
Implicit Abstraction Heuristics for Cost-Optimal Planning

Michael Katz

Implicit Abstraction Heuristics for Cost-Optimal Planning

Research Thesis

In Partial Fulfillment of the

Requirements for the

Degree of Doctor of Philosophy

Michael Katz
Submitted to the Senate of

the Technion - Israel Institute of Technology

Av, 5770 Haifa August 2010

2

The Research Thesis Was Done Under The Supervision of Prof. Carmel Domshlak in the
Faculty of Industrial Engineering and Management.

First of all, I would like to express my sincere gratitude to Prof. Carmel Domshlak, who has
been my supervisor since the beginning of my study. He was not only the best supervisor one could
possibly dream of, but also a great personal friend. I would also like to thank Erez Karpas for
uncountable helpful discussions.

The Generous Financial Help Of Technion Is Gratefully Acknowledged.

Last, but not least, I would like to thank my family and friends, who supported me over the
years. I could not do it without you.

I

II

Contents

1 Introduction 1

2 Classical Planning, Heuristic Search, and Abstractions 9
2.1 Planning Tasks and Abstractions . 9
2.2 Heuristic Functions and Abstractions . 14

2.2.1 Admissible Heuristics and Heuristic Ensembles 14
2.2.2 Abstraction Heuristics . 15
2.2.3 Explicit Abstractions . 15

3 Tractable Fragments of Cost-Optimal Planning 17
3.1 Binary Variable Domains . 20

3.1.1 Cost-optimal planning for Pb . 21
3.1.2 Cost-optimal planning for P(1) . 21
3.1.3 Drawing the Limits of k-dependence . 23
3.1.4 Towards Practically Efficient Special Cases 25

3.2 General Variable Domains . 27
3.2.1 Cost-optimal planning for F . 27
3.2.2 Cost-optimal planning for IF . 30

4 Implicit Abstractions 33
4.1 Implicit Abstractions: Basic Idea . 34
4.2 Acyclic Causal-Graph Decompositions . 36
4.3 Fork Decomposition . 39
4.4 Accuracy of Fork-Decomposition Heuristics . 46

4.4.1 Asymptotic Performance Analysis . 46
4.4.2 Experimental Evaluation . 68

4.5 Back to Theory: h-Partitions and Databased Implicit Abstractions 70
4.5.1 Fork Databases . 71
4.5.2 Inverted Fork Databases . 73
4.5.3 Experimental Evaluation . 76

5 Abstraction-based Heuristics Composition 79
5.1 LP-Optimizable Ensembles of Abstractions . 83
5.2 LP-Optimization and Explicit Abstractions . 85
5.3 LP-Optimization and Implicit Abstractions I: Fork Decomposition 87
5.4 LP-Optimization and Implicit Abstractions II: Tree-structured COPs 94

III

5.5 Experimental Evaluation . 98
5.6 Beyond Optimal Cost Partitioning . 100

6 Summary and Future Work 103

Bibliography 107

A Compexity Results in Detail 113
A.1 Cost-Optimal Planning for Pb . 113

A.1.1 Construction . 113
A.1.2 Correctness and Complexity . 117

A.2 Cost-Optimal Planning for P(1) with Uniform-Cost Actions 123
A.2.1 Post-Unique Plans and P(1) Problems . 123
A.2.2 Construction . 126
A.2.3 Correctness and Complexity . 129

A.3 Cost-Optimal Planning for P(1) with General Action Costs 135
A.3.1 Post-3/2 Plans and P(1) Problems . 136
A.3.2 Construction . 158
A.3.3 Correctness and Complexity . 168

B Experimental Evaluation in Detail 177
B.1 Fork-Decompositon . 177
B.2 Databased Fork-Decompositon . 183
B.3 Optimal Cost Partition . 191
B.4 Beyond Optimal Cost Partition . 196

IV

List of Figures

2.1 Logistics-style example adapted from Helmert (2006). 11

3.1 Examples of causal graph topologies, along with the inclusion relations between the
induced fragments of ub . 18

3.2 Inclusion-based hierarchy and complexity of plan generation for some ub problems
with acyclic causal graphs. 19

3.3 Cost networks induced by the planning-to-COP compilation schemes for P. 23
3.4 Complexity of cost-optimal and satisficing plan generation for fragments of ub. . . . 24
3.5 An algorithm for cost-optimal planning for T tasks with uniform-cost actions. 26
3.6 Detailed outline of step (3) of the planning algorithm for inverted-fork structured task 31

4.1 Illustration of Definition 4.1. 37
4.2 Schematic illustration of FI-decomposition for our running Logistics example 41
4.3 Domain abstractions for D(p1). 44
4.4 Illustrations for the proof of Theorem 10. 48
4.5 Illustrations for the proof of Theorem 10: Optimal plans for the abstract problems. . 49
4.6 Gripper: causal graph and the corresponding collection of v-forks and v-iforks. . . . 51
4.7 Logistics: causal graph and the corresponding collection of v-forks and v-iforks. . . 53
4.8 Logistics: action representatives. 54
4.9 Logistics: collection of v-forks and v-iforks used for the proof of the upper bound. 56
4.10 Blocksworld: causal graph and the corresponding collection of v-forks and v-iforks. 58
4.11 Miconic: causal graph and the corresponding collection of v-forks and v-iforks. . . . 59
4.12 Satellite: example task causal graph and a representative subset of the collection

of v-forks and v-iforks. 65
4.13 Satellite: action representatives. 66
4.14 Satellite: causal graph and the corresponding collection of v-forks and v-iforks

used in the proof of the upper bound. 67
4.15 Database for a fork-structured problem with a binary-valued root variable. 73
4.16 Database for an inverted fork-structured problem with a O(1) bounded sink variable. 75

A.1 Example of the graphs G(v), and G′(v). 115
A.2 The graph G′e(v) constructed from the graph G′(v) in Fugure A.1b. 117
A.3 Algorithm for cost-optimal planning for Pb. 122
A.4 Algorithm for cost-optimal planning for P(1) tasks with uniform-cost actions. 129
A.5 Action set and the causal graph for the task in Example 1 135
A.6 State machine describing the process of “sequential” role assignment. 160

V

A.7 Algorithm for cost-optimal planning for P(1) tasks. 168

VI

List of Tables

2.1 Logistics-style example adapted from Helmert (2006) - actions. 10

4.1 Performance ratios of multiple heuristics in selected planning domains. 46
4.2 Gripper: action representatives. 51
4.3 Gripper: the sets of representatives of the original action Pickup(b, right, r1) in the

abstract tasks. 51
4.4 Miconic: action representatives. 59
4.5 Satellite: optimal plans for the abstract tasks and the overall heuristic estimates

used in the proof of the upper bound. 68
4.6 A summary of the experimental results with uniform action cost partition. 69
4.7 A summary of the experimental results with databased versions of the fork-decomposition

heuristics. 76
4.8 A summary of the experimental results with databased versions of the fork-decomposition

heuristics - IPC-2008. 77

5.1 A summary of the experimental results with optimal action cost partition. 98
5.2 A summary of the experimental results for the databased heuristics with optimal for

the initial state and uniform action cost partitions. 101

B.1 The detailed results of Table 4.6 on the Airport, Depots, and Driverlog domains.177
B.2 The detailed results of Table 4.6 on the Blocksworld, Grid, Gripper, Freecell,

Logistics-ipc1, and Logistics-ipc2 domains. 178
B.3 The detailed results of Table 4.6 on the Miconic and Mprime domains. 179
B.4 The detailed results of Table 4.6 on the Mystery, Openstacks, Pathways, Pipesworld-

NoTankage, Pipesworld-Tankage, and Trucks domains. 180
B.5 The detailed results of Table 4.6 on the PSR, Rovers, Satellite, TPP, and

Zenotravel domains. 181
B.6 The detailed results of Table 4.6 on the (non-IPC) Schedule-STRIPS domain. . . 182
B.7 The detailed results of Table 4.7 on the Airport, Blocksworld, and Driverlog

domains. 183
B.8 The detailed results of Table 4.7 on the Depots, Freecell, Grid, Gripper,

Logistics-ipc1, Logistics-ipc2, and Mprime domains. 184
B.9 The detailed results of Table 4.7 on the Miconic and Mystery domains. 185
B.10 The detailed results of Table 4.7 on the Openstacks, Pathways, Pipesworld-

NoTankage, Pipesworld-Tankage, Rovers, and Satellite domains. 186

VII

B.11 The detailed results of Table 4.7 on the PSR, TPP, Trucks, and Zenotravel
domains. 187

B.12 The detailed results of Table 4.7 on the (non-IPC) Schedule-STRIPS domain. . . 188
B.13 The detailed results of Table 4.8 on the Elevators, Openstacks-strips-08, Par-

cprinter, and Scanalyzer domains. 189
B.14 The detailed results of Table 4.8 on the Pegsol, Sokoban, Transport, and

Woodworking domains. 190
B.15 The detailed results of Table 5.1 on the Airport, Blocksworld, Depots, Driver-

log, Freecell, Grid, and Gripper domains. 191
B.16 The detailed results of Table 5.1 on the Logistics-ipc1, Logistics-ipc2, and Mi-

conic domains. 192
B.17 The detailed results of Table 5.1 on the Openstacks, Pathways, Mprime, and

PSR domains. 193
B.18 The detailed results of Table 5.1 on the Mystery, Pipesworld-NoTankage,

Pipesworld-Tankage, Rovers, Satellite, TPP, Trucks, and Zenotravel
domains. 194

B.19 The detailed results of Table 5.1 on the (non-IPC) Schedule-STRIPS domain. . . 195
B.20 The detailed results of Table 5.2 on the Airport, Blocksworld, Depots, and

Driverlog domains. 196
B.21 The detailed results of Table 5.2 on the Freecell, Logistics-ipc2, and Miconic

domains. 197
B.22 The detailed results of Table 5.2 on the Logistics-ipc1, Grid, Gripper, Mprime,

Mystery, Openstacks, and Pathways domains. 198
B.23 The detailed results of Table 5.2 on the Pipesworld-NoTankage, Pipesworld-

Tankage, and PSR domains. 199
B.24 The detailed results of Table 5.2 on the Rovers, Satellite, TPP, Trucks, and

Zenotravel domains. 200
B.25 The detailed results of Table 5.2 on the (non-IPC) Schedule-STRIPS domain. . . 201

VIII

Abstract

State-space search with explicit abstraction heuristics is at the state of the art of cost-optimal
planning. These heuristics are inherently limited nonetheless, because the size of the abstract space
must be bounded by some, even if very large, constant. Targeting this shortcoming, we introduce
the notion of (additive) implicit abstractions, in which the planning task is abstracted by instances
of tractable fragments of cost-optimal planning. We then introduce a concrete setting for this
framework, called fork-decomposition, that is based on two novel fragments of tractable cost-optimal
planning. The induced admissible heuristics are then studied formally and empirically. While our
empirical evaluation demonstrates the accuracy of the fork decomposition heuristics, the runtime
complexity of computing them poses an obvious tradeoff. Indeed, some of the power of the explicit
abstraction heuristics comes from precomputing the heuristic function offline and then determining
h(s) for each evaluated state s by a very fast lookup in a “database.” But implicit abstraction
heuristics are, at first glance, a different story: while their calculation time is polynomial, it is far
from being fast. To address this problem, we show that the time-per-node complexity bottleneck of
the fork-decomposition heuristics can be successfully overcome. We demonstrate that an equivalent
of the explicit abstraction notion of a “database” exists for the fork-decomposition abstractions as
well, despite their exponential-size abstract spaces. We then verify empirically that heuristic search
with the “databased” fork-decomposition heuristics favorably competes with the state of the art of
cost-optimal planning.

Of course, as planning is known to be NP-hard even for extremely conservative planning for-
malisms, no heuristic should be expected to work well in all planning tasks. Thus, addditive ensem-
bles of admissible heuristics are used in cost-optimal planning to exploit the individual strengths of
numerous admissible heuristics. The same set of heuristics can, however, be composed in infinitely
many ways, with the choice of composition directly determining the quality of the resulting heuris-
tic estimate. Continuing our focus on abstraction heuristics, we describe a procedure that takes
a deterministic planning problem, a forward-search state, and a set of admissible heuristics, and
derives an optimal additive composition of these heuristics with respect to the given state. Most
importantly, we show that this procedure is polynomial-time for arbitrary sets of all abstraction
heuristics with which we are acquainted, including explicit abstractions such as pattern databases
(regular or constrained) or merge-and-shrink, and implicit abstractions such as fork-decomposition
or abstractions based on tractable constraint optimization over tree-shaped constraint networks.

IX

X

Chapter 1

Introduction

AI problem solving is facing an inherent computational paradox. Most general AI reasoning tasks
are known to be very hard, so much so that membership in NP is in itself sometimes perceived
as “good news.” If, however, the intelligence is somehow modeled by a computation, and the
computation is delegated to the computers, then artificial intelligence has to escape the traps of
intractability as much as possible. Planning is one such reasoning task, corresponding to finding
a sequence of state-transforming actions that achieve a goal from the given initial state. It is well
known that planning is intractable in general (Chapman, 1987), and that even the “simple” classical
planning with propositional state variables is PSPACE-complete (Bylander, 1994).

While the planning community’s interest in the formal complexity analysis of planning tasks
has had its ups and downs, it is now understood that computational tractability is fundamental to
all problem solving, for two practical reasons:

1. Planning tasks in automatically controlled real-world systems are believed to be highly struc-
tured. If discovered and exploited, this structure may allow for efficient planning (Klein,
Jonsson, & Bäckström, 1998). But if this structure is ignored, a general-purpose planner is
likely to go on tour in an exponential search space even for tractable tasks. Furthermore,
when the overall system is required to provide some guarantees about its run-time complexity,
system control cannot be based on worst-case intractable planning theory. The system should
thus be designed so that planning for it will be provably tractable (Williams & Nayak, 1996,
1997).

2. Computational tractability can be an invaluable tool even for problems that fall outside all the
known tractable fragments of planning. For instance, tractable fragments of planning provide
the foundations for most (if not all) rigorous heuristic estimates employed in planning as
heuristic search (Bonet & Geffner, 2001; Hoffmann, 2003; Helmert, 2006). This is in particular
true for admissible heuristic functions for planning that are typically defined as the optimal
cost of achieving the goals in an over-approximation of the planning task at hand. Such an
approximation is obtained by relaxing or reformulating certain constraints in the specification
of the original task, and the purpose of the approximation is to provide us with a provably
tractable planning task (Haslum, 2006; Haslum & Geffner, 2000; Haslum, Bonet, & Geffner,
2005; Edelkamp, 2001; Helmert, Haslum, & Hoffmann, 2007).

Unfortunately, the palette of known tractable fragments of planning is still very limited, and the
situation is even more severe for tractable cost-optimal planning. To the best of our knowledge, no

1

more than a few non-trivial fragments of cost-optimal planning are known to be tractable. While
there is no difference in the theoretical complexity of satisficing and cost-optimal planning in the
general case (Bylander, 1994), many classical planning domains are provably easy to solve but hard
to solve optimally (Helmert, 2003). Practice also provides clear evidence for the strikingly different
scalability of satisficing and cost-optimal general-purpose planners (Hoffmann & Edelkamp, 2005).

In this work we exploit computational tractability to boost general cost-optimal planning. In
general, planning algorithms perform reachability analysis in large-scale state models that are im-
plicitly described in a concise manner via some intuitive declarative language (Russell & Norvig,
2004; Ghallab, Nau, & Traverso, 2004). The use of such a language saves the planning algorithms
from being restricted to tasks from a certain domain, e.g., a domain of transportation tasks, but
rather allows a wide spectrum of tasks describable in that language. Over the years several such
languages were developed and studied; the most popular examples are the classical STRIPS lan-
guage (Fikes & Nilsson, 1971), the PDDL language (McDermott, Ghallab, Howe, Kambhampati,
Knoblock, Ram, Veloso, Weld, & Wilkins, 1998), and the sas+ language (Bäckström & Klein, 1991;
Bäckström & Nebel, 1995). Each such language operates with some notion of initial state, actions,
and goal. The initial state describes the state of the world at the starting point, actions allow us to
move from one world state to another, and the goal describes the desirable outcome. Together they
implicitly define a state model, which explicitly captures the world states and the moves between
them (as defined by actions), the initial state, and the set of goal states. In the world of sequential
planning, the reachability analysis in such a state model corresponds to the search for a path from
the initial state to some goal state. This path can be viewed as a sequence of corresponding actions,
generally named a plan. The cost of such a plan is defined as the sum of the costs of each individual
action along this plan.

Though planning tasks have been studied since the early days of artificial intelligence (Allen,
Hendler, & Tate, 1990; Chapman, 1987; Dean & Wellman, 1991; Hendler, Tate, & Drummond,
1990; Wilkins, 1984), recent developments have dramatically advanced the field (Geffner, 2002;
Ghallab et al., 2004; Weld, 1999). Two main concerns should be addressed in planning, and in
particular, in planning as search. The first is the size of the search space, that is, the number of
search states examined before a goal state is found. The size of the search space determines the
scalability of the search procedure. The second is the quality of the discovered goal-achieving action
sequence, which should ideally be as cost-efficient as possible. Both concerns can be addressed by
controlling the order in which the search states are examined. The basic idea is to specify a heuristic
function h from states to scalars, estimating the cost (of the cheapest path) from states to their
nearest goal state. The search algorithms then take these heuristic estimates as search guides. In
particular, well-known search algorithms such as A∗ and IDA∗ explore the search nodes s in a
non-decreasing order of g(s) +h(s), where g(s) is the true cost of reaching s from the initial search
state (Hart, Nilsson, & Raphael, 1968; Pearl, 1984; Korf, 1985; Korf & Pearl, 1987; Korf, 1998,
1999). If h is admissible, that is, it never overestimates the true cost of reaching the nearest goal
state, then such search algorithms are guaranteed to provide an optimal plan to the goal.

