
When Abstractions Met Landmarks

Carmel Domshlak and Michael Katz and Sagi Lefler∗

Faculty of Industrial Engineering and Management
Technion—Israel Institute of Technology

Haifa, Israel

Abstract

Abstractions and landmarks are two powerful
mechanisms for devising admissible heuristics for
classical planning. Here we aim at putting them
together by integrating landmark information into
abstractions, and propose a concrete realization of
this direction suitable for structural-pattern ab-
stractions, as well as for other abstraction heuris-
tics. Our empirical evaluation shows that land-
mark information can substantially improve the
quality of abstraction heuristic estimates.

Introduction
Heuristic state-space search is a common and suc-
cessful approach to classical planning, and in par-
ticular, to cost-optimal classical planning. Apart
from the choice of the search algorithm, heuristic-
search solvers for cost-optimal planning differ
mainly in their admissible heuristic estimators. Re-
cent years have seen a growing body of work on
expanding the palette of heuristic estimators, with
most (if not all) current admissible heuristics being
based on one of the following three ideas:
1. critical paths: the hm heuristic family (Haslum

and Geffner 2000), with the h1 ≡ hmax member
being closely related to the delete relaxation idea,

2. abstractions: pattern databases (Edelkamp
2001), merge-and-shrink abstractions (Helmert,
Haslum, and Hoffmann 2007), and structural
patterns (Katz and Domshlak 2008b),

3. landmarks: the admissible landmark heuristics
hL and hLA (Karpas and Domshlak 2009), and
hLM-cut (Helmert and Domshlak 2009), with all
three being also closely related to delete relax-
ation.
∗The work of the authors was partly supported by

Israel Science Foundation grant 670/07.
Copyright c© 2010, Association for the Advancement
of Artificial Intelligence (www.aaai.org). All rights re-
served.

Until very recently, these three ideas have been
developed in relative isolation, and thus there has
been no cross-fertilization between them. In a re-
cent work aiming at connecting between the differ-
ent approaches, Helmert and Domshlak (2009) in
particular show that additive hmax and admissible
landmark heuristics are in fact very much related.
This realization allowed the authors to develop a
novel admissible landmark heuristic, hLM-cut, that
has dramatically changed the state of the art in
performance for cost-optimal planning.

In this work we consider another edge of the
above triangle of ideas, namely abstractions and
landmarks, and try to exploit the best of both
worlds by fertilizing the former with the latter. In
general, abstraction heuristics have been shown by
Helmert and Domshlak (2009) to be more expres-
sive (in a proper sense of this notion) than land-
mark heuristics. However, all the currently used
mechanisms for devising abstraction heuristics ap-
pear to be quite dependent on the richness of the
goal description that comes with the problem spec-
ification. Informally, the fewer the sub-goals explic-
itly mentioned by the problem, the less guided (and
thus potentially less effective) are the procedures
for selecting concrete sets of abstractions. Our em-
pirical evaluation of this issue described at the be-
ginning of the paper clearly exemplifies this depen-
dence.

In this work we tackle precisely this Achilles heel
of automatically devised abstractions, and show
how problem’s landmarks can be used to substan-
tially cure it.

• We show how landmarks, constituting implicit
sub-goals of the problem, can be exploited in en-
hancing abstraction heuristics by compiling the
landmarks into the problem specification. The
proposed problem compilation is extremely sim-
ple, yet it preserves all the essential reachabil-
ity properties of the original problem, and re-
sults in boosting substantially the quality of the

induced heuristic estimates. Focusing on fork-
decomposition structural patterns (Katz and
Domshlak 2008b) we also show that some invest-
ment in action-cost partitioning improves the in-
formativeness of the landmark-enhanced abstrac-
tions even further.

• We both investigate the straightforward ap-
proach of directly solving the landmark enhanced
problem, as well as propose a novel approach of
searching for plans in the state space of the orig-
inal problem while estimating the search nodes
via their mappings to the landmark enhanced
problem. The latter demands maintaining in-
formation about the achievement of the land-
marks during the search, and thus the LM-A∗

algorithm (Karpas and Domshlak 2009) is used.
Our empirical evaluation clearly testifies for the
higher effectiveness of the latter approach.

Preliminaries
We consider classical planning tasks corresponding
to state models with single initial state and only
deterministic actions; here we consider state mod-
els captured by the sas+ formalism (Bäckström
and Nebel 1995) with non-negative action costs.
Such a planning task is given by a quintuple Π =
〈V ,A, I , G, cost〉, where:
• V is a set of state variables, each v ∈ V is

associated with a finite domain dom(v); each
complete assignment to V is called a state, and
S = dom(V) is the state space of Π. I is an ini-
tial state. The goal G is a partial assignment to
V ; a state s is a goal state iff G ⊆ s.

• A is a finite set of actions. Each action a is
a pair 〈pre(a), eff(a)〉 of partial assignments to
V called preconditions and effects, respectively.
cost : A → R0+ is a real-valued, non-negative
action cost function.

