
Structural-Pattern Databases

Michael Katz and Carmel Domshlak∗

Faculty of Industrial Engineering & Management
Technion, Israel

Abstract

Explicit abstraction heuristics, notably pattern-database and
merge-and-shrink heuristics, are employed by some state-of-
the-art optimal heuristic-search planners. The major limita-
tion of these abstraction heuristics is that the size of the ab-
stract space has to be bounded by a (large) constant. Targeting
this issue, Katz and Domshlak (2008b) introduced structural,
and in particular fork-decomposition, abstractions, in which
the planning task is abstracted by an instance of a tractable
fragment of optimal planning. At first view, however, the
lunch was not free. Some of the power of the explicit ab-
straction heuristics comes from pre-computing the heuristic
function offline, and then determine h(s) for each evaluated
state s by a very fast lookup in a “database”. In contrast,
fork-decomposition offer a poly-time, yet far from being fast,
computation.
In this contribution, we show that the time-per-node com-
plexity bottleneck of the fork-decomposition heuristics can be
successfully overcome. Specifically, we show that an equiv-
alent of the explicit abstractions’ notion of “database” exists
for the fork-decomposition abstractions as well, and this de-
spite of their exponential-size abstract spaces. Experimen-
tally, we show that heuristic search with such “databased”
fork-decomposition heuristics favorably competes with the
state-of-the-art of optimal planning.

Introduction
Heuristic search is nowadays one of the leading approaches
to cost-optimal planning. The difference between various
cost-optimizing heuristic-search planners is mainly in the
employed admissible heuristic functions. In state-space
search, such a heuristic estimates the cost of achieving the
goal from a given state, and being admissible, it guarantees
not to overestimate that cost. During the last decade, numer-
ous computational ideas evolved into new admissible heuris-
tics for domain-independent planning; this includes delete-
relaxing max heuristic hmax (Bonet & Geffner 2001), criti-
cal path heuristics hm (Haslum & Geffner 2000), landmark
heuristics hL and hLA (Karpas & Domshlak 2009), and
abstraction heuristics such as pattern-database (Edelkamp
2001), merge-and-shrink (Helmert, Haslum, & Hoffmann

∗The work of both authors is partly supported by Israel Science
Foundation grant 670/07.
Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2007), and structural-pattern (Katz & Domshlak 2008b)
heuristics. In addition, these heuristics have been combined
via additive ensembles of admissible heuristics (see, e.g.,
Edelkamp (2001), Haslum et al. (2005), Katz & Domsh-
lak (2008a), Karpas & Domshlak (2009)).

Apart from being as informative as possible, the heuristic
should also be computable in polynomial time. In fact, the
latter is a necessary, yet, in practice, insufficient condition.
If any reasonable time cap is put on the planner, the heuris-
tic computation per search node has to be really fast. For
many problems, this has to be the case even if the heuristic
is perfect, and this because of a large number of states eval-
uated along the optimal path. This well-known issue can
be exemplified by the results of the cost-optimal planning
track of the IPC-2008 competition in which even the best-
performing heuristic search planner HSP∗F (Haslum 2008)
solved less problems within the time limit of 30 minutes
than the baseline breadth-first search. With this “heuristic
selection” criterion of the fast per-search-node computation
in mind, here we focus on abstraction heuristics, and most
closely, on structural-pattern heuristics.

Probably the most well-known abstraction heuristics are
pattern database (PDB) heuristics that are based on project-
ing the planning task onto a subset of its state variables and
then explicitly searching for optimal plans in the abstract
space. The limitation of PDB heuristics in practice is that
both the size of the abstract space and its dimensionality
have to be fixed.1 The more recent, merge-and-shrink ab-
stractions, generalize PDB heuristics to overcome the lat-
ter limitation; instead of perfectly reflecting just a few state
variables, merge-and-shrink abstractions allow for imper-
fectly reflecting all variables. The abstract space of merge-
and-shrink is still searched explicitly, and thus it still has to
be of fixed size.

Targeting both limitations of the PDB abstractions, Katz
and Domshlak (2008b) introduced the framework of struc-
tural patterns in which the planning task is abstracted to a
tractable fragment of optimal planning. In the extreme case
where the problem itself belongs to that fragment, noth-
ing will be abstracted at all, and the perfect heuristic will

1This does not necessarily apply to symbolic PDBs that, on
some tasks, may provide exponential reduction of the PDB’s rep-
resentation (Edelkamp 2002).

be computed in polynomial time. Katz and Domshlak in-
troduced a concrete instance of the structural patterns idea,
called fork decomposition, in which the problem is projected
(in a proper meaning of this term) onto fork and inverted fork
subgraphs of the problem’s causal graph. The promise of
fork-decomposition has been shown via a formal asymptotic
performance analysis on selected domains, but the empirical
relevance has yet to be shown.

Examining the empirical effectiveness of the fork-
decomposition heuristics, we have implemented and evalu-
ated them using A∗ on numerous IPC domains. On many
domains, the quality of the fork-decomposition heuristics
appeared to be very encouraging, to say the least. How-
ever, in all domains we pretty quickly bumped into the wall
of the per-node computation complexity. While the planner
was able to solve many challenging problems within a stan-
dard memory cap, it was typically running out of reasonable
time limits. Surprising it was not. While pattern database
and merge-and-shrink heuristics are also computationally
prohibitive, they allow for pre-computing the heuristic val-
ues for all abstract states simultaneously, storing them in
a lookup table, and then reusing that pre-search computa-
tion between search states. In contrast, the abstract spaces
induced by structural patterns can be as large as the origi-
nal state space, and thus they cannot be pre-solved and pre-
stored exhaustively.

