which computing hadd with our method
is tractable, and connect this to existing benchmarks. The
runtime of hLRadd is bounded by the number of explored
nodes times the runtime for the most expensive satisfiabil-
ity check. To determine a bound on explored nodes while
computing hLRadd(s), we define the set of lext nodes, Es.
Definition 4. Given s ∈ S and i ∈ N0, we define the explo-
ration layer Es,i of lext for i = 0 as Es,0 := {Γ} and for
i ≥ 1 as Es,i+1 := {L′ | (a, L′) ∈ lext(L), L ∈ Es,i}. And

set Es :=
⋃hadd (s)

i=0 Es,i.

1Under assumption of distinct precondition groundings.

In this analysis, we assume action costs are at least 1. This
restriction aids in understanding the runtime by connecting it
to hadd values. Specifically, the set Es serves as a clear over-
approximation of the lext-nodes explored by our method, so
we can bound the number of explored nodes by bounding
|Es|. We omit the detailed proof here, referring to the ap-
pendix. The key observation is that the depth of our explo-
ration corresponds to hadd(s) and the branching factor does
not scale exponentially in the size of the planning task.
Proposition 8. Let s ∈ S. An upper-bound on |Es| is:

O((|Γ| · |A| ·max
a∈A

|pre(a)| ·max
a∈A

|add(a)| · hadd(s))h
add (s))

At the end of the section we will observe that there are
many interesting cases where the size of a lifted planning
task (e.g., number of objects) and hadd are not inherently
correlated, making the identified bound highly complemen-
tary to the one identified for the forward evaluation.

Similar to the forward evaluation, we will now formulate
a tractability theorem relating to our backward evaluation.
We apply the same idea of using conjunctive query evalua-
tion only under acyclicity. Note that an acyclic task does not
necessarily imply that the evaluation encounters only acyclic
nodes, and vice versa. To provide a tighter bound, suitable to
fit practical planning tasks, we will establish a limit for each
value hadd(s, {p(o⃗)}) for all subgoals p(o⃗) ∈ Γ.
Theorem 9. hadd can be computed in polynomial time
on lifted planning tasks with non-zero action cost where
hadd(s, {p(o⃗)}) ≤ k ∈ N for all p(o⃗) ∈ Γ and all L ∈ Es

are acyclic.

Proof. We can compute hadd(s, {p(o⃗)}) separately for all
p(o⃗) ∈ Γ. As hLRadd runs in polynomial time w.r.t. the lifted
planning task representation under these conditions (accord-
ing to the bound on the number of nodes from Proposition 8,
and since each set of lifted atoms can be checked for sat-
isfiability in polynomial time if it is acyclic), this yields a
polynomial time computation.

Ridder and Fox (2014) and Lauer et al. (2021) used tasks
with short plans, that can have very large groundings, as a
key motivation for lifted planning. As short plans imply a
low hadd value, bounding hadd like in Theorem 9 aligns nat-
urally with these tasks. A prime example of this is Organic
Synthesis (Masoumi, Antoniazzi, and Soutchanski 2015),
where plan lengths are consistently short, often just 1-digit.
Despite this, grounded planners struggle to solve the tasks,
highlighting the difficulty even if plans are short.

On top of that, bounding the value per subgoal, instead of
overall, allows Theorem 9 to be applicable even with scaling
plan length. In the running example the task (and plan size)
are scaled up by increasing the number of children to be
served. The hadd bound remains constant per subgoal, of a
child to be served, ensuring the polynomial-time guarantee.
Another example are Blocksworld tasks, where all blocks
start on the table and the goal is to stack towers of two. Each
stacked block corresponds to a subgoal. By bounding the
tower size, we bound hadd per subgoal, independent of how
many towers need to be stacked.

In Blocksworld, predicate arity is bounded and actions are
acylic. This also grants the forward evaluation a polynomial
time guarantee. But in practice, this is often not enough. In
the example, the forward evaluation generates all possible
stack combinations, which is much harder than simply an-
swering whether two blocks can be stacked on top of each
other. As the number of blocks increases, the forward eval-
uation becomes significantly bottlenecked. A similar exam-
ple are Logistics tasks where each package can be delivered
in a constant number of steps c, regardless of the number
of packages, trucks, or cities. The backward evaluation de-
termines if any vehicle(s) can complete the delivery steps.
Again, this is cheaper than navigating all vehicles through
various locations for deliveries, which is what the forward
method would do. Another advantage can be observed in the
Gripper domain when the robot only needs to move some
balls. This allows to check the specified goal only, without
moving all balls, as the forward evaluation would.