The value of a variable v in a partial assignment
p is denoted by p[v]. By V (p) ⊆ V we denote the
set of variables instantiated by p. An action a is
applicable in a state s iff s[v] = pre(a)[v] for all
v ∈ V (pre(a)). Applying a changes the value of
each v ∈ V (eff(a)) to eff(a)[v]. The resulting state
is denoted by sJaK; by sJ〈a1, . . . , ak〉K we denote the
state obtained from sequential application of the
(respectively applicable) actions a1, . . . , ak starting
at state s. Such an action sequence is an s-plan if
G ⊆ sJ〈a1, . . . , ak〉K, and it is a cost-optimal (or, in
what follows, optimal) s-plan if the sum of its action
costs is minimal among all s-plans. The purpose of
(optimal) planning is finding an (optimal) I-plan.

For a pair of states s1, s2 ∈ S, by cost(s1, s2)
we refer to the cost of a cheapest action sequence
taking us from s1 to s2 in the state model of Π;

h∗(s) = mins′⊇G cost(s, s′) is the custom notation
for the cost of optimal s-plans for Π. Finally, we
refer later on to the causal graphs induced by the
planning tasks. The causal graph of a task Π =
〈V,A, I,G, cost〉 is a digraph over the nodes V . An
arc (v, v′) belongs to the causal graph iff v 6= v′

and there exists an action a ∈ A such that v′ ∈
V (eff(a)) and v ∈ V (eff(a)) ∪ V (pre(a)).

Let Π = 〈V , A, I , G, cost〉 be a planning task,
F =

⋃
v∈V dom(v) be the set of facts (assuming

name uniqueness), φ be a propositional logic for-
mula over facts F , π = 〈a1, . . . , ak〉 be an action
sequence applicable in I, and 0 ≤ i ≤ k. Follow-
ing the terminology of Hoffmann et al. 2004, we say
that φ is true at time i in π iff IJ〈a1, . . . , ai〉K |= φ,
and φ is a landmark of Π iff in each I-plan for Π,
it is true at some time.

While landmarks can be any formulas over facts,
we restrict our attention to disjunctions of facts,
and use notation φ ⊆ F to denote “disjunction
over the fact subset φ of F”. This restriction cov-
ers all the landmark discovery procedures suggested
in the literature. Due to hardness of deciding even
that a single fact is a landmark (Porteous, Sebastia,
and Hoffmann 2001), practical methods for finding
landmarks are either incomplete or unsound. In
what follows we assume access to a sound such pro-
cedure; in particular, in our empirical evaluation
reported here we use LAMA’s sound landmark dis-
covery procedure by Richter et al. (2008). In gen-
eral, however, the actual way of discovering land-
marks is tangential to our work.

Landmarks are exploited these days in both sat-
isficing and optimal planning as heuristic search,
either for devising an incremental, landmark-by-
landmark search strategy (Hoffmann, Porteous,
and Sebastia 2004) or for deriving heuristic es-
timates (Richter, Helmert, and Westphal 2008;
Karpas and Domshlak 2009; Helmert and Domsh-
lak 2009). In parallel, other sources of informa-
tion for heuristic guidance have been proven ex-
tremely valuable, and this in particular so with var-
ious problem abstractions.

An abstraction heuristic is based on mapping Π’s
transition system over states S to an abstract tran-
sition system over states Sα. The mapping is de-
fined by an abstraction function α : S → Sα that
guarantees costα(α(s), α(s′)) ≤ cost(s, s′) for all
states s, s′ ∈ S. The abstraction heuristic hα(s)
is then the distance from α(s) to the closest ab-
stract goal state. Abstraction heuristics are al-
ways admissible by their very definition. Two fam-
ilies of abstractions are used these days for de-
riving admissible heuristics: abstractions such as
in pattern databases (Edelkamp 2001; Haslum et
al. 2007) and merge-and-shrink (Helmert, Haslum,

2

domain (D) S(D)
MS-104 hF

Π1 Π SB E(Π1) E(Π) Π1 Π SB E(Π1) E(Π)
airport-ipc4 20 16 17 16 14.60 15.96 17 20 17 10.68 17.00
blocks-ipc2 21 18 18 18 7.29 18.00 18 21 18 3.83 18.00
depots-ipc3 7 5 7 5 3.22 4.88 4 7 4 0.88 4.00
driverlog-ipc3 12 11 12 11 2.59 11.00 10 12 10 1.84 10.00
freecell-ipc3 5 5 4 4 2.47 3.93 5 5 5 2.53 5.00
grid-ipc1 2 2 2 2 1.53 2.00 1 2 1 0.09 1.00
gripper-ipc1 7 7 7 7 7.00 6.45 7 7 7 6.91 7.00
logistics-ipc1 6 4 4 4 3.43 3.03 2 6 2 0.01 2.00
logistics-ipc2 22 16 16 16 6.18 16.00 10 22 10 0.07 10.00
miconic-strips-ipc2 55 50 55 50 29.78 50.00 50 51 50 30.51 50.00
mprime-ipc1 23 20 21 20 19.12 19.79 20 23 20 1.56 20.00
mystery-ipc1 21 17 17 17 16.57 16.22 18 21 18 4.84 18.00
openstacks-ipc5 7 7 7 7 6.91 7.00 7 7 7 4.24 7.00
pathways-ipc5 4 4 4 4 3.13 3.42 4 4 4 4.00 4.00
pipesworld-notankage-ipc4 21 17 21 17 9.93 14.32 13 16 13 7.77 13.00
pipesworld-tankage-ipc4 14 11 13 11 4.91 10.11 8 10 8 5.15 8.00
psr-small-ipc4 50 50 50 50 37.92 50.00 49 49 49 41.17 49.00
rovers-ipc5 6 6 6 6 5.59 5.79 6 6 6 2.46 6.00
satellite-ipc4 6 6 6 6 5.37 5.04 6 6 6 2.93 6.00
schedule-strips 46 15 19 14 14.00 14.00 46 46 46 34.95 39.03
tpp-ipc5 6 6 6 6 5.99 6.00 6 6 6 2.33 6.00
trucks-ipc5 6 6 5 5 5.00 2.01 6 6 6 2.95 6.00
zenotravel-ipc3 11 9 11 9 7.05 7.86 8 11 8 2.06 8.00