A useful admissible heuristic function must be accurate and efficiently computable. Improving
the accuracy of a heuristic function without substantially worsening the time complexity of com-
puting it usually translates into faster search for optimal solutions. Since the late 1990s, numerous
admissible heuristics for domain-independent planning have been proposed and found practically
effective, with research in this direction continuously expanding. Most of the heuristic functions
are based on one of the following four ideas:

2

• The idea of delete-relaxation introduced several heuristics, such as h+ (Hoffmann & Nebel,
2001), hmax and hadd (Bonet & Geffner, 2001), hFF (Hoffmann & Nebel, 2001), hpmax (Mirkis
& Domshlak, 2007), and hsa (Keyder & Geffner, 2008), with h+ and hmax being the only
admissible representatives of this family, while h+ is in general intractable (Bylander, 1994).

• The hm family (Haslum & Geffner, 2000) of critical path heuristics, with the h1 ≡ hmax

member being closely related to the delete relaxation idea, continued the research in this
direction.

• In parallel, Edelkamp (2001) adapted the ideas of Culberson and Schaeffer (1998) for domain-
independent planning, and introduced the first member of the abstraction heuristics family,
the pattern database (PDB) heuristic. Several works continued the research in this direction,
expanding and generalizing the idea of abstraction heuristics (Edelkamp, 2001; Haslum et al.,
2005; Haslum, Botea, Helmert, Bonet, & Koenig, 2007; Helmert et al., 2007).

• Recently, Richter, Helmert, and Westphal (2008) introduced an (inadmissible) landmarks
based heuristic. Shortly after that, several admissible landmark-based heuristics were intro-
duced, all closely related to delete relaxation of the planning tasks.

A closer look at these advances in domain-independent admissible heuristics reveals the main
question: What constraints should we relax to obtain an effective approximation of the planning
task? In general, an approximation of the planning task can be obtained in several ways. One way is
to systematically contract several states to create a single abstract state. Approximations obtained
this way are called homomorphism abstractions. Most typically, such a state-gluing is obtained by
projecting the original task onto a subset of its parameters, as if ignoring the constraints that fall
outside the projection. Homomorphisms have been successfully explored in the scope of domain-
independent pattern database (PDB) heuristics (Edelkamp, 2001; Haslum et al., 2005, 2007) and
more general explicit abstraction heuristics (Helmert et al., 2007). Another way of obtaining an
over-approximation is to enrich the reachability by adding edges and states in the state-space
transition graph. Such abstractions are typically referred to as embedding abstractions. The latter
transformation is typically made by abstracting away a certain (either syntacticly or semantically
defined) class of constraints over the task’s actions. One such embedding abstraction, based on
either full or partial ignoring of negative interactions between the actions, provides the foundations
for some of the most influential developments in both satisficing and cost-optimal heuristic search
planning (Bonet & Geffner, 2001; Hoffmann & Nebel, 2001; Refanidis & Vlahavas, 2001; Gerevini,
Saetti, & Serina, 2003; Vidal, 2004; Haslum et al., 2005; Haslum, 2006; Bonet & Geffner, 2006;
Hoffmann & Brafman, 2006; Domshlak & Hoffmann, 2006; Zhou & Hansen, 2006; Richter et al.,
2008; Helmert & Domshlak, 2009).

Generally speaking, an abstraction of a planning task is given by a mapping α : S → Sα

from the states of the planning task’s transition system to the states of some “abstract transition
system” such that, for all states s, s′ ∈ S, the cost from α(s) to α(s′) is upper-bounded by the
cost from s to s′. The abstraction heuristic value hα(s) is then the cost from α(s) to the closest
goal state of the abstract transition system. Perhaps the most well-known abstraction heuristics
are pattern database (PDB) heuristics, which are based on projecting the planning task onto a
subset of its state variables and then explicitly searching for optimal plans in the abstract space.
Over the years, PDB heuristics have been shown very effective in several hard search problems,
including cost-optimal planning (Culberson & Schaeffer, 1998; Edelkamp, 2001; Felner, Korf, &

3

Hanan, 2004; Haslum et al., 2007). The conceptual limitation of these heuristics, however, is that
the size of the abstract space and its dimensionality must be fixed.1 The more recent merge-
and-shrink abstractions (Helmert et al., 2007) generalize PDB heuristics to overcome the latter
limitation. Instead of perfectly reflecting just a few state variables, merge-and-shrink abstractions
allow all variables to be imperfectly reflected. As demonstrated by the formal and empirical analysis
of Helmert et al. (2007), this flexibility often makes the merge-and-shrink abstractions much more
effective than PDBs. However, the merge-and-shrink abstract spaces are still searched explicitly,
and thus they still have to be of fixed size. While quality heuristic estimates can still be obtained
for many tasks, this limitation is a critical obstacle for many others.

The main objective of our work is to push the envelope of abstraction heuristics beyond explicit
abstractions. In keeping with this agenda, we introduce a principled way to obtain abstraction
heuristics that limit neither the dimensionality nor the size of the abstract spaces. The basic idea
behind what we call implicit abstractions is simple and intuitive: instead of relying on abstract
tasks that are easy to solve because they are small, we can rely on abstract tasks belonging to
provably tractable fragments of cost-optimal planning. The key point is that, at least theoretically,
moving to implicit abstractions does away with the requirement that the abstractions be small.
Our contribution, however, is far from being of theoretical interest only:

1. We specify acyclic causal-graph decompositions, a general framework for additive implicit ab-
stractions that is based on decomposing the task at hand along its causal graph. In this scope,
we study the complexity of cost-optimal planning for tasks specified in terms of propositional
and multi-valued state variables, as well as in terms of actions, each of which changes the
value of a single variable. In some sense, we continue the line of complexity analysis suggested
in (Brafman & Domshlak, 2003), and extend it from satisficing to cost-optimal planning. Our
results for the first time provide a dividing line between tractable and intractable such prob-
lems (Katz & Domshlak, 2008a).

2. We then introduce a concrete family of additive implicit abstractions, called fork decompo-
sitions, that are based on two novel fragments of tractable cost-optimal planning (Katz &
Domshlak, 2008c). Following the type of analysis suggested by Helmert and Mattmüller
(2008), we formally analyze the asymptotic performance ratio of the fork-decomposition
heuristics and prove that their worst-case accuracy on selected domains is comparable with
that of (even parametric) state-of-the-art admissible heuristics. We then empirically evalu-
ate the accuracy of the fork-decomposition heuristics on a large set of domains from recent
planning competitions and show that their accuracy is competitive with the state of the art.

3. The key attraction of explicit abstractions is that state-to-goal costs in the abstract space can
be precomputed and stored in memory in a preprocessing phase so that heuristic evaluation
during search can be done by a simple lookup. At first view, a necessary condition for pushing
computation of the heuristic offline appears to be the small size of the abstract space. We
show, however, that an equivalent of the PDB and merge-and-shrink’s notion of “database”
exists for the fork-decomposition abstractions as well, despite the exponential-size abstract
spaces of the latter. These databased implicit abstractions are based on a proper partitioning
of the heuristic computation into parts that can be shared between search states and parts
that must be computed online per state. Our empirical evaluation shows that A∗ equipped

1This does not necessarily apply to symbolic PDBs which, on some tasks, may exponentially reduce the PDB’s
representation (Edelkamp, 2002; Ball & Holte, 2008).

4

with the “databased” fork-decomposition heuristics favorably competes with the state of the
art of cost-optimal planning (Katz & Domshlak, 2009b).

Of course, as planning is known to be NP-hard even for conservative planning formalisms (By-
lander, 1994), no heuristic should be expected to work well in all planning tasks. Moreover, even
for a fixed planning task, no tractable heuristic will home in on all the “combinatorics” of the task
at hand. The promise, however, is that different heuristics could target different sources of the
planning complexity, and composing a set of heuristics to exploit their individual strengths could
allow a larger range of planning tasks to be solved as well as each individual task to be solved more
efficiently.

Our additional contribution is to the fundamental question of how one should better compose
a set of admissible heuristics. One of the well-known and heavily-used properties of admissible
heuristics is that taking the maximum of their values maximizes informativeness while preserving
admissibility. A more recent, alternative approach to composing a set of admissible heuristics
corresponds to carefully separating the information used by the different heuristics in the set so
that their values could be summed instead of maximized over. This direction was first exploited
in devising domain-specific heuristics, and more recently in works on additive pattern database
(PDB) heuristics (Edelkamp, 2001; Felner et al., 2004; Haslum et al., 2007) and constrained PDBs
and m-reachability heuristics (Haslum et al., 2005).

The basic idea underlying all these additive heuristic ensembles is elegantly simple: for each
planning task’s action a, if it can possibly be counted by more than one heuristic in the ensemble,
then one should ensure that the cumulative counting of the cost of a does not exceed its true cost in
the original task. Such action cost partitioning was originally achieved by accounting for the whole
cost of each action in computing a single heuristic in the ensemble, while ignoring the cost of that
action in computing all the other heuristics in the ensemble (Edelkamp, 2001; Felner et al., 2004;
Haslum et al., 2005). Recently, this “all-in-one/nothing-in-rest” action-cost partitioning has been
generalized to arbitrary partitioning of the action cost among the heuristics in the ensemble (Katz
& Domshlak, 2007a, 2008c; Yang, Culberson, & Holte, 2007; Yang, Culberson, Holte, Zahavi, &
Felner, 2008).

The great flexibility of additive heuristic ensembles, however, is a mixed blessing. For better or
for worse, the methodology of taking the maximum over the values provided by an arbitrary set of
independently constructed admissible heuristics is entirely nonparametric. By contrast, switching to
additive heuristic ensembles requires selecting an action-cost partitioning scheme, and this decision
problem poses a number of computational challenges:

• The space of alternative action-cost partitions is infinite as the cost of each action can be
partitioned into an arbitrary set of nonnegative real numbers, the sum of which does not
exceed the cost of that action.

• At least in domain-independent planning, what we need is a fully unsupervised decision
process.

• Last but not least, the relative quality of each action-cost partition (in terms of the accuracy
of the resulting additive heuristic) may vary dramatically between the examined search states.
Hence, the choice of the action-cost partitioning scheme should ultimately be a function of
the search state in question.

5

These concerns may explain why all previous works on both domain-specific and domain-
independent additive heuristic ensembles adopt this or another ad hoc, fixed choice of action-cost
partition. Consequently, all the reported empirical comparative evaluations of various max-based
and additive heuristic ensembles are inconclusive—for some search states along the search pro-
cess, the (pre-selected) additive heuristic was found to dominate the max-combination, while for
the other states the opposite was the case. In the context of domain-specific additive PDBs, Yang
et al. (2007) conclude that “determining which abstractions [here: action-cost partitioning schemes]
will produce additives that are better than max over standards is still a big research issue.”

Focusing on abstraction heuristics, our contribution here is precisely in addressing the problem
of choosing the right action-cost partitioning over a given set of heuristics:

1. We provide a procedure that, given (i) a classical planning task Π, (ii) a forward-search state
s of Π, and (iii) a set of heuristics based on abstractions of Π, derives an optimal action-cost
partition for s, that is, a partition that maximizes the heuristic estimate of that state. The
procedure is fully unsupervised, and is based on a linear programming formulation of that
optimization problem.

2. We show that the time complexity of our procedure is polynomial for arbitrary sets of all
abstraction-based heuristic functions with which we are familiar. Such “procedure-friendly”
heuristics include PDBs (Edelkamp, 2001; Yang et al., 2007), constrained PDBs (Haslum
et al., 2005), merge-and-shrink abstractions (Helmert et al., 2007), fork-decomposition im-
plicit abstractions (Katz & Domshlak, 2008c), and implicit abstractions based on tractable
constraint optimization over tree-shaped constraint networks (Katz & Domshlak, 2008a).
Note that the estimate provided by a max-based ensemble corresponds to the estimate pro-
vided by the respective additive ensemble under some action-cost partitioning. Thus, by
finding an optimal action-cost partition, we provide a formally complete answer to the afore-
mentioned question of “to add or not to add” in the context of abstraction heuristics.

Taking the fork-decomposition abstractions as a case study, we evaluate the empirical effective-
ness of switching from ad hoc to optimal additive composition. Our evaluation on a wide range
of International Planning Competition (IPC) benchmarks shows a substantial reduction in the
number of nodes expanded by the A∗ algorithm. However, in the standard time-bounded setting,
this reduction in expanded nodes is typically negatively balanced by the much more expensive
per-node computation of the optimal additive heuristic. To overcome this pitfall without forfeiting
the promise of optimized action cost partitions altogether, we suggest that optimal action cost
partitions be derived only with respect to a subset of evaluated nodes. We examine this approach
empirically in its extreme setting where only one optimal action cost partition is computed per
planning task: the one that is optimal for the task’s initial state. This action cost partition is then
used for all the states evaluated by the A∗ algorithm. Our experiments show that even such a
conservative use of optimization results in substantial improvement over the same heuristic-search
planner relying on an ad hoc action cost partition (Katz & Domshlak, 2010).

The rest of the dissertation is organized as follows.

• Chapter 2 presents the essential definitions and constructs used in this work and gives a
brief introduction to heuristics and heuristic-search planning, with a focus on the abstraction
heuristics.

6

• Chapter 3 presents a study of the computational tractability of cost-optimal planning. Nu-
merous new tractable classes of cost-optimal planning are presented (Katz & Domshlak,
2007b, 2007a, 2008a). The results are based on exploiting several structural and syntactic
characteristics of planning tasks such as the structure of their causal graphs.

• Chapter 4 introduces the basic idea and theory behind implicit abstractions (Katz & Domsh-
lak, 2007b, 2007a, 2008c, 2009a). The complexity study presented in Chapter 3 plays a major
role in implementing this theory. We introduce a concrete family of additive implicit ab-
stractions, called fork decompositions, which are based on two novel fragments of tractable
cost-optimal planning introduced in Chapter 3. Likewise, we develop a “databased” approach
to these implicit abstractions and show that they favorably compete with the state of the art
of cost-optimal planning.

• Chapter 5 presents the action-cost partitioning framework for composing abstraction-based
heuristics. Such a composition allows us to use multiple abstractions and even multiple types
of abstractions together to obtain more informative estimates. In particular, we show that
this framework allows for obtaining an optimal cost partitioning in polynomial time, and we
show that all abstraction-based heuristics known to us fit into this framework. In addition,
we discuss the possibility of relinquishing the optimality of the composed heuristic for the
sake of speed, and show that it favorably competes with the state of the art of cost-optimal
planning.

• Chapter 6 summarizes our work and outlines some current and future work prospects.

For better flow and readability, several detailed constructions were moved to appendices.

• Appendix A describes in detail the complexity results presented in Chapter 3, and

• Appendix B describes the empirical evaluation in detail for several heuristics and cost partition
schemes suggested in Chapters 4-5.

7

8

Chapter 2

Classical Planning, Heuristic Search,
and Abstractions

2.1 Planning Tasks and Abstractions

The development of general problem solvers (GPS) has been one of the main goals in operations
research, as well as in the artificial intelligence branch of computer science. A general problem
solver is a program that accepts high-level descriptions of problems and automatically computes
their solution. The practical motivation for such solvers is that modeling problems at a high level
is most often simpler than procedurally encoding their solutions. Thus, an effective GPS tool can
be very useful in practice.

A general problem solver must provide the user with a suitable general modeling language for
describing problems, and general algorithms for solving them. While obtaining a solution using a
GPS might be somewhat slower than obtaining it by more specialized methods, this should not
necessarily be the case. Most importantly, the GPS approach typically pays off if developing,
implementing, and testing the specialized solution is just too cumbersome, time-consuming, and
cost-inefficient (Muscettola, Nayak, Pell, & Williams, 1998). The scope of a general problem solver
can be defined by three elements:

1. mathematical models for making the different planning problems precise,

2. representation languages for describing problems conveniently, and

3. algorithms for solving these problems effectively, often making use of information available in
their representation.

In this work we focus on general solvers for planning problems (Ghallab et al., 2004).
Probably the most fundamental class of planning tasks is that of classical planning, correspond-

ing to state models with deterministic actions and complete information. Formally, such a state
model is a tuple S = 〈S, sI , SG, A, Tr, cost〉 where

- S is a finite set of states, sI ∈ S is the initial state, and SG ⊆ S is a set of alternative goal states,

- A is a finite set of actions, and for each s ∈ S, A(s) ⊆ A denotes the set of all actions applicable
in s,

9

Objects Action sas+ representation
v ∈ {c1, c2}, {l, l′} ⊆ {A,B,C,D}

Move(v, l, l′) 〈{v = l}, {v = l′}〉v = c3, {l, l′} ⊆ {E,F,G}
v = t, {l, l′} ⊆ {D,E}
v ∈ {c1, c2, c3}, l ∈ {A,B,C,D,E, F,G}, p ∈ {p1, p2} Load(p, v, l) 〈{p = l, v = l}, {p = v}〉
v = t, l ∈ {D,E}, p ∈ {p1, p2} Unload(p, v, l) 〈{p = v, v = l}, {p = l}〉

Table 2.1: The actions of the Logistics-style example planning task and their sas+ representation.
The actions Move(v, l, l′) stand for moving the vehicle v from the location l to the location l′. The
actions Load(p, v, l) stand for loading the package p into the vehicle v from the location l. The
actions Unload(p, v, l) stand for unloading the package p from the vehicle v to the location l.

- Tr : S × A → S is a transition function, such that if a ∈ A(s), then Tr(s, a) specifies the state
obtained from applying a in s, otherwise (a convention is that) Tr(s, a) = s,

- cost : S ×A∗ → R0+ captures the cost of applying an action sequence in a state.