Overall, while the empirical (in)effectiveness of fork-
decomposition was not surprising, given the good quality of
its induced estimates, disappointing it was. Here, however,
we show that the time-per-node complexity bottleneck of
the fork-decomposition heuristics can be successfully over-
come. Specifically, we show that an equivalent of the PDB’s
and merge-and-shrink’s notion of “database” exists for the
fork-decomposition abstractions as well, and this despite of
their exponential-size abstract spaces. In fact, the same ef-
fect could possibly be achieved also for other (to be devel-
oped in the future) structural-pattern heuristics.

Unlike for PDBs and merge-and-shrink abstractions,
structural-pattern databases (and in particular these for the
fork-decomposition’s fork and inverted fork abstractions) do
not (and cannot) result in purely lookup computations of
h(s). In contrast, structural-pattern databases are based on a
proper partition of heuristic computation (h-partition) into
parts that can be shared between search states, and parts
that shall be computed per individual state. We prove ex-
istence of such effective h-partitions for both fork and in-
verted fork abstractions. We then formally and empirically
show that these h-partitions lead to fast pre-search and per-
node computations that allow for exploiting the informative-
ness of the fork-decomposition heuristics in practice. Exper-
imentally, we show that A∗ equipped with the “databased”
fork-decomposition heuristics favorably competes with the
state-of-the-art of cost-optimal planning.

Preliminaries
We consider planning problems captured by the SAS+ for-
malism (Bäckström & Nebel 1995) with non-negative ac-
tion costs. Such a problem is given by a quintuple Π =
〈V,A, I,G, c〉, where:

• V is a set of state variables, each v ∈ V is associated with
a finite domain D(v); the value provided to a variable v
by a (possibly partial) assignment p to V is denoted by
p[v]. Each complete assignment to V is called a state,
and S = D(V) is the state space of Π. I is an initial
state. The goal G is a partial assignment to V ; a state s
is a goal state iff G ⊂ s.

• A is a finite set of actions. Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precon-
ditions and effects, respectively. By Av ⊆ A we denote
the actions affecting the value of v. c : A → R+

0 is a
real-valued, non-negative action cost function.

An action a is applicable in a state s iff s[v] = pre(a)[v]
whenever pre(a)[v] is specified. Applying a changes the
value of v to eff(a)[v] if eff(a)[v] is specified. The result-
ing state is denoted by sJaK; by sJ〈a1, . . . , ak〉K we denote
the state obtained from sequential application of the (respec-
tively applicable) actions a1, . . . , ak starting at state s. Such
an action sequence is an s-plan if G ⊆ sJ〈a1, . . . , ak〉K, and
it is a cost-optimal (or, in what follows, optimal) s-plan if
the sum of its action costs is minimal among all s-plans. The
purpose of (optimal) planning is finding an (optimal) I-plan.

For a pair of states s1, s2 ∈ S, by c(s1, s2) we refer
to the cost of a cheapest action sequence taking us from
s1 to s2 in the transition system induced by Π; h∗(s) =
mins′⊇G c(s, s′) is the custom notation for the cost of the
optimal s-plan in Π. We also use two well-known graphical
structures induced by a planning task Π with variables V .

• The causal graph CG(Π) of Π is a digraph over nodes V .
An arc (v, v′) is in CG(Π) iff v 6= v′ and there exists an
action a ∈ A such that both eff(a)[v′] and either pre(a)[v]
or eff(a)[v] are specified.

• The domain transition graph DTG(v,Π) of v ∈ V is an
arc-labeled digraph over the nodes D(v) such that an arc
(ϑ, ϑ′) labeled with a ∈ A belongs to DTG(v,Π) iff both
eff(a)[v] = ϑ′ and either pre(a)[v] = ϑ or pre(a)[v] is
unspecified.

Our focus here is on state-dependent, admissible abstrac-
tion heuristics. A heuristic is state-dependent if its estimate
for a search node depends only on the problem state asso-
ciated with that node, that is, h : S → R+

0 ∪ {∞}. Most
heuristics in use these days are state-dependent (though see,
e.g., Richter et al. (2008) for a different case). A state-
dependent heuristic h is admissible if h(s) ≤ h∗(s) for
all states s. Finally, an abstraction heuristic is based on
mapping Π’s transition system over states S to an abstract
transition system over states Sα. The mapping is defined
by an abstraction function α : S → Sα that guarantees
cα(α(s), α(s′)) ≤ c(s, s′) for all states s, s′ ∈ S. The
(admissible) abstraction heuristic hα(s) is then the distance
from α(s) to the closest abstract goal state.

Heuristic Complexity
Accuracy and low time complexity are both desired yet com-
peting properties of heuristic functions. For many powerful
heuristics, and in particular abstraction heuristics, comput-
ing h(s) for each state s in isolation is infeasible—while

computing h(s) is polynomial in the description size of Π, it
is often not efficient enough to be performed at each search
node. Fortunately, for some heuristics this obstacle can be
overcome to a large extent by sharing most of the computa-
tion between the evaluations of h on different states. If that is
possible, the shared parts of computing h(s) for all problem
states s are pre-computed and memorized before the search,
and then reused during the search by the evaluations of h on
different states. This mixed offline/online heuristic compu-
tation, called henceforth h-partition, is adopted by various
optimal planners using backward critical-path heuristics hm

for m > 1 (Haslum, Bonet, & Geffner 2005), landmark
heuristics hL and hLA (Karpas & Domshlak 2009), and
abstraction pattern-database and merge-and-shrink heuris-
tics (Edelkamp 2001; Helmert, Haslum, & Hoffmann 2007).
Without an effective h-partition, optimal search with these
heuristics would not scale up well, while with such an h-
partition these heuristics constitute the state of the art of
heuristic search planning.

We define the time complexity of an h-partition as the
complexity of computing h for a set of states. Given a
subset of k problem states S′ ⊆ S, the h-partition’s time
complexity of computing {h(s) | s ∈ S′} is expressed as
O(X + kY), where O(X) and O(Y) are, respectively, the
complexity of the (offline) pre-search and (online) per-node
parts of computing h(s) for a state s ∈ S′.

