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Abstract

Tractability analysis in terms of the causal graphs of plan-
ning problems has emerged as an important area of research
in recent years, leading to new methods for the derivation of
domain-independent heuristics (Katz and Domshlak 2010).
Here we continue this work, extending our knowledge of the
frontier between tractable and NP-complete fragments. We
close some gaps left in previous work, and introduce novel
causal graph fragments that we call th@urglassand semi-

fork, for which under certain additional assumptions optimal
planning is in P. We show that relaxing any one of the re-
strictions required for this tractability leads to NP-complete
problems. Our results are of both theoretical and practical in-
terest, as these fragments can be used in existing frameworks
to derive new abstraction heuristics. Before they can be used,
however, a number of practical issues must be addressed. We
discuss these issues and propose some solutions.

Introduction

Quantifying the complexity of classical planning problems
in terms of their structure has long been an important re-
search problem. Recent work in this area has focused on
causal graphs(Domshlak and Dinitz 2001; Brafman and
Domshlak 2003; Chen and Génez 2008; Katz and Domsh-
lak 2008; 2010; Giranez and Jonsson 2008), directed
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such heuristics is one of the most successful approaches to
optimal planning, and an important advance in this field over
the last few years has been the introductiostaictural pat-
tern heuristic§Katz and Domshlak 2010). The idea behind
these heuristics is to project planning problems onto frag-
ments of causal graphs known to be tractable for optimal
planning, and to use the costs of solutions to these as guid-
ance for the original problem. Structural pattern hewsssti
play an important theoretical role in optimal planning, as
they represent one of the handful of existing ideas for deriv
ing admissible heuristics (Helmert and Domshlak 2009).
The usefulness of structural pattern heuristics increases
directly with the availability of causal graph fragmentatth
are known to be solvable optimally in polynomial time. Un-
til now, they have made use of two non-trivial structures
known as thefork and theinverted fork Our principal
aim here is to discover the limits of tractability for these
two structures, removing restrictions and consideringawid
classes of causal graphs until the point at which optimal
planning becomes NP-complete is found. This approach al-
lows us to close several gaps in previous work, and results in
the introduction of two new classes that under certain lim-
itations are tractable for optimal planning and can be used
in such heuristicshourglassesandsemiforks We also show
that the relaxation of any one of the assumptions required

graphs whose nodes represent the variables of the problemfor this tractability leads to an NP-complete problem. While

and whose edges give information about dependencies be-

tween variables (Knoblock 1994). Combining limitations on
causal graph structure with further restrictions on thesiz
of variable domains ank-dependence, defined as the maxi-
mum number of variables on which an action has precondi-
tions while not changing their values, has led to complexity
results that apply to a wide range of problems (Katz and
Domshlak 2008; Giranez and Jonsson 2009). Such results
are not of purely theoretical interest, as the causal graph i
used in a variety of practical applications from problem de-
composition (Brafman and Domshlak 2006) to the deriva-
tion of non-admissible domain-independent heuristics for
satisficing planning (Helmert 2004).

The work we present here is motivated by a different use
of tractable fragments of the causal graph: the derivation
of admissibledomain-independent heuristics. Search with
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the use of these classes in structural pattern heuristidd co
improve their estimates, a number of practical issues nemai
to be solved before they can be adapted to that context. We
briefly discuss these issues, and propose some solutions.

Preliminaries

We consider planning problems in theas™ formal-
ism (Backstbm and Nebel 1995), given by a quintuple
I =(V,A I, G,cost) where:

e V is a set ofstate variableseachv € V associated with
a finite domainD(v). The value assigned to a variahle
by a (possibly partial) assignmeptto V' is denoted by
plv]. A complete assignmentto V' is called astate and
the set of all possible complete assignmehis thestate
spaceof II. I is theinitial state Thegoal G is a partial
assignment td/; a states is agoal stateff G C s.

e A is a finite set ofactions each actioru € A given by



a pair (pre(a), eff(a)) of partial assignments t& called
preconditionsand effects respectively. ByAd, C A, we
denote the actions changing the valuevofcost : A —
R%* is a real-valued, non-negatigestfunction.