378 308 328 305 219.57 292.81 321 364 321 173.74 314.03

Table 1: Evaluation of the impact of goal reformulation on merge-and-shrink and fork-decomposition heuris-
tics. Per heuristic, the first three columns capture the number of solved tasks under original formulation (Π),
single-goal reformulation (Π1), and under both formulations (SB). The last row in these columns captures
the total number of solved planning tasks. The last two columns per heuristic depict the measure of success
in terms of expanded nodes, with each entry being the sum of our measure over all the tasks in the domain
solved under both formulations. The last row in those columns provides the overall measures.

and Hoffmann 2007) are represented explicitly by
their induced transition systems, while structural
patterns (Katz and Domshlak 2008b; 2009) corre-
spond to implicitly represented abstractions.

Abstractions and Goal Sensitivity

One key feature of abstraction heuristics is that
typically there is a great degree of flexibility in
abstraction selection. This flexibility is a mixed
blessing because the choice of abstraction may dra-
matically affect the quality of the heuristic esti-
mate, while homing in on a better/best choice is not
easy. A closer look at some successful approaches to
both (explicit) pattern database abstractions and
(implicit) structural pattern abstractions reveals
some commonality in their strategies to resolve that
choice dilemma. When a set of pattern databases
is selected, the farther state variables are from the
goal-mentioned variables V (G) in the causal graph
of the problem, the more they are likely to be ab-
stracted away (ignored) altogether. The picture
with the fork-decomposition structural patterns is
very much similar. While there is not much room
for flexibility in selecting such structural patterns,
the size of the patterns’ set, and thus the qual-
ity of the resulting heuristic, depend crucially on
the number of goal-mentioned variables. The sit-
uation with the merge-and-shrink abstractions is a
bit more complicated to frame, but the concrete
merge-and-shrink procedure suggested and evalu-

ated by Helmert et al. (2007) also puts more focus
on the goal-mentioned variables and their close an-
cestors in the causal graph.

This dependence of some abstraction heuristics
on the size of V (G) is quite problematic as any
sas+ planning task can easily be reformulated to
contain just a single goal-mentioned variable. To
evaluate this dependence empirically, we have con-
ducted a targeted evaluation on a wide sample of
planning domains from the International Planning
Competitions (IPC) 1998-2006. We have focused
on two abstraction heuristics, namely merge-and-
shrink (Helmert, Haslum, and Hoffmann 2007) with
104 abstract states for explicit abstractions and
the structural-pattern database version of the hF

heuristic (Katz and Domshlak 2009) for implicit ab-
stractions. Both these heuristics have been imple-
mented within a standard heuristic forward search
framework of the Fast Downward planner (Helmert
2006), and A∗ algorithm with full duplicate elimi-
nation was used. All the experiments were run on a
3GHz Intel E8400 CPU; the time and memory lim-
its were set to 30 minutes and 1.5 GB, respectively.

In terms of expanded nodes, Table 1 shows that
the accuracy of the abstraction heuristics on the
original tasks is substantially higher than this on
the single-goal reformulations. The specific mea-
sure for comparison is as follows. For each of the
two problem formulations, each task contributes a
value equal the minimal number of expanded nodes
among the two formulations divided by the number

3

of expanded nodes under the respective formula-
tion. If the denominator is 0 (if, e.g., the initial
state is a goal state, or the heuristic estimate of the
initial state is ∞), then this value is defined to be 1.
As we are interested in comparing expanded nodes,
we account only for tasks solved under both for-
mulations, and thus the nominator is always well-
defined. Each task grants the winning formulation
the value of 1, and the other formulation a value
in [0, 1]. For example, if A∗ on Π1 opens 1000
nodes and on Π it opens 3000 nodes, then Π con-
tributes 1 to the measure E(Π1) and 1/3 to E(Π).
The last row in the table sums up these values over
all tasks solved under both problem formulations.
Note that, while both merge-and-shrink and fork-
decomposition heuristics got hurt by ”hiding” the
goals of the tasks, the degradation in accuracy of
the fork-decomposition heuristic was much higher
due to its explicit reliance on the richness of goal
specification in the task.

Bringing Landmarks into
Abstractions

We now proceed with, first, arguing that landmarks
have a natural potential to enhance abstraction
heuristics by targeting one of the major sources
of their vulnerability. We then describe a simple
technique for enhancing a planning task with land-
mark information, and evaluate and discuss two
ways of exploiting this enhancement in abstrac-
tion based heuristic search optimal planning. Here
as well, our empirical evaluation of the framework
is focused on two representatives of abstraction
heuristics: merge-and-shrinks (Helmert, Haslum,
and Hoffmann 2007) for explicit abstractions and
fork-decomposition (Katz and Domshlak 2009) for
implicit abstractions.

