Symbolic Classification of General Two-Player Games

Stefan Edelkamp and Peter Kissmann

Technische Universit Dortmund, Fakuét fur Informatik
Otto-Hahn-Str. 14, D-44227 Dortmund, Germany

Abstract. In this paper we present a new symbolic algorithm for the classifica-
tion, i. e. the calculation of the rewards for both players in case of optifag| of
two-player games with general rewards according to the Game Desorifie
guage. We will show that it classifies all states using a linear number ofeisnag
concerning the depth of the game graph. We also present an exterasiarséls
this algorithm to create symbolic endgame databases and then perforim®oUC
find an estimate for the classification of the game.

1 Introduction

In General Game Playing (GGP), games are not known befodeféns, for writing an
algorithm to play or solve general games no specialized kedye about them can be
used. One language to describe such games is the Game Meadrginguage (GDL)
[11]. Since2005, an annual GGP Competition [9] takes place, which was |last2067
by Yngvi Bjornsson’s and Hilmar Finnsson’saBiA PLAYER [6]. GDL is designed for
the description of general games of full information satigf the restrictions to be
finite, discrete, and deterministic.

When the games end, all players receive a certain reward.ig his integer value
within {0,...,100} with 0 being the worst and00 the optimal reward. Thus, each
player will try to get a reward as high as possible (and maylibeasame time keep
the opponent’s reward as low as possible). The descripgibased on the Knowledge
Interchange Format (KIF) [8], which is a logic based langudg gives formulas for
the initial stateifit), the goal stateg€rminal), the preconditions for the movelggal),
further preconditions to get certain effectex), the rewards in each terminal state for
each playerdoal) and some domain axioms (constant functions).

In this paper, we focus on non-simultaneous two-player gar@pposed to the
competition’s winners [4,13,6], we are not mainly inteegkin playing the games, but
in classifying (solving) them. That is, we want to get the aesls for both players in case
of optimal play (optimal rewards) for each of the states haade from the initial state.
Thus, when the classification is done, we can exploit themétion to obtain a perfect
player. Our implementation for the classification of theamgs originally worked with
a variation of the Planning Domain Definition Language (PD[2] that we called
GDDL [5]. In the meantime, we implemented an instantiatortfe KIF files, which
results in a format quite close to instantiated PDDL but waithiti-actionsto represent
the moves. These multi-actions consist of a global pre¢mmgiwhich is the disjunction

* Thanks to DFG for the financial support of the authors.

of all correspondindegal formulas, and several precondition/effect pairs where the
preconditions can be arbitrary formulas while the effectssaoms. These pairs are the
result of instantiating theextformulas and are interpreted as follows. A multi-action
consisting of the global preconditigiobal and the precondition/effect paiose, , eff,,

.., pre,, eff, might also be written aglobal A (pre;, < eff;) A... A (pre, < eff,).
If global holds in the current state, we can take this action. It wilate the current
state’s successor by applying the precondition/effeaspain effect has to hold in the
successor iff the corresponding precondition holds in threent state. All variables not
in any of the effects are set talse

The algorithm to classify two-player turn-taking gameshwgeneral rewards pro-

posed in [5] is quite inefficient. In this paper, we presenea one that is much faster.
We also show how to adapt it to build endgame databases thdtecased for the esti-
mation of the optimal rewards of the reachable states ukm@/CT algorithm [10].

2 Symbolic Search for General Games

Symbolic search is concerned with checking the satisftgufiformulas. For this pur-
pose, we use Binary Decision Diagrams (BDDs) [3], so that wekwvith state sets
instead of single states. In many cases, this saves a lot wonye E. g., we are able
to calculate the complete set of reachable states for Coiioec. The precise number
of states reachable from the initially empty board!i531,985,219,092, compared to
Allis’s estimate 0f70,728,639,995,483 in [2]. In case of explicit search, for the same
state encoding (two bits for each cell (playeplayer2, empty) plus one for the current
player, resulting in a total &f5 bits per state), nearly3.8 terabytes would be necessary.
When using BDDsg4,088,763 nodes suffice to represent all states.