An actiona is applicable in a state iff pre(a) C s. The
states’ resulting from applying: in s is denoted bys[a]
and differs froms in that s[v] = eff(a)[v] whenever this
is defined.s[{a1, ..., ax)] denotes the state resulting from
sequential application of the actions, ..., a; in s. Such
an action sequence is arplanif G C s[{(aq,...,ax)], and
it is anoptimal s-plan if the summed co@le cost(a;) is
minimal among alls-plans. The aim of (optimal) planning
is to find an (optimal)/-plan. In what follows, we denote
a plan for states with = (s) or justm whens is clear from
the context, and use the notatioh to specify that a plan is
optimal. h* denotes the cost of such an optimal plan.

The causal graphof II is a digraphCG(II) (V,E)
over the set of node¥ that contains an ar¢v,v’) iff
v # v’ and there exista € A such thateff(a)[v'] and
either pre(a)[v] or eff(a)[v] is specified. Given a variable
v, we use the shorthangsed(v) = {v' | (v',v) € E}
andsucc(v) = {v' | (v,v') € E}. Thedomain transi-
tion graph DTG(I1,v) of v € V is an arc-labeled digraph
with nodesD(v) that contains an ar¢, ) labeled with
pre(a)\ pre(a)[v] iff eff(a)[v] = ¥ and eithepre(a)[v] = ¥
or pre(a)[v] is unspecified.

In this paper we extend two previously studied causal
graph structures known as tferk andinverted fork These
structures are digraphs = (N, E) such that there exists
a noder € N for which (u,v) € E < u = r, if the
structure is a fork, an@u,v) € E < v = r, if the
structure is an inverted fork. We refer to planning problems
whose causal graphs are (inverted) forks as (inverted) fork
structured planning problems. Optimal planning has been
shown to be inP for fork structured planning problems if
D(r)| = 2, and for inverted fork structured planning prob-
lems for anyD(r)| € O(1) (Katz and Domshlak 2010).

Forks

We start by closing the gap left by Katz and Domshlak
(2010) in the complexity of cost-optimal planning for fork-
structured tasks:

Theorem 1 Cost-optimal planning for fork structured prob-
lems with causal graph rooted in a ternary-valued variable
is NP-complete.

Proof: Membership in NP is obvious. The proof of hard-
ness is by reduction from the shortest common superstring
problem (SCS). Let;, . .., z, be a set of strings over a bi-
nary alphabet. Given;, let z; denote the string over the
alphabet{0, 1, 2} that results from inserting the symkibht
the beginning, end, and between each pair of symbals.in
There then exists an SCS of Iengilfor x1,...,T, iffthere
exists an SCS of lengt?% + 1 for 1, ..., z,.

Given a planning problel = (V, A, I, G, cost), where:

o V={ry,...,yn}, WithD(r) = {0,1,2} andD(y;) =
{0,..., ]z} fori=1,...,n

()
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Figure 1: DTG for variable.

Figure 2: DTG for variabley;.
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r=x}[|2]] — 1]

o A={ajli=1,....,n,j=
{7’0%277'2%&7'1%27742%1},
({vi=g, r=x;[j]}, {yi=j + 1}), in which z/[j] denotes
the jth symbol of z}, r,_p {r=a},{r=58}),
cost(a;;) = 0 for all a;; andcost(ra—p) = 1,

° I:{T‘:?}U{yizo ‘i:17._.7n}'and
o G={r=2}U{y:=|z}||i=1,...n},

finding an optimal plan foIT is equivalent to finding an SCS
forz},... xl. The causal graph dl is a fork with rootr

and leavey, . ..y,. The DTG for the variable is a chain
with 3 nodes, with the value 2 at the center doubly connected
to each of the values 0, 1, at the two sides (Figure 1). The
DTG for each of the variableg, . . ., y,, is a chain in which
there is a single path that traverses the valueg; ah as-
cending order, and that requires for each transition that th
variabler have the value corresponding to that position in
the stringz} (Figure 2).