On the other hand, the backward evaluation may also
face limitations in other tasks, even when the polynomial
time guarantee applies. E.g. in Organic Synthesis, which has
many actions and preconditions, leading to a super high base
factor in the bound of Proposition 8. To at least aim to de-
crease that a bit we will focus on how to further improve our
computations in practice in the next section.

7 Making the Computation Practicable
This section introduces two optimizations to improve the
practicality of our computation by restricting the exploration
of the lext graph while maintaining the hadd value. To un-
derstand the adressed bottleneck, consider the running ex-
ample, with a different goal {served(och1), served(och2)}.
Initially, both goal elements can be replaced, so the branch-
ing factor is 2 instead of 1. In the subsequent step, the re-
placement either selects the unreplaced goal served(ochi) or
the obtained precondition for served(ochj). This results in a
cross-product over the expansions for a single goal, causing
exponential growth in the size of the goal. Both optimiza-
tions independently address and eliminate the exponential
blow-up in this example in complementary ways.

7.1 Limiting the achiever selection
Our first optimization restricts the branching factor in the
regression graph exploration. The following Theorem moti-
vates to explore a subset of transitions of lext by considering
only the replacements for a subset LS ⊆ L if s ⊭ LS in the
current s ∈ S instead of all replacements for L ∈ PX+.

Theorem 10. Let s ∈ S, L ∈ PX+, LS ⊆ L and lextS :=
{lext(L, p(x⃗), a) ∈ lext(L) | p(x⃗) ∈ LS}. If s ⊭ LS , then:

hLRadd(s, L) = min
(a,L′)∈lextS

c(a) + hLRadd(s, L′)

Proof sketch. This is a more general version of Lemma 6.
To satisfy L, a replacement of some p(x⃗) ∈ LS must occur
on the path from L to the satisfied set L′. Shifting this re-
placement backward or forward in the replacement order of
lext does not alter the content, up to rewriting, nor the cost
of L, allowing to enforce the replacement immediately.

10−1 100 101 102 103 104
10−1

100

101

102

103

104

BW

F
W

Evaluations per second

Blocksworld Childsnack GED Logistics

Organic-Synthesis Pipesworld Rovers Visitall

10−1 100 101 102 103 104
10−1

100

101

102

103

104

BW

Search time

Figure 3: Comparison of our approach (BW) and the forward
lifted computation (FW) by Corrêa et al. (2021) in terms
of evaluations per second and search time. Search time is
measured up to the last common f-layer. Data points in the
extremes represent cases where one of the methods failed to
compute the heuristic value for the initial state.

Thus we can simplify our exploration of lext by
excluding transitions outside lextS and still guaran-
tee equality to hadd . In the modified example, if a set
L ∈ PX+ is unsatisfied in s ∈ S, it contains either
sandwich(x1, . . . , xn), likes(xch, x1), . . . , likes(xch, xn)
or served(ochi) that is unsatisfied. These sets represent
LS where only one atom can be replaced, allowing us to
explore just one node per step.

Conjunctive query evaluations, like GYO or Yannakakis,
produce LS as byproduct when L is unsatisfiable. As atoms
are combined incrementally, we take LS as those combined
until proving unsatisfiability. In our example, LS always has
a single lext-successor, avoiding the exponential explosion.

7.2 Independent subset partitioning

As argued in Theorem 9, we can compute hadd separately
for all goal atoms to avoid an exponential enumeration over
all parts. This idea can be generalized to partition sets when-
ever they can be split into parts with disjoint parameters.

Theorem 11. Let L1, L2 ∈ PX+, L = L1∪L2 and X(L1)∩
X(L2) = ∅, then hLRadd(s, L1) + hLRadd(s, L2) =
hLRadd(s, L).

Proof sketch. Note that s |= L ⇔ s |= L1 ∧ s |= L2,
as there is no overlap in the variables of L1 and L2. Thus,
by Thm. 10, one can first enforce all replacements of L1

until satisfied, and then replace L2 until satisfied, without
changing the hLRadd cost.

This allows us to explore the smaller regression graphs
underlying L1 and L2 independently and so implicitly enu-
merate all combinations, instead exploring the whole graph
for L. As this eliminates explicit enumeration over all goals,
it avoids the exponential enumeration in our example.