In order to perform symbolic search, we need BDDs to reptetheninitial state
(init), the goal stategypal), the transition relationt{ans) and the conditions for each
playerp to achieve a specified rewardreward(p, r), r € {0, ...,100}). We construct
one BDDtrans, for each actior resulting in the transition relatidnans = \/, trans,.
Furthermore, we need two sets of variables, dhdpr the predecessor states and the
other,5’, for the successor states.

To calculate the successors of a statestt we build the (weakimage defined as
image(trans, state = \/, 35. trans, (S, S’) A state(S). The predecessor calculation,
the (weak)pre-imageworks similarprelmaggtrans statg = \/, 35’. trans, (S,S")A
state(S"). If we need all the states whose successors hdithite we use thetrong pre-
image which is defined astrongPrelmaggtrans statg = A, V.S'. trans, (S,5") =
state(S’) = —prelmaggtrans, —state. Note that the image and pre-image calculations
result in states in the other set of variables. Theretor atieh image or pre-image we
perform a replacement of the variables to the ones usedéiefor

3 The Algorithm UCT

In order to calculate an estimate for the current state dftente-Carlo sampling can be
applied. It performs a random search from the current stedéegoal state and updates
the estimated values of intermediate nodes.

The algorithm UCT [10] Upper nfidence Bounds applied ta€Ey is an algo-
rithm to work for trees, such as game trees. Starting at tbeabthe tree, it initially
works similar to Monte-Carlo search. If not all actions oé tturrent node were per-
formed at least once, it chooses an unused action randombe @is is done for all
actions in a node (statein depthd), it chooses the action that maximiz@s (s, a, d) +
CN, 4(t),Ns.0.a(t)» With Q¢ (s, a,d) being the estimated value of actianin states at
depthd and timet, N, 4 (t) the number of times was reached up to timein depthd,
N;.q,q (t) the number of times actionwas selected whenwas visited in deptid up to
timet andc,, », = 2Cp+/In (n1) /ne with appropriate constardt,. The valuec,,, .,
trades off between exploration and exploitation in thaitosst with a low estimate will
be taken again if the algorithm runs long enough: If an adsahosen, this factor will
decrease as the number of times this action was chosen sesidar the actions not
chosen, this factor will increase as the number of visithit® dtate increases.

UCT is successfully used in several game players. In [7]atiteors show that in
Go UCT outperforms classical(3-search and give three reasons: UCT can be stopped
at any time and still perform well, it is robust by automallichandling uncertainty in
a smooth way and the tree grows asymmetrically.

4 Classification of General Two-Player Games

In [5], we proposed a first symbolic algorithm to classify geal non-simultaneous
two-player games, which has a bad runtime-behavior. Indhewing, we will present

a greatly improved version and a symbolic variant of UCT s this algorithm to
construct endgame databases.

4.1 Improved Symbolic Classification Algorithm

When classifying a game, we are interested in the optimal ndsvaf all reachable
states. Thereto, we construct a game tree by symbolic brdiasit search (SBFS) with
the initial state as its root and each action correspondimgntedge to a succeeding
node. As the rewards are only applied in goal states, thenaiteodes initially have no
known rewards, whereas those of the leaves can be easilyrdessl.

To determine the optimal rewards of each internal node, wpagate these values
towards the root until all necessary nodes are classifiedwésre concerned with
two-player games, this propagation is quite simple. Altegtavhose successors are
already classified are given rewards (cf. Fig. 1) accordmgdrtain rules. This we
repeat iteratively, until finally all states are classified.

Our symbolic algorithm works exactly like that. For it we degel01 x 101 matrix
(bucke} with one BDD for each theoretically possible reward coralion. Further-
more, we need a BDD to represent@lssifiedstates, i. e. states that are in the matrix,
a BDD classifyablgo store those unclassified states whose successors adyattas-
sified, and a BDD for the remainingnclassifiecstates.

