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Abstract

To better capture real-world problems, Hierarchical Task Net-
work (HTN) planning and numerical planning provide en-
hanced modeling capabilities over classical planning. How-
ever, the plan existence problem in these formalisms is gen-
erally undecidable. We identify restricted fragments that re-
main PSPACE-complete, matching the complexity of clas-
sical planning, while being more expressive. The most im-
portant result proves that plan existence in unordered HTN
planning, i.e. ignoring all ordering relations, is PSPACE-
complete. The result motivates a strong preference for un-
ordered HTN models, a largely ignored fragment that de-
serves more attention. To bridge the gap between the tractable
fragments of numerical and HTN planning, we introduce
new formalisms that use Integer Linear Programs, Presburger
formulas, and grammatical constraints to express action se-
quence restrictions within PSPACE, offering practical alter-
natives when the HTN structure is too complex to model.

1 Introduction

Automated planning is a branch of artificial intelligence fo-
cusing on generating operator sequences (plans) from a user-
provided problem specification. The specification must be
based on a planning formalism. A widely supported formal-
ism is referred to as classical planning (Fikes and Nilsson
1971; Backstrom and Nebel 1995), which is restricted to a
set of simple features to make finding a plan more feasible.
While the restriction helps planners run efficiently, users
often need more flexibility to model a problem. To address
this, there are formalisms extending classical planning. We
focus on: (1) Numerical planning (Helmert 2002), allow-
ing numerical variable values instead of propositional ones;
and (2) Hierarchical Task Network (HTN) planning (Erol,
Hendler, and Nau 1996), allowing to constrain plans through
a hierarchical task structure. The flexibility comes at a cost.
Plan existence in both formalisms is undecidable (Helmert
2002; Erol, Hendler, and Nau 1996), but PSPACE-complete
for classical planning (Erol, Nau, and Subrahmanian 1995).
It is clearly desirable to have a formalism that combines
both benefits, i.e., remains computationally tractable while
offering greater modeling flexibility. A good example, show-
ing that this is possible, is totally ordered HTN planning,
which imposes a pre-defined order between all tasks. The

restriction still allows modeling a meaningful hierarchical
structure, but drops the complexity of plan existence to EXP-
TIME (Erol, Hendler, and Nau 1996). The drop in complex-
ity is reflected in practice. E.g., the results of the HTN track
in the latest International Planning Competition (Taitler et al.
2024) show a clear gap between the ability to solve totally
ordered versus partially ordered problems.

In this paper, we show that there exists an alternative or-
dering constraint, namely unordered, which does not allow
any order at all, and reduces the complexity of plan exis-
tence to PSPACE. To reach this result, we reconsider a frag-
ment of numerical planning for which Helmert (2002) es-
tablished decidability. It allows only numerical goal condi-
tions, but no numerical preconditions. We improve the result
by showing that plan existence in this fragment is PSPACE-
complete. The fragment is closely related to HTN planning
as the added constraint, imposed on plans by the hierarchi-
cal structure, closely compares to the added constraint from
the numeric goal. To formalize this connection, we introduce
three new planning formalisms that add constraints on clas-
sical planning plans through: (1) Integer Linear Programs,
(2) Presburger formulas and (3) Counting constraints over
context-free grammars. We prove PSPACE membership by
establishing a chain of encodings from unordered HTN plan-
ning through the formalisms (3) to (1), ending in the numer-
ical fragment. Hardness follows from the fact that these for-
malisms extend classical planning.

To objectively show that each of the five formalisms
meaningfully extends classical planning, we use a language
analysis (Holler et al. 2014; 2016; Lin and Bercher 2022).
The set of plans for a planning problem is its language, and
the language class of a formalism groups all such languages
for problems it can represent. The analysis nicely comple-
ments our complexity results, as it favors bigger classes, in-
cluding more languages, whereas complexity theory favors
lower classes. To demonstrate that our formalisms are signif-
icantly more expressive, we show they include the classical
planning language as well as each a regular, context-free,
and context-sensitive language that classical planning can
not express.

Our results strongly suggest moving away from partial-
order HTN models in favor of unordered ones and point at
new alternative formalisms that can be used when other for-
malisms make modeling too complicated.



2 Background

Numerical (and Classical) Planning In numerical plan-
ning, operator preconditions and effects are evaluated
through rational functions. Restrictions on these functions
impact the complexity of plan existence (Helmert 2002).
Therefore, we fix families of rational functions to define dis-
tinct numerical planning formalisms.

Definition 2.1 (Numerical Planning Formalism). A func-
tion f : Q" — Q is called an n-ary rational function. A
family of rational functions F is a set of rational functions,
ie, F € Upns1(Q" - Q). A numerical planning formalism
(G, P, E) consists of three families of rational functions G,
P, E. Here GG contains the goal condition functions, P the
precondition functions, and E the effect functions.

As we build on results by Helmert (2002) in Section 4, we
also reproduce his numerical planning problem definition.

Definition 2.2 (Numerical Planning Problem). A numeri-
cal planning problem 11 = (Vp, Vi, Init, Goal, Ops) over
numerical planning formalism (G, P, E) consists of: The
propositional variables Vp and numerical variables Vi,
which are disjoint finite sets. The states S are:

= {(@B)|a: Ve~ {1,7}, B:Vy - Q).

For each state («, 8) € S, v is called propositional state. The
set of all propositional states is denoted by S,. /3 is called
numerical state. The set of all numerical states is denoted by
Sp. Init is a state, called initial state.