8 Experiments
To check whether the theoretical benefits of hLRadd trans-
fer to practice, we implemented it within the Powerlifted
Planner (Corrêa et al. 2020), including all optimizations de-
scribed in section 7. We coupled our heuristic and the heuris-
tics used for comparison with Greedy-Best-First Search
(GBFS) to evaluate its performance on the benchmark set
introduced by Lauer et al. (2021). We selected the variant
based on Yannakakis algorithm as successor generator. The
experiments were run on a cluster of machines with Intel
Xeon E5-2650 CPUs with a clock speed of 2.30GHz using
the Lab framework (Seipp et al. 2017). Time and memory
limits were set to 30 minutes and 4GB respectively for all
runs. We verified correctness of our implementation by con-
firming that expansions and initial heuristic values match the
lifted forward evaluation. Source code and a detailed exper-
imental report are available on Zenodo (Lauer et al. 2025).

Figure 3 compares the number of evaluations per second
and search time of our approach (BW) and the lifted for-
ward evaluation (FW) by Corrêa et al. (2021). In order to
compare the performance also on tasks that are not entirely
solved, we compare the search time until the last common
f-layer. As both approaches compute the same heuristic val-
ues, so the comparison is always up to expanding the ex-
act same set of states. The evaluation presents the comple-
mentary picture we expected to find. FW and BW, show
strenghts on different domains. Our approach (BW) excels
at domains were the hadd values are small as explained in
Section 6: Blocksworld, Childsnack, and Logistics. The per-
formance in Logistics and Blocksworld is particularly im-
pressive, with evaluation rates differing by one and two or-
ders of magnitude respectively. The Blocksworld data points
further reinforce our theoretical analysis by forming three
distinct plateaus with clear gaps along the y-axis. Each gap
reflects an increased difficulty level associated with adding
more blocks to the problems. FW struggles to generate all
possible stacking combinations. BW efficiently avoids this
challenge. On the other hand, we observe a significantly de-
creased rate in the remaining five domains, with BW failing
to produce an initial heuristic value in three domains. This
aligns with our earlier analysis, as these domains exhibit
longer delete-relaxed plans, and comparably fewer delete-
relaxed reachable facts.

While the performance drop is not ideal, overall the re-
sults point to hLRadd offering meaningful support when the
lifted forward approach is less effective. To benefit from
both worlds, we introduce a simple combination (COMB)
that automatically picks which method to use in each in-
stance. COMB uses both FW and BW (with optimizations
enabled) for the first 10 evaluations, and times out the slower
variant. The search proceeds using only the approach that
was faster during those evaluations. Table 1 presents a cov-
erage table comparing all hadd variants, with an ablation
analysis of the optimizations of our approach (BW): lim-
iting the achiever selection (L) from Section 7.1 and in-
dependent subset partitioning (I) from Section 7.2. As a
baseline, we use the lifted forward evaluation by Corrêa
et al. (2021) (FW). On top, we included a comparison to
the hFF variant by Corrêa et al. (2022) to evaluate the over-

hadd hFF

Backward (BW) FW COMB
— L I L + I

Blocksworld (40) 0.0 2.5 5.0 7.5 2.5 7.5 5.0
Childsnack(144) 0.0 7.6 20.8 24.3 23.6 22.9 19.44
GED (312) 0.0 0.0 0.0 0.0 43.3 42.6 15.38
Logistics (40) 10.0 20.0 10.0 90.0 17.5 87.5 15.0
Org.-Synthesis (56) 0.0 0.0 5.4 7.1 80.4 80.4 82.14
Pipesworld (50) 0.0 0.0 0.0 0.0 40.0 40.0 44.0
Rovers (40) 0.0 0.0 0.0 0.0 27.5 27.5 72.5
Visitall (180) 7.8 10.0 17.8 20.6 65.0 64.4 57.22

Sum orig. (862) 18 38 71 115 370 396 284
Sum (862) 17.8 40.1 59.0 149.5 299.7 372.9 310.69

Table 1: Normalized coverage (percentage of solved in-
stances) of different hadd computations: BW with each
optimization enabled/disabled, FW, and their combination
(COMB). Best hadd score has gray background. Overall best
performer, compared to lifted hFF (Corrêa et al. 2022), is
marked bold. Orig. sum is coverage without normalization.

all performance w.r.t. pure heuristic guidance. Like Höller
and Behnke (2022), we normalize coverage, i.e. consider the
percentages of tasks solved per domain. This reduces the in-
fluence of the huge disparity of instances per domain.

The results of our ablation analysis show the impor-
tance of our optimizations to make the computation feasible
in practice. The naı̈ve approach without any optimizations
solves very few tasks, and only in two domains. Both opti-
mizations are orthogonal, enabling them together maximizes
coverage per domain for BW. The substantial differences
with simple optimizations enabled suggests strong potential
for future work aimed at reducing regression graph size.