Since the variableg; can transition to their next values
only whenr has the value of the corresponding position in
the stringz’, the sequence of values taken on by the vari-
abler must correspond to a superstring of the set of strings
{zy, ..., }. The only actions with non-zero cost are those
that change the value of and there therefore exists a plan
for IT with cost2k iff there exists a superstring ¢fg, . . .,

x), } with length2k + 1, and a superstring dfxo, ..., z,}
with length k. As this transformation can be performed in
polynomial time, this shows the desired result. u

il =1} U
where aij

Unfortunately, this does not shed light on the complexity of
deciding plan existence. Our next result concerns this-prob
lem for fork-structured planning problems where a more
general property holds for the DTG of the root variable:

Theorem 2 LetII be a planning task with a fork-structured
causal graph rooted at variable, and letG be the con-
densed graph dDTG(I1, '), with one node for each strongly
connected component (SCC)DTG(II, r). Plan existence
for II can be decided in polynomial time ¢f has only a
polynomial number of paths.

Proof: Consider a (necessarily cycle-free, as the condensed
graph is directed acyclic) path, ..., P, in G, where each
nodeP; corresponds to aetof values ofr that make up an
SCCinDTG(I1,r). For0 < i < m and forv € succ(r), we
define the set€’ inductively as follows:

e C0 = {I[v]}, and
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Figure 3: (a) Semifork and (b) hourglass causal graphs. (c)
Causal graph structure for reduction of Theorem 7.

e fori > 0, C! is the set of all values i>(v) achievable
from any value inCi~! using actions iM,, that have pre-
conditions only on values ofthat make up the SCC cor-
responding tab;.

Note that it follows from this definition that? grows mono-
tonically in i, i.e. Ci~! C (¢ for all i. Given a path
Pi,...,P,ing,ifforall v € succ(r) we haveG[v] € C7",
andG|r] € P, then a plan fofll can be constructed from
the above in polynomial timdl is solvable iff there exists a
(cycle-free) pathPy, .. ., P, in the condensed graghsuch
thatG[r] € P, andG[v] € C}" for all v € succ(r). Since
there are a polynomial number of paths to check, this proves
the result. u

We note that whefD(r)| = O(1), the condensed graph of
DTG(I1,r) has onlyO(1) paths, and Theorem 2 is appli-
cable. This result therefore implies that plan existence fo
fork-structured tasks with constant bounded root domains i
in P and closes the gap left by Domshlak and Dinitz (2001).

Semifork Causal Graphs
We now explore a graph structure that we cadkemifork

Definition 1 (Semifork) A digraphG = (N, E) is a semi-
fork if there exists a set of nodds C N, L # () such that
(i) Yv € L outdegreév) = 0, and (ii) there exists a node
r € N\ Lsuchthatu,v) € Eandv € Limplyu = r.

Informally, one part of a semifork causal graph has fork

(1)
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Figure 4: DTG for variable:; in II,; (lower). Transitions
represented with dashed edges may be present or not de-
pending on the goal value defined foor lack thereof.
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Theorem 3 (Tractable Semiforks) Given a constant and
a semifork-structured planning task = (V, A, I, G, cost)

with centerr € V, |D(r)| = 2, and|hat| < k, cost-optimal
planning forIT is polynomial in||TT||*.

Proof: We note that given a sequence of changes, tilhe
hat and fork portions of the planning problem can be de-
coupled and solved separately. [I&t denote the planning
problem that results from removing all leaf variables from
the problem, and (%)} a cost minimal plan among the plans
for IT"* in which the value of- is changedht leasti times. In
turn, letII/ denote the problem in which all hat variables are
removed and the value efcan be changed with no precon-
ditions and cos, andx(f); a cost minimal plan among the
plans that set all the leaf variables to their goal valuedenhi
changing the value of at mosti times. Any optimal planr*

for I can be partitioned into two such cost-minimal pfans
by choosing to be the number of changes+ton n*. The
optimal plan forll can therefore be found by considering
cost-minimal plans fofl” andIl/ for each possiblé:

cost(m* (1)) = miin[cost(ﬂ(h)f) + cost(m(f)1)]

and interleaving the actions of the two plans as required.
Note that if (i) given a value of, both (k) and«(f);
can be obtained in polynomial time, and (ii) there is an
upper boundb on i that is polynomial in|/II|| such that
both cost(w(h)¥) and cost(w(f)}) are non-decreasing for

i > b, the semifork problem can also be solved optimally
in polynomial time. Forcost(n(h)?), any bound will do,
as increasing the value éfcan only exclude plans making
fewer changes te. Forcost(n(f)), this bound is given by

b = max,¢jeaves(r) |P(v)| + 1 (Katz and Domshlak 2010).
We now proceed to the formal description of how to obtain
7(h)F andz(f)F in polynomial time.

