
Symbolic Classification of General Two-Player Games?

Stefan Edelkamp and Peter Kissmann

Technische Universität Dortmund, Fakulẗat für Informatik
Otto-Hahn-Str. 14, D-44227 Dortmund, Germany

Abstract. In this paper we present a new symbolic algorithm for the classifica-
tion, i. e. the calculation of the rewards for both players in case of optimal play, of
two-player games with general rewards according to the Game Description Lan-
guage. We will show that it classifies all states using a linear number of images
concerning the depth of the game graph. We also present an extension that uses
this algorithm to create symbolic endgame databases and then performs UCT to
find an estimate for the classification of the game.

1 Introduction

In General Game Playing (GGP), games are not known beforehand. Thus, for writing an
algorithm to play or solve general games no specialized knowledge about them can be
used. One language to describe such games is the Game Description Language (GDL)
[11]. Since2005, an annual GGP Competition [9] takes place, which was last won 2007
by Yngvi Björnsson’s and Hilmar Finnsson’s CADIA PLAYER [6]. GDL is designed for
the description of general games of full information satisfying the restrictions to be
finite, discrete, and deterministic.

When the games end, all players receive a certain reward. Thisis an integer value
within {0, . . . , 100} with 0 being the worst and100 the optimal reward. Thus, each
player will try to get a reward as high as possible (and maybe at the same time keep
the opponent’s reward as low as possible). The description is based on the Knowledge
Interchange Format (KIF) [8], which is a logic based language. It gives formulas for
the initial state (init), the goal states (terminal), the preconditions for the moves (legal),
further preconditions to get certain effects (next), the rewards in each terminal state for
each player (goal) and some domain axioms (constant functions).

In this paper, we focus on non-simultaneous two-player games. Opposed to the
competition’s winners [4,13,6], we are not mainly interested in playing the games, but
in classifying (solving) them. That is, we want to get the rewards for both players in case
of optimal play (optimal rewards) for each of the states reachable from the initial state.
Thus, when the classification is done, we can exploit the information to obtain a perfect
player. Our implementation for the classification of these games originally worked with
a variation of the Planning Domain Definition Language (PDDL) [12] that we called
GDDL [5]. In the meantime, we implemented an instantiator for the KIF files, which
results in a format quite close to instantiated PDDL but withmulti-actionsto represent
the moves. These multi-actions consist of a global precondition, which is the disjunction

? Thanks to DFG for the financial support of the authors.

of all correspondinglegal formulas, and several precondition/effect pairs where the
preconditions can be arbitrary formulas while the effects are atoms. These pairs are the
result of instantiating thenext formulas and are interpreted as follows. A multi-action
consisting of the global preconditionglobaland the precondition/effect pairspre1, eff1,
. . . , pren, effn might also be written asglobal∧ (pre1 ⇔ eff1) ∧ . . . ∧ (pren ⇔ effn).
If global holds in the current state, we can take this action. It will create the current
state’s successor by applying the precondition/effect pairs. An effect has to hold in the
successor iff the corresponding precondition holds in the current state. All variables not
in any of the effects are set tofalse.

The algorithm to classify two-player turn-taking games with general rewards pro-
posed in [5] is quite inefficient. In this paper, we present a new one that is much faster.
We also show how to adapt it to build endgame databases that can be used for the esti-
mation of the optimal rewards of the reachable states using the UCT algorithm [10].

2 Symbolic Search for General Games

Symbolic search is concerned with checking the satisfiability of formulas. For this pur-
pose, we use Binary Decision Diagrams (BDDs) [3], so that we work with state sets
instead of single states. In many cases, this saves a lot of memory. E. g., we are able
to calculate the complete set of reachable states for Connect Four. The precise number
of states reachable from the initially empty board is4,531,985,219,092, compared to
Allis’s estimate of70,728,639,995,483 in [2]. In case of explicit search, for the same
state encoding (two bits for each cell (player1, player2, empty) plus one for the current
player, resulting in a total of85 bits per state), nearly43.8 terabytes would be necessary.
When using BDDs,84,088,763 nodes suffice to represent all states.