Revisiting our experiment with ”hiding” the
goals of the planning tasks, it is clear that things
that were goals before the reformulation do not re-
ally cease to be goals, but only become implicit
goals. In fact, this is just one type of possible
implicit goals; in particular, any landmark is such
an implicit goal by its very definition. Given that
many such de facto goals are not explicitly given in
the description of the planning task, it is only nat-
ural to explore the possibility of converting some
(discoverable) implicit goals to explicit goals. Prob-
ably the most direct way to achieve that is via a spe-
cific notion of one-sided equivalence between plan-
ning tasks which we call surrogate. For a planning
task Π, let ΦΠ denote the set of all optimal plans
for Π. Given two planning tasks Π and Π′, we say
that Π′ is a surrogate of Π if

(i) ΦΠ′ = ∅ iff ΦΠ = ∅,

(ii) there exists a mapping f : ΦΠ′ → ΦΠ such
that, for any ρ′ ∈ ΦΠ′ , f(ρ′) can be computed
in time polynomial in ||Π||, ||ρ′||, and ||f(ρ′)||.

Note that, if Π′ is a surrogate of Π, then instead
of optimally solving Π, one can optimally solve
Π′, and then reconstruct an optimal plan for Π
from the obtained plan for Π′. This is precisely
what we suggest to exploit using what we call di-
rect landmark-based surrogates. Given a planning
task Π = 〈V , A, I , G, cost〉, and a set of initially
unachieved (that is, not true in I) disjunctive land-
marks L ⊆ 2F of Π, the direct landmark-based sur-
rogate ΠL = 〈V L, AL, IL, GL, costL〉 of Π is con-
structively defined as follows.1

• For each landmark φ ∈ L, we introduce a new
variable vφ with dom(vφ) = {0, 1}, and set V L =
V ∪ {vφ | φ ∈ L}.

• The initial state and goals are set to IL = I ∪
{vφ =0 | φ ∈ L}, and GL = G ∪ {vφ =1 | φ ∈ L}.

• For each action a ∈ A, we introduce an action

aL = 〈pre(a), eff(a)∪{vφ =1 | eff(a)[v] ∈ φ ∈ L}〉,
that is, for each landmark φ ∈ L that a can
achieve, aL will assign the corresponding auxil-
iary variable vφ to its goal value. Given that, we
set AL = {aL | a ∈ A}.
Note that, for any plan ρ for Π, there is a plan ρ′

for ΠL of the same cost, obtained by replacing every
action a along ρ with aL. Thus, there is bijective,
cost-preserving correspondence between the plans
of Π and ΠL.

Proposition 1 Given a planning task Π and a set
of initially unachieved disjunctive landmarks L of
Π, the direct landmark-based surrogate ΠL of Π is a
surrogate of the latter, and can be constructed from
Π and L in polynomial time.

To illustrate the process of creating a direct
landmark-based surrogate, as well as the poten-
tial of using direct landmark-based surrogates with
abstraction heuristics, consider a planning task Π
with three binary variables V = {x, y, z}, action set
A of three actions

a1 = 〈{x = 0}, {x = 1}〉,
a2 = 〈{x = 1, y = 0}, {y = 1}〉,
a3 = 〈{y = 1, z = 0}, {z = 1}〉

initial state I = {x = 0, y = 0, z = 0}, and the goal
G = {z =1}. All the actions have the same cost 1.

1Landmarks corresponding to the explicit goals of
the task can be safely ignored in the construction of
ΠL, compiling in only landmarks φ ∈ L such that I 6|= φ
and G 6|= φ.

4

x

y

z

y

z

x

y

z

vx=1

vy=1

x

vx=1 vy=1

y

z vy=1

(a) (b) (c) (d)

Figure 1: Causal graphs (a,c) and fork decomposition (b,d) for the example task Π and its direct landmark-
based surrogate ΠL, respectively. Nodes with double-line contour correspond to the goal-mentioned variables
V (G) and V (GL).

Figure 1(a) depicts the causal graph of this plan-
ning task. While the cost of the optimal plan for
this task is 3, we have hF(I) = 2. The reason for
that is shown in Figure 1(b). Structural patterns
will not account for the cost of achieving x = 1,
despite the fact that it has to hold on any plan
for this task. Note that there are two initially un-
achieved landmarks in this task that go beyond G,
namely x=1 and y=1. Thus, the direct landmark-
based surrogate ΠL of Π will consist of the variables
V L = {x, y, z, vx=1, vy=1}, action set AL

a1 = 〈{x = 0}, {x = 1, vx=1 = 1}〉,
a2 = 〈{x = 1, y = 0}, {y = 1, vy=1 = 1}〉,
a3 = 〈{y = 1, z = 0}, {z = 1}〉

initial state IL ={x=0, y=0, z=0, vx=1=0, vy=1=0},
and goal GL = {z = 1, vx=1 = 1, vy=1 = 1}. The
causal graph of ΠL is shown in Figure 1(c), and
Figure 1(d) shows the fork-decomposition of ΠL.
The left pattern will have the action representatives
a1
1 = 〈{x = 0}, {x = 1}〉, a2