The algorithm’s pseudocode is shown in Algorithm 1. First,determine all reach-
able states by performing SBFS. Next, we initialize the irddy setting each possible
bucket(i, j) to the conjunction of the reachable goal states achievingne for player

‘50/50‘ ‘100/0

Fig. 1. Example of a game tree. The classification has performed one step.

Algorithm 1: Improved algorithm for general rewardsdassifyGamg

Input: reward, goal
reach«— reachablg);
forall 4,5 € {0,...,100} do
bucket(i, j) = reachA goal A reward(0, i) A reward(1, j)
classified— \/,; ;<100 bucket(, j);
unclassified— reachA —classified
while unclassified# L do
foreach player e {0,1} do
classifyable— strongPrelmagétrans, classified A unclassified\ control (player);
if classifyable£ | then
bucket— classifyStateéclassifyableplayer, buckey;
classified— classifiedv classifyable
unclassified— unclassified\ —classifyable

0 andj for playerl. Theclassifiedstates are the disjunction of all the states in the buck-
ets and theinclassifiecbnes the remaining reachable states.

While there are still unclassified states, we continue warkin those states, whose
successors are all classified. They are found by computegtitong pre-image. Of
these states, we only take those where the current playeoha®sl and classify them.
For this, we have two different functions, dependent on thg we wish to compare two
states. Either we first maximize the reward for the curreayed and afterwards mini-
mize that for the opponent, or we maximize the differencevben the current player’s
and its opponent’s reward. The classification procedur&svas shown in Algorithm 2.
When going through the buckets in the specified order, we lfcthe states that have
to be inserted in each bucket by calculating the correspgruliedecessors for the clas-
sifyable states using the pre-image function. These stategserted into this bucket
and the classifyable states are updated by deleting theyrdadsifed ones. After each
classification step, the classified states as well as thassitied ones are updated by
adding and deleting the newly classified states, respégtive

To predict the runtime of the algorithm, we count the numliepre-images. As
the strong ones can be converted to the weak ones we makefaedde between
them. Letd be the depth of the inverse game graph, which equals the mohbaver-
sals through the main algorithm’s loop. During each itemtive calculate two strong
pre-images (one for each player). This results in at ostd strong pre-image cal-
culations. In the classification algorithm, we calculate pre-image for each possible
pair of rewards. Let = |{(7,7) | (reward(0,) A reward(1, j)) # L}| be the number

Algorithm 2: Classification of the classifyable stateésifyStatés

Input: classifyableplayer, bucket
if player= 0then
foreachi, j € {0,...,100} do /I Go through the buckets in specific order.
if bucket(z, j) # L then
newStates— prelmage(trans bucket(i, j)) A classifyable
bucket(i, j) < bucket(s, j) V newStates
classifyable— classifyablen —newStates
if classifyable= L then break
else // The same for the other player, with swapped bucket indices.
return bucket

of possible reward pairs. So, for classification we calesaveak pre-images. In each
iteration through the main algorithm’s loop, we call thesslfication algorithm at most
twice (once for each player). Thus, we get at mdst d x r weak pre-images and
2 x d x (14 r) pre-images in total.

4.2 UCT with Symbolic Endgame Databases

The above algorithm is good for classifying all states of mgaBut this total classifica-
tion takes time — the calculation of the set of reachablestas$ well as the classification
itself might take hours or days for complex games. If one iy anterested in an es-
timate of the optimal rewards and has only a limited amouriinog, the combination
of the classification algorithm and UCT might be interestifigereto, we adapted the
classification algorithm to create an endgame databasepgtiecdUCT to this.

To be able to create the endgame database as quickly aslpps$sstbest to omit the
calculation of reachable states. This way, many statesteatot reachable in forward
direction will be created and classified, but the forwaratgkition drops out. In order
to get better databases, one should calculate as many bac&igps as possible, but if
time is short, only few iterations should be performed.

In our UCT algorithm, we encode states as BDDs. Startingeairttial state, for
each new node we first have to verify if it is in the endgamelziza ¢lassification cf.
Algorithm 3). If it is, we get the state’s value by subtragtiime corresponding bucket’s
second index from the first to get the difference of the rewafthis value we set as the
state’s estimate, update its number of visit§ tand return the value.