A solution (= plan) for such a state model S is a sequence of actions ρ = 〈a1, . . . , am〉 that generates
a sequence of states s0, . . . , sm such that, for 0 ≤ i < m, ai+1 is applicable in si, Tr(si, ai+1) = si+1,
and sm ∈ SG. A plan ρ is cost-optimal if cost(sI , ρ) is minimal over all plans for S.

This model provides a mathematical characterization of the basic planning problems, and their
solutions. It does not, however, provide a convenient language for encoding planning problems.
This is because the explicit characterization of the state space and state transitions is feasible only
in small problems. In large problems, the state space and state transitions need to be represented
implicitly in a logical action language, normally through a set of (state) variables and action rules.
A good action language is one that supports compact encodings of the models of interest (Fikes
& Nilsson, 1971). For instance, a popular language for a classical-planning model as above is the
sas+ language (Bäckström & Klein, 1991; Bäckström & Nebel, 1995) in which a planning task is
given by a quintuple Π = 〈V,A, I,G, cost〉, where:

• V is a set of state variables, with each v ∈ V being associated with a finite domain D(v). For
a subset of variables V ′ ⊆ V , we denote the set of assignments to V ′ by D(V ′) = ×v∈V ′D(v).
A complete assignment to V is called a state, and S = D(V) is the state space of Π. I is an
initial state. The goal G is a partial assignment to V ; a state s is a goal state iff G ⊆ s.

• A is a finite set of actions. Each action a is a pair 〈pre(a), eff(a)〉 of partial assignments to V
called preconditions and effects, respectively. By Av ⊆ A we denote the actions affecting the
value of v. cost : A→ R0+ is a real-valued, nonnegative action cost function.

To illustrate various constructs, we use a slight variation of a Logistics-style example from Helmert

10

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

c₁ c₂ c₃ t

p₁ p₂

(a) (b)

A

C

D

B

E

F

G

D E at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

(c) (d)

Figure 2.1: Logistics-style example adapted from Helmert (2006) and illustrated in (a). The goal is
to deliver p1 from C to G and p2 from F to E using the cars c1, c2, c3 and truck t, making sure that
c3 ends up at F . The cars may only use city roads (thin edges); the truck may only use the highway
(thick edge). Figures (b), (c), and (d) depict, respectively, the causal graph of the problem, the
domain transition graphs (labels omitted) of c1 and c2 (left), t (center), and c3 (right), and the
identical domain transition graphs of of p1 and p2.

(2006). This example is depicted in Figure 2.1a, and in sas+ it has

V = {p1, p2, c1, c2, c3, t}
D(p1) = D(p2) = {A,B,C,D,E, F,G, c1, c2, c3, t}
D(c1) = D(c2) = {A,B,C,D}
D(c3) = {E,F,G}
D(t) = {D,E}

I = {p1 =C, p2 =F, t=E, c1 =A, c2 =B, c3 =G}
G = {p1 =G, p2 =E, c3 =F},

and actions (see Table 2.1) corresponding to all possible loads and unloads, as well as single-
segment movements of the vehicles. For instance, if action a captures loading p1 into c1 at C, then
pre(a) = {p1 =C, c1 =C}, and eff(a) = {p1 =c1}. In what follows, we assume that all actions in the
example have unit cost.

We now provide some helpful notations. For a partial assignment p, V(p) ⊆ V denotes the
subset of state variables instantiated by p. In turn, for any V ′ ⊆ V(p), by p[V ′] we denote the
value of V ′ in p; if V ′ = {v} is a singleton, we use p[v] for p[V ′]. For any sequence of actions ρ and
variable v ∈ V , by ρ↓v we denote the restriction of ρ to actions changing the value of v, that is, ρ↓v
is the maximal subsequence of ρ consisting only of actions in Av.

The semantics of actions and action sequences in sas+ planning tasks are as follows. An action
a is applicable in a state s iff s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a changes the value of

11

v ∈ V(eff(a)) to eff(a)[v]. The resulting state is denoted by sJaK; by sJ〈a1, . . . , ak〉K we denote the
state obtained from sequential application of the (respectively applicable) actions a1, . . . , ak starting
at state s. Such an action sequence is an s-plan if G ⊆ sJ〈a1, . . . , ak〉K, and it is a cost-optimal
(or, in what follows, optimal) s-plan if the sum of its action costs is minimal among all s-plans.
The purpose of (optimal) planning is finding an (optimal) I-plan. For a pair of states s1, s2 ∈ S,
by cost(s1, s2) we refer to the cost of a cheapest action sequence taking us from s1 to s2 in the
transition system induced by Π; h∗(s) = mins′⊇G cost(s, s′) is the customary notation for the cost
of the optimal s-plan in Π. For each action a ∈ A and each variable v ∈ V , by Pre(a)[v] ⊆ D(v) we
denote the set of values of v which do not preclude applying a, that is

Pre(a)[v] =

{
{pre(a)[v]}, v ∈ V(pre(a))
D(v), otherwise

.

In this work we focus on cost-optimal (also known as sequentially optimal) planning, in which
the goal is to find a plan ρ ∈ A∗ for task Π minimizing

∑
a∈ρ cost(a).

We now proceed with formalizing a few essential constructs. The semantics of a planning task Π
as a whole is given by its induced state-transition model, often called its transition graph. Searching
in this transition graph corresponds to forward state-space search. For our constructions later on,
we distinguish between the actual edge weighted transition graph, and its weights-omitted, qualita-
tive skeleton, which we call the transition-graph structure. Informally, transition-graph structures
capture the dynamics of the planning tasks, while transition graphs associate the dynamics with
“performance measures.”

Definition 1 A transition-graph structure (or TG-structure, for short) is a quintuple T =
(S,L, Tr, sI , SG) where S is a finite set of states, L is a finite set of transition labels, Tr : S×L→ S
is a (labeled) transition function, sI ∈ S is an initial state, and SG ⊆ S is a set of goal states. Any
path from sI to SG is a plan for T.

Definition 2 A transition graph is a pair 〈T, $〉 where T is a TG-structure with labels L, and
$: L → R0+ is a transition cost function. For a state s ∈ S and a subset of states S′ ⊆ S in
T, cost(s, S′) is the cost (of a cheapest with respect to $ path) from s to a state in S′ along the
transitions of T; if no state in S′ is reachable from s, then we have cost(s, S′) = ∞. Plans for
〈T, $〉 are simply the plans for its TG-structure T, and cheapest such plans are called optimal
plans.

The states of the TG-structure T(Π) induced by a planning task Π = 〈V ,A, I ,G, cost〉 are the
states of Π. The transition labels of T(Π) are the actions A, and Tr(s, a) = sJaK if a is applicable
in s, and Tr(s, a) = s otherwise. The actual transition graph induced by Π is 〈T(Π), cost〉.

We now proceed with formally specifying the notion of abstraction. Our definition of abstraction
resembles this of Prieditis (1993), and right from the beginning we specify a more general notion of
additive abstraction. Informally, by additive abstraction we refer to a set of abstractions intercon-
strained by a requirement to jointly not overestimate the transition-path costs in the abstracted
transition graph.

Definition 3 An additive abstraction of a transition graph 〈T, $〉 with structure T = (S,L, Tr, sI , SG)
is a set of pairs A = {〈〈Ti, $i〉, αi〉}ki=1 where, for 1 ≤ i ≤ k,

12

• 〈Ti, $i〉 is a transition graph with structure Ti = (Si, Li, Tri, sIi , S
G
i),

• αi : S → Si is a function, called abstraction mapping, such that

– αi(sI) = sIi , αi(s) ∈ SGi for all s ∈ SG, and,

– for all pairs of states s, s′ ∈ S, it holds that

k∑
i=1

cost(αi(s), αi(s′)) ≤ cost(s, s′). (2.1)

A few words on why we use this particular notion of abstraction. The term “abstraction”
is usually associated with simplifying the original system, reducing and factoring out details less
crucial in the given context. Which details can be reduced and which should be preserved depends,
of course, on the context. For instance, in the context of formal verification, the abstract transition
graphs are required not to decrease the reachability between the states; that is, if there is a path
from s to s′ in the original transition graph, then there should be a path from α(s) to α(s′) in the
abstract transition graph (Clarke, Grumberg, & Peled, 1999). In addition, the reachability should
also be increased as little as possible. Beyond that, the precise relationship between the path costs in
the original and abstract transition graphs is only of secondary importance, if it is important at all.
By contrast, when abstractions are designed to induce admissible heuristic functions for heuristic
search, the relationship between the path costs as captured by Eq. 2.1 is what must be obeyed.
However, requirements above and beyond the general requirement of Eq. 2.1 not to overestimate
the path costs between the states are unnecessary. Hence, in particular, Definition 3 generalizes the
notion of abstraction by Helmert et al. (2007) by replacing the condition of preserving individual
transitions and their labels, that is, (α(s), l) 7→ α(s′) if (s, l) 7→ s′, with a weaker condition stated
in Eq. 2.1. The reader, of course, may well ask whether the generality of the condition in Eq. 2.1
beyond the condition of Helmert et al. (2007) really delivers any practical gain. Later we show that
the answer to this question is affirmative.

Finally, important roles in what follows are played by a pair of standard graphical structures
induced by planning tasks.

Definition 4 The causal graph CG(Π) of Π is a directed graph over nodes V . An arc (v, v′) is in
CG(Π) iff v 6= v′ and there exists an action a ∈ A such that (v, v′) ∈ V(eff(a))∪V(pre(a))×V(eff(a)).
In this case, we say that (v, v′) is induced by a. By succ(v) and pred(v) we respectively denote the
sets of immediate successors and predecessors of v in CG(Π).

Informally, the causal graph of a planning task captures the dependency relation between the
variables, as defined by the task’s actions. The causal graph of our running example is depicted in
Figure 2.1b.

Definition 5 The domain transition graph DTG(v,Π) of a variable v ∈ V is an arc-labeled
directed graph over the nodes D(v) such that an arc (ϑ, ϑ′), labeled with pre(a)[V \{v}] and cost(a),
belongs to DTG(v,Π) iff both eff(a)[v] = ϑ′ and ϑ ∈ Pre(a)[v].

The domain transition graph of variable v captures the possible value changes of that variable.
Figures 2.1c-d depict the (label-omitted) domain transition graphs of the variables in our running
example.

13

2.2 Heuristic Functions and Abstractions

As mentioned above, planning as heuristic search is one of the major tools for solving planning
tasks. Heuristic search consists of two components, namely the informed search algorithm and
the heuristic function. Although these components should be properly combined, they may be
addressed separately. As this work focuses on heuristic functions, we only briefly mention the
informed search algorithms.

A general informed search algorithm is best-first search, which expands nodes based on an
evaluation function f that measures the cost of reaching the goal. Thus, the node with the lowest
f -value is selected for expansion. Best-first search can be implemented using a priority queue, which
maintains the search frontier in ascending order of f -values. The most widely-known member of
the family of best-first search algorithms is the A∗ search algorithm (Hart et al., 1968), which uses
the evaluation function f = g + h with g being the cost of reaching the node and h being the
heuristic function. If the heuristic function h is admissible, that is, never overestimates the true
cost of reaching the goal, A∗ is guaranteed to return an optimal solution (Dechter & Pearl, 1985).

2.2.1 Admissible Heuristics and Heuristic Ensembles

Heuristic functions are used by informed-search procedures to estimate the cost (of the cheapest
path) from a search node to the nearest goal node. Our focus here is on state-dependent, admissible
abstraction heuristics. A heuristic is state-dependent if its estimate for a search node depends only
on the planning task state associated with that node, that is, h : S → R0+ ∪ {∞}. Most heuristics
in use these days are state-dependent (though see, e.g., Richter et al. (2008) and Karpas and
Domshlak (2009) for a different case). A heuristic h is admissible if h(s) ≤ h∗(s) for all states s. If
h1 and h2 are two admissible heuristics, and h2(s) ≤ h1(s) for all states s, we say that h1 dominates
h2.

A useful heuristic function must be accurate as well as efficiently computable. Improving the
accuracy of a heuristic function without substantially worsening the time complexity of computing
it usually translates into faster search for optimal solutions. During the last decade, numerous
computational ideas have evolved into new admissible heuristics for classical planning; these include
the delete-relaxing max heuristic hmax (Bonet & Geffner, 2001), critical path heuristics hm (Haslum
& Geffner, 2000), landmark heuristics hL, hLA (Karpas & Domshlak, 2009) and hLM-cut (Helmert
& Domshlak, 2009), and abstraction heuristics such as pattern databases (Edelkamp, 2001) and
merge-and-shrink (Helmert et al., 2007).

For any set of admissible heuristics h1, . . . , hm, their pointwise maximum is always an admissible
heuristic, dominating each individual heuristic in the set. This property of admissible heuristics is
widely used in the context of optimal search. For some sets of admissible heuristics, however, their
pointwise sum is also admissible and dominates their pointwise maximum. Many recent works on
cost-optimal planning are based on additive ensembles of admissible heuristics, and these include
critical-path (Haslum et al., 2005; Coles, Fox, Long, & Smith, 2008), pattern database (Edelkamp,
2001; Haslum et al., 2007), and landmark (Karpas & Domshlak, 2009; Helmert & Domshlak, 2009)
heuristics.

Cost partitioning offers a flexible way of additively combining different heuristic estimates while
guaranteeing admissibility of the resulting combination. It subsumes earlier admissibility criteria
for additive pattern database heuristics by Edelkamp (2001) and for general admissible heuristics
by Haslum et al. (2007). Of course, different cost partitions lead to additive heuristics of different

14

quality, and thus the question of how to automatically derive a good cost partition is of interest.
This is precisely the question considered in what follows.

2.2.2 Abstraction Heuristics

Our main focus in this work is on abstraction heuristics. In the most general form an abstraction
heuristic is defined as follows.

Definition 6 Let Π be a planning task over states S, and let A = {〈〈Ti, $i〉, αi〉}ki=1 be an additive
abstraction of the transition graph T(Π). If k = O(poly(||Π||)) and, for all states s ∈ S and all
1 ≤ i ≤ k, the cost cost(αi(s), SGi) in 〈Ti, $i〉 is computable in time O(poly(||Π||)), then hA(s) =∑k

i=1 cost(αi(s), S
G
i) is an abstraction heuristic function for Π.

Note that admissibility of hA is implied by the cost conservation condition of Eq. 2.1. To further
illustrate the connection between abstractions and admissible heuristics, consider three well-known
mechanisms for devising admissible planning heuristics: delete relaxation (Bonet & Geffner, 2001),
critical-path relaxation (Haslum & Geffner, 2000),1 and pattern database heuristics (Edelkamp,
2001).

First, while typically not considered this way, the delete relaxation of a planning task Π =
〈V ,A, I ,G, cost〉 does correspond to an abstraction 〈T+ = (S+, L+, Tr+, s

I
+, S

G
+ , $+), α+〉 of the

transition graph T(Π). Assuming unique naming of the variable values in Π and denoting D+ =⋃
v∈V D(v), we have the abstract states S+ being the power-set of D+, and the labels L+ = {a, a+ |

a ∈ A}. The transitions come from two sources: for each abstract state s+ ∈ S+ and each original
action a ∈ A applicable in s+, we have both Tr+(s+, a) = s+JaK and Tr+(s+, a+) = s+ ∪ eff(a).
With a minor abuse of notation, the initial state and the goal states of the abstraction are sI+ = I
and SG+ = {s+ ∈ S+ | s+ ⊇ G}, and the abstraction mapping α+ is simply the identity function. It
is easy to show that, for any state s of our planning task Π, we have cost(α+(s), SG+) = h+(s), where
h+(s) is the delete-relaxation estimate of the cost from s to the goal. As an aside, we note that
this “delete-relaxation abstraction” 〈T+, α+〉 in particular exemplifies that nothing in Definition 3
requires the size of the abstract state space to be limited by the size of the original state space. In
any event, however, the abstraction 〈T+, α+〉 does not induce a heuristic in terms of Definition 6
because computing h+(s) is known to be NP-hard (Bylander, 1994).

The situation for critical-path relaxation is exactly the opposite. While computing the corre-
sponding family of admissible estimates hm is polynomial-time for any fixed m, this computation
is not based on computing the shortest paths in an abstraction of the planning task. The state
graph over which hm is computed is an AND/OR-graph (and not an OR-graph such as transition
graphs), and the actual computation of hm corresponds to computing a critical tree (and not a
shortest path) to the goal. To the best of our knowledge, the precise relation between critical path
and abstraction heuristics is currently an open question (Helmert & Domshlak, 2009).

2.2.3 Explicit Abstractions

Overall, the only abstraction heuristics in the planning toolbox these days appear to be the explicit
homomorphism abstractions, whose best-known representative is probably the pattern database
(PDB) heuristics. Given a planning task Π over state variables V , a PDB heuristic is based on

1We assume the reader is familiar with these two relaxations. If not, their discussion here can be safely skipped.

15

projecting Π onto a subset of its variables V α ⊆ V . Such a homomorphism abstraction α maps two
states s1, s2 ∈ S into the same abstract state iff s1[V α] = s2[V α]. Inspired by the (similarly named)
domain-specific heuristics for search problems such as (n2−1)-puzzles or Rubik’s Cube (Culberson
& Schaeffer, 1998; Hernadvölgyi & Holte, 1999; Felner et al., 2004), PDB heuristics have been
successfully exploited in domain-independent planning as well (Edelkamp, 2001, 2002; Haslum et al.,
2007). The key decision in constructing PDBs is what sets of variables the problem is projected
to (Edelkamp, 2006; Haslum et al., 2007). However, apart from that need to automatically select
good projections, the two limitations of PDB heuristics are the size of the abstract space Sα and its
dimensionality. First, the number of abstract states should be small enough to allow reachability
analysis in Sα by exhaustive search. Moreover, an O(1) bound on |Sα| is typically set explicitly to
fit the time and memory limitations of the system. Second, since PDB abstractions are projections,
the explicit constraint on |Sα| implies a fixed-dimensionality constraint |V α| = O(1). In planning
tasks with, informally, many alternative resources, this limitation is a pitfall. For instance, suppose
{Πi}∞i=1 is a sequence of Logistics problems of growing size with |Vi| = i. If each package in Πi

can be transported by some Θ(i) vehicles, then starting from some i, hα will not account at all for
movements of vehicles essential for solving Πi (Helmert & Mattmüller, 2008).