A propositional condition is a propositional variable v €
Vp, also written as v = T. For a family of rational functions
F € {G, P}, a numerical condition over F is given by an
n-ary function f € F', numerical variables vy, ...,v, € Vy,
and a relational operator relop € {=,<,<,>,>, +} denoted as
flvg,...,v,) relop 0.

A propositional effect is given by a variable v € Vp and
a truth value ¢ € {T, 1}, written as v « t. A numerical
effect over E is given by a function f € F and variables
V1,...,Uy € V. It is written as v1 < f(vo,...,v,). We
say the effect assigns v1. An operator over o = (pre, eff)
consists of two finite sets pre and eff, where: pre contains
propositional conditions and numerical conditions over P
and eff contains propositional effects effp and numerical ef-
fects effy over E with pairwise distinct assigned variables.
Ops is the finite set of operators over P and E of II. The
goal condition Goal is a finite set containing propositional
and numerical conditions over G.

NUM(G, P, E) is the set of all numerical planning prob-
lems over numerical planning formalism (G, P, E).

Helmert (2002) defines plans using the full transition
graph. For brevity, we only define the progressive successor
states using the notation by Hoffmann and Nebel (2001).

Definition 2.3 (Numerical Plans). For a numerical plan-
ning problem IT = (Vp, Vy, Init, Goal, Ops) over numer-
ical planning formalism F' = (G, P, F), a propositional con-
dition v € V), is satisfied in propositional state o € S, iff
a(v) = T. A numerical condition f(vy,...,v,) relop 0
with f € G U P is satisfied in numerical state 8 € Sy iff

f(B(v1),...,B8(vy,)) relop 0.

An operator o = (pre, eff ) € Ops is applicable in propo-
sitional state o € Sy, iff all propositional conditions in pre
are satisfied in «. In this case the propositional successor
state is the state replacing the truth assignments of « by eff:

progr(a,o0) ={vetea| vt ceffp} Ueffp

Otherwise progr(c«, o) is undefined.

Further, o is applicable in numerical state 5 € S, iff all
numerical conditions in pre are satisfied. In this case we set
the numerical successor as:

progr(f3,0) := {v > ne 3| Ae € eff assigning v}
U{vr = f(B(v2), ..., B(vn)) [ v1 < f(v2,..;0n) € effy }

Otherwise progr(«, o) is undefined.

Finally, o is applicable in state («, 8) if it is applicable in
both ar and . In this case we denote the progressive succes-
sor state as:

progr((a, ), 0) = (progr(a, 0), progr(53,0))
Otherwise progr((c, 3),0) is undefined.

We denote progr(progr(... progr(s,01),...),0,) by
progr(s,o1,...,0,). A plan is an operator sequence
01, . ..,0p so that progr(Init,o1,...,0,) =: (c’, 8) so that
all propositional conditions in Goal are satisfied in o and
all numerical conditions in Goal are satisfied in 3’. sol(II)
denotes the set of all plans in II.

We now replicate Helmert’s list of conditions, excluding
polynomial functions, which are beyond this paper’s scope.

Definition 2.4 (Common Numerical Conditions).

1. Cp=0 3. Co={z»az-c|ceQ}

2. Cy:={xrx} 4. C.:={(z1,22) » 1 — 22}
Cy corresponds to no preconditions. Cjy compares a vari-

able with zero. C. compares a variable with a constant. C_

compares two variables. For section 4, it will be important

to restrict preconditions to Cy, so we give this a name.

Definition 2.5 (No Numerical Preconditions). A numerical
planning problem over formalism (G, Cy, E') with arbitrary
families of rational function GG and F is said to have no nu-
merical operator preconditions.

We also focus on all effects Helmert (2002) uses, ex-
cept polynomial functions. Helmert describes 10 classes. We
summarize them by listing the effects that can add/subtract
E. ., assign constants £, and their combination E¢

Definition 2.6 (List of Numerical Effects).

l. Eyei={x—x+c|ceQ} 2. E=:={zrc|ceQ}
3.E5S=E_,UE,,

E7¢ includes all other non-polynomial effects Helmert lists.

Definition 2.7 (Constant Effects). A numerical planning
problem over numerical planning formalism (G,C,E) so
that £/ ¢ E.¢ is said to have constant effects.

Finally, observe that classical planning formalisms, like
SAS* (Bickstrom and Nebel 1995) or FDR (Helmert 2009),
match our formalism if there are no numerical functions.

Definition 2.8 (Classical Planning). The numerical plan-
ning formalism (Cy, Cy, Cy) is called classical planning.
We will also refer to NUM (Cy, Cy, Cy) as CLASSIC.



Unordered HTN Planning We introduce HTN planning
based on Geier and Bercher (2011), but restrict it to un-
ordered HTN planning. This means that we remove ordering
constraints from any task network in the planning problem.

Definition 2.9 (Unordered HTN planning problem). An un-
ordered HTN planning problem 113, = (I1,H), consists of a
classical planning problem II = (Vp, Vy, Ops, Init, Goal)
and the hierarchy H = (¢ny, M,C) modeling hierarchical
restrictions to operator solutions. C is the set of compounds
tasks. The set of operators Ops is also called primitive tasks
in this context. A fask network tn = (T, «) consists of a set
of task IDs T and amap o : 1" - Ops uC.