In order to perform symbolic search, we need BDDs to represent the initial state
(init), the goal states (goal), the transition relation (trans) and the conditions for each
playerp to achieve a specified rewardr (reward(p, r), r ∈ {0, . . . , 100}). We construct
one BDDtransa for each actiona resulting in the transition relationtrans=

∨

a transa.
Furthermore, we need two sets of variables, one,S, for the predecessor states and the
other,S′, for the successor states.

To calculate the successors of a state setstate, we build the (weak)image, defined as
image(trans, state) =

∨

a ∃S. transa (S, S′) ∧ state(S). The predecessor calculation,
the (weak)pre-image, works similar:preImage(trans, state) =

∨

a ∃S′. transa (S, S′)∧
state(S′). If we need all the states whose successors hold instate, we use thestrong pre-
image, which is defined asstrongPreImage(trans, state) =

∧

a ∀S′. transa (S, S′) ⇒
state(S′) = ¬preImage(trans,¬state). Note that the image and pre-image calculations
result in states in the other set of variables. Thereto, after each image or pre-image we
perform a replacement of the variables to the ones used before.

3 The Algorithm UCT

In order to calculate an estimate for the current state oftenMonte-Carlo sampling can be
applied. It performs a random search from the current state to a goal state and updates
the estimated values of intermediate nodes.

The algorithm UCT [10] (Upper Confidence Bounds applied to Trees) is an algo-
rithm to work for trees, such as game trees. Starting at the root of the tree, it initially
works similar to Monte-Carlo search. If not all actions of the current node were per-
formed at least once, it chooses an unused action randomly. Once this is done for all
actions in a node (states in depthd), it chooses the action that maximizesQt (s, a, d)+
cNs,d(t),Ns,a,d(t), with Qt (s, a, d) being the estimated value of actiona in states at
depthd and timet, Ns,d (t) the number of timess was reached up to timet in depthd,
Ns,a,d (t) the number of times actiona was selected whens was visited in depthd up to
time t andcn1,n2

= 2Cp

√

ln (n1) /n2 with appropriate constantCp. The valuecn1,n2

trades off between exploration and exploitation in that actions with a low estimate will
be taken again if the algorithm runs long enough: If an actionis chosen, this factor will
decrease as the number of times this action was chosen increases; for the actions not
chosen, this factor will increase as the number of visits to this state increases.

UCT is successfully used in several game players. In [7], theauthors show that in
Go UCT outperforms classicalα-β-search and give three reasons: UCT can be stopped
at any time and still perform well, it is robust by automatically handling uncertainty in
a smooth way and the tree grows asymmetrically.

4 Classification of General Two-Player Games

In [5], we proposed a first symbolic algorithm to classify general non-simultaneous
two-player games, which has a bad runtime-behavior. In the following, we will present
a greatly improved version and a symbolic variant of UCT thatuses this algorithm to
construct endgame databases.

4.1 Improved Symbolic Classification Algorithm

When classifying a game, we are interested in the optimal rewards of all reachable
states. Thereto, we construct a game tree by symbolic breadth-first search (SBFS) with
the initial state as its root and each action corresponding to an edge to a succeeding
node. As the rewards are only applied in goal states, the internal nodes initially have no
known rewards, whereas those of the leaves can be easily determined.

To determine the optimal rewards of each internal node, we propagate these values
towards the root until all necessary nodes are classified. Aswe are concerned with
two-player games, this propagation is quite simple. All states whose successors are
already classified are given rewards (cf. Fig. 1) according to certain rules. This we
repeat iteratively, until finally all states are classified.

Our symbolic algorithm works exactly like that. For it we need a101 × 101 matrix
(bucket) with one BDD for each theoretically possible reward combination. Further-
more, we need a BDD to represent allclassifiedstates, i. e. states that are in the matrix,
a BDDclassifyableto store those unclassified states whose successors are already clas-
sified, and a BDD for the remainingunclassifiedstates.