With the goal of preserving the attractiveness of the PDB heuristic while eliminating the bot-
tleneck of fixed dimensionality, Helmert et al. (2007) have generalized the methodology of Dräger,
Finkbeiner, and Podelski (2006) and introduced the so called merge-and-shrink (MS) abstractions
for planning. MS abstractions are homomorphisms that generalize PDB abstractions by allowing
for more flexibility in selecting the pairs of states to be contracted. The problem’s state space
is viewed as the synchronized product of its projections onto the single state variables. Starting
with all such “atomic” abstractions, this product can be computed by iteratively composing two
abstract spaces, replacing them with their product. While in a PDB the size of the abstract space
Sα is controlled by limiting the number of product compositions, in MS abstractions it is controlled
by interleaving the iterative composition of projections with abstraction of the partial composites.
Helmert et al. (2007) have proposed a concrete strategy for this interleaved abstraction/refinement
scheme and empirically demonstrated the power of the merge-and-shrink abstraction heuristics.
Like PDBs, however, MS abstractions are explicit abstractions, and thus computing their heuristic
values is also based on explicitly searching for optimal plans in the abstract spaces. Hence, while
merge-and-shrink abstractions escape the fixed-dimensionality constraint of PDBs, the constraint
on the abstract space to be of a fixed size still holds.

16

Chapter 3

Tractable Fragments of Cost-Optimal
Planning

Unfortunately, the palette of known tractable fragments of planning is still very limited, and the
situation is even more severe for tractable optimal planning. To the best of our knowledge, just
a few non-trivial fragments of optimal planning are known to be tractable. Despite the identical
theoretical complexity of regular and optimal planning in the general case (Bylander, 1994), specific
planning domains mostly have different complexity (Helmert, 2003). Clear evidence for strikingly
different scalability of satisficing and optimal general-purpose planners can be seen in the results
of the International Planning Competitions (Hoffmann & Edelkamp, 2005).

In this work we show that the search for new islands of tractability in optimal classical planning
is far from exhausted. Specifically, we study the complexity of optimal planning for problems
specified in terms of propositional state variables and actions, each of which changes the value of
a single variable. In some sense, we continue the line of complexity analysis suggested in Brafman
and Domshlak (2003), and extend it from satisficing to optimal planning. Our results for the first
time provide a dividing line between tractable and intractable such problems.

Definition 7 A sas+ task Π = 〈V ,A, I ,G, cost〉 belongs to the UB (Unary-effect, Binary-valued)
fragment iff all the state variables in V are binary-valued, and each action changes the value of
exactly one variable, that is, for all a ∈ A, we have |eff(a)| = 1.

Different sub-fragments of ub can be defined by placing syntactic and structural restrictions on
the action sets of the problems. For instance, Bylander (1994) shows that planning in ub domains
where each action is restricted to have only positive preconditions is tractable, yet optimal planning
for this ub fragment is hard. In general, the seminal works of Bylander (1994) and Erol, Nau,
and Subrahmanian (1995) indicate that extremely severe syntactic restrictions on single actions
are required to guarantee tractability, or even membership in NP. Bäckström and Klein (1991)
consider syntactic restrictions of a more global nature, and show that ub planning is tractable if
the preconditions of any two actions do not require different values for non-changing variables, and
no two actions have the same effect. Interestingly, this fragment of ub, known as PUBS, remains
tractable for optimal planning as well. While the characterizing properties of PUBS are very
restrictive, this result of Bäckström and Klein is an important milestone in planning tractability
research.

Given the limitations of syntactic restrictions observed by Bylander (1994), Erol et al. (1995),

17

v1 v2 v3

v4 v5

v6

v7

v1 v2 v3

v4 v5

v6v7

v1 v2 v3

v4 v5

v6v7

v1 v2 v3

v4 v5

v6

v7

Tree

Inverted Tree

Polytree Directed-path
Singly Connected

SP

I

T

⊂

⊂

⊂

Figure 3.1: Examples of causal graph topologies, along with the inclusion relations between the
induced fragments of ub

and Bäckström and Klein (1991), more recent works have studied the impact of posing structural
and mixed structural/syntactic restrictions on the action sets. In the scope of ub, most of these
works relate the complexity of planning to the topological properties of the problem’s causal graph
structure.

Long before they were used for complexity analysis, causal graphs were (sometimes indirectly)
considered in the scope of hierarchically decomposing planning tasks (Newell & Simon, 1963; Sacer-
doti, 1974; Knoblock, 1994; Tenenberg, 1991; Bacchus & Yang, 1994). The first result relating the
complexity of ub planning to the structure of the causal graph is due to Jonsson and Bäckström
(1995, 1998b), who identify a fragment of ub, called 3S, which has the interesting property of
inducing tractable plan existence yet intractable plan generation. One of the key characteristics of
3S is the acyclicity of the causal graphs. A special case of 3S was also independently studied by
Williams and Nayak (1997) in the scope of incremental planning for more general sas+ problems.

More recently, Brafman and Domshlak (2003) provide a detailed account of the complexity of
finding plans for ub problems with acyclic causal graphs. These results are closely related to the
problems examined in this work, and thus we survey them in greater detail. For ease of presentation,
we introduce here certain notations that will be used in much of what follows.

– For each node v ∈ CG(Π), by In(v) and Out(v) we denote the in- and out-degrees of v,
respectively, and In(CG(Π))/Out(CG(Π)) stand for the maximal in-degree/out-degree of the
CG(Π) nodes.

– Assuming CG(Π) is connected1, we provide a special notation for the following topologies of
1If CG(Π) consists of a few connected components, then these components identify independent sub-problems of

Π that can be treated separately.

18

S

Sb S
b

S
b
b

P

Pb

P
b
b

P
b

T I

S

Sb S
b

S
b
b

P

Pb

P
b
b

P
b

T I

(a) (b)

Figure 3.2: Inclusion-based hierarchy and complexity of plan generation for some ub problems with
acyclic causal graphs. (a) The hierarchy of strips fragments corresponding to tree, inverted tree,
polytree, and directed-path singly connected topologies of the causal graph, and (possibly) O(1)
bounds on the causal graph in-degree and/or out-degree. (b) Plan generation is tractable for the
fragments in the (bottom-most) shaded region, and NP-complete for all other depicted fragments.
The top-most and intermediate (transparent) regions correspond to the results of Brafman and
Domshlak (2003) and Jonsson and Giménez (2007), respectively.

acyclic causal graphs, also depicted in Figure 3.1. A causal graph CG(Π) is a

F fork if Out(v) > 0 for exactly one v ∈ V .

IF inverted fork if In(v) > 0 for exactly one v ∈ V .

T tree if In(CG(Π)) ≤ 1, and there exists v ∈ V such that In(v) = 0.

I inverted tree if Out(CG(Π)) ≤ 1, and there exists v ∈ V such that Out(v) = 0.

P polytree if CG(Π) contains no undirected cycles. (For an example of a polytree that is
neither tree nor inverted tree see Figure 3.1.)

S directed-path singly connected if there is at most one directed path from each node v ∈
CG(Π) to any other node v′ ∈ CG(Π). (For an example of a directed-path singly
connected DAG see Figure 3.1.)

In what follows, we use T, I, P, and S to refer to the corresponding fragments of ub, and we use
subscript/superscript b to refer to a fragment induced by the additional constraint of in-degree/out-
degree being bounded by a constant. It is not hard to verify that we have T, I ⊂ P ⊂ S, with
T ⊂ Pb and I ⊂ Pb; the complete inclusion hierarchy of these sub-fragments of ub is shown in
Figure 3.2a. The fragments F and IF are introduced here, and referred to later on in a different
context.

One of the key properties of cost-optimal plans for the ub problems with directed-path singly
connected causal graphs is immediately derivable from Lemma 1 of Brafman and Domshlak (2003),
and it is given by Corollary 1 below.

19

Lemma 1 (Brafman and Domshlak (2003)) For any solvable ub task Π with causal graph
CG(Π) ∈ S over n state variables, any irreducible plan ρ for Π, and any state variable v in Π, the
number of value changes of v along ρ is ≤ n, that is, |ρ↓v | ≤ n.

Corollary 1 For any solvable ub task Π with causal graph CG(Π) ∈ S over n state variables, any
cost-optimal plan ρ for Π, and any state variable v in Π, we have |ρ↓v | ≤ n.

Given an sas+ planning task Π = 〈V ,A, I ,G, cost〉 and a binary-valued variable v ∈ V , we
denote the initial value I[v] of v by bv, and the opposite value by wv (short for, black/white).
Using this notation and exploiting Corollary 1, by σ(v) we denote the longest possible sequence
of values obtainable by v along a cost-optimal plan ρ, with |σ(v)| = n+ 1, bv occupying all
the odd positions of σ(v), and wv occupying all the even positions of σ(v). In addition, by τ(v) we
denote a per-value time-stamping of σ(v)

τ(v) =

{
b1
v · w1

v · b2
v · w2

v · · · bj+1
v , n = 2j,

b1
v · w1

v · b2
v · w2

v · · ·wj
v, n = 2j − 1,

, j ∈ N.

The sequences σ(v) and τ(v) play an important role in our constructions both by themselves
and via their prefixes and suffixes. In general, for any sequence S, by �[S] and �[S] we denote the
set of all non-empty prefixes and suffixes of S, respectively. In our context, a prefix σ′ ∈ �[σ(v)]
is called goal-valid if either the goal value G[v] is unspecified, or the last element of σ′ equals G[v].
The set of all goal-valid prefixes of σ(v) is denoted by �∗[σ(v)] ⊆ �[σ(v)]. The notion of goal-valid
prefixes is also similarly specified for τ(v).

The key tractability result of Brafman and Domshlak (2003) corresponds to a polynomial time
plan generation procedure for Pb, that is, for ub problems inducing polytree causal graphs with
all nodes having O(1)-bounded indegree. In addition, Brafman and Domshlak show that plan
generation is NP-complete for the fragment S, and we note that their proof of this claim can be
easily modified to hold for Sbb. These results of tractability and hardness (as well as their immediate
implications) are depicted in Figure 3.2b by the shaded bottom-most and the transparent top-
most free-shaped regions. The empty free-shaped region in between corresponds to the gap left
by Brafman and Domshlak (2003). This gap has been recently closed by Jonsson and Giménez
(2007), who prove NP-completeness of plan generation for P. We note that Jonsson and Giménez’s
proof actually carries over to the I fragment as well, and so the gap left by Brafman and Domshlak
(2003) is now entirely closed.

3.1 Binary Variable Domains

The complexity results of Brafman and Domshlak (2003) and those of Jonsson and Giménez (2007)
correspond to satisficing planning, and do not distinguish between the plans on the basis of their
quality. By contrast, here we study the complexity of optimal plan generation for ub, focusing on
(probably the most canonical) cost-optimal (also known as sequentially-optimal) planning. Cost-
optimal planning corresponds to the task of finding a plan ρ ∈ A∗ for Π that minimizes cost(ρ) =∑

a∈ρ cost(a). We provide novel tractability results for cost-optimal planning for ub, and draw a
dividing line between the tractable and intractable such problems.

In the rest of this section our goal is to adequately describe our results, while most formal
definitions, constructions, and proofs underlying these results are relegated to appendix A.

20

3.1.1 Cost-optimal planning for Pb

Following Brafman and Domshlak (2003), here we relate the complexity of (cost-optimal) ub plan-
ning to the topology of the causal graph. To this end, we consider the structural hierarchy depicted
in Figure 3.2a. We begin by considering cost-optimal planning for Pb—it is apparent from Fig-
ure 3.2b that this is the most expressive fragment of the hierarchy that is still a candidate for
tractable cost-optimal planning. We prove that cost-optimal planning for Pb is tractable and show
that the complexity map of cost-optimal planning for the ub fragments in Figure 3.2a is identical
to that for satisficing planning (that is, Figure 3.2b).

Our algorithm for the Pb fragment is based on compiling a given planning task Π in Pb into a
constraint optimization problem COPΠ = (X ,F) over variables X , functional components F , and
the global objective min

∑
ϕ∈F ϕ(X) such that

(I) COPΠ can be constructed in time polynomial in the description size of Π;

(II) the tree-width of the cost network of COPΠ is bounded by a constant, and the optimal
tree-decomposition of the network is given by the compilation process;

(III) if Π is unsolvable then all the assignments to X evaluate the objective function to ∞, and
otherwise, the optimum of the global objective is obtained on and only on the assignments
to X that correspond to cost-optimal plans for Π;

(IV) given an optimal solution to COPΠ, the corresponding cost-optimal plan for Π can be recon-
structed from the former in polynomial time.

Having such a compilation scheme, we then solve COPΠ using the standard, poly-time algorithm
for constraint optimization over trees (Dechter, 2003), and find an optimal solution for Π. The
compilation is based on a certain property of the cost-optimal plans for Pb that allows for conve-
niently bounding the number of times each state variable changes its value along such an optimal
plan. Given this property of Pb, each state variable v is compiled into a single COP variable xv,
and the domain of that COP variable corresponds to all possible sequences of value changes that
v may undergo along a cost-optimal plan. The functional components F are then defined, one
for each COP variable xv, and the scope of such a function captures the “family” of the original
state variable v in the causal graph, that is, v itself and its immediate predecessors in CG(Π). (See
Appendix A for the formal definition of the COP, as well as the correctness and complexity claims.)
Figure 3.3a depicts a causal graph of a P task Π, with the family of the state variable v4 depicted
by the shaded region, and Figure 3.3b shows the cost network induced by compiling Π as a Pb task,
with the dashed line surrounding the scope of the functional component induced by the family of
v4. It is not hard to verify that such a cost network induces a tree over variable-families cliques,
and for a Pb task, the size of each such clique is bounded by a constant. Hence, the tree-width of
the cost-network is bounded by a constant as well.

3.1.2 Cost-optimal planning for P(1)

Relaxing the indegree bound brings us to the P fragment of ub, which is NP-hard even for satisficing
planning (Jonsson & Giménez, 2007). Thus, some additional constraint should be introduced.

21

Causal graphs and k-dependence

While causal graphs provide important information about the structure of planning problems, a
closer look at their definition reveals that some accessible information is actually hidden by this
structure. To start with an example, let us consider the multi-valued encoding of Logistics-style
problems (Helmert, 2006). In these problems, each variable representing the location of a package
has as its parents in the causal graph all the variables representing alternative transportation
means (trucks, planes, etc.), and yet, each individual action affecting the location of a package is
preconditioned by at most one such parent variable. (You cannot load/unload a package into/from
more than one vehicle.) So, even if the in-degree of the causal graph is proportional to some problem
domain parameters, the number of variables that determine applicability of each action may still
be bounded by a constant.

In other words, while the causal graph provides an aggregate view of the independence rela-
tionships between the problem variables, the individual dependencies of the problem actions on the
non-changing variables are suppressed by this view. To exploit these dependencies, we propose a
(tangential to the causal graph’s topology) classification of ub problems and study the connection
between this classification and the computational tractability of both general and cost-optimal plan
generation for ub.

Definition 8 For any k ∈ Z∗, and any sas+ task Π over actions A, we say that Π is k-dependent
if it satisfies |V(pre(a)) \ V(eff(a))| ≤ k for all actions a ∈ A

In other words, an sas+ planning task is k-dependent if no action in its action set depends on
more than k non-changing variables. Putting our two classifications of problems together, for any
structural fragment G of ub (such as, e.g., those in Figure 3.2), and any k ∈ Z∗, by G(k) we denote
the set of all k-dependent problems within G.

Meeting Polytrees and 1-dependence

Recall that the fragment P of ub is NP-hard even for satisficing planning (Jonsson & Giménez,
2007). Our main result here is positive—at least for the most extreme (yet, says the Logistics
example above, not unrealistic) setting of k = 1, satisfying k-dependence does bring us to an island
of tractability P(1).

Similarly to our treatment of Pb, our algorithm for P(1) exploits the idea of compiling a planning
task Π into a tractable constraint optimization problem COPΠ. However, the planning-to-COP
compilation scheme here is very different from that devised for Pb. In fact, this difference is
unavoidable since our construction for Pb relies heavily on the assumption that In(CG(Π)) = O(1),
and we do not have this luxury in P(1). Instead, we identify certain properties of the cost-optimal
plan sets of the P(1) tasks, and exploit these properties in devising suitable planning-to-COP
compilation schemes.

We begin with considering only P(1) tasks with uniform-cost actions; the cost of a plan for
such a task is proportional to its length 2. We show that any such solvable task has a cost-optimal
plan that makes all the changes of each variable to a certain value using exactly the same (type
of) action. And while devising a correct and tractable planning-to-COP compilation scheme is
more than a step away from identifying this property of P(1), the latter is the cornerstone of what
follows. This property of P(1) can be used to uniquely compile each state variable v and each

2This is probably the origin of the term “sequential optimality.”

22

v1

!!
!!

!!
!!

v2

""

v3

##""
""

""

v4

##""
""

""

!!
!!

!!
!!

v5

""
v7 v6

xv1
xv2

!
!
!
!

xv3

!
!
!
!

x
v1

v4
x

v2

v4
x

v3

v4

xv4

!
!
!
!

xv5

!
!
!
!

x
v4

v7
x

v4

v6
x

v5

v6

xv7
xv6

xv1

!
!

