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Abstract

Tractability analysis in terms of the causal graphs of plan-
ning problems has emerged as an important area of research
in recent years, leading to new methods for the derivation of
domain-independent heuristics (Katz and Domshlak 2010).
Here we continue this work, extending our knowledge of the
frontier between tractable and NP-complete fragments. We
close some gaps left in previous work, and introduce novel
causal graph fragments that we call thehourglassandsemi-
fork, for which under certain additional assumptions optimal
planning is in P. We show that relaxing any one of the re-
strictions required for this tractability leads to NP-complete
problems. Our results are of both theoretical and practical in-
terest, as these fragments can be used in existing frameworks
to derive new abstraction heuristics. Before they can be used,
however, a number of practical issues must be addressed. We
discuss these issues and propose some solutions.

Introduction
Quantifying the complexity of classical planning problems
in terms of their structure has long been an important re-
search problem. Recent work in this area has focused on
causal graphs(Domshlak and Dinitz 2001; Brafman and
Domshlak 2003; Chen and Giménez 2008; Katz and Domsh-
lak 2008; 2010; Giḿenez and Jonsson 2008), directed
graphs whose nodes represent the variables of the problem
and whose edges give information about dependencies be-
tween variables (Knoblock 1994). Combining limitations on
causal graph structure with further restrictions on the sizes
of variable domains andk-dependence, defined as the maxi-
mum number of variables on which an action has precondi-
tions while not changing their values, has led to complexity
results that apply to a wide range of problems (Katz and
Domshlak 2008; Giḿenez and Jonsson 2009). Such results
are not of purely theoretical interest, as the causal graph is
used in a variety of practical applications from problem de-
composition (Brafman and Domshlak 2006) to the deriva-
tion of non-admissible domain-independent heuristics for
satisficing planning (Helmert 2004).

The work we present here is motivated by a different use
of tractable fragments of the causal graph: the derivation
of admissibledomain-independent heuristics. Search with
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such heuristics is one of the most successful approaches to
optimal planning, and an important advance in this field over
the last few years has been the introduction ofstructural pat-
tern heuristics(Katz and Domshlak 2010). The idea behind
these heuristics is to project planning problems onto frag-
ments of causal graphs known to be tractable for optimal
planning, and to use the costs of solutions to these as guid-
ance for the original problem. Structural pattern heuristics
play an important theoretical role in optimal planning, as
they represent one of the handful of existing ideas for deriv-
ing admissible heuristics (Helmert and Domshlak 2009).

The usefulness of structural pattern heuristics increases
directly with the availability of causal graph fragments that
are known to be solvable optimally in polynomial time. Un-
til now, they have made use of two non-trivial structures
known as thefork and the inverted fork. Our principal
aim here is to discover the limits of tractability for these
two structures, removing restrictions and considering wider
classes of causal graphs until the point at which optimal
planning becomes NP-complete is found. This approach al-
lows us to close several gaps in previous work, and results in
the introduction of two new classes that under certain lim-
itations are tractable for optimal planning and can be used
in such heuristics,hourglassesandsemiforks. We also show
that the relaxation of any one of the assumptions required
for this tractability leads to an NP-complete problem. While
the use of these classes in structural pattern heuristics could
improve their estimates, a number of practical issues remain
to be solved before they can be adapted to that context. We
briefly discuss these issues, and propose some solutions.

Preliminaries
We consider planning problems in theSAS+ formal-
ism (Bäckstr̈om and Nebel 1995), given by a quintuple
Π = 〈V,A, I,G, cost〉 where:

• V is a set ofstate variables, eachv ∈ V associated with
a finite domainD(v). The value assigned to a variablev
by a (possibly partial) assignmentp to V is denoted by
p[v]. A complete assignments to V is called astate, and
the set of all possible complete assignmentsS is thestate
spaceof Π. I is the initial state. ThegoalG is a partial
assignment toV ; a states is agoal stateiff G ⊆ s.