1 = 〈{x = 1}, {vx=1 =
1}〉, and a1

2 = 〈{x = 1}, {vy=1 = 1}〉. The right
pattern will have the action representatives a2

2 =
〈{y = 0}, {y = 1}〉, a3

2 = 〈{y = 1}, {vy=1 = 1}〉,
and a1

3 = 〈{y = 1, z = 0}, {z = 1}〉. Uniform action
cost partitioning will assign 1 to a1

3, 1/2 to a1
1 and

a2
1, and 1/3 to a1

2, a2
2, and a3

2. The optimal plan
costs for the left and right patterns are 4/3 and 5/3,
respectively, resulting in hF(IL) = h∗(IL) = 3.

In general, while the resemblance between the
respective components of Π and ΠL is high, fork
decomposition of ΠL both enriches the patterns al-
ready present in the fork decomposition of Π (by,
e.g., adding more children to forks’ roots), and in-
duces patterns that would not be present in the fork
decomposition of Π at all. In turn, the richer is the
fork-decomposition in terms of the number of pat-
terns and the comprehensiveness of each pattern,
the higher the estimate we can possibly obtain from
that decomposition. However, “possibly obtain”
and “obtain” are not necessarily the same thing,

and a lot depends on the specific action cost par-
titioning between the patterns of the additive en-
semble comprising hF (Katz and Domshlak 2008a).
The choice of action cost partitioning can vary from
optimal (in terms of maximizing the estimate) to al-
most arbitrarily bad. The good news is that, under
optimal action cost partitioning (achievable in poly-
nomial time; see Katz and Domshlak 2008a), the
dominance relation hF(IL) ≥ hF(I) always holds.
In fact, a stronger claim holds.

Proposition 2 Given a planning task Π =
〈V,A, I,G, cost〉, and a direct landmark-based sur-
rogate ΠL of Π, for any state s of Π and any state
s′ of ΠL such that s′[V] = s, under the optimal
action cost partitioning we have hF(s′) ≥ hF(s).

While the statement of Proposition 2 is very pos-
itive, in practice the picture is more complicated.
The procedure of Katz and Domshlak (2008a)
for devising an optimal action cost partition is
polynomial-time, yet it is based on solving large
linear programs, and thus takes too much time
to be computed in practice at every search node.
As the first sanity check for the practical useful-
ness of switching from Π to ΠL, we compared the
initial-state estimates of a sub-optimal (yet cheep
to compute) fork-decomposition heuristic for plan-
ning tasks from a wide sample of IPC domains,
as well as for their respective direct landmark sur-
rogates. The landmarks were discovered using
LAMA’s landmark discovery procedure (Richter,
Helmert, and Westphal 2008). The construction
of the surrogate task ΠL from the original task Π
was done as a part of the preprocessing.

Table 2 summarizes the implication of switching
to the surrogate problems in terms of the quality of
the initial state estimation with the above setting
of hF. These results appear to be very promis-
ing. Except for the Blocksworld domain where es-
timates on ΠL on average got slightly worse, in
all other domains the estimates improved (or re-

5

domain
hF(I)

c∗
hF(IL)

c∗
airport-ipc4 (20) 0.627 0.969
blocks-ipc2 (30) 0.477 0.432
depots-ipc3 (7) 0.419 0.508
driverlog-ipc3 (14) 0.632 0.708
freecell-ipc3 (7) 0.295 0.636
grid-ipc1 (2) 0.258 0.571
gripper-ipc1 (11) 0.375 0.546
logistics-ipc1 (6) 0.854 0.931
logistics-ipc2 (22) 0.998 0.994
miconic-strips-ipc2 (140) 0.434 0.964
mprime-ipc1 (25) 0.489 0.625
mystery-ipc1 (22) 0.621 0.713
openstacks-ipc5 (7) 0.611 0.829
pathways-ipc5 (5) 0.187 0.187
pipesworld-notankage-ipc4 (22) 0.302 0.359
pipesworld-tankage-ipc4 (14) 0.218 0.293
psr-small-ipc4 (50) 0.169 0.178
rovers-ipc5 (7) 0.529 0.653
satellite-ipc4 (9) 0.541 0.844
tpp-ipc5 (6) 0.838 0.836
trucks-ipc5 (9) 0.385 0.608
zenotravel-ipc3 (12) 0.694 0.809

Table 2: Average ratios between the initial state
estimates of hF on the original and landmarks-
enhanced problems, and the optimal solution
length c∗ = h∗(I) = h∗(IL). The number of
tasks taken into consideration per domain appears
in parentheses in the first column.

mained unchanged), with the most substantial av-
erage improvement of ≈ 120% in Freecell, Grid, and
Miconic. Given that LAMA’s landmark discovery
procedure typically takes very low time, these re-
sults suggest that the basic idea of incorporating
landmark information into the process of problem
abstraction is valuable. Next, however, we show
that there is still some work to be done to make
the basic idea trully effective.

Exploiting ΠL

The left half of Table 3 (A∗/h on ΠL vs. Π) de-
scribes the effeciveness of the straightforward ap-
proach of solving the surrogate task ΠL compara-
tively to solving the original task Π.