!
!

!
!

xv2
xv3

"
"
"
"
"
"

xv4

"
"
"
"
"
"

!
!

!
!

!
!

xv5

xv7
xv6

(a) (b) (c)

Figure 3.3: Cost networks induced by the planning-to-COP compilation schemes for P. (a) Causal
graph of a P task Π, with the family of the state variable v4 being depicted by the shaded region.
(b) Cost network induced by compiling Π as a Pb task, with the dashed line surrounding the scope
of the functional component induced by the family of v4. (c) Cost network induced by compiling
Π as a P(1) task, with the dashed lines surrounding the scopes of the four functional components
induced by the family of v4.

edge (v, v′) of the task’s causal graph into COP variables xv and xvv′ (see Figure 3.3c). A certain
set of functional components is then defined for each COP variable xv. Because the domains of
the COP variables and the specification of the functional components are technically complex, we
relegate them to Appendix A. It is important, however, to note that the cost networks of such
COPs are guaranteed to induce trees over cliques of size ≤ 3, and thus having tree-width bounded
by a constant. The reader can get an intuition of where these “cliques of size ≤ 3” are coming from
by looking at the example in Figure 3.3c.

Unfortunately, the aforementioned helpful property of the P(1) tasks with uniform-cost actions
does not hold for more general action-cost schemes for P(1). It turns out, however, that all tasks
in P(1) satisfy another property that still allows for devising a general, correct, and tractable
planning-to-COP scheme for P(1). Specifically, we show that any solvable task in P(1) has a
cost-optimal plan that makes all the changes of each variable using at most three types of action.
The algorithm resulting from exploiting this property is more complex and more costly than that
devised for the P(1) tasks with uniform-cost actions, yet it is still poly-time. Interestingly, the cost
networks of such COPs are topologically identical to those for problems with uniform-cost actions,
the difference being in the domains of the COP variables, and in the specification of the functional
components.

3.1.3 Drawing the Limits of k-dependence

Having read this far, the reader may rightfully wonder whether O(1)-dependence is not a strong
enough property to make cost-optimal planning tractable even for some forms of the causal graph
that are more complex than polytree. It turns out that that the dividing line between tractable

23

k = 1 k = 2 k = 3 k = Θ(n)

Pb — — — P
P(k) P NPC
Sbb NPC — — NPC

k = 1 k = 2 k = 3 k = Θ(n)
Pb — — — P
P(k) P NPC
Sbb NPC — NPC

(a) (b)

Figure 3.4: Complexity of (a) cost-optimal and (b) satisficing plan generation for fragments of
ub. The “—” mark indicates that the complexity is implied by other results in the row. All other
shaded and regular cells correspond to the results obtained in this work and in the past, respectively.
Empty cells correspond to open questions. Note that, with the exception of S(1) fragment, the
complexity of both cost-optimal and satisficing planning is either unknown or the same.

and intractable cases is much finer. Figure 3.4 summarizes our current understanding of the time
complexity of both cost-optimal and satisficing plan generation for the P and S fragments of ub.
In this section we show that even satisficing planning with directed-path singly connected, bounded
in- and out-degree causal graphs is hard under 2-dependence, and that cost-optimal planning for
this structural fragment of ub is hard even for 1-dependent such tasks. Note that the complexity
of (both cost-optimal and satisficing) plan generation for P(k) for k = O(1), k ≥ 2 remains
an interesting open problem. An additional open question is the complexity of satisficing plan
generation for S(1). The results for the S fragments are obtained as follows.

• In Theorem 1 we show that cost-optimal planning is already hard for the Sbb(1) class, that is,
the class of 1-dependent ub tasks inducing directed-path singly connected causal graphs with
both in- and out-degrees being bounded by a constant. This result further emphasizes the
connection between the undirected cycles in the causal graph and the complexity of various
planning tasks, which was first discussed by Brafman and Domshlak (2003).

• In Theorem 2 we show that even non-optimal planning is hard for the Sbb(2) class. This result
suggests that 1-dependence is a rather special case of k-dependence in terms of the connec-
tion to computational tractability. However, given the (still) empty entries in Figures 3.4a
and 3.4b, further analysis of the “criticality” of 1-dependence is needed.

Theorem 1 Cost-optimal planning for Sbb(1) is NP-complete.

Proof: The membership in NP is by Theorem 2 of Brafman and Domshlak (2003). The proof of
NP-hardness is by a polynomial reduction from the well-known VERTEX COVER problem (Garey
& Johnson, 1978): given an undirected graph G = (V,E), find a minimal-size subset V′ of V
such that each edge in E has at least one of its two end-nodes in V′. Given an undirected graph
G = (V,E), let the planning task ΠG = 〈VG, AG, IG, GG, cost〉 be defined as follows.

• VG = {v1, . . . , v|V|, u1, . . . , u|E|}, and, for all vi, uj , D(vi) = D(uj) = {T, F},

• IG = {vi = F | vi ∈ VG}
⋃{ui = F | ui ∈ VG},

• GG = {ui = T | ui ∈ VG},

24

• Actions AG = AV ∪AE, where AV = {av1 , . . . , av|V|} with

pre(avi) = {vi = F}, eff(avi) = {vi = T}, cost(avi) = 1 (3.1)

and AE = {au1 , a
′
u1
, . . . , au|E| , a

′
u|E|
} with

pre(aui) = {ui = F, vi1 = T},
pre(a′ui) = {ui = F, vi2 = T},

eff(aui) = eff(a′ui) = {ui = T},
cost(aui) = cost(a′ui) = 0

(3.2)

where the variables vi1 , vi2 correspond to the endpoints of the edge corresponding to the
variable ui.

Given this construction of ΠG, it is easy to see that (i) any plan ρ for ΠG provides us with a
vertex cover Vρ for G such that |Vρ| = cost(ρ) and vice versa, and thus (ii) cost-optimal plans
for ΠG (and only such plans for ΠG) provide us with minimal vertex covers for G. The topology
of the causal graph of ΠG is as required, and 1-dependence of ΠG is immediate from Eqs. 3.1-3.2.
This finalizes the proof of NP-completeness of cost-optimal planning for Sbb(1).

Theorem 2 Satisficing planning for Sbb(2) is NP-complete.

Proof: The proof is, in essence, the proof for Theorem 2 of Brafman and Domshlak (2003). The
polynomial reduction there is from 3-SAT to planning for S. Observing that 3-SAT remains hard
even if no variable participates in more than five clauses of the formula (Garey & Johnson, 1978),
and that the reduction of Brafman and Domshlak from such 3-SAT formulas is effectively to
satisficing planning for Sbb(2), we prove our claim.

3.1.4 Towards Practically Efficient Special Cases

The polytree-k-indegree algorithm for Pb is polynomial, but is rather involved and its complexity
is exponential in In(CG(Π)). It is quite possible that more efficient algorithms for Pb, or some of
its fragments can be devised. A simple algorithm for T ⊂ Pb tasks has indeed already appeared
in the literature in a different context, but when or even if it provides cost-optimal solutions was
never examined. This is the TreeDT algorithm for preferential reasoning with tree-structured CP-
nets (Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004), and it turns out that its straightforward
adaptation for T planning tasks always provides cost-optimal solutions for T tasks with uniform-
cost actions. The algorithm is depicted in Figure 3.5, and it is not hard to verify that its time
complexity is linear in the length of the generated plan ρ—all it does is iteratively “remove” the
parts of the task that can be safely ignored in later steps, and then apply a value-changing action
on a lowest (in the causal graph) variable for which such an action exists.

Theorem 3 Given a T task Π with uniform-cost actions over n state variables,

(I) the algorithm tree-uniform-cost finds a plan if and only if Π is solvable,

(II) if the algorithm tree-uniform-cost finds a plan for Π, then this plan is cost-optimal, and

(III) the time complexity of tree-uniform-cost is Θ(n2).

25

procedure tree-uniform-cost(Π = 〈V ,A, I ,G, cost〉)
takes a planning task Π ∈ T with uniform-cost actions A
returns a cost-optimal plan for Π if Π is solvable, and fails otherwise

ρ = 〈〉, s := I, V ′ := V
loop

V ′ := remove-solved-leafs(s, V ′)
if V ′ = ∅ return ρ
else

find v ∈ V ′, a ∈ Av such that a ∈ A(s) and
∀u ∈ Desc(v, V ′) : Au ∩A(s) = ∅

if not found return failure
ρ := ρ · 〈a〉, s := sJaK

Figure 3.5: A simple algorithm for cost-optimal planning for T tasks with uniform-cost actions.
The notation Desc(v, V ′) stands for the subset of V ′ containing the descendants of v in CG(Π),
and A(s) stands for the set of all actions applicable in the state s. The function remove-solved-
leafs(s, V ′) iteratively removes the leaf variables that are in their goal value (if defined) until no
such variable is found.

Proof: Without loss of generality, in what follows we assume that the actions of Π are all unit-cost,
that is, for each plan ρ for Π, cost(ρ) = |ρ|.

(I) Straightforward by reusing as is the proof of Theorem 11 of Boutilier et al. (2004).

(II) Assume to the contrary that the plan ρ provided by tree-uniform-cost is not optimal, that is,
there exists a plan ρ′ such that |ρ′| < |ρ|. In particular, this implies the existence of a variable v
such that |ρ′↓v | < |ρ↓v |. The semantics of planning imply that

|ρ′↓v | ≤ |ρ↓v | − (εv + 1) (3.3)

where εv = 1 if G[v] is specified, and 0 otherwise. Likewise, since the causal graph CG(Π) forms a
directed tree, there exists a variable v satisfying Eq. 3.3 such that, for all the descendants u of v in
CG(Π) holds:

|ρ′↓u | ≥ |ρ↓u | (3.4)

Let Ch(v) be the set of all the immediate descendants of v in CG(Π). By the construction of
tree-uniform-cost, we have that:

1. If Ch(v) = ∅, then |ρ↓v | ≤ εv, and this contradicts Eq. 3.3 as |ρ′↓v | is a non-negative quantity
by definition.

2. Otherwise, if Ch(v) 6= ∅, then, by the construction of tree-uniform-cost, there exists u ∈ Ch(v)
such that changing its value |ρ↓u | times requires changing the value of v at least |ρ↓v | − εv
times. In other words, there is no action sequence % applicable in I such that |%↓u | ≥ |ρ↓u |
while |%↓v | < |ρ↓v | − εv. However, from Eq. 3.4 we have |ρ′↓u | ≥ |ρ↓u |, and thus |ρ′↓v | has
to be at least |ρ↓v | − εv. This, however, contradicts Eq. 3.3.

26

Hence, we have proved that |ρ′↓v | ≥ |ρ↓v |, contradicting our assumption that |ρ′| < |ρ|.

(III) Implied by Theorems 12 and 13 of Boutilier et al. (2004).

The requirement in Theorem 3 for all actions to have the same cost is essential. The example
below shows that in the more general case the algorithm tree-uniform-cost is no longer cost-optimal.
Consider Π = 〈V ,A, I ,G, cost〉 ∈ T with V = {v, u}, I = {bv, bu}, G = {bv,wu}, and A =
{a1, a2, a3, a4} with

eff(a1) = {wv}, pre(a1) = {bv}
eff(a2) = {bv}, pre(a2) = {wv}
eff(a3) = {wu}, pre(a3) = {bu,wv}
eff(a4) = {wu}, pre(a4) = {bu, bv}

cost(a1) = cost(a2) = cost(a3) = 1
cost(a4) = 4.

On this task, the tree-uniform-cost algorithm returns ρ = 〈a4〉 with cost(ρ) = 4, while the optimal
plan is ρ′ = 〈a1, a3, a2〉 with cost(ρ′) = 3.

3.2 General Variable Domains

Investigating the complexity of sas+ fragments beyond ub is not of theoretical interest alone. Re-
laxing the unary effectness property leads to complex-structured causal graphs, almost immedietly
taking us beyond the limits of tractability. Unfortunately, relaxing domain bounds altogether also
can harm the tractability of even the simplest causal graph structures. Domshlak and Dinitz (2001)
show that even satisficing planning for sas+ fragments with fork and inverted fork causal graphs is
NP-complete. In fact, recent results by Chen and Giménez (2008) show that planning for any sas+

fragment characterized by any non-trivial connected causal graph is NP-hard. Moreover, even if
the domain-transition graphs of all the state variables are strongly connected (as in our example),
optimal planning for forks and inverted forks remain NP-hard (see Helmert (2003) and (2004) for
the respective results).

While the hardness of optimal planning for problems with fork and inverted fork causal graphs
casts a shadow on the relevance of fork-decompositions, a closer look at the proofs of the corre-
sponding hardness results of Domshlak and Dinitz (2001) and Helmert (2003, 2004) reveals that
these proofs rely on root variables having large domains. It turns out that this is not coinciden-
tal, and Theorems 4 and 5 below characterize some substantial islands of tractability within these
structural fragments of sas+.

3.2.1 Cost-optimal planning for F

In order to investigate the complexity of tasks with fork-structured causal graphs and domain-
bounded variables, one should distinguish between the bounds on the domains of the leaf variables
and the bound on root domain. Here we present the complexity results for the following two cases:
(i) binary root domain and unbounded domains for the leaf variables, and (ii) constant bound on
all task variables. Together with the NP-Completeness results for the unbounded root domain case,

27

the only remaining open question is the constant bounded root domain and unbounded domains for
the leaf variables. The tractability proofs for the aforementioned two cases are given in Theorem 4.

Theorem 4 (Tractable Forks) Given a planning task Π = 〈V ,A, I ,G, cost〉 with a fork causal
graph rooted at r, if (i) |D(r)| = 2, or (ii) for all v ∈ V , |D(v)| = O(1), the time complexity of the
cost-optimal planning for Π is polynomial in ||Π||.
Proof: Observe that, for any planning task Π as in the theorem, the fork structure of the causal
graph CG(Π) implies that all the actions in Π are unary-effect, and each leaf variable v ∈ succ(r)
preconditions only the actions affecting v itself. We prove the two cases separately.

First, for |D(r)| = 2, the algorithm below is based on the following three properties satisfied by
the optimal plans ρ for Π.

(i) For any leaf variable v ∈ succ(r), the path ρ↓v from I[v] to G[v] induced by ρ in DTG(v,Π)
is either cycle-free or contains only zero-cost cycles. This is the case because otherwise all
the nonzero-cost cycles can be eliminated from ρ↓v while preserving its validity, violating the
assumed optimality of ρ. Without loss of generality, in what follows we assume that this path
ρ↓v in DTG(v,Π) is cycle-free; in the case of fork causal graphs, we can always select an
optimal ρ that satisfies this requirement for all v ∈ succ(r). Thus, we have |ρ↓v | ≤ |D(v)|−1.

(ii) Having fixed a sequence of value changes of r, the fork’s leaves become mutually independent;
that is, our ability to change the value of one does not affect our ability to change the value
of all the others.

(iii) Because r is binary-valued, if v ∈ V \{r} is the “most demanding” leaf variable in terms of the
number of value changes required from r by the action preconditions along ρ↓v, then these are
the only value changes of r along ρ, except for, possibly, a final value change to G[r]. Thus,
in particular, we have |ρ↓r | ≤ maxv∈succ(r) |D(v)|.

We begin with introducing some auxiliary notations. With |D(r)| = 2, without loss of generality
let D(r) = {0, 1} with I[r] = 0. Let σ(r) be an alternating 0/1 sequence starting with 0, and having
0 in all odd and 1 in all even positions. This sequence σ(r) is such that |σ(r)| = 1 if no action in A
can change r’s value to 1, |σ(r)| = 2 if some action can change r’s value to 1 but no action can then
restore it to value 0, and otherwise, |σ(r)| = 1 + maxv∈succ(r) |D(v)|. Let �∗[σ(r)] be the set of all
nonempty prefixes of σ(r) if G[r] is unspecified; otherwise, let it be the set of all nonempty prefixes
of σ(r) ending with G[r]. Note that if �∗[σ(r)] = ∅, then the problem is trivially unsolvable; in
what follows we assume this is not the case. For each v ∈ succ(r), let DTG0

v and DTG1
v be the

subgraphs of the domain transition graphs DTG(v,Π), obtained by removing from DTG(v,Π) all
the arcs labeled with r = 1 and r = 0, respectively.

The algorithm below incrementally constructs a set R of valid plans for Π, starting with R = ∅.
(1) For each v ∈ succ(r), and each pair of v’s values x, y ∈ D(v), compute the shortest (that is,

cost-minimal) paths π0
v(x, y) and π1

v(x, y) from x to y in DTG0
v and DTG1

v, respectively. For
some pairs of values x, y, one or even both these paths may, of course, not exist.

(2) For each sequence σ ∈ �∗[σ(r)], and each v ∈ succ(r), construct a layered digraph Lv(σ) with
|σ|+1 node layers L0, . . . , L|σ|, where L0 consists of only I[v], and for 1 ≤ i ≤ |σ|, Li consists of

all nodes y ∈ D(v) for which a path πσ[i]
v (x, y) from some node x ∈ Li−1 has been constructed in

step (1). For each x ∈ Li−1, y ∈ Li, Lv(σ) contains an arc (x, y) weighted with cost(πσ[i]
v (x, y)).

28

(3) For each σ ∈ �∗[σ(r)], let k = |σ|. A candidate plan ρσ for Π is constructed as follows.

(a) For each v ∈ succ(r), find a cost-minimal path from I[v] to G[v] in Lv(σ). If no such path
exists, then proceed with the next prefix in �∗[σ(r)]. Otherwise, note that the i-th edge on
this path (taking us from some x ∈ Li−1 to some y ∈ Li) corresponds to the cost-minimal
path π

σ[i]
v (x, y) from x to y. Let us denote this path from x to y by Siv.