The algorithm’s pseudocode is shown in Algorithm 1. First, we determine all reach-
able states by performing SBFS. Next, we initialize the matrix by setting each possible
bucket(i, j) to the conjunction of the reachable goal states achieving rewardi for player

50 / 50 50 / 50

50 / 50 100 / 0 0 / 100 50 / 50 50 / 50 100 / 0 0 / 100

100 / 0 50 / 50

Fig. 1.Example of a game tree. The classification has performed one step.

Algorithm 1: Improved algorithm for general rewards (classifyGame).
Input : reward, goal
reach← reachable();
forall i, j ∈ {0, . . . , 100} do

bucket(i, j) = reach∧ goal∧ reward(0, i) ∧ reward(1, j)
classified←

W

0≤i,j≤100
bucket(i, j);

unclassified← reach∧ ¬classified;
while unclassified6= ⊥ do

foreachplayer∈ {0, 1} do
classifyable← strongPreImage(trans, classified) ∧ unclassified∧ control(player);
if classifyable6= ⊥ then

bucket← classifyStates(classifyable, player, bucket);
classified← classified∨ classifyable;
unclassified← unclassified∧ ¬classifyable;

0 andj for player1. Theclassifiedstates are the disjunction of all the states in the buck-
ets and theunclassifiedones the remaining reachable states.

While there are still unclassified states, we continue working on those states, whose
successors are all classified. They are found by computing the strong pre-image. Of
these states, we only take those where the current player hascontrol and classify them.
For this, we have two different functions, dependent on the way we wish to compare two
states. Either we first maximize the reward for the current player and afterwards mini-
mize that for the opponent, or we maximize the difference between the current player’s
and its opponent’s reward. The classification procedure works as shown in Algorithm 2.
When going through the buckets in the specified order, we calculate the states that have
to be inserted in each bucket by calculating the corresponding predecessors for the clas-
sifyable states using the pre-image function. These statesare inserted into this bucket
and the classifyable states are updated by deleting the newly classifed ones. After each
classification step, the classified states as well as the unclassified ones are updated by
adding and deleting the newly classified states, respectively.

To predict the runtime of the algorithm, we count the number of pre-images. As
the strong ones can be converted to the weak ones we make no difference between
them. Letd be the depth of the inverse game graph, which equals the number of traver-
sals through the main algorithm’s loop. During each iteration we calculate two strong
pre-images (one for each player). This results in at most2 × d strong pre-image cal-
culations. In the classification algorithm, we calculate one pre-image for each possible
pair of rewards. Letr = |{(i, j) | (reward(0, i) ∧ reward(1, j)) 6= ⊥}| be the number

Algorithm 2: Classification of the classifyable states (classifyStates).
Input : classifyable, player, bucket
if player= 0 then

foreach i, j ∈ {0, . . . , 100} do // Go through the buckets in specific order.
if bucket(i, j) 6= ⊥ then

newStates← preImage(trans, bucket(i, j)) ∧ classifyable;
bucket(i, j) ← bucket(i, j) ∨ newStates;
classifyable← classifyable∧ ¬newStates;
if classifyable= ⊥ then break

else // The same for the other player, with swapped bucket indices.
return bucket;

of possible reward pairs. So, for classification we calculate r weak pre-images. In each
iteration through the main algorithm’s loop, we call the classification algorithm at most
twice (once for each player). Thus, we get at most2 × d × r weak pre-images and
2 × d × (1 + r) pre-images in total.

4.2 UCT with Symbolic Endgame Databases

The above algorithm is good for classifying all states of a game. But this total classifica-
tion takes time – the calculation of the set of reachable states as well as the classification
itself might take hours or days for complex games. If one is only interested in an es-
timate of the optimal rewards and has only a limited amount oftime, the combination
of the classification algorithm and UCT might be interesting. Thereto, we adapted the
classification algorithm to create an endgame database and applied UCT to this.

To be able to create the endgame database as quickly as possible, it is best to omit the
calculation of reachable states. This way, many states thatare not reachable in forward
direction will be created and classified, but the forward calculation drops out. In order
to get better databases, one should calculate as many backward steps as possible, but if
time is short, only few iterations should be performed.