structure, and the remaining nodes have edges only among We first describe the construction of a planning problem

themselves or to the root of the fork (Figure 3a). We refer to
the noder as thecenterof the causal graph, the nodésas
the semifork'deaves and the rest of the nod@g\ (LU{r})

as the semifork'fiat Note that given a grap@, there may

be multiple possibilities for choosing that result in dif-
ferent interpretations of’ as a semifork. We now show a
tractability result for semifork structured causal grapis
tending a previous result by Katz and Domshlak (2010):

'Each subset of the child nodes of a fork induces a different
semifork when used ak, for example.

Ik for i > 1, whose optimal plans correspond to optimal
plansw(h)f. Assuming wlog thatf'[r] = 0, we restrictlI

to the variablesiat U {r}, while modifying the DTG of- to
consist ofi + 3 values (Figure 4):

e V; =hatU {r;}, with D(r;) = {0,...,i+2}

[ ]
i+1
A; = U AUUUAjUAg
=0

vEhat

2Otherwise, each could be independently replaced with any
cost-minimal plan.



where A9 = {a,a, ,} if no goal value is defined for
r, A9 = {af} if G[r] 4 iis even, andd9 = {af ,} if
G[r] + i is odd, wherea! = ({r;=j}, {r;=i + 2}). For
0<j<4i

pre(ag)[ri] = J,eff(ay)[ri] = j +1,
pre(a)[r] + j is even and
pre(as)[v] = pre(a)[e] and
eff(ay)[v] = eff(a)[v] Vv € hat

Aj = U af

a€A,

and forj =i+1,

pre(ap)[r:] =i + 1, eff(ap)[r:] = 1,
pre(a)[r] +i+ 1is even and

) pre(ay)[v] = pre(a)[v] and
eff(ap)[v] = eff(a)[v] Vv € hat

Ai-i—l _ U

a€A,

b

and cost;(ay) cost(a), costi(ap)
cost(al) = cost;(alt') =0,

e [;[v] = Iv] for v € hat(r) andI;[r;] = 0, and
o G;[v] = Gv] for v € hat(r) andG;[r;] =i + 2.

Note that due to the requirement tipag(a)[r|+j be even,
actions preconditioned by=0 appear in47 only for even;
and those preconditioned byor oddj. In order to reach the
goal value ofr;, the plan must apply a sequence of actions
that change- i times, and can then alternate between the
valuesi andi + 1 before achieving the goal, preconditioned
on the original goal value of. Since the taski? has at most
k variables, it is solvable optimally in polynomial time, and
a cost-minimal planr(h); can be obtained by replacing the
actions in an optimal plan fofl? with the corresponding
actions fromaA, that is, replacing-;-changing actions with
their r-changing originals.

We now consider how to obtain the plangf);. Given
a sequence of value changes of the variablall children
c; € leaves(r) are independent of each other and of the
hat. Provided a numberof value changes for, a cost-
minimal plan for each child variable can therefore be ob-
tained in polynomial time, and these plans can be intertkave
to obtain a cost minimal plah.

In order to obtain an optimal plan fdi, it is there-
fore sufficient to iterate over all valugs < i < b, where
b = maxX,ceaves(r) |P(v)| + 1, and store the plans that result
in the cheapest summed costh)! + 7(f);. These plans
can then be interleaved by adding the actionsr(rf)! at
the earliest possible point during the execution¢f); to
obtain an optimal plan. u

= = cost(a),

Relaxing the constant bound on the sizéatfmakes even
the plan existence problem NP-complete, as arbitrary plan-
ning problems can then be encoded. The same is the cas
when the binary bound on the domain size of the center vari-
able is relaxed:

3For further detail see the proof of Theoretnby Katz and
Domshlak (2010).

A

Theorem 4 Plan existence for semifork structured prob-
lems with|hat| = 1 and center variable domain size 3
is NP-complete.