(b) Set R = R∪{ρσ}, where ρσ = S1 · aσ[2] ·S2 · . . . · aσ[k] ·Sk, each sequence Si is obtained by
an arbitrary merge of the sequences {Siv}v∈succ(r), and aϑ is the cheapest action changing
the value of r to value ϑ.

(4) If R = ∅, then fail, otherwise return ρ = argminρσ∈R cost(ρσ).

It is straightforward to verify that the complexity of the above procedure is polynomial in the
description size of Π. To prove correctness, we show that the procedure returns a plan for any
solvable task Π, and that the returned plan ρ′ satisfies cost(ρ′) ≤ cost(ρ) for any optimal plan ρ
for Π.

Given a solvable task Π, let ρ be an optimal plan for Π with all ρ↓v for the leaf variables
v being cycle-free. Let ρ↓r= 〈a2 . . . , ak〉; the numbering of actions along ρ↓r starts with a2 to
simplify indexing later on. For each v ∈ succ(r), the actions of ρ↓r divide ρ↓v into subsequences
of v-changing actions ρ↓v= ρ1

v · . . . · ρkv , separated by the value changes required from r. That is,
for each 1 ≤ i ≤ k, all actions in ρiv are preconditioned by the same value of r, if any, and if two
actions a ∈ ρiv and a′ ∈ ρi+1

v are preconditioned by r, then pre(a)[r] 6= pre(a′)[r]. Let σ ∈ �∗[σ(r)]
be a value sequence such that |σ| = k = |ρ↓r |+ 1. For each v ∈ succ(r), ρ↓v is a path from I[v] to
G[v] in Lv(σ), and therefore some ρσ is added into R by the algorithm, meaning that the algorithm
finds a solution. Now, if ρσ ∈ R, then, for each v ∈ succ(r), let S1

v · S2
v · . . . · Skv be a cost-minimal

path from I[v] to G[v] in Lv(σ) such that Siv is the sequence of actions changing the value of v and
preconditioned either by r = 0 or nothing for odd i, and by r = 1 or nothing for even i. Thus,

cost(S1
v · S2

v · . . . · Skv) =
k∑
i=1

cost(Siv) ≤ cost(ρ↓v).

Because sequence Si is obtained by an arbitrary merge of the sequences {Siv}v∈succ(r), and aϑ is the
cheapest action changing the value of r to ϑ, then ρσ = S1 · aσ[2] ·S2 · . . . · aσ[k] ·Sk is an applicable
sequence of actions that achieves the goal values for each v ∈ succ(r) as well as for r, and

cost(ρσ) = cost(S1 · aσ[2] · S2 · . . . · aσ[k] · Sk) =
k∑
i=2

cost(aσ[i]) +
k∑
i=1

cost(Si) ≤

≤cost(ρ↓r) +
∑

v∈succ(r)

cost(ρ↓v) = cost(ρ).

Hence, if Π is solvable, then the algorithm returns a plan for Π, and this plan must be optimal.
Finally, if Π is not solvable, then R necessarily remains empty, and thus the algorithm fails.

Now we proceed with the second case of the theorem. If |D(v)| = O(1) for all v ∈ V , let
d = maxv∈V |D(v)|. Assuming a unified labeling of the values in each D(v) as {1, 2, . . . , |D(v)|},
note that (i) there are at most dd different sequences of domain values of size ≤ d, (ii) any plan ρ
for Π changes the value of each u ∈ succ(r) according to one such sequence, and (iii) each value

29

change of u along ρ is (possibly) prevailed by some value of r. Hence, the length of a sequence
of r’s values required to support the value changes of succ(r) along a cost-optimal plan for Π is
Θ(dd+1). Since each value of r is reachable from another value of r in < d steps, the total number
of value changes of r along a cost-optimal plan for Π is Θ(dd+2).

Given that, we can now generate all possible paths of size ≤ dd+2 from I[r] to G[r] in DTG(r,Π)
in time Θ(dd

d+2
), and, for each such path, and each u ∈ succ(r), find a minimal-cost path from

I[u] to G[u] in DTG(u,Π) that can be supported by the given path for r. This can be done by
going over all cycle-free paths in DTG(u,Π) from I[u] to G[u], and checking whether a series of
values of r that supports the corresponding actions is a subsequence of the path for r. There are
Θ(dd) such paths in DTG(u,Π), and the test per path can be done in time Θ(dd+2). Thus, for
each considered path for r in DTG(r,Π), the respective minimal-cost path for u in DTG(u,Π)
can be found in time Θ(d2d+2), and therefore a cost-optimal plan for Π can be found in time
Θ(d2d+2 · ddd+2

) = Θ(dd
d+2+2d+2) = O(1).3

3.2.2 Cost-optimal planning for IF

Theorem 5 (Tractable Inverted Forks) Given a planning task Π = 〈V ,A, I ,G, cost〉 with an
inverted fork causal graph with sink r ∈ V , if |D(r)| = O(1), the time complexity of the cost-optimal
planning for Π is polynomial in ||Π||.

Proof: Let |D(r)| = d. Observe that the inverted-fork structure of the causal graph CG(Π) implies
that all the actions in Π are unary-effect, and that the sink r preconditions only the actions affecting
r itself. Hence, in what follows we assume that G[r] is specified; otherwise Π breaks down to a set
of trivial planning problems over a single variable each. Likewise, from the above properties of Π
it follows that, if ρ is an optimal plan for Π, then the path ρ↓r from I[r] to G[r] induced by ρ in
DTG(r,Π) is either cycle-free or contains only zero-cost cycles. The latter can be safely eliminated
from ρ, and thus we can assume that ρ↓r is cycle-free. Given that, a simple algorithm that finds a
cost-optimal plan for Π in time Θ(||Π||d + ||Π||3) is as follows.

(1) Create all Θ(|Ar|d−1) cycle-free paths from I[r] to G[r] in DTG(r,Π).

(2) For each variable v ∈ pred(r), and each pair of v’s values x, y ∈ D(v), compute the cost-minimal
path from x to y in DTG(v,Π). The whole set of such cost-minimal paths can be computed
using Θ(d|V |) applications of the Floyd-Warshall algorithm on the domain transition graphs
of the sink’s parents pred(r).

(3) For each I[r]-to-G[r] path in DTG(r,Π) generated in step (1), construct a plan for Π based on
that path for r, and the shortest paths computed in (2). This simple construction, depicted in
Figure 3.6, is possible because the values of each parent variable can be changed independently
of the values of all other variables in the inverted fork.

(4) Take the cheapest plan among those constructed in (3). If no plan was constructed in step (3),
then Π is unsolvable.

We have already observed that, for each cost-optimal plan ρ, ρ↓r is one of the I[r]-to-G[r]
paths generated in step (1). For each v ∈ pred(r), let Sv denote the sequence of values from D(v)

3This constant bound is rather ludicrous, but our construction here is not intended to be complexity-optimal
either. Finding more realistic bounds for this concrete problem is definitely of interest.

30

Given a path 〈a1, . . . , am〉 from I[r] to G[r] in DTG(r,Π):
ρ := 〈〉
am+1 := 〈G[pred(r)], ∅〉
foreach v ∈ pred(r) do xv := I[v]
for i := 1 to m+ 1 do

foreach v ∈ pred(r) do
if pre(ai)[v] is specified and pre(ai)[v] 6= xv then

if pre(ai)[v] is not reachable from xv in DTG(v,Π) then fail
append to ρ the actions induced by some cost-minimal path

from pre(ai)[v] to xv in DTG(v,Π)
xv := pre(ai)[v]

if i < m+ 1 then append to ρ the action ai
return ρ

Figure 3.6: Detailed outline of step (3) of the planning algorithm for inverted-fork structured task

that is required by the preconditions of the actions along ρ↓r. For each v ∈ pred(r), we have ρ↓v
corresponding to a (possibly cyclic) path from I[v] to G[v] in DTG(v,Π), traversing the values (=
nodes) from Sv in the order required by Sv. In turn, the plan for Π generated in (3) consists of
cost-minimal such paths for all v ∈ pred(r). Therefore, at least one of the plans generated in (3)
must be cost-optimal for Π, and the minimization step (4) will select one of them.

31

32

Chapter 4

Implicit Abstractions

Over the years, PDB heuristics have been shown to be very effective in several hard search problems,
including cost-optimal planning (Culberson & Schaeffer, 1998; Edelkamp, 2001; Felner et al., 2004;
Haslum et al., 2007). The conceptual limitation of these heuristics, however, is that the size
of the abstract space and its dimensionality must be fixed.1 The more recent merge-and-shrink
abstractions generalize PDB heuristics to overcome the latter limitation (Helmert et al., 2007).
Instead of perfectly reflecting just a few state variables, merge-and-shrink abstractions allow for
imperfectly reflecting all variables. As demonstrated by the formal and empirical analysis of Helmert
et al. (2007), this flexibility often makes the merge-and-shrink abstractions much more effective than
PDBs. However, the merge-and-shrink abstract spaces are still searched explicitly, and thus they
still have to be of fixed size. While quality heuristics estimates can still be obtained for many
problems, this limitation is a critical obstacle for many others.

Our goal in this chapter is to push the envelope of abstraction heuristics beyond explicit ab-
stractions. We introduce a principled way to obtain abstraction heuristics that limit neither the
dimensionality nor the size of the abstract spaces. The basic idea behind what we call implicit
abstractions is simple and intuitive: instead of relying on abstract problems that are easy to solve
because they are small, we can rely on abstract problems belonging to provably tractable fragments
of optimal planning. The key point is that, at least theoretically, moving to implicit abstractions
removes the requirement on the abstractions size to be small. Our contribution, however, is in
showing that implicit abstractions are far from being of theoretical interest only. Specifically,

1. We specify acyclic causal-graph decompositions, a general framework for additive implicit ab-
stractions that is based on decomposing the problem at hand along its causal graph. We then
introduce a concrete family of such abstractions, called fork decompositions, that are based on
two novel fragments of tractable cost-optimal planning. Following the type of analysis sug-
gested by Helmert and Mattmüller (2008), we formally analyze the asymptotic performance
ratio of the fork-decomposition heuristics and prove that their worst-case accuracy on selected
domains is comparable with that of (even parametric) state-of-the-art admissible heuristics.
We then empirically evaluate the accuracy of the fork-decomposition heuristics on a large set
of domains from recent planning competitions and show that their accuracy is competitive
with the state of the art.

1This does not necessarily apply to symbolic PDBs which, on some tasks, may exponentially reduce the PDB’s
representation (Edelkamp, 2002).

33

2. The key attraction of explicit abstractions is that costs in the abstract space can be pre-
computed and stored in memory in a preprocessing phase so that heuristic evaluation during
search can be done by a simple lookup. A necessary condition for this would seem to be
the small size of the abstract space. However, we show that an equivalent of the PDB and
merge-and-shrink’s notion of “database” exists for the fork-decomposition abstractions as
well, despite the exponential-size abstract spaces of the latter. These databased implicit ab-
stractions are based on a proper partitioning of the heuristic computation into parts that can
be shared between search states and parts that must be computed online per state. Our em-
pirical evaluation shows that A∗ equipped with the “databased” fork-decomposition heuristics
favorably competes with the state of the art of cost-optimal planning.

This work is a revision and extension of the formulation and results presented by Katz and
Domshlak (2008c, 2009b), which in turn is based on ideas first sketched also by Katz and Domshlak
(2007a).

4.1 Implicit Abstractions: Basic Idea

Focusing on the O(1) bound posted by explicit abstractions on the size of the abstract space,
our first observation is that explicit abstractions are not necessarily the only way to proceed with
abstraction heuristics. Given a planning task Π over states S, suppose we can transform it into a
different planning task Πα such that

1. the transformation induces an abstraction mapping α : S → Sα where Sα is the state space
of Πα, and

2. both the transformation of Π to Πα, as well as computing α for any state in S, can be done
in time polynomial in ||Π||.

Having such planning-task-to-planning-task transformations in mind, we define what we call (ad-
ditive) implicit abstractions.

Definition 9 An additive implicit abstraction of a planning task Π is a set of pairs A =
{〈Πi, αi〉}ki=1 such that {Πi}ki=1 are some planning tasks and {〈T(Πi), αi〉}ki=1 is an additive ab-
straction of T(Π).

Let us now examine the notion of implicit abstractions more closely. First, implicit abstractions
allow for a natural additive combination of admissible heuristics for the abstract tasks. This
composition is formulated below by Theorem 6, extending the original criterion for admissibility
of additive heuristics described in Section 2.1. Second, as formulated by Theorem 7, implicit
abstractions can be composed via the functional composition of their abstraction mappings. These
two easy-to-prove properties of implicit abstractions allow us then to take the desired step from
implicit abstractions to implicit abstraction heuristics.

Theorem 6 (Admissibility) Let Π be a planning task and A = {〈Πi, αi〉}ki=1 be an additive
implicit abstraction of Π. If, for each 1 ≤ i ≤ k, hi is an admissible heuristic for Πi, then the
function h(s) =

∑k
i=1 hi(αi(s)) is an admissible heuristic for Π.

34

Proof: The proof is straightforward. Let T = (S,L, Tr, sI , SG, $) be the transition graph of Π,
and let s be some state in S. For each 1 ≤ i ≤ k, let Ti = (Si, Li, Tri, sIi , S

G
i , $i) be the transition

graph of Πi.
First, if hi is an admissible heuristic for Πi, then for all si ∈ SGi ,

hi(αi(s)) ≤ cost(αi(s), si).

Now, for each state s′ ∈ SG, from Definition 3 we have αi(s′) ∈ SGi , and from Eq. 2.1 we have

k∑
i=1

cost(αi(s), αi(s′)) ≤ cost(s, s′),

and thus

h(s) =
k∑
i=1

hi(αi(s)) ≤
k∑
i=1

cost(αi(s), αi(s′)) ≤ cost(s, s′),

giving us an admissible estimate for h∗(s).

Theorem 7 (Composition) Let Π be a planning task and A = {〈Πi, αi〉}ki=1 be an additive im-
plicit abstraction of Π. If, for each 1 ≤ i ≤ k, Ai = {〈Πi,j , αi,j〉}kij=1 is an additive implicit
abstraction of Πi, then A′ = ⋃k

i=1{〈Πi,j , αi,j ◦ αi〉}kij=1 is an additive implicit abstraction of Π.

Proof: Let T = (S,L, Tr, sI , SG, $) be the transition graph of Π. For each 1 ≤ i ≤ k, let
Ti = (Si, Li, Tri, sIi , S

G
i , $i) be the transition graph of Πi, and for each 1 ≤ j ≤ ki, let Ti,j =

(Si,j , Li,j , Tri,j , sIi,j , S
G
i,j , $i,j) be the transition graph of Πi,j . We need to show that αi,j ◦ αi is an

abstraction mapping as in Definition 3. From αi and αi,j being abstraction mappings, we have

• sIi,j = αi,j(sIi) = αi,j(αi(sI)) = αi,j ◦ αi(sI),

• for all s ∈ SG we have αi(s) ∈ SGi and thus αi,j(αi(s)) = αi,j ◦ αi(s) ∈ SGi,j , and

• for all si, s′i ∈ Si, cost(si, s′i) ≥
∑ki

j=1 cost(αi,j(si), αi,j(s
′
i)), and thus for all s, s′ ∈ S,

cost(s, s′) ≥
k∑
i=1

cost(αi(s), αi(s′)) ≥
k∑
i=1

ki∑
j=1

cost(αi,j(αi(s)), αi,j(αi(s′)))

=
k∑
i=1

ki∑
j=1

cost(αi,j ◦ αi(s), αi,j ◦ αi(s′)).

Together, Theorems 6 and 7 suggest the following scheme for deriving abstraction heuristics.
Given an additive implicit abstraction A = {〈Πi, αi〉}ki=1, if all its individual abstract tasks belong
to some tractable fragments of optimal planning, then we can use in practice the (sum of the)
true costs in all Πi as the admissible estimates for the costs in Π. Otherwise, if optimal planning
for some abstract tasks Πi in A cannot be proven polynomial-time solvable, then we can further
abstract these tasks, obtaining admissible estimates for the true costs in Πi.

35

Definition 10 Let Π be a planning task over states S, and let A = {〈Πi, αi〉}ki=1 be an additive
implicit abstraction of Π. If k = O(poly(||Π||)), and, for all states s ∈ S and all 1 ≤ i ≤ k,
h∗(αi(s)) is polynomial-time computable, then hA(s) =

∑k
i=1 h

∗(αi(s)) is an implicit abstraction
heuristic function for Π.

Compared to explicit abstraction heuristics such as PDB heuristics and merge-and-shrink heuris-
tics, the direction of implicit abstraction heuristics is, at least in principle, appealing because neither
the dimensionality nor even the size of the state spaces induced by implicit abstractions are required
to be bounded by something restrictive, if at all. The pitfall, however, is that implicit abstraction
heuristics correspond to tractable fragments of optimal planning, and the palette of such known
fragments is extremely limited (Bäckström & Nebel, 1995; Bylander, 1994; Jonsson & Bäckström,
1998a; Jonsson, 2007; Katz & Domshlak, 2007b). In fact, none so far has appeared to us very
convenient for automatically devising useful problem transformations as above. Fortunately, we
show next that the boundaries of tractability can be expanded in the right way, allowing us to
successfully materialize the idea of implicit abstraction heuristics.