A method m = (¢, tny, ) allows to replace a compound
task ¢,, € C with the tasks from task network tn,, =
(T, ). In particular, m defines a relation tn; —, tng
between task networks ¢tnq = (11, 1) and tns, iff there ex-
ists a task identifier tid € Ty such that oy (¢id) = ¢, a bijec-
tion o : T,,, — T’, where T" is a set of fresh task identifiers
not in 71, so that the resulting task network tns is given by:

tng = (Ty N {tid} U o (Tp), a1 N {tid > ¢} Uo o any)

M denotes the set of all methods in II3. The relation — x4
is defined as the union of all equivalence relations —,,, for
all m € M. The transitive closure is denoted by —7 . A
task network (7, ) is called primitive iff all of its tasks T'
are primitive. The solution set of the hierarchy H are the
primitive task networks that can be derived by decomposi-
tion from the initial task network, i.e.:

sol(H) := {tn | tnr =) tn,tn is primitive}

A linearization of a primitive task network is an arbitrar-
ily ordered sequence of all elements «(tid) for tid € T. A
solution to an unordered HTN planning task is a set of prim-
itive task networks obtained by decomposing ¢n; and have
a linearization that is a classical planning solution, i.e.:

sol(ITy;) = {tn € sol(H) | Im € sol(II) :
7 is a linearization of tn}

HT Ny is the set of all unordered HTN planning problems.

The solution definition clearly shows that plans in HTN
planning must meet two criteria: (1) follow the hierarchy,
and (2) solve a classical planning task correctly. In sections
5, 6, and 7, we introduce new formalisms that keep this so-
lution structure but replace (1) with different constraints.

Context-Free Grammars

Definition 2.10 (Context-Free Grammar). A context-free
grammar G = (N,%, S, R) consists of a finite set of non-
terminals N, a finite set ferminals ¥, disjoint from N, the
start symbol S € N and a finite set of production rules R. A
production rule is of the form A - a1 |...| o, where A e N
is a non-terminal and all a,...,a, € (N U X)* are finite
sequences of terminals and/or non-terminals.

The language of G are all words derived by repeatedly
applying production rules until only terminals remain.

Definition 2.11 (Grammar Language). For a context-free
grammar G = (N,X, S, R), a sequence s = $0S1...8p €

(N U X)* can derive a sequence t € (N u X)*, denoted
s = t, by replacing some symbol s; for i € {0,...,n}
with «; for some j € {1,...,m} from a production rule
$; & ajg | - | am, in R. The relation =* is the transitive
closure of =. A word (or string) is a sequence over X.*. The
language generated by G, denoted L(G), is the set of all
words derived from the start symbol:

L(G)={weX" | S="w}.

Planning Problem Languages A planning problem lan-
guage represents the set of valid plans. By default terminals
are operators whose structure depends on the formalism. To
compare languages across different formalisms, we use ex-
change functions that map operators to arbitrary terminals.

Definition 2.12 (Exchange Function). For operators Ops
the set exch(Ops) contains all bijections o : Ops — X for
any terminals . We call its elements exchange function.

A language for non-HTN planning problems is a plan where
each operator is replaced using a fixed exchange function.
Definition 2.13 (Non-HTN Planning Language). For a plan-
ning problem II with operator sequences over operators Ops
as solutions, the language of 1T under o € exch( Ops) is:

Ly(II) := {o(m) | m e sol(II)}.
For HTN planning, we adapt the definition to consider a
linearization of the primitive task solution.

Definition 2.14 (HTN Planning Language). Let I15; be an
HTN planning problem with operators Ops. The language
of I3 under o € exch(Ops) is:

L,(Tly) = {o(n) | Itn e sol(H) :

7 € sol(IT) is a linearization of ¢tn}

A language class captures all languages of a set of plan-
ning problems under any fixed exchange function.
Definition 2.15 (Language class). For a set P of planning
problems, the language class is defined as:

L(P):={L,(I) | IT € P,0 € exch(Ops)}
Integer Linear Programs (ILPs) We define ILPs follow-
ing Papadimitriou (1981). In our notation N includes O.

Definition 2.16. An integer linear program I = (M, v) is a
combination of a matrix M € Z"™ and a vector v € Z™.
The solution set of L is sol(LL) := {z e N” | Mz = v}.

3 Formal Criteria for Increased Expressivity

To capture better expressivity, we ensure that: A formal-
ism must (1) subsume classical planning, and (2) admit lan-
guages beyond the expressive power of classical planning.

Definition 3.1. Let P be a set of planning problems. We say
that P is significantly more expressive than classical plan-
ning if all of the following statements hold:

* L(CLASSIC) c L(P)

s {aa},{a™b" | ne N}, {a"b"c" | neN} e L(P)
where the languages in the latter bullet points are defined
over the terminals ¥ = {a, b, c}.



The language class for classical planning L(CLASSZC)
is a strict subset of regular languages (Holler et al. 2014;
2016). As {a™b"c™ | n € N} is a context-sensitive language,
and {a™b"™ | n € N} is a context-free language, they are not
in L(CLASSZC). {aa} is an example of a regular language
that is not in L(CLASSZIC). The additionally included lan-
guages establish L(CLASSZC) ¢ L('P). The inclusion of a
regular, context-free and context-sensitive language, mem-
bers of three and widely studied language classes, demon-
strates a significant increase in expressivity.

The three languages also showcase that increased expres-
sivity significantly improves modeling capabilities: In par-
ticular, they showcase that a modeler can require operators
to occur equally often, without fixing an upper bound. This
is impossible in classical planning and relevant in practice.
E.g., in a financial market one may require money-earning
operators a to be followed by the same number of money-
spending operators b. While we keep our analysis to single
operators to fit space constraints, our analysis naturally ex-
tends to multiple operators, like the language represented by:

earny | ... | earnm, )" ( spend ... | spend, )"
1 l

In the following sections, we show that each formalism
has better modeling capabilities than classical planning, as
they are significantly more expressive, while deciding plan
existence remains PSPACE-complete.