• A is a finite set ofactions, each actiona ∈ A given by



a pair〈pre(a), eff(a)〉 of partial assignments toV called
preconditionsandeffects, respectively. ByAv ⊆ A, we
denote the actions changing the value ofv. cost : A →
R

0+ is a real-valued, non-negativecostfunction.

An actiona is applicable in a states iff pre(a) ⊆ s. The
states′ resulting from applyinga in s is denoted bysJaK
and differs froms in that s[v] = eff(a)[v] whenever this
is defined.sJ〈a1, . . . , ak〉K denotes the state resulting from
sequential application of the actionsa1, . . . , ak in s. Such
an action sequence is ans-plan if G ⊆ sJ〈a1, . . . , ak〉K, and
it is anoptimals-plan if the summed cost

∑k
i=1 cost(ai) is

minimal among alls-plans. The aim of (optimal) planning
is to find an (optimal)I-plan. In what follows, we denote
a plan for states with π(s) or justπ whens is clear from
the context, and use the notationπ∗ to specify that a plan is
optimal.h∗ denotes the cost of such an optimal plan.

The causal graphof Π is a digraphCG(Π) = 〈V,E〉
over the set of nodesV that contains an arc(v, v′) iff
v 6= v′ and there existsa ∈ A such thateff(a)[v′] and
eitherpre(a)[v] or eff(a)[v] is specified. Given a variable
v, we use the shorthandspred(v) = {v′ | (v′, v) ∈ E}
and succ(v) = {v′ | (v, v′) ∈ E}. The domain transi-
tion graphDTG(Π, v) of v ∈ V is an arc-labeled digraph
with nodesD(v) that contains an arc(ϑ, ϑ′) labeled with
pre(a)\pre(a)[v] iff eff(a)[v] = ϑ′ and eitherpre(a)[v] = ϑ
or pre(a)[v] is unspecified.

In this paper we extend two previously studied causal
graph structures known as thefork andinverted fork. These
structures are digraphsG = (N,E) such that there exists
a noder ∈ N for which (u, v) ∈ E ⇐⇒ u = r, if the
structure is a fork, and(u, v) ∈ E ⇐⇒ v = r, if the
structure is an inverted fork. We refer to planning problems
whose causal graphs are (inverted) forks as (inverted) fork
structured planning problems. Optimal planning has been
shown to be inP for fork structured planning problems if
|D(r)| = 2, and for inverted fork structured planning prob-
lems for any|D(r)| ∈ O(1) (Katz and Domshlak 2010).

Forks
We start by closing the gap left by Katz and Domshlak
(2010) in the complexity of cost-optimal planning for fork-
structured tasks:

Theorem 1 Cost-optimal planning for fork structured prob-
lems with causal graph rooted in a ternary-valued variable
is NP-complete.

Proof: Membership in NP is obvious. The proof of hard-
ness is by reduction from the shortest common superstring
problem (SCS). Letx1, . . . , xn be a set of strings over a bi-
nary alphabet. Givenxi, let x′

i denote the string over the
alphabet{0, 1, 2} that results from inserting the symbol2 at
the beginning, end, and between each pair of symbols inxi.
There then exists an SCS of lengthk for x1, . . . , xn iff there
exists an SCS of length2k + 1 for x′

1, . . . , x
′
n.

Given a planning problemΠ = 〈V,A, I,G, cost〉, where:

• V = {r, y1, . . . , yn}, with D(r) = {0, 1, 2} andD(yi) =
{0, . . . , |x′

i|} for i = 1, . . . , n,

0 2 1

Figure 1: DTG for variabler.
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i[0]
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′
i| − 1]

Figure 2: DTG for variableyi.