Abstraction Heuristics and h-Partitions
As we briefly mentioned above, an abstraction heuristic for
a problem Π maps Π’s transition system over states S to an
abstract transition system over states Sα. The mapping is
defined by an abstraction function α : S → Sα that guar-
antees cα(α(s), α(s′)) ≤ c(s, s′) for all states s, s′ ∈ S.
Such “distance conservancy” is in particular guaranteed by
homomorphism abstractions, obtained (only) by systemati-
cally contracting groups of states into abstract states. The
abstraction heuristic hα(s) is the distance from α(s) to the
closest abstract goal state, and admissibility of hα is implied
by the distance conservancy of α.

The most well-studied abstraction heuristics are pattern
database (PDB) heuristics. Given a planning task Π over
state variables V , such a heuristic is based on projecting
Π onto a subset of its variables V α ⊆ V . Such a ho-
momorphism abstraction α maps two states s1, s2 ∈ S
into the same abstract state iff s1[V α] = s2[V α]. In-
spired by the (similarly named) domain-specific heuristics
for search problems such as (k2−1)-puzzles, Rubik’s Cube,
etc. (Culberson & Schaeffer 1998; Hernadvölgyi & Holte
1999; Felner, Korf, & Hanan 2004), PDB heuristics have
been successfully exploited in domain-independent plan-
ning (Edelkamp 2001; 2002; Haslum et al. 2007).

Apart from the need to automatically select good projec-
tions, the two limitations of PDB heuristics are the size of
the abstract space and its dimensionality. First, the number
of abstract states should be small enough to allow reachabil-
ity analysis in Sα by exhaustive search, and thus we must
have |Sα| = O(1). The bound on |Sα| is typically set ex-
plicitly given the time and memory limitations of the system.
Second, since PDB abstractions are projections, the explicit

constraint on |Sα| implies a fixed-dimensionality constraint
on the abstract space, that is, |V α| = O(1). In problems
with, informally, many alternative resources, this limitation
is a pitfall. For instance, suppose {Πi} is a sequence of
Logistics problems of growing size with |Vi| = i. If each
package in Πi can be transported by some Θ(i) vehicles,
then starting from some j, hα will not account at all for
movements of vehicles essential for solving Πj (Helmert &
Mattmüller 2007).

Note that, while the first limitation of projection abstrac-
tions can be overcome to a certain extent with additive en-
sembles of numerous projections, the dimensionality limi-
tation remains an issue in additive PDBs as well. Within
these limitations, however, a very attractive side of PDB ab-
stractions is the complexity of their natural hα-partition. In-
stead of computing hα(s) = h∗(α(s)) from scratch for each
evaluated state s (which would not be practical for all but
tiny projections), the practice is to pre-compute and store
h∗(α(s)) for all abstract states α(s) ∈ Sα, and then the per-
node computation of hα(s) boils down to hash-table lookup
with a perfect hash function. In our terms, the time and space
complexity of that PDB hα-partition for a set of k states is
O (|Sα| (log (|Sα|) + |A|) + k) and O(|Sα|), respectively.
This is precisely what makes PDB heuristics so attractive in
practice.

Aiming at preserving the attractiveness of the PDB hα-
partition while eliminating the bottleneck of fixed dimen-
sionality, Helmert, Haslum, and Hoffmann (2007) general-
ize the methodology of Dräger et al. (2006) and introduce
what we call merge-and-shrink (MS) planning abstractions.
MS abstractions are homomorphisms that generalize PDB
abstractions by allowing for more flexibility in selection of
pairs of state to be contracted. The problem’s state space is
viewed as the synchronized product of its projections onto
the single state variables. This product can be computed by
iteratively composing two abstract spaces, replacing them
with their product. While in a PDB the size of the abstract
space Sα is controlled by limiting the number of product
compositions, in MS abstractions it is controlled by inter-
leaving the iterative composition of projections with abstrac-
tion of the partial composites.

The accuracy of the MS heuristics crucially depends on
the order in which composites are formed and the choice of
abstract states to contract. This flexibility in the MS abstrac-
tion strategy also adds variability to the complexity of its
natural hα-partition. The time and space complexity for the
linear abstraction strategy of Helmert et al. are respectively
O (|V ||Sα| (log (|Sα|) + |A|) + k · |V |) and O(|Sα|). Sim-
ilarly to PDB abstractions, the per-node computation of
hα(s) with an MS abstraction α is just a lookup in a data
structure storing h∗(α(s)) for all abstract states α(s) ∈ Sα.
Hence, while the pre-search computation with MS abstrac-
tions can be more costly than with PDBs, the online part of
computing heuristic values is still extremely efficient. This
per-node efficiency allows Helmert et al. to demonstrate im-
pressive practical effectiveness of MS abstractions on sev-
eral IPC domains (Helmert, Haslum, & Hoffmann 2007).

Merge-and-shrink abstractions escape the fixed-
dimensionality constraint of PDBs, but not the constraint

on the abstract space to be of a fixed size. In attempt to
eliminate both these constraints of “explicit” abstractions,
Katz and Domshlak (2008b) introduce a framework of
structural-pattern abstractions. A structural-pattern abstrac-
tion α maps the problem in hand to an abstract problem
from a tractable fragment of optimal planning. This way,
the dimensionality of Sα is not limited even by |V |, and
the size of the abstract space is not limited even by the
size of the original space.2 In particular, Katz and Domsh-
lak (2008b) introduce a concrete family of structural-pattern
abstraction, fork-decomposition, corresponding to two
classes of tractable optimal planning. A digraph forms
fork/inverted-fork if it is connected, loop-less, and have all
its arcs outgoing/incoming from/to a single node (called
the root node of the graph). Propositions 3–4 of Katz and
Domshlak (2008b) state that an optimal plan for a planning
task Π can be found in polynomial time if

1. the causal graph of Π forms a fork, and the root variable
is binary-valued, or

2. the causal graph of Π forms an inverted fork3, and the
domain of the root variable is fixed.
Now, given a general planning task Π, for each variable

vi ∈ V , let V f
i ⊆ V contain vi and all its immediate succes-

sors in CG(Π), and V i
i ⊆ V contain vi and all its immediate

predecessors in CG(Π). At a high-level summary, the fork-
decomposition of Π with |V | = n is obtained by
(1) schematically constructing a set of projection abstrac-

tions {Πf
i,Π

i
i}n

i=1,

(2) reformulating the actions of {Πf
i,Π

i
i}n

i=1 to single-effect
actions so that the causal graphs of Πf

i and Πi
i become

respectively forks and inverted forks rooted in vi, and
(3) within each Πf

i, abstracting the domain of vi to {0, 1},
and within each Πi

i, abstracting the domain of vi to
{0, 1, . . . , b} with b = O(1).