4 Numerical Planning With No Numerical
Preconditions And Constant Effects

In this section, we analyze numerical planning without nu-
merical preconditions and restrict effects to increase, de-
crease, or assign fixed constants. The goal conditions are
comparisons between two variables, or one variable with
a constant. This fragment is closely related to (unordered)
HTN planning, as it allows counting operator applications
and applying conditions on these counts.

We first focus on the complexity of plan existence, which
we show to be PSPACE-complete!. We build on results of
Helmert and so paraphrase the relevant parts of their work in
the following, mainly surrounding Helmert’s Algorithm 22,
which creates plans of a specific format. To explain the for-
mat, we introduce properties of operator sequences (paths)
based on the propositional states they traverse. In particu-
lar, whether states are visited only once or revisited, which
would make the path a cycle.

Definition 4.1. For a numerical planning problem II =
(Vp, VN, Init, Goal, Ops) a path from sqg to s, is a se-
quence of operators o1,...,0, € Ops resulting in a state
s; = progr(o;, si-1) fori e {1,...,n}.

Let s; = (o, ;) fori € {0,...,n}. If all states a, ...,
are pairwise distinct, the path is called propositionally

'Dekker and Behnke (2024) already claim this result in their
Table 3, citing Helmert (2002). While Helmert establishes decid-
ability, there is no PSPACE-completeness proof. To the best of our
knowledge also not in other literature. We confirmed this with the
main author of Dekker and Behnke (2024). As no proof appears in
the literature, we provide it in our work.

acyclic. If oy, ..., -1 are pairwise distinct and oy = o,
the path is called a propositional cycle for ay.

A path is weakly acyclic if it can be partitioned into subse-
quences of paths py, ..., p,,, Where p; is an acyclic path from
S0 to sy, and each p; with j € {2,...,m} is a propositional
cycle for some «; with i € {0, ...,n}.

We now define the plan format as activator path. This is a
concatenation of weakly acyclic paths, each ending with an
assignment to a numerical variable. After this assignment,
the variable is only modified by increments or decrements.

Definition 4.2. An activator path®> p = pi, ..., p, for pair-
wise distinct variables vy,...,v, € Vx is a sequence of
weakly acyclic paths p;, each ending with an assignment to
v;. No v; is assigned in any later path p; with 1 <i < j <n.

Helmert (2002) observes that one can always represent
plans in this format, as: To satisfy propositional goals it suf-
fices to follow an acyclic path. Since there are no numeri-
cal preconditions, it is enough to ensure applicability over
propositional states and only consider the final numerical
goal values. These values are determined by a single assign-
ment followed by increments or decrements.

Lemma4.3. (Helmert 2002) Let 11 be a numerical planning
problem with no numerical preconditions and only constants
effects with 11 = (Vp, Vi, Init, Goal, Ops).

If there exists a plan for 11, then there exists a plan for 11
that is an activator path for some v1, ...,V € V.

Helmert (2002) guess a weakly acyclic path and then de-
termine how many times a cycles need to be repeated to ob-
tain a plan. We capture these repetitions by cycle extensions.

Definition 4.4. For a path p = py,p., p2, Where p. is a
propositional cycle and p;,ps are (possibly empty) paths,
P1,Pes Pe, D2 18 @ cycle extension.

To determine the required cycle extensions, Helmert

(2002) constructs an ILP. The idea is to introduce a con-
straint for the goal value of each numerical variable v € Viy:

Z (AU(C) : a:c)

ceCycles

goal, = activation, +

Here, activation, is the value assigned by the activator,
A, (c) is the value change to v after one execution of cy-
cle ¢, and z is the number of times c is repeated. By adding
the numerical goal constraints, the required cycle extensions
can be bounded by the sum of all x..

Lemma 4.5. (Helmert 2002) Let p be an activator path for
variables v1,...,v, € Vy in a numerical planning problem
IT = (Vp, VN, Init, Goal, Ops) with no numerical precon-
ditions and only constant effects.

There exists an ILP formulation that computes the num-
ber of cycle extensions needed to turn p into a plan, if possi-
ble, and is unsolvable otherwise. The ILP has a polynomial
number of rows in the size of Il and a number of columns
polynomial in the size of 11 and the number of cycles in p.

“Helmert (2002) refer to the last assigning the values as acti-
vator sequence. For brevety we combine this with the operators
leading up to it as activator path.



This summarizes the main results we needed to restate in
order to prove that we can exponentially bound plans.

Lemma 4.6. Let 11 be a numerical planning problem with
no numerical preconditions and only constants effects with
I = (Vp, VN, Init, Goal, Ops).

If there exists a plan for 11, then there exists a plan for
II which consists of at most exponentially-many operators
bounded in the size of 11.

Proof. We first bound the number of distinct cycles in a
weakly acyclic path: As addition is commutative, the or-
der of operators in a cycle does not matter, only the num-
ber of times each operator occurs in it. Thus, cycles with the
same underlying multiset of operators are equivalent in this
context. Each such multiset has |Ops| entries, each bounded
by the maximum cycle length |S,| < 2/V?|. Therefore the
number of distinct cycles is at most (2/V71)|OPsl = 9[Vel1Ops|
which is exponential in the size of II. As both cycles and
acyclic paths are bounded by < 2lVal, any weakly acyclic
path, where each cycle occurs at most once, is exponentially
length-bounded in the size of II.