4.2 Acyclic Causal-Graph Decompositions

In the following, a key role is played by the causal graphs induced by the planning tasks. Informally,
the basic idea behind what we call causal-graph decompositions is to abstract the given planning
task Π along a subgraph of Π’s causal graph, with the goal of obtaining abstract problems of
specific structure. Naturally, there are numerous possibilities for obtaining such structure-oriented
abstractions. We now present one such decomposition that is tailored to abstractions around acyclic
subgraphs. Informally, this decomposition can be seen as a sequential application of two kinds of
task transformations: dropping preconditions (Pearl, 1984) and (certain form of) breaking actions
with conjunctive effects into single-effect actions.

Definition 11 Let Π = 〈V ,A, I ,G, cost〉 be a planning task, and let G = (VG , EG) be an acyclic
subgraph of the causal graph CG(Π). A planning task ΠG = 〈VG , AG , IG , GG , costG〉 is an acyclic
causal-graph decomposition of Π with respect to G if

1. IG = I[VG], GG = G[VG],

2. AG =
⋃
a∈AAG(a) where each AG(a) = {a1, . . . , al(a)} is a set of actions over VG such that,

for a topological with respect to G ordering of the variables {v1, . . . , vl(a)} = V(eff(a)) ∩ VG,
and 1 ≤ i ≤ l(a),

eff(ai)[v] =

{
eff(a)[v], v = vi

unspecified, otherwise

pre(ai)[v] =


pre(a)[v], (v, vi) ∈ EG ∧ v 6∈ V(eff(a)) or v = vi

eff(a)[v], (v, vi) ∈ EG ∧ v ∈ V(eff(a))
unspecified, otherwise

(4.1)

3. For each action a ∈ A, ∑
a′∈AG(a)

costG(a′) ≤ cost(a). (4.2)

36

a1 =〈{x=0, y=0, z=0}, {x=1, y=1, z=1}〉

a2 =〈{u=0, v=0, x=1}, {u=1, v=1, x=0}〉

a1

a1

a1

a2

a2

a2

v

u

x

y

z

a1
1 =〈{x=0}, {x=1}〉
a2

1 =〈{x=1, y=0}, {y=1}〉
a3

1 =〈{x=1, z=0}, {z=1}〉
a1

2 =〈{x=1}, {x=0}〉
a2

2 =〈{x=0, u=0}, {u=1}〉
a3

2 =〈{x=0, v=0}, {v=1}〉

a2
2 a3

2 a2
1

a3
1

u v

x

y z

a1
1 =〈{y=0}, {y=1}〉
a2

1 =〈{z=0}, {z=1}〉
a3

1 =〈{y=1, z=1, x=0}, {x=1}〉
a1

2 =〈{u=0}, {u=1}〉
a2

2 =〈{v=0}, {v=1}〉
a3

2 =〈{u=1, v=1, x=1}, {x=0}〉

a3
2

a3
2 a3

1 a3
1

u v

x

y z

(a) (b) (c)

Figure 4.1: (a) The actions and causal graph CG(Π) of the planning graph in the example illustrat-
ing Definition 11. (b) Subgraph G1 of CG(Π) and the induced action sets AG1(a1) and AG1(a2). (c)
Subgraph G2 of CG(Π) and the induced action sets AG2(a1) and AG2(a2). The arcs of both CG(Π)
and its subgraphs G1 and G2 are labeled with the actions inducing the arcs.

It is not hard to verify from Definition 11 that for any planning task Π and any acyclic causal-
graph decomposition ΠG of Π, the causal graph CG(ΠG) is exactly the subgraph G underlying
the decomposition. To illustrate the notion of acyclic causal-graph decomposition, we consider
a planning task Π = 〈V ,A, I ,G, cost〉 over five state variables V = {u, v, x, y, z}, two unit-cost
actions A = {a1, a2} as in Figure 4.1a, initial state I = {u = 0, v = 0, x = 0, y = 0, z = 0}, and
goal G = {u= 1, v = 1, x= 0, y = 1, z = 1}. The causal graph CG(Π) is depicted in Figure 4.1a.
Figures 4.1b-c show two subgraphs G1 and G2 of CG(Π), respectively, as well as the action sets
AG1(a1) = {a1

1, a
2
1, a

3
1} and AG1(a2) = {a1

2, a
2
2, a

3
2} in Figure 4.1(b), and the action sets AG2(a1) =

{a1
1, a

2
1, a

3
1} and AG2(a2) = {a1

2, a
2
2, a

3
2} in Figure 4.1(c). For i ∈ {1, 2}, let Πi = 〈V,Ai, I, G, costi〉

be the planning task with Ai = AGi(a1) ∪ AGi(a2) and costi(a) = 1/3 for all a ∈ Ai. These two
planning tasks Πi (individually) satisfy the conditions of Definition 11 with respect to Π and Gi,
and thus they are acyclic causal-graph decompositions of Π with respect to Gi.

We now proceed with specifying implicit abstractions defined via acyclic causal-graph decom-
positions.

Definition 12 Let Π = 〈V ,A, I ,G, cost〉 be a planning task over states S, and let G = {Gi =
(VGi , EGi)}ki=1 be a set of acyclic subgraphs of the causal graph CG(Π). A = {〈ΠGi , αi〉}ki=1 is an
acyclic causal-graph abstraction of Π over G if, for some set of cost functions {costi : A →
R0+}ki=1 satisfying

∀a ∈ A :
m∑
i=1

costi(a) ≤ cost(a), (4.3)

we have, for 1 ≤ i ≤ k,

• ΠGi = 〈V Gi , AGi , IGi , GGi , costGi〉 is an acyclic causal-graph decomposition of Πi = 〈V,A, I,G, costi〉
with respect to Gi, and

• the abstraction mapping αi : S → Si is the projection mapping αi(s) = s[VGi].

37

Theorem 8 Acyclic causal-graph abstractions of the planning tasks are additive implicit abstrac-
tions of these tasks.

Proof: Let Π = 〈V ,A, I ,G, cost〉 be a planning task, and let A = {〈ΠGi , αi〉}ki=1 be an acyclic
causal-graph abstraction of Π over a sets of subgraphs G = {Gi = (VGi , EGi)}ki=1. Let T =
(S,L, Tr, sI , SG, $) be the transition graph of Π, and, for 1 ≤ i ≤ k, Ti = (Si, Li, Tri, sIi , S

G
i , $i) be

the transition graph of ΠGi . We need to show that αi is an abstraction mapping as in Definition 3.
First, from Definitions 11 and 12, we have

• sIi = IGi = I[VGi] = sI [VGi] = αi(sI), and

• for all s ∈ SG we have s ⊇ G and thus αi(s) = s[VGi] ⊇ G[VGi] = GGi , providing us with
αi(s) ∈ SGi .

Now, if s is a state of Π and a ∈ A is an action with pre(a) ⊆ s, then αi(s) is a state of ΠGi
and pre(a)[VGi] ⊆ αi(s). Let the action sequence ρ = 〈a1, a2, . . . , al(a)〉 be constructed from a as
in Eq. 4.1. We inductively prove that ρ is applicable in αi(s). First, for each v ∈ VGi , either
pre(a1)[v] = pre(a)[v], or pre(a1)[v] is unspecified, and thus ρ1 = 〈a1〉 is applicable in αi(s). The
inductive hypothesis is now that ρj = 〈a1, a2, . . . , aj〉 is applicable in αi(s), and let s′ = αi(s)JρjK.
From Eq. 4.1, for each 1 ≤ j′ ≤ j, aj

′
changes the value of vj′ to eff(a)[vj′], and that is the only

change of vj′ along ρj . Likewise, since all the actions constructed as in Eq. 4.1 are unary-effect,
{v1, . . . , vj} are the only variables in VGi affected along ρj . Hence, for all v ∈ VGi , if v = vj′ ,
1 ≤ j′ ≤ j, then s′[v] = eff(a)[v] = pre(aj+1)[v], and otherwise, s′[v] = αi(s)[v], and if pre(aj+1)[v]
is specified, then pre(aj+1)[v] = pre(a)[v] = αi(s)[v]. This implies that aj+1 is applicable in s′

and, as a result, ρj+1 = 〈a1, a2, . . . , aj+1〉 is applicable in αi(s), finalizing the inductive proof.
Likewise, exactly the same arguments on the affect of {aj}l(a)

j=1 on αi(s) immediately imply that, if
ρ = 〈a1, a2, . . . , al(a)〉, then αi(sJaK) = αi(s)JρK.

Next, for each a ∈ A, from Eqs. 4.2 and 4.3 we have

k∑
i=1

∑
a′∈AGi (a)

costGi(a
′) ≤

k∑
i=1

costi(a) ≤ cost(a). (4.4)

Now, let s, s′ ∈ S be a pair of original states such that cost(s, s′) < ∞, and let % = 〈a1, . . . , ak〉
be the sequence of labels along a shortest path from s to s′ in T. From that, cost(s, s′) =
cost(%) =

∑k
j=1 cost(aj). The decomposition of such a path to the sequences of actions as in

Eq. 4.1 is a (not neccesarily shortest) path from αi(s) to αi(s′) in Ti, and thus cost(αi(s), αi(s′)) ≤∑k
j=1

∑
a′∈AGi (aj)

costGi(a
′), providing us with

k∑
i=1

cost(αi(s), αi(s′)) ≤
k∑
i=1

k∑
j=1

∑
a′∈AGi (aj)

costGi(a
′) =

k∑
j=1

k∑
i=1

∑
a′∈AGi (aj)

costGi(a
′)

(4.4)

≤
k∑
j=1

cost(aj)

= cost(s, s′).

Thus, if we can decompose the given task Π into a set of tractable acyclic causal-graph decom-
positions Π = {ΠG1 , . . . ,ΠGm}, then we can solve all these tasks in polynomial time, and derive

38

an additive admissible heuristic for Π. Before we proceed with considering concrete acyclic causal-
graph decomposition, note that Definition 3 leaves the decision about the actual partition of the
action costs rather open. In what follows we adopt the most straightforward, uniform action cost
partition in which the cost of each action a is equally split among all the non-redundant representa-
tives of a in

⋃m
i=1AGi(a). However, a better choice of action cost partition can sometimes be made.

In fact, sometimes it can even be optimized; for further details see Chapter 5.

4.3 Fork Decomposition

We now proceed with introducing two concrete acyclic causal-graph decompositions that, when
combined with certain variable domain abstractions, provide us with implicit abstraction heuristics.
These so called fork-decomposition heuristics are based on two novel fragments of tractable cost-
optimal planning for tasks with fork and inverted-fork structured causal graphs.

Definition 13 For a planning task Π over variables V , and a variable v ∈ V ,

(1) v-fork of Π is the subgraph Gf
v of CG(Π) over nodes VGf

v
= {v} ∪ succ(v) and edges EGf

v
=

{(v, u) | u ∈ succ(v)}, and

(2) v-ifork (short for inverted fork) of Π is a subgraph G i
v of CG(Π) over nodes VG i

v
= {v}∪pred(v)

and edges EG i
v

= {(u, v) | u ∈ pred(v)}.

The sets of all v-forks and all v-iforks of Π are denoted by GF = {Gf
v}v∈V and GI = {G i

v}v∈V ,
respectively.

For any planning task and each of its state variables v, both v-fork and v-ifork are acyclic
digraphs, allowing us to define our three implicit abstractions as follows.

Definition 14 For any planning task Π = 〈V ,A, I ,G, cost〉,

(1) any acyclic causal-graph abstraction AF = {〈Πf
v, α

f
v〉}v∈V of Π over GF is called F-abstraction,

and the set of abstract planning tasks ΠF = {Πf
v}v∈V is called F-decomposition of Π;

(2) any acyclic causal-graph abstraction AI = {〈Πi
v, α

i
v〉}v∈V of Π over GI is called I-abstraction,

and the set of abstract planning tasks ΠI = {Πi
v}v∈V is called I-decomposition of Π;

(3) any acyclic causal-graph abstraction AFI = {〈Πf
v, α

f
v〉, 〈Πi

v, α
i
v〉}v∈V of Π over GFI = GF ∪GI

is called FI-abstraction, and the set of abstract planning tasks ΠFI = {Πf
v,Π

i
v}v∈V is called

FI-decomposition of Π.

Definition 14 can be better understood by considering the FI-abstraction of the problem Π from
our Logistics example; Figure 4.2 schematically illustrates the process. To simplify the example,
here we as if eliminate from GFI all the single-node subgraphs, obtaining

AFI = {〈Πf
c1 , α

f
c1〉, {〈Πf

c2 , α
f
c2〉, {〈Πf

c3 , α
f
c3〉, {〈Πf

t, α
f
t〉, {〈Πi

p1
, αi

p1
〉, {〈Πi

p2
, αi

p2
〉}.

Considering the action sets of the problems in ΠFI = {Πf
c1 ,Π

f
c2 ,Π

f
c3 ,Π

f
t,Π

i
p1
,Πi

p2
}, we see that each

original driving action has one nonredundant (that is, “changing some variable”) representative in

39

three of the abstract planning tasks, while each load/unload action has one nonredundant represen-
tative in five of these tasks. For instance, the action drive-c1-from-A-to-D has one nonredundant
representative in each of the tasks {Πf

c1 ,Π
i
p1
,Πi

p2
}, and the action load-p1-into-c1-at-A has one

nonredundant representative in each of the tasks {Πf
c1 ,Π

f
c2 ,Π

f
c3 ,Π

f
t,Π

i
p1
}. Since we assume a uni-

form partition of the action costs, the cost of each driving and load/unload action in each relevant
abstract planning task is thus set to 1/3 and 1/5, respectively. From Theorem 8 we have AFI being
an additive implicit abstraction of Π, and from Theorem 6 we then have

hFI =
∑
v∈V

(
h∗Πf

v
+ h∗Πi

v

)
, (4.5)

being an admissible estimate of h∗ in Π. The question now is how good this estimate is. The
optimal cost of solving our running example is 19. Taking as a reference the well-known admissible
heuristics hmax (Bonet & Geffner, 2001) and h2 (Haslum & Geffner, 2000), we have hmax(I) = 8
and h2(I) = 13. Considering our FI-abstraction, the optimal plans for the tasks in ΠFI are as
follows.

Πf
c1 : load-p1-into-c2-at-C, unload-p1-from-c2-at-D, load-p1-into-t-at-D, unload-p1-from-t-at-E,

load-p1-into-c3-at-E, unload-p1-from-c3-at-G, load-p2-into-c3-at-F, unload-p2-from-c3-at-E.

Πf
c2 : load-p1-into-c1-at-C, unload-p1-from-c1-at-D, load-p1-into-t-at-D, unload-p1-from-t-at-E,

load-p1-into-c3-at-E, unload-p1-from-c3-at-G, load-p2-into-c3-at-F, unload-p2-from-c3-at-E.

Πf
c3 : load-p1-into-c1-at-C, unload-p1-from-c1-at-D, load-p1-into-t-at-D, unload-p1-from-t-at-E,

drive-c3-from-G-to-E, load-p1-into-c3-at-E, drive-c3-from-E-to-G, unload-p1-from-c3-at-G,
drive-c3-from-G-to-E, drive-c3-from-E-to-F, load-p2-into-c3-at-F, drive-c3-from-F-to-E,
unload-p2-from-c3-at-E, drive-c3-from-E-to-F.

Πf
t : load-p1-into-c1-at-C, unload-p1-from-c1-at-D, drive-t-from-E-to-D, load-p1-into-t-at-D,

drive-t-from-D-to-E, unload-p1-from-t-at-E, load-p1-into-c3-at-E, unload-p1-from-c3-at-G,
load-p2-into-c3-at-F, unload-p2-from-c3-at-E.

Πi
p1

: drive-c1-from-A-to-D, drive-c1-from-D-to-C, load-p1-into-c1-at-C, drive-c1-from-C-to-D,
unload-p1-from-c1-at-D, drive-t-from-E-to-D, load-p1-into-t-at-D, drive-t-from-D-to-E,
unload-p1-from-t-at-E, drive-c3-from-G-to-E, load-p1-into-c3-at-E, drive-c3-from-E-to-G,
unload-p1-from-c3-at-G, drive-c3-from-G-to-E, drive-c3-from-E-to-F.

Πi
p2

: drive-c3-from-G-to-E, drive-c3-from-E-to-F, load-p2-into-c3-at-F, drive-c3-from-F-to-E,
unload-p2-from-c3-at-E, drive-c3-from-E-to-F.

Hence, we have

hFI = h∗
Πf
c1

+ h∗
Πf
c2

+ h∗
Πf
c3

+ h∗
Πf
t

+ h∗
Πi
p1

+ h∗
Πf
p2

= 8
5 + 8

5 + 8
5 + 6

3 + 8
5 + 2

3 + 6
5 + 9

3 + 2
5 + 4

3 = 15,
(4.6)

and so hFI appears at least promising.
Unfortunately, despite the seeming simplicity of the planning tasks in ΠFI, it turns out that

implicit fork-decomposition abstractions as in Definitions 14 do not fit the requirements of implicit
abstraction heuristics as in Definition 10. The causal graphs of the planning tasks in ΠF and

40

c! c" c# t

p! p"

c!

p! p"

c! c" c# t

p!

CG(Πf
c1

) CG(Πif
p1

)

A

C

D

B

E

F

G

t

c2

c1 c3

p1

p2
CG(Π)Π

CG(Πi
p1

)CG(Πf
c1

)

Πf
c1

Πi
p1

{Πf
v,Πi

v}v∈V

Figure 4.2: Schematic illustration of FI-decomposition for our running Logistics example

ΠI form directed forks and directed inverted forks, respectively, and, in general, the number of
variables in each such planning task can be as large as Θ(|V |). The problem is that even satisficing
planning for sas+ fragments with fork and inverted fork causal graphs is NP-complete (Domshlak
& Dinitz, 2001). In fact, recent results by Chen and Giménez (2008) show that planning for any
sas+ fragment characterized by any nontrivial form of causal graph is NP-hard. Moreover, even if
the domain transition graphs of all the state variables are strongly connected (as in our example),
optimal planning for fork and inverted fork structured problems remain NP-hard (see Helmert 2003
and 2004 for the respective results). Next, however, we show that this is not the end of the story
for fork decompositions.