When comparing FW and BW, we can see that both the
positive and negative results from Figure 3 are reflected in
coverage. Though, the margins are different. BW performs
in Logistics, where it solves 90% of the instances, compared
to the previous rate of just 17.5%. The increase in coverage
for Childsnack and Blocksworld is modest in terms of (nor-
malized) coverage, despite significant acceleration in heuris-
tic computation speed. This is likely due to associated high
branching factor and could likely be helped out with help-
ful actions. The proof of Proposition 4 hints a delete-relaxed
plan extraction that could be used for extracting helpful ac-
tion, to address the problem in future work.

When considering the results of our simple combination
COMB, we can observe what we desired to achieve, it is able
to select the faster method with insignificant overhead, tak-
ing advantage of this complementary behavior, and making
it the top-performing hadd configuration in terms of cov-
erage. This creates a new state-of-the-art in terms of pure-
heuristic-performance on the lifted benchmark set. We sus-
pect that this is likely to translate to non-pure heuristic ap-
proaches in the future once the helpful actions are available.

9 Related Work
There are other approaches that compute delete-relaxation
heuristics at a lifted level. VHPOP (Younes and Simmons
2003) also computes hadd using lifted regression in the con-
text of partial-order planning. However, a fundamental dif-

ference is that their approach performs grounding in every
intermediate step (see Figure 2). We are not aware of any
delete relaxation approach operating fully lifted like ours.

The heuristic by McDermott (1996) deviates addition-
ally by greedily selecting a subset of variable replacements
in each intermediate grounding step, instead of considering
all possible matches. In Lemma 5, we demonstrate that the
intermediate grounding does not alter the heuristic value.
This insight helps to explain the connection between Mc-
Dermott (1996) and hadd , which Bonet and Geffner (2001)
left open: The difference in heuristic values is solely due to
greedy selection.

While we are unaware of delete relaxation approaches op-
erating fully lifted like ours, some approaches to solving
planning tasks in general share a similar spirit. For exam-
ple, Singh et al. (2023) regressively creates a disjunctive
formulas, where each part of the disjunction roughly cor-
responds to a node in our tree, along with extra conditions
for the deletes. However, they come with caveats. The main
problem is ensuring replacements are valid, in a sense that
there are no unintended deletes. This requires larger condi-
tions, which are likely to be cyclic and so crucially harder
for conjunctive query evaluation. Furthermore, computing
actual plans requires considering that actions may achieve
more than one atom in a single step. Our replacement of ex-
actly one atom in the delete-relaxed case simplifies things
considerably, as it reduces the potentially exponential num-
ber of replacement choices per action and node to a linear
number. UCPOP (Penberthy and Weld 1992) can also be
seen as an approach recursively creating a tree of first order
logic formulas. The significant advantage is that the need for
additional conditions is restricted to the case when there is
a causal link. But, once again, contrary to our method, they
apply intermediate grounding.

Conclusion
We analyzed strengths and limitations of lifted hadd compu-
tations in general and for the existing state-of-the-art com-
putation. Motivated by our analysis, we introduced hLRadd ,
a new lifted hadd computation. hLRadd performs a lifted
backward exploration, that avoids grounding entirely. Us-
ing it we introduce a new tractability island on tasks with
low hadd value, regardless of the number of objects and
predicate arity. In practice, hLRadd is highly complemen-
tary to the traditional forward approach. Our experimental
results demonstrate that a combination of both improves the
state-of-the-art performance of pure-heuristic performance
on hard-to-ground benchmarks. This further opens new re-
search avenues for heuristics in lifted planning, e.g., com-
puting other heuristics such as hFF (Hoffmann and Nebel
2001; Corrêa et al. 2022) in similar ways.

Acknowledgments
We thank Augusto B. Corrêa and Daniel Fišer for their com-
ments and feedback on earlier version of this paper.