Assume a plan exists. By Lem. 4.3, there is an activator
path that is a plan. We can construct it by taking an acti-
vator path where each cycle occurs at most once, and then
applying cycle extensions. The activator path consists of at
most |V| weakly acyclic paths and thus is also exponen-
tially length-bounded in the size of II. It remains to bound
the operators added by the cycle extensions.

This follows from Papadimitriou (1981), who shows that
if an ILP has polynomially many rows in n € N, and ex-
ponentially many columns in n, then if there is a solution,
there is one with values bounded exponentially in n. Com-
bined with Lem. 4.5 this implies that the number of cycle
extensions required for an activator-path p is exponentially
bounded in II. As the size of each cycle is exponentially
bounded (< 2!"?1), the cycle extensions leading to a plan add
at most an exponential operators in the size of II. O

Theorem 4.7. Plan Existence for numerical planning prob-
lems over (G, Cy, E) is PSPACE-complete for all:

G e {Cy,Cy,C,C_} and E < EZ,

Proof. PSPACE-hardness follows directly from classical
planning, which is PSPACE-complete (Erol, Nau, and Sub-
rahmanian 1995) and captured as a syntactic fragment of the
formalisms considered.

For membership we can determine plan existence by a
guess-and-check procedure in NPSPACE = PSPACE, since
all plans are exponentially length-bounded. O

We now turn to expressivity. We show that numerical
planning with additive effects and equality tests can define
languages beyond those expressible by classical planning.
To ease the upcoming proofs, we introduce a simple classi-
cal planning task as a gadget. It has three operators a, b, and
¢, which must be applied in this order but may be repeated
multiple times, before switching to the next operator type.
We reuse this gadget throughout the expressivity proofs in
the following sections.

Definition 4.8 (Sequential Operator Gadget). The classi-
cal planning problem II5¢9 = (Vp, Vi, Init, Goal, Ops)
encodes sequence constraints among operators a, b,
and c using: The set of propositional variables Vp =
{apply_a,apply_b, apply_c}. The empty set of numerical
variables Viy = @. An empty goal condition Goal = @. The
initial state Init = (a, 8), setting the propositional parts to
true, i.e., a(apply_a) = T,a(apply-b) = T,a(applyc) =T
and has an empty numerical part 8 = @. Finally, the operator
set Ops contains the following operators:

* Operator a = (pre,, eff ,):
pre, = {apply-a}, eff , = @
* Operator b = (prey, eff ):
pre, = {apply b}, eff, = {apply-a < L1}
* Operator ¢ = (pre_, eff .):
pre. = {applyc}, eff . = {apply-a < L, apply b < 1}
We can now prove the expressivity result for the numeri-
cal planning fragment.

Theorem 4.9. NUM(C-,Cy, E) is is significantly more
expressive than classical planning for E ¢ E¢.

Proof. By definition, CLASSZC ¢ NUM(C-,Cyx, E), so
it also holds that L(CLASSZC) ¢ LINUM(C-,Cy, E)).

To show that {a"b"c™ | n € N}, {a"b" | n € N} and {aa}
are in LINUM(C-,Cy, E)), we extend the construction
1154 = (Vp, Vy, Init, Goal, Ops) from Def. 4.8 to a nu-
merical planning task Iy = (Vp, Vi, Ops’, Init’, Goal").
The numeric variables V3, = {vq, vp, V¢, Vo, v2} track how
often an operator was applied and simulate constants in the
goal condition. We initially set the counters to zero, i.e.,
Init" = (o, ) where « is the propositional state of Init in
154 and 3 = {v, = 0,vp = 0,0, = 0,09 = 0,v2 = 2}.
Finally, we consider operators Ops’ = {a’,’, ¢'}, extending
the original operators Ops = {a, b, c} as:

* a'=(preg, eff o) effo = eff o U {va < va + 1}
. 4
/

= (prey, effy), eff, = effy U {vp < vy +1}
o = (preg,effl), eff. = eff e U {ve < ve +1}

Each operator now increases its count to track how often the
operator was applied. We define the goals separately for the
two languages.

(1) For Language {a™b"c" | n € N} we define the goal:

Goal' := (vg —vp = 0) A (v — v = 0)

(2) For Language {a"b" | n € N} we define the goal:
Goal' := (vg —vp = 0) A (Ve —vg = 0)

(3) For Language {aa} we define the goal:

Goal" = (Vg —v2 =0) A (vy —v9 = 0) A (ve — vg = 0)

Goal (1) requires v, = vy A Uy = v, and so only accepts
sequences with equal counts of a, b, and c. Goal (2) requires
ve = Vp AUy = 0 and so only accepts sequences with equal
counts of a, b, but no occurrence of c. Goal (3) requires v, =
2 Avp =0 A v, =0 and so only accepts the sequence aa. [



5 Classical Planning with Linear Constraints

In this and the next two sections, we introduce new plan-
ning formalisms that extend classical planning by imposing
different solution constraints. This section focuses on Inte-
ger Linear Programs (ILPs). We use the numerical fragment
from the last section for membership proofs here, creating
the first link in a chain connecting all presented formalisms.
To restrict solutions using an ILP, we count the number
of occurrences of each operator in a sequence. In language
theory, this corresponds to the well-known concept of the
Parikh vector, which we then require to satisfy the ILP.

Definition 5.1. Let X is a finite set of terminals. The Parikh
vector W(w) of a sequence w = ejey . . . ), over the termi-

nals X is a vector in N |Z|, where each entry counts the occur-
rences of the corresponding terminal in w. Le., for position
ied{l,..,|Z|}:

@l (1, if id(e;) =i
(v = 3 {f )

a 0, otherwise

For some unique bijective mapping id : ¥ — {1, ...,|3|}. For
e € ¥ we represent (W(w));q(e) With shorthand (¥ (w))e.