The problems {Πf
i,Π

i
i}n

i=1 correspond to distance-
conservative (though, after step (2), not necessarily
homomorphic) abstractions of Π, and, similarly to PDB and
MS abstractions, can be used either separately or as parts of
heuristic ensembles.

To see that the fork-decomposition escapes both limita-
tions of the projection abstractions, note that both |V f

i | and
|V i

i | can be Θ(|V |), and thus each induced |Sα| can be
Θ(|S|). The latter is a blessing, but a mixed one, and both
sides of the story are demonstrated in Table 1, showing the
performance of four different planners on the planning tasks
from the Logistics domain of IPC-2000. The first planner,
hF, is A∗ equipped with the additive fork-decomposition
heuristic “all forks” under uniform action cost partition-
ing (Katz & Domshlak 2008b). It is compared to (1) MS-
105—Helmert et al.’s A∗ with a merge-and-shrink abstrac-

2While dimensionality larger than |V |, and abstract-space size
larger than |S| may appear excessive, see (Katz & Domshlak
2008a) for concrete examples of why this can be useful.

3Proposition 4 of Katz and Domshlak (2008b) also requires the
problem to be what is called 1-dependent, but this requirement was
later found unnecessary.

hF MS-105 HSP∗F Gamer
task h∗ nodes time nodes time nodes time time

04-0 20 21 0 21 0 21 0.3 0.3
04-1 19 20 0 20 0 20 0.4 0.3
04-2 15 16 0 16 0 16 0.4 0.3
05-0 27 28 0 28 0.4 28 0.6 0.4
05-1 17 18 0 18 0.4 18 0.7 0
05-2 8 9 0 9 0.4 9 0.8 0.3
06-0 25 26 0 26 1.2 26 1.0 0.4
06-1 14 15 0 15 1.3 15 1.2 0.3
06-2 25 26 0 26 1.3 26 1.0 0.4
06-9 24 25 0 25 1.2 25 1.0 0.4
07-0 36 37 3.9 37 4.9 24317 35.5 6.4
07-1 44 1689 93.7 49 4.9 362179 453.1 16.9
08-0 31 32 3.4 32 6.9 14890 33.5 3.9
08-1 44 45 5.4 45 7.2 114155 198.8 10.0
09-0 36 37 3.9 37 9.5 32017 83.2 5.8
09-1 30 31 3.7 31 9.4 6720 26.5 2.9
10-0 45 46 13.2 668834 29.7 599645 3376 610.0
10-1 42 43 12.2 1457130 43 478.7
11-0 48 697 214.3 701106 37.4 847.2
11-1 60 21959 5561.0
12-0 42 43 20.3 775996 43.6 444.5
12-1 68 106534 25241.5 2222340 87.5

Table 1: The results for A∗ on Logistics-2000 domain with
the additive fork-decomposition heuristic “all forks” hF un-
der uniform action cost partitioning. Comparison with A∗

and merge-and-shrink abstraction with |Sα| ≤ 105, HSP∗F
heuristic-search planner, and Gamer planner. h∗, nodes, and
time are the length (= cost) of the optimal plan, number of
expanded nodes and total time in seconds; for Gamer the
notion of expanded nodes is irrelevant.

tion constrained by |Sα| ≤ 105, (2) HSP∗F heuristic-search
planner, and (3) Gamer planner. MS-105 represents the state-
of-the-art in optimal planning with abstraction heuristics,
while Gamer and HSP∗F were the two best-performing cost-
optimal planners at IPC-2008.

As it appears from Table 1, at least on the Logistics do-
main, the abstraction-based heuristic search favorably com-
petes with the leading optimal-search planners: Both hF

and MS-105 outperform HSP∗F and Gamer on these planning
tasks. The comparison between hF and MS-105, however,
is more important to us here. On the one hand, hF almost
consistently expands less search nodes than MS-105, with
the difference hitting four orders of magnitude. On the other
hand, the time complexity of hF per search node is substan-
tially higher than this of MS-105, with the two expanding
(approximately) 4 and 100000 nodes per second, respec-
tively. The outcome is simple: while with no time limits
(and only memory limit of 1.5 GB) hF solves more tasks
than MS-105, the inverse holds with a time limit of one hour
(see tasks 11-1 and 12-1).

Structural-Pattern Databases
Empirical (in)effectiveness of the fork-decomposition
heuristics was not surprising, yet it was disappointing to
see an informative heuristic being out of reach of prac-
tical planning. Fortunately, this is not the end of the
story. We now show that the time-per-node complexity
bottleneck of fork-decomposition heuristics can be success-
fully overcome. Specifically, we show that an equivalent
of PDB’s and merge-and-shrink notion of “database” ex-
ists for fork-decomposition abstractions as well, despite of
their exponential-size abstract spaces. Of course, unlike

with PDB and merge-and-shrink abstractions, structural-
pattern databases (and in particular these for the fork-
decomposition’s fork and inverted fork abstractions) do not
(and cannot) result in purely lookup computations of hα(s).
The online part of the hα-partition has to be non-trivial in
the sense that its complexity cannot be O(1).