• A = {aij | i = 1, . . . , n, j = 0, . . . , |x′
i| − 1} ∪

{r0→2, r2→0, r1→2, r2→1}, where aij =
〈{yi=j, r=x′

i[j]}, {yi=j + 1}〉, in which x′
i[j] denotes

the jth symbol of x′
i, rα→β = 〈{r=α}, {r=β}〉,

cost(aij) = 0 for all aij andcost(rα→β) = 1,

• I = {r=2} ∪ {yi=0 | i = 1, . . . , n}, and

• G = {r=2} ∪ {yi=|x′
i| | i = 1, . . . n},

finding an optimal plan forΠ is equivalent to finding an SCS
for x′

1, . . . , x
′
n. The causal graph ofΠ is a fork with rootr

and leavesy1, . . . yn. The DTG for the variabler is a chain
with 3 nodes, with the value 2 at the center doubly connected
to each of the values 0, 1, at the two sides (Figure 1). The
DTG for each of the variablesy1, . . . , yn is a chain in which
there is a single path that traverses the values ofyi in as-
cending order, and that requires for each transition that the
variabler have the value corresponding to that position in
the stringx′

i (Figure 2).
Since the variablesyi can transition to their next values

only whenr has the value of the corresponding position in
the stringx′

i, the sequence of values taken on by the vari-
abler must correspond to a superstring of the set of strings
{x′

0, . . . , x
′
n}. The only actions with non-zero cost are those

that change the value ofr, and there therefore exists a plan
for Π with cost2k iff there exists a superstring of{x′

0, . . . ,
x′
n} with length2k + 1, and a superstring of{x0, . . . , xn}

with lengthk. As this transformation can be performed in
polynomial time, this shows the desired result.

Unfortunately, this does not shed light on the complexity of
deciding plan existence. Our next result concerns this prob-
lem for fork-structured planning problems where a more
general property holds for the DTG of the root variable:

Theorem 2 LetΠ be a planning task with a fork-structured
causal graph rooted at variabler, and letG be the con-
densed graph ofDTG(Π, r), with one node for each strongly
connected component (SCC) ofDTG(Π, r). Plan existence
for Π can be decided in polynomial time ifG has only a
polynomial number of paths.

Proof: Consider a (necessarily cycle-free, as the condensed
graph is directed acyclic) pathP1, . . . , Pm in G, where each
nodePi corresponds to asetof values ofr that make up an
SCC inDTG(Π, r). For0 ≤ i ≤ m and forv ∈ succ(r), we
define the setsCi

v inductively as follows:

• C0
v = {I[v]}, and
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Figure 3: (a) Semifork and (b) hourglass causal graphs. (c)
Causal graph structure for reduction of Theorem 7.

• for i > 0, Ci
v is the set of all values inD(v) achievable

from any value inCi−1
v using actions inAv that have pre-

conditions only on values ofr that make up the SCC cor-
responding toPi.

Note that it follows from this definition thatCi
v grows mono-

tonically in i, i.e. Ci−1
v ⊆ Ci

v for all i. Given a path
P1, . . . , Pm in G, if for all v ∈ succ(r) we haveG[v] ∈ Cm

v ,
andG[r] ∈ Pm, then a plan forΠ can be constructed from
the above in polynomial time.Π is solvable iff there exists a
(cycle-free) pathP1, . . . , Pm in the condensed graphG such
thatG[r] ∈ Pm andG[v] ∈ Cm

v for all v ∈ succ(r). Since
there are a polynomial number of paths to check, this proves
the result.

We note that when|D(r)| = O(1), the condensed graph of
DTG(Π, r) has onlyO(1) paths, and Theorem 2 is appli-
cable. This result therefore implies that plan existence for
fork-structured tasks with constant bounded root domains is
in P and closes the gap left by Domshlak and Dinitz (2001).

Semifork Causal Graphs
We now explore a graph structure that we call asemifork:

Definition 1 (Semifork) A digraphG = (N,E) is a semi-
fork if there exists a set of nodesL ⊂ N , L 6= ∅ such that
(i) ∀v ∈ L outdegree(v) = 0, and (ii) there exists a node
r ∈ N \ L such that(u, v) ∈ E andv ∈ L implyu = r.