In the context of planning problems the terminals ¥ = Ops
are simply the operators. We now define the new planning
formalism where the solutions are restricted by an ILP.

Definition 5.2 (Planning with Linear Constraints). A plan-
ning problem with linear constraints I1;, = (II,1L) consists
of a planning problem II = (Vp, Vy, Init, Goal, Ops) and
an ILP L with |Ops| columns. The plans for ITj, are:

sol(I1y,) = {m e sol(II) | ¥ () e sol(LL)}

The set of all planning problems with linear constraints is
denoted by ZLP.

Linear constraints over action counts, even in a very sim-
ple form, are useful for modeling (Lauer 2025). E.g., differ-
ent money-earning and money-spending operators may earn
or spend different amounts of money. A linear constraint can
express the exact amounts w;, w; € Q to ensure a profit:

wy - spend; +...+w;- spend;, < w)-earny +...+w. - earn.,
1 l 1 m

We now show that plan existence for this formalism is
PSPACE-complete by encoding it into numerical planning.

Theorem 5.3. Deciding whether there exists a plan for
a classical planning problem with linear constraints is
PSPACE-complete.

Proof. PSPACE-hardness follows by reduction from classi-
cal planning, using the linear constraint Ox = 0 = true.

For membership, we encode classical planning problem
with linear constraints 11, = (II, (M, v)) with M € Z™*"
into numeric planning formalism (C-,Cy, E,.), which is
PSPACE-complete by Thm. 4.7. If more expressive goal
conditions (e.g., supporting multiplication) were allowed,
one could simply count operator applications and ver-
ify Mz = v line by line in the goal, as in Thm. 4.9. With-
out such expressiveness, we instead simulate the constraint
via auxiliary variables and operators. Specifically, for each

constraint line i € {1,...,m}, we introduce one variable to
track each term M; ; - z; using constant effects, and n aux-
iliary variables c; ; such that their sum must equal v;, i.e.,
Z;»L:l ¢i,; = v;, enforced by the goal. The goal further re-
quires that each ¢; ; matches the corresponding value track-
ing M; j - ¢;. The goal conditions imply the original linear
constraint Mz = v. To allow reaching a valid assignment of
values to the ¢; ; that satisfies the condition, we add distribu-
tion actions that transfer units between these variables. This
ensures that the constraint can be satisfied if and only if the
original system Mx = v holds. O

Theorem 5.4. ZLP is is significantly more expressive than
classical planning.

Proof. The hardness encoding from classical planning in the
proof of Thm. 5.3 shows that L(CLASSZC) < L(ZLP) by
allowing arbitrary sequences without constraints. To prove
that {a"b"c™ | n € N}, {a"b" | n € N} and {aa} are in-
cluded we extend the sequential planning task II5%4 from
Def. 4.8 to a planning problem with linear constraints II;, =
(I, L) with . = (M, v) and:

1 -1 0 [0] nin n

(1) M=»O -1 1], v=1o) for {a"b"c" | n e N}
1o-1 0 07 -

@ M-[; | 1], v=[g] for{av neny

[1 0 O [27]
3) M=(0 1 0], w=]|0| for{aa}
0 0 1 0

(1) enforces z, = x, A xp = x., so only plans with equal
counts of a, b, c are accepted. (2) enforces xz, = xp Az =0,
so only plans with equal counts of a, b but no c are accepted.
(3) admits plans where a occurs twice, and b, cnot atall. [

6 Classical Planning
with Presburger Constraints

We now introduce the next new planning formalism. We ex-
tend classical planning by allowing to constrain plans by
existentially quantified Presburger formulas. Presburger for-
mulas can be seen as an extension of ILPs, as they addi-
tionally allow disjunctions among constraints, but come with
the drawback that constants are represented in unary. E.g., 3
is encoded as 1 + 1 + 1. The connection to ILPs forms the
next link in the chain connecting all planning formalisms
presented in this paper. Accordingly, we will encode this
formalism into ILP constraints for the membership proof.
To make use of the work of Verma, Seidl, and Schwentick
(2005) in the next section, we reproduce their definition of
existentially quantified Presburger formulas, which in turn
originates from Seidl et al. (2004).

Definition 6.1 (Presburger Formula). An existential Pres-
burger formula ¢ over a set of variables X = {x1,...,x,}
is a string derived from the context-free grammar with start
symbol ¢ and production rules:

x—>x1 || Ty

t=>0|1|z|(t+1)
on > (=) (t<t) | (¢nAON) [ (PN VoN) | (F2: dn)



Here, z, t, and ¢y are non-terminals, while all other sym-
bols are terminals. The derived string, i.e. the Presburger for-
mula ¢, expresses a first-order logic formula with constants
0, 1 and variables z1, ..., z, that can be interpreted over
the structure (N, <, +). Formally, variables are assigned val-
ues via a substitution function o: X — N. If the resulting
ground formula is satisfied, we write o = ¢. The solution
set sol(¢) = {0: X — N | o E ¢} contains all substitutions
satisfying ¢.

Like with ILPs, these formulas simply restrict the amount
of operators that occur in the solutions, via the Parikh vector.