In the remainder of this section we prove existence of such
effective h-partitions for both fork and inverted fork abstrac-
tions. In the next section we empirically show that these h-
partitions lead to fast pre-search and per-node computations
that allow for successfully exploiting the informativeness of
the fork-decomposition heuristics in practice.

Theorem 1 Let Π = 〈V,A, I,G, c〉 be a planning task with
a fork causal graph rooted in a binary-valued variable r.
There exists an h∗-partition for Π such that, for any set of
k states, the time and space complexity of that h∗-partition
is, respectively, O(d3|V | + |Ar| + k · d|V |) and O(d2|V |),
where d = maxv D(v).

The proof of Theorem 1 is based on a modification of
the poly-time algorithm of Katz and Domshlak (2008b) for
computing h∗(s) for state s of such a task Π. Let D(r) =
{0, 1}, where s[r] = 0; for ϑ ∈ D(r), let ¬ϑ denote the
opposite value 1 − ϑ. Let σ(r) be a 0/1 sequence of length
1 + d, such that, for 1 ≤ i ≤ |σ(r)|, σ(r)[i] = 0/1 if i
is odd/even. Let �∗[σ(r)] be the set of all non-empty pre-
fixes of σ(r) if G[r] is unspecified, and the set of all non-
empty prefixes of σ(r) ending with G[r], otherwise. For
each σ ∈ �∗[σ(r)], c(σ) denotes the (straightforwardly
computable) cost of achieving the respective sequence of
value changes of r.

For each v ∈ V \ {r}, let DTG0
v and DTG1

v be the sub-
graphs of DTG(v,Π) obtained by removing from the latter
all the arcs labeled with 1 and 0, respectively.

1. For each v ∈ V \{r}, and each ϑ, ϑ′ ∈ D(v), compute the
shortest (i.e., cost-minimal) paths from ϑ to ϑ′ in DTG0

v

and DTG1
v .

2. For each σ ∈ �∗[σ(r)], and each v ∈ V \ {r}, build a
layered digraph Lv(σ) with |σ| + 1 layers L0, . . . , L|σ|,
where L0 consists of only s[v], and for 1 ≤ i ≤ |σ|, Li

consists of all nodes reachable from the nodes Li−1 in
DTG0

v/DTG1
v if i is odd/even. For each ϑ ∈ Li−1, ϑ

′ ∈
Li, Lv(σ) contains an arc (ϑ, ϑ′) weighted with the dis-
tance from ϑ to ϑ′ in DTG0

v/DTG1
v if i is odd/even.

3. Set R = ∅. For each σ ∈ �∗[σ(r)], a plan ρσ for Π is
constructed as follows.

i For each v ∈ V \{r}, find a shortest path from s[v] to
G[v] in Lv(σ). If no such path exists, go to the next
σ ∈ �∗[σ(r)]. The i-th edge on this path (say, from
ϑ ∈ Li−1 to ϑ′ ∈ Li) corresponds to the shortest path
from ϑ to ϑ′ in either DTG0

v or DTG1
v , and we denote

this path by Si
ϑ.

ii SetR = R∪{ρσ}, ρσ = S1 ·aσ[2] ·S2 ·. . .·aσ[m] ·Sm,
where m = |σ|, Si is obtained by an arbitrary merge
of {Si

v}v∈V \{r}, and ax is the action that changes the
value of r to x.

4. If R = ∅, then “unsolvable”. Otherwise, return ρ =
argminρσ∈R c(ρσ).

This algorithm can be formulated as follows.

(1) For each ϑr ∈ D(r), v ∈ V \ {r}, and ϑ, ϑ′ ∈ D(v),
let pϑ,ϑ′;ϑr

be the cost of the cheapest sequence of ac-
tions ϑ to ϑ′ provided r = ϑr. The whole set {pϑ,ϑ′;ϑr

}
can be computed by a straightforward variant of the all-
pairs-shortest-paths, Floyd-Warshall algorithm in time
O(d3|V |).

(2) For each v ∈ V \ {r}, 1 ≤ i ≤ d + 1, and ϑ ∈ D(v),
let gϑ;i be the cost of the cheapest sequence of actions
changing s[v] to ϑ provided a sequence σ ∈ �∗[σ(r)],
|σ| = i, of value changes of r. Given {pϑ,ϑ′;ϑr}, the set
{gϑ;i} is given by the solution of the recursive equation

gϑ;i =


ps[v],ϑ;s[r], i = 1

min
ϑ′

gϑ′;i−1 + pϑ′,ϑ;s[r], 1 < i ≤ δϑ, i is odd

min
ϑ′

gϑ′;i−1 + pϑ′,ϑ;¬s[r], 1 < i ≤ δϑ, i is even

gϑ;i−1, δϑ < i ≤ d + 1

,

where δϑ = |D(v)|+ 1 if ϑ ∈ D(v). Given that,

h∗(s) = min
σ∈�∗[σ(r)]

[c(σ) +
∑

v∈V \{r}

gG[v];|σ|].

Notice that step (1) is already state-independent, but the
heavy step (2) is not. However, the state dependence of step
(2) can mostly be overcome. For each v ∈ V \ {r}, ϑ ∈
D(v), 1 ≤ i ≤ d + 1, and ϑr ∈ D(r), let gϑ;i(ϑr) be the
cost of the cheapest sequence of actions changing ϑ to G[v]
provided the value changes of r induce a 0/1 sequence of
length i starting with ϑr. Very similarly to before, the set
{gϑ;i(ϑr)} is given by the solution of the recursive equation

gϑ;i(ϑr) =


pϑ,G[v];ϑr

, i = 1

min
ϑ′

gϑ′;i−1(¬ϑr) + pϑ,ϑ′;ϑr
, 1 < i ≤ δϑ

gϑ;i−1(ϑr), δϑ < i ≤ d + 1

,

(1)
which can be solved in time O(d3|V |). Note that this equa-
tion is now independent of the evaluated state s, and yet
{gϑ;i(ϑr)} allow for computing h∗(s) for a given state s via

h∗(s) = min
σ∈�∗[σ(r)]