The first observation is that for both abstrac-
tions, the total number of solved planning tasks
decreases when we switch from Π to ΠL. There are
only four domains in which this number increased,
namely Blocksworld with MS-104 heuristic and
Miconic, Satellite, and Trucks with hF heuris-
tic. On the rest of the domains, with both heuris-
tics the number of solved tasks either decreases
or remains unchanged. A deeper look into the
expanded nodes information revealed that in the
case of merge-and-shrink abstraction, the num-
ber of expanded nodes decreased substantially on
three domains only, namely Blocksworld, Free-
cell, and Mprime, remaining almost unchanged
or increasing substantially on the rest of the do-
mains. In the case of structural-patterns the pic-
ture is different. Most of the domains are divided
almost evenly to sets of substantially increased

and substantially decreased numbers of expanded
nodes, with only small number of domains having
the number of expanded nodes almost unchanged.
On Blocksworld, Depots, Driverlog, Grip-
per, Logistics-00, Pipesworld-NoTankage,
and Pipesworld-Tankage the number of ex-
panded nodes substantially increased, causing less
tasks to be solved on almost all of these domains.
On the other hand, on Miconic, Satellite,
Trucks, Airport, Freecell, Grid, Logistics-
98, Mprime, Openstacks, and Rovers the num-
ber of expanded nodes substantially decreased, on
each of the first three causing one more task to be
solved. Interestingly, on Airport, despite the de-
crease in expanded nodes on average, less tasks are
solved overall.

The explanation for this ”inconsistency” between
Tables 2 and 3 is actually very simple. In general,
the state space of the surrogate task ΠL is 2|L| times
larger the state space of the original Π. Thus the
number of reachable states in ΠL can be up to 2|L|
times larger than in Π because every state of Π is
now considered in different contexts of achievement
of different subsets of landmarks. Hence, even if
the heuristics functions on ΠL are getting more ac-
curate, the effort required from A∗ to ”prove” the
optimality of the optimal solution increases.

Exploiting ΠL Indirectly
To eliminate this pitfall to a large extent we have
evaluated a scheme in which the heuristic estimates
come from the landmark enhanced tasks while the
(forward state-space) search is performed on the
original task using the recent LM-A∗ search algo-
rithm of Karpas and Domshlak (2009). In general,
this scheme works as follows.
1. Starting with the initial state I, each evaluated

state s of Π is first associated with a subset of
landmarks Ls ⊆ L that must be achieved on the
way to the goal from s. Determining the land-
mark set Ls is done using the techniques devel-
oped by Richter et al. (2008) and Karpas and
Domshlak (2009).

2. Given Ls, the state s is mapped into the state s′

of ΠL where s′[V] = s, and, for each φ ∈ L, if
φ ∈ Ls, then s′[vφ] = 0, otherwise, s′[vφ] = 1.

3. The heuristic estimate for s is set to hF(s′). The
latter is no longer a state-dependent, but path
(or, in fact, multi-path) dependent estimate, and
thus the machinery of LM-A∗ is required. Impor-
tantly, however, this estimate is still admissible,
and thus LM-A∗ guarantees to find optimal so-
lutions.
The right half of Table 3 (LM-A∗ on Π; h on ΠL