Definition 6.2. A classical planning problem with Pres-
burger constraints I, = (II, ¢) consists of classical planning
problem IT = (Vp, Vi, Init, Goal, Ops) and Presburger for-
mula ¢. The set of all plans for II is:

sol(I1y,) := {m € sol(I) | o € sol(¢)
Voe Ops:¥(m),=0(0)}

The set of all planning problems with Presburger con-
straints is denoted by PRESBURGER.

We now prove PSPACE-completeness by converting the
Presburger formula non-deterministically into an ILP.

Theorem 6.3. Deciding whether there exists a plan for a
classical planning problem with Presburger constraints is
PSPACE-complete.

Proof. Hardness is shown by reduction from Classical plan-
ning, which is PSPACE-complete (Erol, Nau, and Subrah-
manian 1995). We reduce a classical planning problem II
to a classical planning problem with Presburger constraints
I, = (I1, ¢), with trivially true formula ¢ = (0 < 1),

For membership, we follow Verma, Seidl, and Schwentick
(2005), to encode a Presburger formula ¢ into an ILP. We use
a non-deterministic transformation that removes all disjunc-
tions ¢ V ¢2 by non-deterministically choosing either ¢; or
¢o. Let ¢’ be the resulting formula after all such choices.
Then ¢’ contains only conjunctions, atomic comparisons,
and existential quantifiers. We move all existential quanti-
fiers to the front, yielding:

¢ =3xy Tz, N\ Y
i=1

where all v); are quantifier-free and atomic formulas of shape
t1 = tg or t1 < ta. The structures can be encoded in an ILP
(M, v). M has n columns so that each row can match con-
stants cy, ..., ¢, € Q to the values variables x4, ..., z,, would
take. Each such row, together with a value ¢y of v, forms
a constraints of shape Y-, ¢; - 2; < ¢, which can be gen-
erated from the Presburger formulas: Given that Presburger
formulas are interpreted over (N, <, +) we can use standard
algebraic rewriting to bring ¢; < t5 to shape Yiv; ¢ 2 < ¢
Here c] - x; represents c; € N additions of z; and ¢ is a sum
of constants 0, 1. We can represent this as linear constraint
Yrycr-a; < — 1. For t1 = ty we use the same rewriting,
but generate Yy ¢; - x; < ¢o A Dieq €+ T; 2 ¢o where > can
be represented by negating the according constants in M.
If ¢ is satisfiable by some plan, then for every disjunc-
tion in the formula, at least one part must be satisfied. Any

other transformation we do preserves equivalence. There-
fore, if there exists a plan satisfying ¢, there is at least one
such transformation that results in a satisfiable ILP instance.
Moreover, if the ILP instance is satisfiable, this guarantees
that for each disjunction in the original formula, at least one
part is satisfiable. This concludes correctness. O

We now turn to expressivity, showing PRESBURGER
is more expressive than classical planning.

Theorem 6.4. PRESBURGER is significantly more ex-
pressive than classical planning.

Proof. The hardness encoding from classical planning in
the proof of Thm. 6.3 shows that L(CLASSZC) c
L(PRESBURGER) by allowing arbitrary sequences with-
out constraints. To prove that {a"d"c™ | n € N}, {a™b" | n €
N} and {aa} are included we use the sequential operator
gadget I15° from Def. 4.8 and extend it with the following
Presburger formula ¢ over variables x,,xp, z. to planning
problem with Presburger constraints I1, = (1159, ¢):

(1) (g =xp) A (T =2¢) for {a™b™c"™ | n e N}

(2) (zq =2xp) A (2:=0) for {a™b"™ | n € N}

(3) (g = (141)) A (25 =0) A (2. =0) for {aa}
(1) accepts exactly the Parikh images where a,b,c occur
equally often. (2) accepts the Parikh images where a, b occur
equally often, but no c¢. And (3) accepts only plans where a
occurs twice and b, ¢ not at all. O]

7 Classical Planning
with Grammar Amount Constraints

We now introduce the final new formalism before closing
the gap to (unordered) HTN planning. It again constrains
the number of operator occurrences in a solution, this time
by requiring that a context-free grammar can derive a word
with the same Parikh vector, i.e., the same number of ter-
minal occurrences matching an operator. As before, we will
encode this formalism into the previously introduced one,
continuing the next link in the chain connecting all presented
planning formalisms.

Definition 7.1. A classical planning problem with grammar
amount constraints lg = (II, G) consists of classical plan-
ning problem II = (Vp, Viy, Init, Goal, Ops) and context-
free grammar G with terminals Ops. The plans for I are:

sol(Ilg) = {r e sol(IT) | 3L € L(G) : U(xr) = T(L)}

GAMOUN'T is the set of all planning problems with gram-
mar amount constraints.

Again, we show that plan existence under this formalism
matches the complexity of classical planning.

Theorem 7.2. Deciding whether there exists a plan for a
classical planning problem with grammar amount restric-
tions is PSPACE-complete.

Proof. Hardness is shown by reduction from Classical plan-
ning, which is known to be PSPACE-complete (Erol, Nau,
and Subrahmanian 1995). This is, we can simply reduce
a planning problem II to classical planning problem with



grammar amounts, where the grammar amounts are arbi-
trary. This can be encoded in a context-free grammar with
start symbol .S and production rules:

S—>So1]...|Sonle

Where the terminal Ops = {01, ..., 0, } represent the opera-
tors in the problem and S is the only non-terminal.

For membership, we encode classical planning prob-
lem with grammar amount constraints IIg = (II,G) into
a classical planning problem with Presburger constraints
Il = (II,¢), by using the result from Verma, Seidl, and
Schwentick (2005), stating that there is a linear time con-
struction that encodes a predicate matching the Parikh vec-
tor of a CFG @ into existential Presburger Logic ¢. So, by
Thm. 6.3 we can use the PSPACE verifier for I1,. O

It is easy to prove that GAMOUN'T is signficantly more
expressive than classical planning. We omit the proof due to
space constraints. It is akin to the construction in Thm. 8.2.