[c(σ) +
∑

v∈V \{r}

gs[v];|σ|(s[r])] (2)

With the new formulation, the only computation that has
to be performed per search node is this of the final minimiza-
tion over �∗[σ(r)], which is the lightest part of the whole
algorithm anyway. The major computation, notably this of
{pϑ,ϑ′;ϑr} and {gϑ;i(ϑr)}, can now be performed offline,
and shared between the evaluated states. The space required
to store this information is O(d2|V |) as it contains only a
fixed amount of information per each pair of values of a
same variable. The time complexity of the offline compu-
tation is O(d3|V | + |Ar|); the |Ar| component stems from
pre-computing the pair of values w0 and w1. The time com-
plexity of the online computation per state is O(d|V |); |V |

0

1 2

3

0

1

2

3

4

5

1
1

0
100

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
50

1
50

0
100

0
100

r |σ| c(σ) v=0 v=1 v=2 v=3 u=0 u=1 u=2 u=3 u=4 u=5

0

1 0 100 ∞ ∞ 0 201 200 101 100 1 0
2 24 100 2 1 0 201 200 101 100 1 0

3 48 100 2 1 0 53 102 3 2 1 0
4 72 100 2 1 0 53 102 3 2 1 0

5 96 3 2 1 0 5 4 3 2 1 0
6 120 3 2 1 0 5 4 3 2 1 0

7 144 3 2 1 0 5 4 3 2 1 0

1

1 0 ∞ ∞ 1 0 ∞ ∞ ∞ ∞ ∞ 0
2 24 100 ∞ 1 0 101 52 51 2 1 0
3 48 3 2 1 0 101 52 51 2 1 0
4 72 3 2 1 0 53 4 3 2 1 0
5 96 3 2 1 0 53 4 3 2 1 0
6 120 3 2 1 0 5 4 3 2 1 0
7 144 3 2 1 0 5 4 3 2 1 0

(a) (b)

Figure 1: Structural-pattern database for a fork-structured problem with a binary-valued root variable r and two children v and
u, and G[r] = 0, G[v] = 3, and G[u] = 5. (a) depicts the domain transition graphs of v (top) and u (bottom); the numbers
above and below each edge are the precondition on r and the cost of the respective action. (b) depicts the database created by
the algorithm. For instance, the entry in row r=0 ∧ |σ|=5 and column v = 0 captures the value of gv=0;5(r=0) computed as
in Eq. 1. The shaded entries are these examined at the online computation of h∗(r=0, v=0, u=0).

comes from the internal summation and d comes from the
size of �∗[σ(r)].

Figure 1(b) shows the structural-pattern database created
for a fork-structured problem with a binary-valued root r,
two children v and u, and G[r] = 0, G[v] = 3, and G[u] =
5; the domain transition graphs of v and u are depicted in
Figure 1(a). Online computation of h∗(s) as in Eq. 2 for s =
(r = 0, v = 0, u = 0) sums over the shaded entries of each
of the four rows having such entries, and minimizes over the
resulting four sums, with the minimum being obtained in the
row r=0 ∧ |σ|=5.

Theorem 2 Let Π = 〈V,A, I,G, c〉 be a planning task with
an inverted fork causal graph rooted in r with |D(r)| =
b = O(1). There exists an h∗-partition for Π such that,
for any set of k states, the time and space complexity of that
h∗-partition is O(b|V ||Ar|b−1 + d3|V | + k · |V ||Ar|b−1)
and O(|V ||Ar|b−1 + d2|V |), respectively, where d =
maxv D(v).

Similarly to the proof of Theorem 1, the proof of Theo-
rem 2 is also based on a modification of the poly-time algo-
rithm of Katz and Domshlak (2008b) for computing h∗(s)
for state s of a task Π as in the theorem. The latter algorithm
finds h∗(s) as follows.

1. For each v ∈ V \ {r}, and each ϑ, ϑ′ ∈ D(v), com-
pute shortest (i.e., cost-minimal) paths from ϑ to ϑ′ in
DTG(v,Π).

2. Enumerate all Θ(|Ar|b−1) cycle-free paths from s[r] to
G[r] in DTG(r, Π). For each such path, construct a plan
for Π based on that path for r, and the shortest paths com-
puted in (1). The cheapest such plan is a cost-optimal
plan from s in Π, and thus induces h∗(s).
This algorithm can be formulated as follows.

(1) For each v ∈ V \ {r}, and ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′ be
the cost of the cheapest sequence of actions changing ϑ

to ϑ′. The whole set {pϑ,ϑ′} can be computed using the
Floyd-Warshall algorithm in time O(d3|V |).

(2) For each cycle-free path π = a1 · . . . · am from s[r]
to G[r] in DTG(v,Π), let gπ be the cost of the cheap-
est plan from s in Π based on π, and the shortest paths
computed in (1). Each gπ can be computed as

gπ =
m∑

i=1

c(ai) +
m∑

i=0

∑
v∈V \{r}

pprei[v],prei+1[v],

where pre0 · . . . · prem+1 are the values needed from
the parents of r along the path π. That is, for each v ∈
V \ {r}, and 0 ≤ i ≤ m + 1,

prei[v] =

8>>><>>>:
s[v], i = 0

G[v], i = m + 1, and G[v] is specified
pre(ai)[v], 1 ≤ i ≤ m, and pre(ai)[v] is specified
prei−1[v] otherwise

From that, we have h∗(s) = minπ gπ.
Notice that step (1) is state-independent, but step (2) is

not so. However, the dependence of step (2) on the eval-
uated state can be substantially relaxed. As there are only
O(1) different values of r, it is possible to consider cycle-
free paths to G[r] from all values of r. For each such path
π, and each parent variable v ∈ V \ {r}, we know what
would be the first value of v required by π. Given that, we
can pre-compute the cost-optimal plans induced by each π
and assuming the parents start at their first needed values.
The remainder of the computation of h∗(s) is delegated to
online, and the modified step (2) is as follows.