vs. A∗/h on Π) describes the effeciveness of such

6

domain (D)
A∗/h on ΠL vs. Π LM -A∗ on Π; h on ΠL vs. A∗/h on Π

MS-104 hF
MS-104 hF

ΠL Π SB E(ΠL) E(Π) ΠL Π SB E(ΠL) E(Π) ΠL Π SB E(ΠL) E(Π) ΠL Π SB E(ΠL) E(Π)
airport-ipc4 15 17 15 14.71 15.00 18 20 18 17.95 13.86 16 17 16 16.00 13.90 17 20 17 17.00 10.86
blocks-ipc2 20 18 18 16.83 13.35 18 21 18 3.59 17.60 18 18 18 17.26 11.46 17 21 17 5.98 17.00
depots-ipc3 6 7 6 4.43 5.84 4 7 4 1.41 4.00 4 7 4 4.00 3.28 4 7 4 2.97 3.59
driverlog-ipc3 11 12 11 9.94 9.77 11 12 11 8.25 9.77 11 12 11 11.00 8.66 11 12 11 10.84 6.64
freecell-ipc3 4 4 4 3.99 2.67 5 5 5 5.00 1.38 4 4 4 3.87 3.59 5 5 5 5.00 1.45
grid-ipc1 2 2 2 1.40 1.34 2 2 2 2.00 1.03 1 2 1 1.00 0.12 2 2 2 2.00 0.20
gripper-ipc1 4 7 4 1.12 4.00 5 7 5 0.75 5.00 6 7 6 5.01 5.91 6 7 6 6.00 5.22
logistics-ipc1 3 4 3 0.61 3.00 6 6 6 4.31 2.94 3 4 3 2.12 1.67 5 6 5 4.38 1.40
logistics-ipc2 16 16 16 10.76 16.00 20 22 20 11.91 20.00 14 16 14 10.84 13.03 20 22 20 11.42 20.00
miconic-strips-ipc2 44 55 44 35.61 43.75 52 51 48 45.16 21.40 63 55 48 43.04 38.87 108 51 51 51.00 8.17
mprime-ipc1 17 21 17 14.03 10.93 22 23 22 17.39 9.58 20 21 20 18.22 13.64 23 23 23 21.07 11.43
mystery-ipc1 16 17 15 14.29 14.01 21 21 21 16.65 16.86 19 17 17 16.91 15.96 21 21 21 19.44 16.44
openstacks-ipc5 7 7 7 7.00 6.96 7 7 7 7.00 1.26 7 7 7 2.00 7.00 7 7 7 7.00 1.27
pathways-ipc5 4 4 4 3.08 4.00 4 4 4 4.00 3.99 4 4 4 4.00 4.00 4 4 4 4.00 4.00
pipes-notank-ipc4 16 21 16 13.21 14.51 15 16 15 11.57 14.16 15 21 15 13.50 13.57 15 16 15 15.00 9.61
pipes-tank-ipc4 12 13 12 8.38 11.54 10 10 10 7.21 8.99 13 13 12 10.14 11.20 10 10 10 10.00 6.75
psr-small-ipc4 50 50 50 49.97 49.66 49 49 49 48.41 48.88 49 50 49 43.68 48.43 48 49 48 48.00 47.58
rovers-ipc5 6 6 6 5.80 5.94 6 6 6 6.00 3.14 5 6 5 5.00 4.24 5 6 5 5.00 2.01
satellite-ipc4 5 6 5 4.93 4.97 7 6 6 6.00 2.13 7 6 6 6.00 3.25 7 6 6 6.00 1.01
schedule-strips 19 19 17 17.00 17.00 46 46 46 42.38 43.61 19 19 19 19.00 19.00 46 46 46 46.00 46.00
tpp-ipc5 6 6 6 6.00 5.48 6 6 6 5.48 6.00 6 6 6 6.00 5.37 5 6 5 4.49 5.00
trucks-ipc5 4 5 4 2.79 3.57 7 6 6 6.00 1.79 4 5 4 2.29 3.89 7 6 6 6.00 0.84
zenotravel-ipc3 9 11 9 9.00 8.23 9 11 9 7.66 8.04 9 11 9 9.00 7.36 9 11 9 9.00 5.31

296 328 291 254.89 271.48 350 364 344 286.07 265.44 317 328 298 269.91 257.41 402 364 343 317.59 231.77

Table 3: A summary of the experimental results for A∗ search comparing landmarks enriched tasks to the
original tasks, and for searching the original tasks, comparing LM-A∗ with estimation on the landmark
enriched tasks to the plain A∗. The columns are as described previously in Table 1.

a scheme comparatively to the basic approach of
solving the original task Π with A∗. In general, the
reduction in the number of state expansions com-
paratively to running A∗ directly on the surrogates
ΠL has been consistently substantial. Note that,
despite this improvement of pruning, some tasks
solved with A∗/hF on ΠL have not been solved us-
ing LM-A∗ (e.g., task 8 in Driverlog), and this
because of a generally higher search-node process-
ing time of LM-A∗. However, the opposite has been
observed as well (e.g., task 13 of Driverlog, and
task 6 of Gripper), with the major difference being
observed in the Miconic domain: while A∗ with hF

solved 51 and 52 tasks from this domain on their
original and surrogate representations, respectively,
using the LM-A∗ scheme allowed for solving 108
tasks in Miconic.

Cost Partition Revisited
Note that, as it is exemplified by the still not good
results in the Blocksworld domain, the original
growth of the search space was not the only source
of troubles. Another critical pitfall is the interplay
between our fixed, ad hoc action cost partitioning
among the patterns and the typical nature of land-
marks. A landmark φ should take place only at
some time point along the plan. Very roughly, once
φ is achieved, the portions of the action costs “as-
signed to the achievement of φ” are getting lost,
resulting in erosion of the heuristic values. This is
where better action cost partition can potentially
improve the situation.

Table 4 compares the number of tasks solved with

LM-A∗ under our time and memory limits using
the basic uniform action cost partition with this
using (on the left) per-state optimal action cost
partition and (on the right) fixed action cost par-
titions being optimal for the initial states of the
tasks. Note that, in the case of per-state opti-
mal action cost partition, the evaluation is based
on solving very large linear programs, and thus the
evaluation time increases substantially. As a direct
result, despite a dramatic reduction in node expan-
sions, the total number of tasks solved within the
time limit decreases.2 Having said that, still some
nine tasks of the Miconic domain that were not
solved with any other fork-decomposition approach
are solved under the per-state optimal action cost
partition. In the case of (fixed) optimal for the ini-
tial state action cost partition the results are much
more promising. On most domains, the number of
expanded nodes decreases, resulting in increase in
the number of tasks solved on Rovers, Schedule-
strips, Trucks, and Zenotravel. Overall, the
number of solved tasks either increased or remained
the same on all the domains considered in the eval-
uation. In other words, even a fixed but not en-
tirely ad hoc action cost partition can provide a
nice balance between the effort invested in heuris-
tic computation and the benefit it buys us in the
time limited settings.

2On some problems solved under optimal action cost
partitioning, there were still a few search nodes for
which our LP solver failed solving the respective op-
timization problems. To avoid terminating the search,
the heuristic value for these nodes was set to 1.