In our UCT algorithm, we encode states as BDDs. Starting at the initial state, for
each new node we first have to verify if it is in the endgame database (classification; cf.
Algorithm 3). If it is, we get the state’s value by subtracting the corresponding bucket’s
second index from the first to get the difference of the rewards. This value we set as the
state’s estimate, update its number of visits to1, and return the value.

If the state is not in the database, we compute the applicableactions. Thereto, we
build the conjunction of the current state with each action.Each applicable action is
stored in a list along with the node. When reaching a node that was visited before, we
verify if it has applicable actions. If it has not, it is a leafnode that is stored in the
database and we only have to return its value. Otherwise, we further check if all actions
have been applied at least once. If not, we randomly choose one of the unapplied actions
and create its successor by calculating the image. If all actions have been used at least
once, we take the action that maximizes the UCT value. In bothcases we increment
the number of applications of the action, update the estimate of this node, increment
its number of visits, and return the value. For the calculation of the UCT value, we
transform the estimated values into the interval[0, 1] by adding100 and dividing the
result by200, if it is the first player’s move, or by−200, if it is the second player’s.

Algorithm 3: UCT search function (search).
Input : state, classification
if state.visits= 0 then

if ∃x, y. (state.bdd∧ classification(x, y) 6= ⊥) then
state.visits← 1;
state.estimate← x − y ; // maximize the difference
return state.estimate;

foreachaction∈ transdo
if (state.bdd∧ action) 6= ⊥ then state.actions← state.actions∪ action;

if state.actions= ∅ then return state.estimate;
if |{a | a ∈ state.actions∧ a.visits= 0}| > 0 then

action← chooseActionRandomly(state.actions);
successor← image(action, state.bdd);

else
action← findActionWithBestUCT(state.actions);
successor← getSuccessor(state, action);

value← search(classification, successor);
action.visits← action.visits+ 1;
state.estimate← (state.estimate· state.visits+ value) / (state.visits+ 1);
state.visits← state.visits+ 1;
return value;

5 Experimental Results

We implemented the algorithms in Java using JavaBDD, which provides a native in-
terface to Fabio Somenzi’s CUDD package, and performed themon an AMD Opteron
with 2.6 GHz and16 GB RAM.

ForClobber[1], we set the reward for a victory depending on the number ofmoves
taken. This way, we performed the classification for3 × 4 and4 × 5 boards that are
initially filled with the pieces of both players alternating. While our older algorithm
takes more than an hour for the3 × 4 board, our improved version finishes after less
than five seconds. The result is that the game is a victory for the second player with
two pieces of each player remaining. On the4 × 5 board, nearly26.8 million states
are reachable, while less than half a million BDD nodes suffice to represent them. The
older algorithm cannot classify the game within20 days, whereas the improved one is
able to classify the reachable states within2 hours and15 minutes. This game is won
for the first player with three own and two opponent pieces remaining.

With Clobber we also performed UCT with a timeout of one minute. Here, we
compare the estimates for the initial state for different endgame database sizes (number
of backward steps). Fig. 2 shows the difference of the estimates on the two players’
rewards (higher values mean higher rewards for the first player). As can be seen, we
get a solution much nearer to the optimal outcome of−40 after a shorter time with the
larger databases. In fact, for databases that result from very few backward steps, after
one minute the estimate for the initial state is far from the optimal one and thus might be
misleading. Also, with the better databases the algorithm can perform more iterations.

The game ofCrisscrossis a two-player adaptation of Chinese Checkers and was one
of the games used in the qualification phase of the2006 competition. Our algorithm can
classify it completely in about twelve seconds. Nearly150,000 states are reachable and

-50

-40

-30

-20

-10

 0

 10

 1 10 100 1000 10000 100000 1e+06

es
tim

at
ed

 v
al

ue

number of iterations

optimal solution
backward depth 0
backward depth 1
backward depth 2
backward depth 3
backward depth 4
backward depth 5

Fig. 2.Estimates for3 × 4 Clobber with different endgame databases (averaged over 10 runs).