Informally, one part of a semifork causal graph has fork
structure, and the remaining nodes have edges only among
themselves or to the root of the fork (Figure 3a). We refer to
the noder as thecenterof the causal graph, the nodesL as
the semifork’sleaves, and the rest of the nodesN \(L∪{r})
as the semifork’shat. Note that given a graphG, there may
be multiple possibilities for choosingL that result in dif-
ferent interpretations ofG as a semifork.1 We now show a
tractability result for semifork structured causal graphs, ex-
tending a previous result by Katz and Domshlak (2010):

1Each subset of the child nodes of a fork induces a different
semifork when used asL, for example.
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Figure 4: DTG for variableri in Π∗i (lower). Transitions
represented with dashed edges may be present or not de-
pending on the goal value defined forr or lack thereof.

Theorem 3 (Tractable Semiforks) Given a constantk and
a semifork-structured planning taskΠ = 〈V,A, I,G, cost〉
with centerr ∈ V , |D(r)| = 2, and|hat| < k, cost-optimal
planning forΠ is polynomial in‖Π‖k.

Proof: We note that given a sequence of changes tor, the
hat and fork portions of the planning problem can be de-
coupled and solved separately. LetΠh denote the planning
problem that results from removing all leaf variables from
the problem, andπ(h)∗i a cost minimal plan among the plans
for Πh in which the value ofr is changedat leasti times. In
turn, letΠf denote the problem in which all hat variables are
removed and the value ofr can be changed with no precon-
ditions and cost0, andπ(f)∗i a cost minimal plan among the
plans that set all the leaf variables to their goal values while
changing the value ofr at mosti times. Any optimal planπ∗

for Π can be partitioned into two such cost-minimal plans2

by choosingi to be the number of changes tor in π∗. The
optimal plan forΠ can therefore be found by considering
cost-minimal plans forΠh andΠf for each possiblei:

cost(π∗(Π)) = min
i
[cost(π(h)∗i ) + cost(π(f)∗i )]

and interleaving the actions of the two plans as required.
Note that if (i) given a value ofi, both π(h)∗i andπ(f)∗i
can be obtained in polynomial time, and (ii) there is an
upper boundb on i that is polynomial in‖Π‖ such that
both cost(π(h)∗i ) and cost(π(f)∗i ) are non-decreasing for
i > b, the semifork problem can also be solved optimally
in polynomial time. Forcost(π(h)∗i ), any bound will do,
as increasing the value ofi can only exclude plans making
fewer changes tor. Forcost(π(f)∗i ), this bound is given by
b = maxv∈leaves(r) |D(v)| + 1 (Katz and Domshlak 2010).
We now proceed to the formal description of how to obtain
π(h)∗i andπ(f)∗i in polynomial time.

We first describe the construction of a planning problem
Πh

i for i ≥ 1, whose optimal plans correspond to optimal
plansπ(h)∗i . Assuming wlog thatI[r] = 0, we restrictΠ
to the variableshat ∪ {r}, while modifying the DTG ofr to
consist ofi+ 3 values (Figure 4):

• Vi = hat ∪ {ri}, with D(ri) = {0, . . . , i+ 2}

•

Ai =
⋃

v∈hat

Av ∪
i+1
⋃

j=0

Aj ∪Ag

2Otherwise, each could be independently replaced with any
cost-minimal plan.



whereAg = {agi , a
g
i+1} if no goal value is defined for

r, Ag = {agi } if G[r] + i is even, andAg = {agi+1} if
G[r] + i is odd, whereagj = 〈{ri=j}, {ri=i + 2}〉. For
0 ≤ j ≤ i,

Aj =
⋃

a∈Ar
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pre(af )[ri] = j, eff(af )[ri] = j + 1,

pre(a)[r] + j is even, and

pre(af )[v] = pre(a)[v] and

eff(af )[v] = eff(a)[v] ∀v ∈ hat


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
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
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and forj = i+ 1,

Ai+1 =
⋃

a∈Ar








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

ab
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∣

pre(ab)[ri] = i+ 1, eff(ab)[ri] = i,

pre(a)[r] + i+ 1 is even, and

pre(ab)[v] = pre(a)[v] and

eff(ab)[v] = eff(a)[v] ∀v ∈ hat















,

and costi(af ) = cost(a), costi(ab) = cost(a),
costi(a

i
g) = costi(a

i+1
g ) = 0,

• Ii[v] = I[v] for v ∈ hat(r) andIi[ri] = 0, and

• Gi[v] = G[v] for v ∈ hat(r) andGi[ri] = i+ 2.