Proof: The idea behind the proof is similar to that of The-
orem 1. Given a set of strings over a binary alphabet and a
parametetk, we construct a planning problem in the same
way as we did there, except with an additional variable
on which all actions that change the valuerdfave a pre-
vail condition. The causal graph of this problem is then a
semifork with a single variable in the hat. The domain tran-
sition graph ofx is a chain of lengtl2k, alternating values

of which allow transitions in- from 0 or 1 to 2 and from2

to 0 or 1, respectively. This variable enforces that the value
of r can be changed fromto either0 or 1 and then back to

2 at mostk times, and as before the problem is then solvable

iff there exists a superstring of the set of strings of lerigth
|

Hourglass Causal Graphs

We now introduce a digraph structure that we callhber-
glass(Figure 3b):

Definition 2 (Hourglass) A digraph G = (N, E) is an
hourglass if (i)(u,v) € E implies(v,u) ¢ E, and (ii) there
exists a node € N, such that for eaclju,v) € E, either
u=rorv=r.

We call the node- the centerof the graph. We refer to its
predecessor nodesed(r) = {u € N | (u,r) € E} aspar-

ents and its successor nodsscc(r) = {v € N | (r,v) €

E} aschildren Intuitively, the hourglass differs from the
semifork in that edges between the parent nodes are not al-
lowed, and the outgoing edges of the center node all lead to
child variables. We begin with the positive result that im-
posing a constant domain bound on the center and the child
variables makes optimal planning tractable:

Theorem 5 (Hourglass with bound on child domain size)
Given a constantl and an hourglass-structured planning
taskII with center variable domain sizZ®(r)| < d, and
|D(¢;)| < d for all child variablesc; € succ(r), optimal

planning forII is polynomial in||IT||*, wherek = d(**+2).

Proof: First, we note that the bountlon the domain size of
the child variables also constitutes a bound on the length of
the sequence of prevail values required froffor any one
child. Considering also that up tbintermediate values of

r may be required in moving from one value to another, the
total length of the sequence nivalues for a single child is
d?. The number of all possible sequences of that length is

d®,and a (loose) upper bound on the length of a sequence
hat contains all such sequences as subsequences is given by
k=d?-d¥ = d+2)_ The number of possible-changing
action sequences that can achieve these values is thena poly
nomial|A|*. Given such an action sequence, an optimal se-
guence of actions for the parent variables that satisfies all
the required preconditions can be found in linear time. Itis



therefore sufficient to check each possible sequence of ac-e G = {y=2m — 1}

tions up to lengtht and choose the one that results in the
globally optimal plan. u

However, when such a bound is not imposed, even satisfic-
ing planning quickly becomes NP-complete:

Theorem 6 Satisficing planning for hourglasses with center
variable domain size> 3 is NP-complete.

This follows trivially from the proof of Theorem 4, as the
problem in the proof has hourglass structure. Bounding the
domain sizes of the child variables without bounding that of
the center variable does not help either, as it follows from
results for inverted forks by Domshlak and Dinitz (2001)
that satisficing planning in this case is NP-complete.

We now consider the complexity of planning for problems
with hourglass causal graphs with the added parameter of
dependencéatz and Domshlak 2008):

Definition 3 (k-dependent) An actiona is k-dependent if
the size of its prevail condition, that is the number of vari-
ables that it has preconditions on but whose values it does
not change, i< k. A planning problenl is k-dependent if

all its actions arek-dependent.

We first show that for2-dependent hourglass-structured
problems even satisficing planning is NP-complete:

Theorem 7 2-dependent hourglass)Plan existence for
the2-dependent hourglass problem with center variable do-
main size2 is NP-complete.

Proof: Membership in NP is obvious, we show hardness
by a polynomial reduction from SAT. Le? = (C,U) be
a SAT problem withm clausesC' = {Cy,...,Cpn—1} and
n variablesU = {us,...,u,}. We construct an hourglass
problemII with a single child variable) andn + 1 parent
variableszy, ..., x,, z (Figure 3c). The goal of the problem
is defined only for the child variablg and its purpose is to
force the value of the center variable to change ex&etly-
1 times. Its DTG is therefore an ascending chain of length
2m with valueso, ...,2m — 1, transitionsi — ¢ + 1 that
require alternating values ofbeginning withr=1, and goal
2m—1. A solution toll then exists iff the parent nodes of the
problem permit the value ofto be change@m — 1 times.
The parent variables,, . .., x,, correspond to the variables
of the SAT problem, and have DTGs that allow their values
to be set once to eithéror 1, from an initial “undefined”
value. The variable has a DTG which consists of a chain
with 2m values, whose even valu@s, in conjunction with
a value for some variable appearingd@h that satisfies it,
allow r to be set td, and whose odd values allawto be set
to 0. To solve the problem, a plan must set the values of the
x,; variables to appropriate values, and advance through the
DTG of Z while setting alternating values for