-100

-50

 0

 50

 100

 1 10 100 1000 10000 100000

es
tim

at
ed

 v
al

ue

number of iterations

total estimate
drop-1 estimate
drop-2 estimate
drop-3 estimate
drop-4 estimate
drop-5 estimate
drop-6 estimate
drop-7 estimate

Fig. 3. The results for Connect Four.

the optimal outcome is25/100, i. e. both players can reach their goal positions but the
second player is the first to reach it.

ForConnect Fourwe performed UCT, as it takes too long (several hours) – and also
too much RAM (more than16 GB) – to be classified. Fig. 3 shows the results after about
2.5 hours. Nearly100,000 iterations were performed with a final estimate of18.3 at the
initial state (again the value gives the difference of the estimate on the two players’
rewards, higher being better for the first player). As the game is won for the first player,
the correct value is100. In Fig. 3, we can see that the estimate for the optimal move,
dropping the first piece in the middle column (drop-4), is the highest (20.6 vs. 9.3 for
the second best). Furthermore, the estimates for the moves resulting in a draw (drop-3
anddrop-5) are slightly higher than those for the losing moves. After no more than300
iterations, which are performed in less than ten seconds, this already is the case. We
also found out that in the end the optimal move has been analyzed about ten times as
often as the other possible moves, thus it has the most reliable estimate.

6 Conclusion

In this paper, we have proposed a new symbolic algorithm for the classification of gen-
eral non-simultaneous two-player games. We have shown thata linear number (in the

depth of the game graph) of pre-images suffices to classify such a game. Furthermore,
we have presented a symbolic variant of UCT that uses our algorithm beforehand to
construct endgame databases.

We have presented results for several games. For Clobber we performed the clas-
sification algorithm as well as the UCT algorithm, while for Crisscross we performed
only the classification. In Connect Four, we could not finish the classification and so
used the classification calculated so far as an endgame database for the UCT algorithm.

With the classification, we are able to check how well playersdid in real matches.
To do this, we can start with the initial state and perform theactions the players chose
during the matches. For the successor state we can find the bucket it is in, which gives
the optimal reward achievable from this state. Whenever the bucket is changed, the
current player has performed a suboptimal move. This might help analyzing the quality
of existing players.

References

1. M. Albert, J. P. Grossman, R. J. Nowakowski, and D. Wolfe. An introduction to clobber.
INTEGERS: The Electronic Journal of Combinatorial Number Theory, 5(2), 2005.

2. V. Allis. A knowledge-based approach of connect-four. Master’sthesis, Vrije Universiteit
Amsterdam, October 1988.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, 35(8):677–691, 1986.

4. J. Clune. Heuristic evaluation functions for general game playing. InAAAI, pages 1134–
1139, 2007.

5. S. Edelkamp and P. Kissmann. Symbolic exploration for general game playing in PDDL. In
ICAPS-Workshop on Planning in Games, 2007.

6. H. Finnsson and Y. Björnsson. Simulation-based approach to general game playing. InAAAI,
pages 259–264, 2008.

7. S. Gelly and Y. Wang. Exploration exploitation in Go: UCT for Monte-CarloGo. InNIPS-
Workshop on On-line Trading of Exploration and Exploitation, 2006.

8. M. R. Genesereth and R. E. Fikes. Knowledge interchange format, version 3.0 reference
manual. Technical Report Logic-92-1, Stanford University, 1992.

9. M. R. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI
competition.AI Magazine, 26(2):62–72, 2005.

10. L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. InECML, volume 4212
of LNCS, pages 282–293, 2006.

11. N. C. Love, T. L. Hinrichs, and M. R. Genesereth. General gameplaying: Game description
language specification. Technical Report LG-2006-01, Stanford Logic Group, April 2006.

12. D. V. McDermott. The 1998 AI planning systems competition.AI Magazine, 21(2):35–55,
2000.

13. S. Schiffel and M. Thielscher. Fluxplayer: A successful general game player. InAAAI, pages
1191–1196, 2007.