Note that due to the requirement thatpre(a)[r]+j be even,
actions preconditioned byr=0 appear inAj only for evenj
and those preconditioned by1 for oddj. In order to reach the
goal value ofri, the plan must apply a sequence of actions
that changer i times, and can then alternate between the
valuesi andi+ 1 before achieving the goal, preconditioned
on the original goal value ofr. Since the taskΠh

i has at most
k variables, it is solvable optimally in polynomial time, and
a cost-minimal planπ(h)∗i can be obtained by replacing the
actions in an optimal plan forΠh

i with the corresponding
actions fromA, that is, replacingri-changing actions with
their r-changing originals.

We now consider how to obtain the plansπ(f)∗i . Given
a sequence of value changes of the variabler, all children
cj ∈ leaves(r) are independent of each other and of the
hat. Provided a numberi of value changes forr, a cost-
minimal plan for each child variable can therefore be ob-
tained in polynomial time, and these plans can be interleaved
to obtain a cost minimal plan.3

In order to obtain an optimal plan forΠ, it is there-
fore sufficient to iterate over all values0 ≤ i ≤ b, where
b = maxv∈leaves(r) |D(v)|+1, and store the plans that result
in the cheapest summed costπ(h)∗i + π(f)∗i . These plans
can then be interleaved by adding the actions inπ(f)∗i at
the earliest possible point during the execution ofπ(h)∗i to
obtain an optimal plan.

Relaxing the constant bound on the size ofhatmakes even
the plan existence problem NP-complete, as arbitrary plan-
ning problems can then be encoded. The same is the case
when the binary bound on the domain size of the center vari-
able is relaxed:

3For further detail see the proof of Theorem4 by Katz and
Domshlak (2010).

Theorem 4 Plan existence for semifork structured prob-
lems with|hat| = 1 and center variable domain size≥ 3
is NP-complete.

Proof: The idea behind the proof is similar to that of The-
orem 1. Given a set of strings over a binary alphabet and a
parameterk, we construct a planning problem in the same
way as we did there, except with an additional variablex
on which all actions that change the value ofr have a pre-
vail condition. The causal graph of this problem is then a
semifork with a single variable in the hat. The domain tran-
sition graph ofx is a chain of length2k, alternating values
of which allow transitions inr from 0 or 1 to 2 and from2
to 0 or 1, respectively. This variable enforces that the value
of r can be changed from2 to either0 or 1 and then back to
2 at mostk times, and as before the problem is then solvable
iff there exists a superstring of the set of strings of lengthk.

Hourglass Causal Graphs
We now introduce a digraph structure that we call thehour-
glass(Figure 3b):

Definition 2 (Hourglass) A digraph G = (N,E) is an
hourglass if (i)(u, v) ∈ E implies(v, u) 6∈ E, and (ii) there
exists a noder ∈ N , such that for each(u, v) ∈ E, either
u = r or v = r.

We call the noder the centerof the graph. We refer to its
predecessor nodespred(r) = {u ∈ N | (u, r) ∈ E} aspar-
ents, and its successor nodessucc(r) = {v ∈ N | (r, v) ∈
E} aschildren. Intuitively, the hourglass differs from the
semifork in that edges between the parent nodes are not al-
lowed, and the outgoing edges of the center node all lead to
child variables. We begin with the positive result that im-
posing a constant domain bound on the center and the child
variables makes optimal planning tractable:

Theorem 5 (Hourglass with bound on child domain size)
Given a constantd and an hourglass-structured planning
taskΠ with center variable domain size|D(r)| ≤ d, and
|D(ci)| ≤ d for all child variablesci ∈ succ(r), optimal
planning forΠ is polynomial in‖Π‖k, wherek = d(d

2+2).