If the state is not in the database, we compute the applicatiiens. Thereto, we
build the conjunction of the current state with each actach applicable action is
stored in a list along with the node. When reaching a node thatwisited before, we
verify if it has applicable actions. If it has not, it is a leadde that is stored in the
database and we only have to return its value. Otherwiseustlesf check if all actions
have been applied at least once. If not, we randomly choasefdhe unapplied actions
and create its successor by calculating the image. If abrethave been used at least
once, we take the action that maximizes the UCT value. In batfes we increment
the number of applications of the action, update the estirofthis node, increment
its number of visits, and return the value. For the calcafatf the UCT value, we
transform the estimated values into the interjgall] by adding100 and dividing the
result by200, if it is the first player's move, or by-200, if it is the second player’s.

Algorithm 3: UCT search functiorsgarch).

Input: state classification
if state.visits= 0 then

if 3z, y. (state.bdd classificationz, y) # L) then
state.visits— 1;

state.estimate— x — y ; /I maximize the difference
return state.estimate
foreach action € transdo
if (state.bddn action) # L then state.actions— state.actions) action
if state.actions= () then return state.estimate
if [{a | a € state.actions\ a.visits= 0}| > 0 then
action — chooseActionRandom(gtate.actiony
successor— image(action, state.bdg;
else
action — findActionWithBestUCTstate.action}
successoF— getSuccessdstate action);
value — search(classificationsuccesso,
action.visits— action.visits+ 1;
state.estimate— (state.estimatestate.visits+ value) / (state.visitst 1);
state.visits— state.visitst 1;
return valug

5 Experimental Results

We implemented the algorithms in Java using JavaBDD, whickiges a native in-
terface to Fabio Somenzi’s CUDD package, and performed threan AMD Opteron
with 2.6 GHz and16 GB RAM.

For Clobber[1], we set the reward for a victory depending on the numbenofes
taken. This way, we performed the classification 3ox 4 and4 x 5 boards that are
initially filled with the pieces of both players alternating/hile our older algorithm
takes more than an hour for tl3ex 4 board, our improved version finishes after less
than five seconds. The result is that the game is a victoryh®rsecond player with
two pieces of each player remaining. On the 5 board, nearly26.8 million states
are reachable, while less than half a million BDD nodes saifiicrepresent them. The
older algorithm cannot classify the game witRith days, whereas the improved one is
able to classify the reachable states withihours andl5 minutes. This game is won
for the first player with three own and two opponent piecesaiaing.

With Clobber we also performed UCT with a timeout of one minutiere, we
compare the estimates for the initial state for differertgame database sizes (number
of backward steps). Fig. 2 shows the difference of the estisnan the two players’
rewards (higher values mean higher rewards for the firstepjayAs can be seen, we
get a solution much nearer to the optimal outcome & after a shorter time with the
larger databases. In fact, for databases that result froynfee backward steps, after
one minute the estimate for the initial state is far from th8roal one and thus might be
misleading. Also, with the better databases the algoritamperform more iterations.

The game ofCrisscrosds a two-player adaptation of Chinese Checkers and was one
of the games used in the qualification phase ot competition. Our algorithm can
classify it completely in about twelve seconds. Ned#9,000 states are reachable and

10

T T
optimal solution
backward depth 0 --—-----
backward depth 1 -------- -
backward depth 2
backward depth 3 ————
backward depth 4 -------- |
backward depth 5 -- - -- -

10 [y

20 e

estimated value

-30

-40

-50

1 10 100 1000 10000 100000 1le+06
number of iterations

Fig. 2. Estimates foB x 4 Clobber with different endgame databases (averaged over 10 runs)

100 =
! ‘
[BRI
[
IR
50 ',
] i - RS
= |
[\
> d
8 o : '
2 ;
E h /) total estimate
2 AN - . drop-1 estimate ~——--—-
/ PN e S drop-2 estimate -~
-50 7 i SO e drop-3 estimate .
/ i ~ ’ drop-4 estimate ————
i ! drop-5 estimate -------
/ / i drop-6 estimate - -- - -
-100 i drop-‘7 estimate -—-—-— |

1 10 100 1000 10000 100000
number of iterations

Fig. 3. The results for Connect Four.

the optimal outcome i85/100, i. e. both players can reach their goal positions but the
second player is the first to reach it.