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project-
ID 232722074 – SFB 1102.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations
of Databases: The Logical Level. USA: Addison-Wesley
Longman Publishing Co., Inc. ISBN 0201537710.
Areces, C.; Bustos, F.; Dominguez, M.; and Hoffmann, J.
2014. Optimizing Planning Domains by Automatic Action
Schema Splitting. In Chien, S.; Do, M.; Fern, A.; and Ruml,
W., eds., Proceedings of the 24th International Conference
on Automated Planning and Scheduling (ICAPS’14). AAAI
Press.
Beeri, C.; Fagin, R.; Maier, D.; Mendelzon, A.; Ullman, J.;
and Yannakakis, M. 1981. Properties of Acyclic Database
Schemes. In Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing (STOC’81), 355–362.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Chandra, A. K.; and Merlin, P. M. 1977. Optimal Implemen-
tation of Conjunctive Queries in Relational Data Bases. In
Proceedings of the Ninth Annual ACM Symposium on The-
ory of Computing (STOC’77), 77–90.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling (ICAPS’21),
94–102. AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation Using Query Opti-
mization Techniques. In Proceedings of the 30th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’20), 80–89. AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2022. The FF Heuristic for Lifted Classical Planning.
In Honavar, V.; and Spaan, M., eds., Proceedings of the
36th AAAI Conference on Artificial Intelligence (AAAI’22),
9716–9723. AAAI Press.
Corrêa, A. B.; and Seipp, J. 2022. Best-First Width
Search for Lifted Classical Planning. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling (ICAPS’22). AAAI Press.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. Artificial Intelligence, 76(1–2): 75–
88.
Fikes, R. E.; and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Flum, J.; Frick, M.; and Grohe, M. 2002. Query Evalua-
tion via Tree-Decompositions. Journal of the ACM, 49(6):
716–752.
Graham, M. H. 1979. On the Universal Relation. Technical
Report, University of Toronto.
Grohe, M.; Schwentick, T.; and Segoufin, L. 2001. When is
the Evaluation of Conjunctive Queries Tractable? In Proc.
STOC, STOC ’01, 657–666. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 1581133499.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Höller, D.; and Behnke, G. 2022. Encoding Lifted Classi-
cal Planning in Propositional Logic. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling (ICAPS’22), 134–144.
Lauer, P.; Torralba, Á.; Fiser, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence (IJCAI’21), 4119–4126. IJ-
CAI Organization.
Lauer, P.; Torralba, Á.; Höller, D.; and Hoffmann, J. 2025.
Code and Appendix for paper: “Continuing the Quest for
Polynomial Time Heuristics in PDDL Input Size: Tractable
Cases for Lifted hAdd”. doi:10.5281/zenodo.15323404.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Singh, S.; and Markovitch, S., eds., Proceedings of the
31st AAAI Conference on Artificial Intelligence (AAAI’17),
3590–3596. AAAI Press.
Masoumi, A.; Antoniazzi, M.; and Soutchanski, M. 2015.
Modeling Organic Chemistry and Planning Organic Synthe-
sis. volume 36 of EPiC Series in Computing, 176–195.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. The PDDL
Planning Domain Definition Language. The AIPS-98 Plan-
ning Competition Comitee.
McDermott, D. V. 1996. A Heuristic Estimator for Means-
Ends Analysis in Planning. In Drabble, B., ed., Proceedings
of the 3rd International Conference on Artificial Intelligence
Planning Systems (AIPS’96), 142–149. AAAI Press, Menlo
Park.
Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In Proceed-
ings of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning (KR’92), 103–
114. Morgan Kaufmann.
Ridder, B.; and Fox, M. 2014. Heuristic Evaluation Based
on Lifted Relaxed Planning Graphs. In Chien, S.; Do, M.;
Fern, A.; and Ruml, W., eds., Proceedings of the 24th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’14), 244–252. AAAI.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Singh, A.; Ramirez, M.; Lipovetzky, N.; and Stuckey, P. J.
2023. Lifted Sequential Planning with Lazy Constraint Gen-
eration Solvers. arXiv preprint arXiv:2307.08242.
Suda, M. 2016. Duality in STRIPS planning. In ICAPS
2016 Workshop on Heuristics and Search for Domain-
Independent Planning (HSDIP’16).
Vieille, L. 1986. Recursive Axioms in Deductive Databases:
The Query/Subquery Approach. In Proceedings from the 1st
International Conference on Expert Database Systems, 253–
267. Benjamin/Cummings.
Wichlacz, J.; Torralba, A.; and Hoffmann, J. 2019.
Construction-Planning Models in Minecraft. In ICAPS 2019
Workshop on Hierarchical Planning (HPlan’19), 1–5.
Yannakakis, M. 1981. Algorithms for Acyclic Database
Schemes. In Proceeedings of the Seventh International
Conference on Very Large Data Bases (VLDB’81), 82–94.
VLDB Endowment.
Younes, H. L. S.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research (JAIR), 20: 405–430.
Yu, C. T.; and Ozsoyoglu, M. 1979. An algorithm for tree-
query membership of a distributed query. In Proceedings
of the Computer Software and The IEEE Computer Soci-
ety’s Third International Applications Conference (COMP-
SAC’79), 306–314. IEEE.