Proof: First, we note that the boundd on the domain size of
the child variables also constitutes a bound on the length of
the sequence of prevail values required fromr for any one
child. Considering also that up tod intermediate values of
r may be required in moving from one value to another, the
total length of the sequence ofr values for a single child is
d2. The number of all possible sequences of that length is
dd

2

, and a (loose) upper bound on the length of a sequence
that contains all such sequences as subsequences is given by
k = d2 · dd

2

= d(d
2+2). The number of possibler-changing

action sequences that can achieve these values is then a poly-
nomial |A|k. Given such an action sequence, an optimal se-
quence of actions for the parent variables that satisfies all
the required preconditions can be found in linear time. It is



therefore sufficient to check each possible sequence of ac-
tions up to lengthk and choose the one that results in the
globally optimal plan.

However, when such a bound is not imposed, even satisfic-
ing planning quickly becomes NP-complete:

Theorem 6 Satisficing planning for hourglasses with center
variable domain size≥ 3 is NP-complete.

This follows trivially from the proof of Theorem 4, as the
problem in the proof has hourglass structure. Bounding the
domain sizes of the child variables without bounding that of
the center variable does not help either, as it follows from
results for inverted forks by Domshlak and Dinitz (2001)
that satisficing planning in this case is NP-complete.

We now consider the complexity of planning for problems
with hourglass causal graphs with the added parameter ofk-
dependence(Katz and Domshlak 2008):

Definition 3 (k-dependent) An actiona is k-dependent if
the size of its prevail condition, that is the number of vari-
ables that it has preconditions on but whose values it does
not change, is≤ k. A planning problemΠ is k-dependent if
all its actions arek-dependent.

We first show that for2-dependent hourglass-structured
problems even satisficing planning is NP-complete:

Theorem 7 (2-dependent hourglass)Plan existence for
the2-dependent hourglass problem with center variable do-
main size2 is NP-complete.

Proof: Membership in NP is obvious, we show hardness
by a polynomial reduction from SAT. LetP = (C,U) be
a SAT problem withm clausesC = {C0, . . . , Cm−1} and
n variablesU = {u1, . . . , un}. We construct an hourglass
problemΠ with a single child variabley andn + 1 parent
variablesx1, . . . , xn, z (Figure 3c). The goal of the problem
is defined only for the child variabley, and its purpose is to
force the value of the center variable to change exactly2m−
1 times. Its DTG is therefore an ascending chain of length
2m with values0, . . . , 2m − 1, transitionsi → i + 1 that
require alternating values ofr beginning withr=1, and goal
2m−1. A solution toΠ then exists iff the parent nodes of the
problem permit the value ofr to be changed2m − 1 times.
The parent variablesx1, . . . , xn correspond to the variables
of the SAT problem, and have DTGs that allow their values
to be set once to either0 or 1, from an initial “undefined”
value. The variablez has a DTG which consists of a chain
with 2m values, whose even values2i, in conjunction with
a value for some variable appearing inCi that satisfies it,
allow r to be set to1, and whose odd values allowr to be set
to 0. To solve the problem, a plan must set the values of the
xi variables to appropriate values, and advance through the
DTG ofZ while setting alternating values forr.

Formally, we defineΠ = 〈V,A, I,G, cost〉 as follows:

• V = {x1, . . . , xn, z, r, y}

• I = {r=0, x1=⊥, . . . , xn=⊥, z=0, y=0}

• G = {y=2m− 1}

•

A =
n
⋃

i=1

Axi
∪
2m−1
⋃

i=0

{aiy}∪
2m−3
⋃

i=0

{aiz}∪Ar→0∪
m−1
⋃

i=0

Ai
r→1

where

– Axi
= {〈{xi=⊥}, {xi=0}〉, 〈{xi=⊥}, {xi=1}〉},

– aiy = 〈{r=(i mod 2), y=i}, {y=i+ 1}〉,

– aiz = 〈{z=i}, {z=i+ 1}〉,

– Ar→0 =
⋃2m−3

i=1 {〈{r=1, z=i}, {r=0}〉 | i is odd}, and

– Ai
r→1 =

⋃

uj=θ∈Ci
{〈{r=0, z=2i, xj=θ}, {r=1}〉}.