Formally, we defindl = (V, A, I, G, cost) as follows:

o V={x1,...,x0,2,1,y}
o [ ={r=0,z1=1,...,z,=1,250,y=0}

n 2m—1 2m—3 m—1
A=JA,u | {atu | {atua,ou | 4L,
i=1 =0 =0 =0

where

= Ay, = {({zi=1}, {z:=0}), ({zi=L}, {z:=1}) },

— a, = ({r=(¢ mod 2),y=i}, {y=i +1}),

—al = ({z=i}, {z=i + 1}),

— Ao = U {(({r=1, z=i}, {r=0}) | iis odd}, and
- Ai—ﬂ - qu:aeci{<{7':07 2=21, ‘Tj:e}v {T:1}>}'

Note that the largest-dependence il is 2. As pointed

out above, a solution fail exists iff the value of- can be
changed®m — 1 times, and the value of can be changed

2m — 1 times iff there exists an assignment that satisfies
clause<y, ..., C,,_1. As the initial value of- is 0, 2m — 1
changes of- indicates that- must change front) to 1 m
times. Each of these changes must be caused by actions that
are drawn from the sets! ., , for different values of, since

each consecutive changertadepends on different values of
z. Due to the construction of the set of actiots ,,, an ac-
tion from this set can be applied iff; is satisfied. Therefore
plan existence implies that all; are satisfied. u

We now consider thel-dependent case, first proving a
lemma that leads to our tractability result for hourglasses

Lemma 1 (Optimal plans for 1-dependent Hourglasses)
Given an hourglass-structuretdependent planning prob-
lemII with |D(r)| = 2, there exists an optimal plan faf
in which the actions changing the value sohave prevail
conditions on at most two variables.

Proof: Let 7* be an optimal plan fofl, and letr be the
subsequence af* consisting only of actions id,.. For each
0 € D(r), letag = argmin, . {cost(a) | eff(a)[r] = 0},
and letz andz’ be the two variables on which the actions
a, for 6 € D(r) have prevail conditions. If # 2/, then
it is possible to construct from* a new optimal plant’*
that uses only these cheapest actions to change the value of
r. The remaining actions that change the values of other
parent variables or those of the child variables can be left
unchanged. Since the actions we replace are no cheaper than
ay, the result is also an optimal plan. Note that this also
holds if one or both of the cheapest actions have no prevail
conditions.

For the more complicated case in which= 2/, let

eff(a)[r] # OA

cost(a)+
pre(a)[z] is unspecified

o\ .
(a’,0") = argmin cost(a3)

aGw;ﬁﬂED(r){

In words,a’ is an action not prevailed bythat together with

ay, gives the lowest summed cost for two actions changing
r from one value to another and back, at least one of which
is not prevailed byz. If such an action does not exist, then
¢ complies with the above property. We now show how to



obtain an optimal plan fofI in which all of ther-changing
actions are either prevailed yor are occurrences af. Let

a1, az denote two consecutive actionsij such that at least
one ofay, as is not prevailed by, and{a1, a2} # {da’, a}, }.

If no such pair of consecutive actions exists, then the condi
tion described above is met. Otherwise, we construct a new
sequencer.* by inserting inm immediately after the first
occurence ofi}, the two actionsy, aj,, and removing the
two actionsay, as. As noted earlier, the summed costadf
andaj, is minimal among twa-changing actions at least
one of which is not prevailed by, and=/* is therefore no
more expensive tham’. Since the value that prevait$ and
the sequence of distinct values ofthat prevail actions in
m/* are achieved by, a new plan can be constructed by
scheduling the actions achieving these values approlyriate
with respect to the actions i{*. As above, actions affect-
ing other parent variables and child variables can be left un
touched. The result is an optimal plaff that complies with
the above property. L]

Lemma 1 allows us to concentrate on optimal plans of a
certain structure, and therefore solve this type of hosgyla
problem optimally in polynomial time:

Theorem 8 Optimal planning forl-dependent hourglasses
with center variable domain siz@®(r)| = 2isin P.