For each ϑr ∈ D(r) and each cycle-free path π = a1 · . . . ·
am from ϑr to G[r] in DTG(v,Π), let a “proxy” state sπ be

sπ[v] =

8><>:
ϑr, v = r

G[v], ∀1 ≤ i ≤ m : pre(ai)[v] is unspecified
pre(ai)[v], i = argminj {pre(aj)[v] is specified}

,

domain (D) S(D)
hF hI hFI MS-104 MS-105 HSP∗F Gamer blind hmax

s %S s %S s %S s %S s %S s %S s %S s %S s %S
airport-ipc4 20 20 100 17 85 17 85 16 80 16 80 15 75 11 55 17 85 20 100
blocks-ipc2 30 21 70 18 60 18 60 18 60 20 67 30 100 30 100 18 60 18 60
depots-ipc3 7 7 100 4 57 6 86 7 100 4 57 4 57 4 57 4 57 4 57
driverlog-ipc3 12 12 100 12 100 12 100 12 100 12 100 9 75 11 92 7 58 8 67
freecell-ipc3 5 5 100 4 80 4 80 5 100 1 20 5 100 2 40 4 80 5 100
grid-ipc1 2 2 100 1 50 1 50 2 100 2 100 0 0 2 100 1 50 2 100
gripper-ipc1 20 7 35 7 35 7 35 7 35 7 35 6 30 20 100 7 35 7 35
logistics-ipc1 7 6 86 4 57 5 71 4 57 5 71 3 43 6 86 2 29 2 29
logistics-ipc2 22 22 100 16 73 16 73 16 73 21 95 16 73 20 91 10 45 10 45
miconic-strips-ipc2 85 51 60 50 59 50 59 54 64 55 65 45 53 85 100 50 59 50 59
mprime-ipc1 24 23 96 19 79 21 88 21 88 12 50 8 33 9 38 19 79 24 100
mystery-ipc1 20 20 100 16 80 20 100 16 80 12 60 11 55 8 40 17 85 17 85
openstacks-ipc5 7 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100
pathways-ipc5 4 4 100 4 100 4 100 3 75 4 100 4 100 4 100 4 100 4 100
pipesworld-notankage-ipc4 21 16 76 15 71 16 76 20 95 12 57 13 62 11 52 14 67 17 81
pipesworld-tankage-ipc4 14 10 71 9 64 9 64 13 93 7 50 7 50 6 43 10 71 10 71
psr-small-ipc4 50 49 98 49 98 49 98 50 100 50 100 50 100 47 94 48 96 49 98
rovers-ipc5 7 6 86 7 100 6 86 6 86 7 100 6 86 5 71 5 71 6 86
satellite-ipc4 6 6 100 6 100 6 100 6 100 6 100 5 83 6 100 4 67 5 83
schedule-strips 46 46 100 32 70 46 100 22 48 1 2 11 24 3 7 29 63 31 67
tpp-ipc5 6 6 100 6 100 6 100 6 100 6 100 5 83 5 83 5 83 6 100
trucks-ipc5 9 6 67 7 78 7 78 6 67 5 56 9 100 3 33 5 56 7 78
zenotravel-ipc3 11 11 100 11 100 11 100 11 100 11 100 8 73 10 91 7 64 8 73

s(p) 435 363 321 344 328 283 277 315 294 317
ŝ(p) 20.45 17.96 18.88 18.99 16.65 15.55 16.73 15.6 17.74
w(p) 14 7 8 11 9 6 8 2 7

Table 2: A summary of the experimental results. Per domain, S denotes the number of tasks solved by any planner. Per
planner/domain, the number of tasks solved by that planner is given both by the absolute number (s) and by the percentage
from “solved by any” (%S). Boldfaced results indicate the best performance within the corresponding domain. The last three
rows summarize the number of solved instances in total (s), the domain-normalized measure of solved instances in total (ŝ),
and the number of domains in which the planners achieved superior performance (w).

that is, the non-trivial part of sπ captures the first values of
V \ {r} needed along π.4 Given that, let gπ be the cost of
the cheapest plan from sπ in Π based on π, and the shortest
paths {pϑ,ϑ′} computed in (1). Each gπ can be computed as

gπ =
m∑

i=1

c(ai) +
∑

v∈V \{r}

pprei[v],prei+1[v]

 ,

where, for each v ∈ V \ {r}, and 1 ≤ i ≤ m + 1,

prei[v] =

8>>><>>>:
sπ[v], i = 1

G[v], i = m + 1, and G[v] is specified
pre(ai)[v], 2 ≤ i ≤ m, and pre(ai)[v] is specified
prei−1[v] otherwise

Storing the pairs (gπ, sπ) accomplishes the offline part of the
computation. Now, given a search state s, we can compute

h∗(s) = min
π:sπ [r]=s[r]

gπ +
∑

v∈V \{r}

ps[v],sπ [v]

.

The dominant offline computation is computing {gπ}.
The number of cycle-free paths to G[r] in DTG(v,Π) is
Θ(|Ar|b−1), and computing gπ for each such path π can
be done in time O(b|V |). Hence, the overall offline time
complexity is O(b|V ||Ar|b−1), and space complexity (in-
cluding the storage of the proxy states sπ) is O(|V ||Ar|b−1).
The time complexity of the online computation per state is
O(|V ||Ar|b−1); |V | comes from the internal summation and
|Ar|b−1 from the upper bound on the number of cycle-free
paths from s[r] to G[r].

4For ease of presentation, we omit here the case where v is
needed neither along π, nor by the goal; such variables should be
simply ignored when accounting for the cost of π.