Note that the largestk-dependence inΠ is 2. As pointed
out above, a solution forΠ exists iff the value ofr can be
changed2m − 1 times, and the value ofr can be changed
2m − 1 times iff there exists an assignment that satisfies
clausesC0, . . . , Cm−1. As the initial value ofr is 0, 2m− 1
changes ofr indicates thatr must change from0 to 1 m
times. Each of these changes must be caused by actions that
are drawn from the setsAi

r→1 for different values ofi, since
each consecutive change tor depends on different values of
z. Due to the construction of the set of actionsAi

r→1, an ac-
tion from this set can be applied iffCi is satisfied. Therefore
plan existence implies that allCi are satisfied.

We now consider the1-dependent case, first proving a
lemma that leads to our tractability result for hourglasses:

Lemma 1 (Optimal plans for 1-dependent Hourglasses)
Given an hourglass-structured1-dependent planning prob-
lemΠ with |D(r)| = 2, there exists an optimal plan forΠ
in which the actions changing the value ofr have prevail
conditions on at most two variables.

Proof: Let π∗ be an optimal plan forΠ, and letπ∗
r be the

subsequence ofπ∗ consisting only of actions inAr. For each
θ ∈ D(r), let a∗θ = argmina∈π∗

r
{cost(a) | eff(a)[r] = θ},

and letx andx′ be the two variables on which the actions
a∗θ for θ ∈ D(r) have prevail conditions. Ifx 6= x′, then
it is possible to construct fromπ∗ a new optimal planπ′∗

that uses only these cheapest actions to change the value of
r. The remaining actions that change the values of other
parent variables or those of the child variables can be left
unchanged. Since the actions we replace are no cheaper than
a∗θ, the result is also an optimal plan. Note that this also
holds if one or both of the cheapest actions have no prevail
conditions.

For the more complicated case in whichx = x′, let

(a′, θ′) = argmin
a∈π∗

r ,θ∈D(r)

{

cost(a)+ eff(a)[r] 6= θ∧
cost(a∗θ) pre(a)[x] is unspecified

}

In words,a′ is an action not prevailed byx that together with
a∗θ′ gives the lowest summed cost for two actions changing
r from one value to another and back, at least one of which
is not prevailed byx. If such an action does not exist, then
π∗
r complies with the above property. We now show how to



obtain an optimal plan forΠ in which all of ther-changing
actions are either prevailed byx or are occurrences ofa′. Let
a1, a2 denote two consecutive actions inπ∗

r such that at least
one ofa1, a2 is not prevailed byx, and{a1, a2} 6= {a′, a∗θ′}.
If no such pair of consecutive actions exists, then the condi-
tion described above is met. Otherwise, we construct a new
sequenceπ′∗

r by inserting inπ∗
r immediately after the first

occurence ofa∗θ′ the two actionsa′, a∗θ′ , and removing the
two actionsa1, a2. As noted earlier, the summed cost ofa′

anda∗θ′ is minimal among twor-changing actions at least
one of which is not prevailed byx, andπ′∗

r is therefore no
more expensive thanπ∗

r . Since the value that prevailsa′ and
the sequence of distinct values ofx that prevail actions in
π′∗
r are achieved byπ∗

r , a new plan can be constructed by
scheduling the actions achieving these values appropriately
with respect to the actions inπ′∗

r . As above, actions affect-
ing other parent variables and child variables can be left un-
touched. The result is an optimal planπ′∗ that complies with
the above property.

Lemma 1 allows us to concentrate on optimal plans of a
certain structure, and therefore solve this type of hourglass
problem optimally in polynomial time:

Theorem 8 Optimal planning for1-dependent hourglasses
with center variable domain size|D(r)| = 2 is in P .