For Connect Foumwe performed UCT, as it takes too long (several hours) — asw al
too much RAM (more tham6 GB) — to be classified. Fig. 3 shows the results after about
2.5 hours. Nearly1 00,000 iterations were performed with a final estimatel 8f3 at the
initial state (again the value gives the difference of thineste on the two players’
rewards, higher being better for the first player). As the g@won for the first player,
the correct value i200. In Fig. 3, we can see that the estimate for the optimal move,
dropping the first piece in the middle columrgp-4), is the highest20.6 vs. 9.3 for
the second best). Furthermore, the estimates for the mesetting in a drawdrop-3
anddrop-5) are slightly higher than those for the losing moves. Afienmore thars00
iterations, which are performed in less than ten secondsatteady is the case. We
also found out that in the end the optimal move has been agdlghout ten times as
often as the other possible moves, thus it has the most lekstimate.

6 Conclusion

In this paper, we have proposed a new symbolic algorithmhiewctassification of gen-
eral non-simultaneous two-player games. We have showrathiag¢ar number (in the

depth of the game graph) of pre-images suffices to classifly augame. Furthermore,
we have presented a symbolic variant of UCT that uses ouritdigo beforehand to
construct endgame databases.

We have presented results for several games. For Clobbeed@rimped the clas-
sification algorithm as well as the UCT algorithm, while forigScross we performed
only the classification. In Connect Four, we could not finisé tlassification and so
used the classification calculated so far as an endgameadatédy the UCT algorithm.

With the classification, we are able to check how well playidsin real matches.
To do this, we can start with the initial state and performahbgons the players chose
during the matches. For the successor state we can find tkethtis in, which gives
the optimal reward achievable from this state. Whenever thekdd is changed, the
current player has performed a suboptimal move. This might &nalyzing the quality
of existing players.

References

1. M. Albert, J. P. Grossman, R. J. Nowakowski, and D. Wolfe. An ohigtion to clobber.
INTEGERS: The Electronic Journal of Combinatorial Number Thebfg), 2005.
2. V. Allis. A knowledge-based approach of connect-four. Mastesis, Vrije Universiteit
Amsterdam, October 1988.
3. R. E. Bryant. Graph-based algorithms for boolean function martipnldEEE Transactions
on Computers35(8):677—-691, 1986.
4. J. Clune. Heuristic evaluation functions for general game playingdAAl, pages 1134—
1139, 2007.
5. S. Edelkamp and P. Kissmann. Symbolic exploration for generat géawying in PDDL. In
ICAPS-Workshop on Planning in Gameg07.
6. H. Finnsson and Y. Bynsson. Simulation-based approach to general game playiAg\A
pages 259-264, 2008.
7. S. Gelly and Y. Wang. Exploration exploitation in Go: UCT for Monte-C&m InNIPS-
Workshop on On-line Trading of Exploration and Exploitati@006.
8. M. R. Genesereth and R. E. Fikes. Knowledge interchange formiation 3.0 reference
manual. Technical Report Logic-92-1, Stanford University, 1992.
9. M. R. Genesereth, N. Love, and B. Pell. General game playingrv@ve of the AAAI
competition.Al Magazine 26(2):62—72, 2005.
10. L. Kocsis and C. Szepeai. Bandit based Monte-Carlo planning. ECML, volume 4212
of LNCS pages 282—-293, 2006.
11. N. C. Love, T. L. Hinrichs, and M. R. Genesereth. General galmgng: Game description
language specification. Technical Report LG-2006-01, Stanfogicl@roup, April 2006.
12. D. V. McDermott. The 1998 Al planning systems competitidh Magazine 21(2):35-55,
2000.
13. S. Schiffel and M. Thielscher. Fluxplayer: A successful galrgame player. IMAAI, pages
1191-1196, 2007.