Experimental Evaluation
To evaluate the practical attractiveness of structural-pattern
heuristics in general, and the corresponding h-partitions in
particular, we have conducted an empirical study on a wide
sample of planning domains from the international planning
competitions 1998-2006. The selection of the domains was
aimed at allowing a comparative evaluation with other base-
line and state of the art approaches/planners that, at the mo-
ment, not all support all PDDL features.

We implemented three additive fork-decomposition
heuristics within a standard heuristic forward search frame-
work of the Fast Downward planner (Helmert 2006), us-
ing the A∗ algorithm with full duplicate elimination. The
three heuristics were these outlined by Katz and Domsh-
lak (2008b). The hF heuristic corresponds to the ensemble
of all (not clearly redundant) fork subgraphs of the causal
graph, with the domains of the roots being abstracted using
the “leave-one-value-out” binary-valued domain decompo-
sitions. The hI heuristic is the same but for the inverted
fork subgraphs, with the domains of the roots being ab-
stracted using the “distance-to-goal-value” ternary-valued
domain decompositions. The ensemble of the hFI heuristic
is the union of these for hF and hI. The action cost parti-
tioning for all three ensembles was set to “uniform”.

We compare with two baseline approaches, namely blind
search (A∗ with a heuristic function which is 0 for goal states
and 1 otherwise) and A∗ with the hmax heuristic (Bonet
& Geffner 2001), as well as with state of the art abstrac-
tion heuristics, represented by the merge-and-shrink abstrac-
tions of Helmert, Haslum, and Hoffmann (2007). The lat-
ter were constructed under the linear, f -preserving abstrac-
tion strategy suggested by these authors, and this under two
fixed bounds on the size of the abstraction, |Sα| < 104

and |Sα| < 105. These four (baseline and MS) heuris-
tics were implemented by Helmert et al. (2007) within the
same planning system as our fork-decomposition heuris-
tics, allowing for a fairly unbiased comparison. We also
compare to the Gamer (Edelkamp & Kissmann 2009) and
HSP∗F (Haslum 2008) planners that were respectively the
winner and the runner-up at the sequential optimization
track of IPC-2008. On the algorithmic side, Gamer is
based on a bidirectional blind search using sophisticated
symbolic-search techniques, and HSP∗F uses A∗ with an ad-
ditive critical-path heuristic.

The summary of our experimental results is shown in
Table 2. The experiments were conducted on 3GHz Intel
E8400 CPU with 2 GB memory, using a 1.5 GB memory
limit and 30 minute timeout. The only exception from that
was Gamer for which we used similar machines but with 4
GB memory, and 2 GB memory limit; this was done to pro-
vide Gamer with the environment for which it was config-
ured. For each domain D, S(D) is the number of tasks in D
that were solved by at least one planner in the suite. For each
domain D and planner p, s(D, p) (in columns s) is the num-
ber of tasks in D solved by p. Columns %S provide the same
information in terms of percentage from “solved by any”.
Boldfaced results indicate the best performance within the
corresponding domain. The last three rows summarize the
performance of the planners via three measures. First, s(p)
is the total number of tasks solved in all the 23 domains;
this is basically the measure used in planner evaluation in
IPC-2008. As domains are not equally challenging, and do
not provide the same discrimination between the planners’
performance, the second, “domain-normalized” measure of
solved instances in total ŝ(p) =

∑
D s(D, p)/S(D). Fi-

nally, w(p) is the number of domains in which p achieved
superior performance.

Overall, Table 2 clearly suggests that heuristic search with
“databased” fork-decomposition heuristics favorably com-
petes with the state-of-the-art of optimal planning. In partic-
ular, A∗ with the fork-decomposition heuristic hF exhibited
the best overall performance according to all three measures.
The overall performance of A∗ with the other two heuristics
hI and hFI was not as good as with hF, and yet, in terms of,
e.g., absolute number of solved instances, hFI and hI came
second and forth, respectively. Likewise, hI still slightly
outperforms hF on the Rovers and Trucks domains, so no
clear-cut dominance between them.

Finally, the contribution of employing h-partitions to
the success of the structural-pattern heuristics was dra-
matic. Looking back on the results for Logistics-ipc2 in
Table 1, note that the timeout of 30 minutes would pre-
vent us from solving instances 11-1 and 12-1, ending up
with only 20 solved instances. In contrast, with structural-
pattern databases we manage to solve these two instances
within the time limit, and the difference in running time is
spectacular: While without employing hα-partition, solving
instance 12-1 took us more than 7 hours, with structural-
pattern databases we solved all the 22 instances from Table 1
together in less than 35 seconds. This difference in runtimes
is representative for all the domains in our evaluation, and
thus h-partitions play a key role in bringing structural pat-

terns to the state of the art in cost-optimal planning.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Comp. Intell. 14(4):318–334.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Di-
rected model checking with distance-preserving abstrac-
tions. In SPIN, 1934.
Edelkamp, S., and Kissmann, P. 2009. Optimal symbolic
planning with action costs and preferences. In IJCAI.
Edelkamp, S. 2001. Planning with pattern databases. In
ECP, 13–24.
Edelkamp, S. 2002. Symbolic pattern databases in heuris-
tic search planning. In AIPS, 274–293.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive
pattern database heuristics. JAIR 22:279–318.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In ICAPS, 140–149.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In AAAI,
1163–1168.
Haslum, P. 2008. Additive and reversed relaxed reachabil-
ity heuristics revisited. In IPC.
Helmert, M., and Mattmüller, R. 2007. Accuracy of ad-
missible heuristic functions in selected planning domains.
In AAAI, 938–943.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
ICAPS, 200–207.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hernadvölgyi, I., and Holte, R. 1999. PSVN: A vector
representation for production systems. Technical Report
1999-07, University of Ottawa.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI.
Katz, M., and Domshlak, C. 2008a. Optimal additive
composition of abstraction-based admissible heuristics. In
ICAPS, 174–181.
Katz, M., and Domshlak, C. 2008b. Structural patterns
heuristics via fork decomposition. In ICAPS, 182–189.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, 975–982.