Proof: For each subsetV ′ of size2 of the parentspred(r)
we create a planning problemΠ′ by removing fromΠ all
r-changing actions that have preconditions on the variables
in pred(r) \ V ′. From lemma 1 we have that an optimal
plan for one such problemΠ′ is also an optimal plan for our
original problemΠ. SinceΠ′ consists of the set of single-
ton variablespred(r) \ V ′, each of which can be solved in
polynomial time, along with the rest of the problem which
is a semifork with a hat of size2, which can also be solved
in polynomial time (Theorem 3),Π′ can also be solved opti-
mally in polynomial time. Since the number ofΠ′ problems
that must be considered to find an optimal plan forΠ is poly-
nomial, optimal planning forΠ is in P .

Finally, note that the planning problem in the proof of The-
orem 6 is1-dependent, as the indegree of each state variable
is bounded by1. Even satisficing planning for1-dependent
hourglasses with|D(r)| ≥ 3 is therefore NP-hard, complet-
ing our complexity map of the hourglass fragment.

Practice
Our tractability results for cost-optimal planning suggest
that implicit abstraction heuristics can be made more in-
formative. A semifork with a single hat variable, for ex-
ample, can naturally represent fuel constraints for a mobile
in transportation domains (Helmert 2008). However, there
are a number of issues which must be attended to before
the semifork and hourglass patterns can be employed in the
framework of structural pattern database heuristics. Given a
planning taskΠ over the variablesV and a variablev ∈ V ,
the first issue is how to select a semifork or hourglass cen-
tered atv. For a constantk bounding the size of the hat and a

|D(r)| 2 3 O(1) Θ(n)

F P/— NPC/— —/P —/NPC
SF P/— —/NPC
H|Ch|=O(1) P/— —/NPC
H(1) P/— —/NPC
H(2) —/NPC

Figure 5: Complexity of cost-optimal/satisficing planning
for Forks,SemiForks with constant bound on hat size, and
Hourglasses, withk-dependence in parentheses. “—” and
empty columns indicate that the complexity is implied by
other results. Results implied by previous work are shaded.

set of variablesV ′ ⊆ (V \{v}) of size≤ k, a semifork with
hat V ′ can be constructed by dropping all outgoing edges
from L = V \ (V ′ ∪ {v}) and all edges fromV \ {v} to
L, leaving only edges fromv to L and amongV ′ ∪ {v}.
As the number of such setsV ′ is polynomial ink, all pos-
sible such semiforks could be accounted for. Hourglasses
are more problematic, as when there existsv′ ∈ V such that
edges(v, v′) and(v′, v) are both inCG(Π), there is a choice
of whether to usev′ as a child or a parent. The second issue
is how to abstract the problem to haveG as its causal graph,
modifying the set of actions to be consistent with its edges.
For hourglasses, the previously defined acyclic causal-graph
decomposition (Katz and Domshlak 2010) can be used, but
must be adapted to account for possible cycles in semiforks.
The last issue is that the chosen set of abstractions must be
efficiently solvable in the states encountered during search.
For this, most of the calculations can be performed prior
to search and cached. The choice of the values to be pre-
calculated and stored remains a subject of research.

Conclusions
We have extended the analysis of the complexity of plan-
ning problems described in terms of the structure of the
causal graph,k-dependence, and the domain sizes of vari-
ables (Figure 5). We have closed some gaps left open in pre-
vious work, showing that optimal planning for fork causal
graphs with root variable domain size≥ 3 is NP-complete,
and that satisficing planning is inP for arbitrary constant
sized domains. We have introduced new causal graph frag-
ments, called the semifork and hourglass, that generalize the
previously known fork and inverted fork structures. Op-
timal planning for semiforks with center variable domain
size 2 and a constant bound on the number of variables
in the hat turns out to be inP , as does optimal planning
for hourglasses with binary center variable domain andk-
dependence1. Relaxing the bound on domain size in either
case results in a problem that is NP-complete even for satis-
ficing planning, and the same is true of relaxing the bound
on k-dependence for hourglasses. A number of questions
must be addressed before these patterns can be used in the
framework of structural pattern database heuristics.
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