8 Unordered HTN Planning

We now analyze unordered HTN planning and show that
plan existence is PSPACE-complete. So far, we knew that
deciding plan existence is EXPTIME for total-ordering
(Erol, Hendler, and Nau 1996), and Ackermann-complete
for some restricted partial orders (Dekker and Behnke 2024).
PSPACE fragments had only been identified by restricting
the hierarchy (Alford, Bercher, and Aha 2015), which is less
desirable for modeling. Unordered HTN was studied only
for lifted plan verification (Lauer, Lin, and Bercher 2025),
but its plan existence complexity was unknown. We close
this gap by encoding the hierarchy into a context-free gram-
mar, completing the chain of encodings.

Theorem 8.1. Deciding whether there exists a plan for an
unordered HTN planning problem is PSPACE-complete.

Proof. For hardness we use a reduction from Classical plan-
ning, which is PSPACE-complete. To simulate a classical
planning problem with HTN planning we use the construc-
tion from Erol, Hendler, and Nau (1996, Sec. 3.3). This is
to have one compound task that can be decomposed into
an arbitrary operator or twice this compound task. On this
construction one can impose arbitrary ordering constraints,
without restricting the operator refinements, as any arbitrary
sequence remains to be a refinement.

From the HTN structure we create a context-free gram-
mar with start symbol S and the following production rules:
There is one production rule for the initial task network
tny = (T, «) with task IDs T' = {tidy, ..., tid, }:

S = a(tidy) ... a(tid,)

And one production rule per method m € M to replace the
head of m = (¢, tn) with tn = (T, ), T = {tidy, ..., tid, }:

¢ — a(tidy) ... a(tidy,)

The terminals are Ops and non-terminals C.
First observe that by our definition, of terminals and non-
terminals each derived string only contains operators. Now,

we can inductively observe (starting with initial task net-
work, to n € N derivation steps) that each application of a
production rule mirrors the replacement by a method in a
way, so that the amount of non-terminals, representing com-
pound tasks, and terminals, representing operators, are the
same as by the method replacement. This concludes that the
amounts and so the Parikh image of the HTN structure and
constructed CFG are the same, allowing us to construct a
planning problem with grammar amounts and exploit the
PSPACE-verifier from Thm. 7.2. O

At first, it may seem that unordered HTN is restrictive,
since orders between operators are very natural. However,
these orders do not necessarily need to be enforced through
task network constraints. We implicitly show this in the fol-
lowing by encoding languages such as {a"b™ | n € N},
where a must precede b, into unordered HTN.

Theorem 8.2. HT Ny is significantly more expressive than
classical planning.

Proof. L(CLASSIC) c L(HTNy) follows from the en-
coding to classical planning in the proof of Thm. 5.3 where
arbitrary classical planning problems can be encoded in
HTN planning with matching plans.

To show that {a"b"c" | n € N}, {a"b" | n € N} and {aa}
are in L(HTNy), we construct unordered HTN planning
tasks I3, = (1159, ). The hierarchy H = (tny, M, C) con-
tains one compound task, i.e., C = {S} and the initial task
network as tny = ({to}, {to = S}). We define methods:

(1) For {a™b™c" | n € N}:

my = (S, ({},{})

ma = (Sv ({tlat27t37t4}7 {tl = a7t2 = b?tS = C7t4 ng S}))
(2) For {a™b™ | n € N}:

my = (S, ({},{}))
mo = (S, ({tl,tg,tg}, {tl L a,tg [d b, t3 = S}))

(3) For {aa}:
m = (S, ({t1,t2},{t1 » a,ta ~ a}))

In (1) every decomposition of S adds the same number of
a, b, c; making it {a"b"c" }. In (2) every decomposition of .S
adds the same number of a, b; making it {a™b"}. (3) yields
the task network with two operators a, matching {aa}. O

Together, the theorems underline why unordered HTN can
combine the hierarchy guidance with state-of-the-art plan-
ning techniques. E.g., consider the language represented by:

(drive_toy | ... | drive_tom, )" load

(drive_backy | ... | drive_back,,)" unload

Here, a truck drives, loads a package, and returns. En-
coding this similar to a"b" allows counting the remaining
drive_back (and unload) operators in the task network after
load, to get the exact remaining plan length. But, there is no
additional guidance to reach the load step. To provide that,
one can likely use techniques from classical planning (Hoff-
mann and Nebel 2001; Richter and Westphal 2010; Seipp



and Helmert 2018), as the plan existence is also PSPACE-
complete. From a practical perspective, this is a major ad-
vantage, as there are many ongoing lines of research to im-
prove planners for classical planning (Corréa et al. 2020;
2021; 2022; Lauer et al. 2020; 2021; 2025a; 2025b; Chen
et al. 2024a; 2024b; Tollund et al. 2025).

Similar benefits likely exist for the other formalisms. But
HTNs are already well-studied, making it easier to reuse ex-
isting knowledge and to improve existing applications.

9 Conclusion

We have analyzed five planning formalisms that are signif-
icantly more expressive than classical planning, without in-
creasing the complexity of plan existence. Our results open
new directions for modeling, both through the introduction
of novel formalisms and by highlighting the low complexity
of unordered HTN planning. The latter findings strongly ad-
vocate a shift towards unordered HTN planning problems.
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