Proof: For each subsét”’ of size2 of the parentgpred(r)
we create a planning problefi’ by removing fromII all
r-changing actions that have preconditions on the variables
in pred(r) \ V’. From lemma 1 we have that an optimal
plan for one such problefi’ is also an optimal plan for our
original problemII. Sincell’ consists of the set of single-
ton variablespred(r) \ V', each of which can be solved in
polynomial time, along with the rest of the problem which
is a semifork with a hat of siz2, which can also be solved
in polynomial time (Theorem 3]’ can also be solved opti-
mally in polynomial time. Since the number Bf problems
that must be considered to find an optimal planiias poly-
nomial, optimal planning fofT is in P. =

Finally, note that the planning problem in the proof of The-
orem 6 isl-dependent, as the indegree of each state variable
is bounded byl. Even satisficing planning far-dependent
hourglasses withD(r)| > 3 is therefore NP-hard, complet-
ing our complexity map of the hourglass fragment.

Practice

Our tractability results for cost-optimal planning sugges
that implicit abstraction heuristics can be made more in-
formative. A semifork with a single hat variable, for ex-
ample, can naturally represent fuel constraints for a nsobil
in transportation domains (Helmert 2008). However, there
are a number of issues which must be attended to before

D] 1 2 | 3 [o@)] 6@ |
F P/— |[NPC/—| —/P| —INPC
SF P/— |—INPC

Hcn=oq) P/—| —INPC
H(1) P/— [—/NPC

H(2) —INPC

Figure 5: Complexity of cost-optimal/satisficing planning
for Forks, SemiForks with constant bound on hat size, and
Hourglasses, wittk-dependence in parentheses. “—" and
empty columns indicate that the complexity is implied by
other results. Results implied by previous work are shaded.

set of variabled”’ C (V' \ {v}) of size< k, a semifork with

hat V' can be constructed by dropping all outgoing edges
fromL = V' \ (V' U {v}) and all edges fron¥" \ {v} to

L, leaving only edges fromr to L and amongV’’ U {v}.

As the number of such setg’ is polynomial ink, all pos-
sible such semiforks could be accounted for. Hourglasses
are more problematic, as when there exists V' such that
edgeqv,v’) and(v’, v) are both inCG(IT), there is a choice

of whether to use’ as a child or a parent. The second issue
is how to abstract the problem to hatieas its causal graph,
modifying the set of actions to be consistent with its edges.
For hourglasses, the previously defined acyclic causgigra
decomposition (Katz and Domshlak 2010) can be used, but
must be adapted to account for possible cycles in semiforks.
The last issue is that the chosen set of abstractions must be
efficiently solvable in the states encountered during $earc
For this, most of the calculations can be performed prior
to search and cached. The choice of the values to be pre-
calculated and stored remains a subject of research.

Conclusions

We have extended the analysis of the complexity of plan-
ning problems described in terms of the structure of the
causal graphk-dependence, and the domain sizes of vari-
ables (Figure 5). We have closed some gaps left open in pre-
vious work, showing that optimal planning for fork causal
graphs with root variable domain size 3 is NP-complete,
and that satisficing planning is iR for arbitrary constant
sized domains. We have introduced new causal graph frag-
ments, called the semifork and hourglass, that gener&leze t
previously known fork and inverted fork structures. Op-
timal planning for semiforks with center variable domain
size 2 and a constant bound on the number of variables
in the hat turns out to be i, as does optimal planning
for hourglasses with binary center variable domain &nd
dependencé. Relaxing the bound on domain size in either
case results in a problem that is NP-complete even for satis-
ficing planning, and the same is true of relaxing the bound
on k-dependence for hourglasses. A number of questions

the semifork and hourglass patterns can be employed in the myst be addressed before these patterns can be used in the

framework of structural pattern database heuristics. iGive
planning tasKI over the variable$” and a variable € V,

the first issue is how to select a semifork or hourglass cen-
tered at. For a constant bounding the size of the hat and a

framework of structural pattern database heuristics.
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