7

domain (D)
optimal vs. uniform optimal for I vs. uniform

O U SB E(O) E(U) OI U SB E(OI) E(U)
airport-ipc4 7 17 7 6.77 6.52 17 17 17 17.00 17.00
blocks-ipc2 13 17 13 13.00 4.37 17 17 17 13.98 13.47
depots-ipc3 1 4 1 1.00 0.22 4 4 4 4.00 3.46
driverlog-ipc3 6 11 6 5.38 1.33 11 11 11 11.00 7.56
freecell-ipc3 2 5 2 2.00 0.07 5 5 5 5.00 3.22
grid-ipc1 0 2 0 0.00 0.00 2 2 2 2.00 2.00
gripper-ipc1 2 6 2 1.96 1.71 6 6 6 6.00 5.55
logistics-ipc2 17 20 17 17.00 11.20 20 20 20 19.01 18.62
logistics-ipc1 2 5 2 2.00 0.42 5 5 5 4.83 4.03
miconic-strips-ipc2 90 108 81 80.91 51.26 108 108 108 88.63 99.37
mprime-ipc1 9 23 9 9.00 2.79 23 23 23 21.98 18.08
mystery-ipc1 11 21 11 10.50 8.34 21 21 21 21.00 19.34
openstacks-ipc5 5 7 5 5.00 1.95 7 7 7 7.00 2.50
pathways-ipc5 4 4 4 4.00 2.36 4 4 4 4.00 2.37
pipesworld-notankage-ipc4 3 15 3 3.00 1.14 15 15 15 15.00 10.39
pipesworld-tankage-ipc4 2 10 2 2.00 0.91 10 10 10 10.00 6.76
psr-small-ipc4 40 48 40 40.00 26.98 48 48 48 35.86 47.94
rovers-ipc5 4 5 4 4.00 2.60 7 5 5 4.28 3.32
satellite-ipc4 5 7 5 5.00 2.30 7 7 7 5.61 5.02
schedule-strips 33 46 33 32.96 16.33 47 46 43 31.24 29.49
tpp-ipc5 5 5 5 5.00 4.02 5 5 5 5.00 4.02
trucks-ipc5 4 7 4 4.00 0.76 8 7 7 6.69 5.01
zenotravel-ipc3 7 9 7 7.00 2.48 11 9 9 8.84 5.24

272 402 263 261.47 150.06 408 402 399 347.94 333.76

Table 4: A summary of the experimental results for hF heuristic with optimal action cost partition per
evaluated state (O) vs. fixed uniform cost partition (U) and fixed optimal for initial state partition (OI) vs.
fixed uniform cost partition (U). The notation is similar to this in Table 1.

Summary

Motivated by an observation that the quality of
abstraction heuristics heavily depends on the rich-
ness of the explicit goal specification in the plan-
ning tasks, we have investigated exploiting implicit
goals in the form of discoverable landmarks for en-
hancing abstraction heuristics. We proposed a con-
crete scheme for such an enhancement that is based
on (i) compiling the landmarks into the planning
task specification, and (ii) using the compiled task
within heuristic-search planning side by side with
the original task. While this scheme is applica-
ble to arbitrary heuristics, our empirical evaluation
showed that it is especially attractive for structural-
pattern heuristics, and less so for explicit abstrac-
tions. The major reason for that appears to be
the fact that our approach to landmark compila-
tion into the task increases the dimensionality of
the latter up to a linear factor. While structural-
pattern abstractions are not sensitive to that mat-
ter, this is substantially less so for explicit abstrac-
tions. Hence, probably the most valuable direction
for future research is looking for alternative ways of
incorporating landmark information into abstrac-
tions that would fit well the specifics of the explicit
abstractions such as PDBs and merge-and-shrink.

References

Bäckström, C., and Nebel, B. 1995. Complex-
ity results for SAS+ planning. Comp. Intell.
11(4):625–655.
Edelkamp, S. 2001. Planning with pattern
databases. In ECP, 13–24.

Haslum, P., and Geffner, H. 2000. Admissible
heuristics for optimal planning. In ICAPS, 140–
149.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.;
and Koenig, S. 2007. Domain-independent con-
struction of pattern database heuristics for cost-
optimal planning. In AAAI, 1007–1012.
Helmert, M., and Domshlak, C. 2009. Landmarks,
critical paths and abstractions: What’s the differ-
ence anyway? In ICAPS, 162–169.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007.
Flexible abstraction heuristics for optimal sequen-
tial planning. In ICAPS, 200–207.
Helmert, M. 2006. The Fast Downward planning
system. JAIR 26:191–246.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004.
Ordered landmarks in planning. JAIR 22:215–278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal
planning with landmarks. In IJCAI.
Katz, M., and Domshlak, C. 2008a. Optimal ad-
ditive composition of abstraction-based admissible
heuristics. In ICAPS, 174–181.
Katz, M., and Domshlak, C. 2008b. Structural
patterns heuristics via fork decomposition. In
ICAPS, 182–189.
Katz, M., and Domshlak, C. 2009. Structural-
pattern databases. In ICAPS, 186–193.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001.
On the extraction, ordering, and usage of land-
marks in planning. In ECP.
Richter, S.; Helmert, M.; and Westphal, M. 2008.
Landmarks revisited. In AAAI, 975–982.

8