While the hardness of optimal planning for problems with fork and inverted fork causal graphs
casts a shadow on the relevance of fork decompositions, a closer look at the proofs of the corre-
sponding hardness results of Domshlak and Dinitz (2001) and Helmert (2003, 2004) reveals that
they in particular rely on root variables having large domains. Exploiting this observation, we show
that this reliance is not incidental and characterize two substantial islands of tractability within the
structural fragments of sas+. Theorems 4 and 5 in Chapter 3 clarify the gap between fork decom-
positions and implicit abstraction heuristics, and now we can bridge this gap by further abstracting
each task in the given fork decomposition of Π. We do that by abstracting domains of the fork
roots and inverted-fork sinks to meet the requirements of the tractable fragments. We note that, in
itself, the idea of domain decomposition is not very new in general (Hernadvölgyi & Holte, 1999)
and in domain-independent planning in particular (Domshlak, Hoffmann, & Sabharwal, 2009). In
fact, the shrinking step of the algorithm for building the merge-and-shrink abstractions is precisely
a variable domain abstraction for meta-variables constructed in the merging steps (Helmert et al.,
2007).

Definition 15 Let Π = 〈V ,A, I ,G, cost〉 be a planning task over states S, v ∈ V be a state
variable, and Φ = {φ1, . . . , φk} be a set of mappings from D(v) to some sets Γ1, . . . ,Γk, respectively.

41

A = {〈Πφi , αi〉}ki=1 is a domain abstraction of Π over Φ if, for some set of cost functions
{costi : A→ R0+}ki=1 satisfying

∀a ∈ A :
m∑
i=1

costi(a) ≤ cost(a), (4.7)

we have, for 1 ≤ i ≤ k,

• the abstraction mapping αi of states S is

∀u ∈ V : αi(s)[u] =

{
φi(s[u]), u = v

s[u], u 6= v
,

and, extending αi to partial assignments on V ′ ⊆ V as αi(s[V ′]) = αi(s)[V ′],

• Πφi = 〈V,Aφi , Iφi , Gφi , costφi〉 is a planning task with

1. Iφi = αi(I), Gφi = αi(G),

2. Aφi = {aφi = 〈αi(pre(a)), αi(eff(a))〉 | a ∈ A}, and

3. for each action a ∈ A,
costφi(aφi) = costi(a). (4.8)

We say that Πφi is a domain decomposition of Πi = 〈V,A, I,G, costi〉 with respect to φi.

Theorem 9 Domain abstractions of the planning tasks are additive implicit abstractions of these
tasks.

Proof: Let Π = 〈V ,A, I ,G, cost〉 be a planning task and A = {〈Πφi , αi〉}ki=1 be a domain abstrac-
tion of Π over Φ = {φ1, . . . , φk}. Let T = (S,L, Tr, sI , SG, $) be the transition graph of Π. For
each 1 ≤ i ≤ k, let Ti = (Si, Li, Tri, sIi , S

G
i , $i) be the transition graph of Πφi . We need to show

that αi is an abstraction mapping as in Definition 3.
First, from Definition 15 we have

• sIi = Iφi = αi(I) = αi(sI), and

• for all s ∈ SG we have s ⊇ G and thus αi(s) ⊇ αi(G) = Gφi , providing us with αi(s) ∈ SGi .

Now, if s is a state of Π and a ∈ A is an action with pre(a) ⊆ s, then αi(s) is a state of Πφi and
pre(aφi) = αi(pre(a)) ⊆ αi(s). Thus, aφi is applicable in αi(s), and now we show that applying aφi
in αi(s) results in αi(s)JaφiK = αi(sJaK).

1. For the effect variables v ∈ V(eff(a)) = V(eff(aφi)), we have eff(aφi) ⊆ αi(s)JaφiK and
eff(aφi) = αi(eff(a)) ⊆ αi(sJaK).

2. For all other variables v 6∈ V(eff(a)), we have sJaK[v] = s[v] and αi(s)JaφiK[v] = αi(s)[v], and
thus

αi(s)JaφiK[v] = αi(s)[v] = αi(s[v]) = αi(sJaK[v]) = αi(sJaK)[v].

42

Next, for each a ∈ A, from Eqs. 4.7 and 4.8 we have

k∑
i=1

costφi(aφi) =
k∑
i=1

costi(a) ≤ cost(a). (4.9)

Now, let s, s′ ∈ S be a pair of states such that cost(s, s′) ≤ ∞, and let % = 〈a1, . . . , al〉 be the
sequence of labels along a shortest path from s to s′ in T. From that, cost(s, s′) = cost(%) =∑l

j=1 cost(a
j). The decomposition of such a path to the actions as in Definition 15 is a (not

neccesarily shortest) path from αi(s) to αi(s′) in Ti, and thus cost(αi(s), αi(s′)) ≤
∑l

j=1 costi(a
j),

providing us with

k∑
i=1

cost(αi(s), αi(s′)) ≤
k∑
i=1

l∑
j=1

costφi(a
j
φi

) =
l∑

j=1

k∑
i=1

costφi(a
j
φi

)
(4.9)

≤
l∑

j=1

cost(aj) = cost(s, s′).

Having put the notion of domain abstraction in the framework of implicit abstractions, we
are now ready to connect fork decompositions and implicit abstraction heuristics. Given a FI-
abstraction AFI = {〈Πf

v, α
f
v〉, 〈Πi

v, α
i
v〉}v∈V of a planning task Π = 〈V ,A, I ,G, cost〉,

• for each Πf
v ∈ ΠFI, we associate the root v of CG(Πf

v) with mappings Φf
v = {φf

v,1, . . . , φ
f
v,kv
}

such that kv = O(poly(||Π||)) and all φf
v,i : D(v) → {0, 1}, and then abstract Πf

v with
Af
v = {〈Πf

v,i, α
f
v,i〉}kvi=1, and

• for each Πi
v ∈ ΠFI, we associate the sink v of CG(Πi

v) with mappings Φi
v = {φi

v,1, . . . , φ
i
v,k′v
}

such that k′v = O(poly(||Π||)) and all φi
v,i : D(v) → {0, 1, . . . , bv,i}, bv,i = O(1), and then

abstract Πi
v with Ai

v = {〈Πi
v,i, α

i
v,i〉}

k′v
i=1.

From Theorem 8, Theorem 9, and the composition Theorem 7, we then immediately have

AFI =
⋃
v∈V

 kv⋃
i=1

{〈Πf
v,i, α

f
v,i ◦ αf

v〉} ∪
k′v⋃
i=1

{〈Πi
v,i, α

i
v,i ◦ αi

v〉}

 (4.10)

being an additive implicit abstraction of Π. Hence, from Theorem 6,

hFI =
∑
v∈V

 kv∑
i=1

h∗
Πf
v,i

+
k′v∑
i=1

h∗
Πi
v,i

 (4.11)

is an admissible estimate of h∗ for Π, and, from Theorems 4 and 5, hFI is also computable in time
O(poly(||Π||)).

This finalizes our construction of a concrete family of implicit abstraction heuristics. To il-
lustrate the mixture of acyclic causal-graph and domain abstractions as above, we again use our
running Logistics example. One bothersome question is to what extent further abstracting fork
decompositions using domain abstractions affects the informativeness of the heuristic estimate.
Though generally a degradation here is unavoidable, below we show that the answer to this ques-
tion can sometimes be somewhat surprising.

43

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

(a)

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

D(p1) in Πf
p1,1

D(p1) in Πf
p1,2

D(p1) in Πf
p1,3

(b)

Figure 4.3: Domain abstractions for D(p1). (a) Binary-valued domain abstractions: the values
inside and outside each dashed contour are mapped to 0 and 1, respectively. (b) Ternary-valued
domain abstractions: values that are mapped to the same abstract value are shown as nodes with
the same color and borderline.

To begin with an extreme setting, let all the domain abstractions for roots of forks and sinks
of inverted forks be to binary-valued domains. Among multiple options for choosing the mapping
sets {Φf

v} and {Φi
v}, here we use a simple choice of distinguishing between different values of each

variable v on the basis of their cost from I[v] in DTG(v,Π). Specifically, for each v ∈ V , we set
Φf
v = Φi

v, and, for each value ϑ ∈ D(v) and each 1 ≤ i ≤ maxϑ′∈D(v) d(I[v], ϑ′),

φf
v,i(ϑ) = φi

v,i(ϑ) =

{
0, d(I[v], ϑ) < i

1, otherwise
(4.12)

For example, the problem Πf
c1 is decomposed (see the domain transition graph of c1 on the

left in Figure 2.1c) into two problems, Πf
c1,1

and Πf
c1,2

, with the binary abstract domains of c1

corresponding to the partitions {{A}, {B,C,D}} and {{A,D}, {B,C}} of D(c1), respectively. As
yet another example, the problem Πi

p1
is decomposed (see the domain transition graph of p1 in Fig-

ure 2.1d) into six problems Πi
p1,1

, . . . ,Πi
p1,6

along the abstractions of D(p1) depicted in Figure 4.3a.
Now, given the FI-decomposition of Π and mappings {Φf

v,Φ
i
v}v∈V as above, consider the problem

Πi
p1,1

, obtained from abstracting Π along the inverted fork of p1 and then abstracting D(p1) using

φi
p1,1(ϑ) =

{
0, ϑ ∈ {C}
1, ϑ ∈ {A,B,D,E, F,G, c1, c2, c3, t}

.

44

It is not hard to verify that, from the original actions affecting p1, we are left in Πi
p1,1

with only
actions conditioned by c1 and c2. If so, then no information is lost2 if we remove from Πi

p1,1
both

variables c3 and t, as well as the actions changing (only) these variables, and redistribute the
cost of the removed actions between all other representatives of their originals in Π. The latter
revision of the action cost partition can be obtained directly by replacing the cost-partitioning steps
corresponding to Eqs. 4.2-4.3 and 4.7-4.8 by a single, joint action cost partitioning applied over the
final additive implicit abstraction AFI as in Eq. 4.10 and satisfying

cost(a) ≥
∑
v∈V

 kv∑
i=1

∑
a′∈AGf

v
(a)

costfv,i(φ
f
v,i(a

′)) +
k′v∑
i=1

∑
a′∈AGi

v
(a)

costiv,i(φ
i
v,i(a

′))

 . (4.13)

In what follows, by uniform action cost partition we refer to a partition in which the cost of each
action is equally split among all its nonredundant representatives in the final additive implicit
abstraction.

Overall, computing hFI as in Eq. 4.11 under our “all binary-valued domain abstractions” and
such a uniform action cost partition provides us with hFI(I) = 12 7

15 , and knowing that the original
costs are all integers we can safely adjust it to hFI(I) = 13. Hence, even under the most severe
domain abstractions as above, the estimate of hFI in our example task is not lower than that of h2.

Let us now slightly refine our domain abstractions for the sinks of the inverted forks to be to a
ternary range {0, 1, 2}. While mappings {Φf

v} remain unchanged, {Φi
v} are set to

∀ϑ ∈ D(v) : φi
v,i(ϑ) =


0, d(I[v], ϑ) < 2i− 1
1, d(I[v], ϑ) = 2i− 1
2, d(I[v], ϑ) > 2i− 1

. (4.14)

For example, the problem Πi
p1

is now decomposed into Πi
p1,1

, . . . ,Πi
p1,3

along the abstractions of
D(p1) depicted in Figure 4.3b. Applying now the same computation of hFI as in Eq. 4.11 over
the new set of domain abstractions gives hFI(I) = 151

2 , which, again, can be safely adjusted
to hFI(I) = 16. Note that this value is higher than hFI = 15 obtained using the (generally
intractable) “pure” fork-decomposition abstractions as in Eq. 4.5. At first view, this outcome
may seem counterintuitive as the domain abstractions are applied over the fork decomposition,
and one would expect a coarser abstraction to provide less precise estimates. This, however, is
not necessarily the case when the employed action cost partition is ad hoc. For instance, domain
abstraction for the sink of an inverted fork may create independence between the sink and its
parent variables, and exploiting such domain-abstraction specific independence relations leads to
more targeted action cost partition via Eq. 4.13.

To see why this surprising “estimate improvement” has been obtained, note that before the
domain abstraction in Eq. 4.14 is applied on our example, the truck-moving actions drive-t-from-
D-to-E and drive-t-from-E-to-D appear in three abstractions Πf

t, Πi
p1

and Πi
p2

, while after domain
abstraction they appear in five abstractions Πf

t,1, Πi
p1,1

, Πi
p1,2

, Πi
p1,3

and Πi
p2,1

. However, a closer
look at the action sets of these five abstractions reveals that the dependencies of p1 in CG(Πi

p1,1
)

and CG(Πi
p1,3

), and of p2 in CG(Πi
p2,1

) on t are redundant, and thus keeping representatives of
move-D-E and move-E-D in the corresponding abstract tasks is entirely unnecessary. Hence, after

2No information is lost here because we still keep either fork or inverted fork for each variable of Π.

45

Domain h+ hk hPDB hPDB
add hF hI hFI

Gripper 2/3 0 0 2/3 2/3 0 4/9

Logistics 3/4 0 0 1/2 1/2 1/2 1/2

Blocksworld 1/4 0 0 0 0 0 0

Miconic-Strips 6/7 0 0 1/2 5/6 1/2 1/2

Satellite 1/2 0 0 1/6 1/6 1/6 1/6

Table 4.1: Performance ratios of multiple heuristics in selected planning domains; ratios for h+,
hk, hPDB, hPDB

add are by Helmert and Mattmüller (2008).

all, the two truck-moving actions appear only in two post-domain-abstraction tasks. Moreover, in
both these abstractions the truck-moving actions are fully counted, in contrast to the predomain-
abstraction tasks where the portion of the cost of these actions allocated to Πi

p2
simply gets lost.

4.4 Accuracy of Fork-Decomposition Heuristics

Empirical evaluation on a concrete set of benchmark tasks is a standard and important methodology
for assessing the effectiveness of heuristic estimates: it allows us to study the tradeoff between the
accuracy of the heuristics and the complexity of computing them. However, as rightfully noted by
Helmert and Mattmüller (2008), such evaluations almost never lead to absolute statements of the
type “Heuristic h is well-suited for solving problems from benchmark suite X,” but only to relative
statements of the type “Heuristic h expands fewer nodes than heuristic h′ on benchmark suite X.”
Moreover, one would probably like to obtain formal evidence of the effectiveness of a heuristic before
proceeding with its implementation, especially for very complicated heuristic procedures such as
those underlying the proofs of Theorems 11 and 12.

4.4.1 Asymptotic Performance Analysis

Our formal analysis of the effectiveness of the fork-decomposition heuristics using the methodology
suggested and exploited by Helmert and Mattmüller (2008) was motivated primarily by this desire
for formal evidence.

Given a planning domain D and heuristic h, Helmert and Mattmüller (2008) consider the
asymptotic performance ratio of h in D. The goal is to find a value α(h,D) ∈ [0, 1] such that

(1) for all states s in all problems Π ∈ D, h(s) ≥ α(h,D) · h∗(s) + o(h∗(s)), and

(2) there is a family of problems {Πn}n∈N ⊆ D and solvable, non-goal states {sn}n∈N such that
sn ∈ Πn, limn→∞ h

∗(sn) =∞, and h(sn) ≤ α(h,D) · h∗(sn) + o(h∗(sn)).

In other words, h is never worse than α(h,D) · h∗ (plus a sublinear term), and it can become as
bad as α(h,D) ·h∗ (plus a sublinear term) for arbitrarily large inputs; note that both the existence
and uniqueness of α(h,D) are guaranteed for any h and D.

Helmert and Mattmüller (2008) study the asymptotic performance ratio of some standard ad-
missible heuristics on a set of well-known benchmark domains from the first four IPCs. Their
results for Gripper, Logistics, Blocksworld, Miconic, and Satellite are shown in the first
four columns of Table 4.1.

46

• The h+ estimate corresponds to the optimal cost of solving the well-known “delete relaxation”
of the original planning task, which is generally NP-hard to compute (Bylander, 1994).

• The hk, k ∈ N+, family of heuristics is based on a relaxation where the cost of achieving a
partial assignment is approximated by the highest cost of achieving its sub-assignment of size
k (Haslum & Geffner, 2000); computing hk is exponential only in k.

• The hPDB and hPDB
add heuristics are regular (maximized over) and additive pattern database

heuristics where the size of each pattern is assumed to be O(log(n)) where n = |V |, and,
importantly, the choice of the patterns is assumed to be optimal.

These results provide us with a baseline for evaluating our fork-decomposition heuristics hF, hI,
and hFI. First, however, Theorem 10 shows that these three heuristics are worth analyzing because
each alone can be strictly more informative than the other two, depending on the planning task
and/or the state being evaluated.3

Theorem 10 (Undominance) Under uniform action cost partition, none of the heuristic func-
tions hF, hI, and hFI dominates another.

Proof: The proof is by example of two tasks, Π1 and Π2, which illustrate the following two
cases: hF(I) > hFI(I) > hI(I) and hF(I) < hFI(I) < hI(I). These two tasks are defined
over the same set of binary-valued variables V = {v1, v2, v3, u1, u2, u3}, have the same initial state
I = {v1 =0, v2 =0, v3 =0, u1 =0, u2 =0, u3 =0}, and have the same goal G = {v1 =1, v2 =1, v3 =1}.
The difference between Π1 and Π2 is in the action sets, listed in Figure 4.4c-d, with all the actions
being unit-cost actions. The two tasks induce identical causal graphs, depicted in Figure 4.4a.
Hence, the collections of v-forks and v-iforks of both tasks are also identical; these are depicted in
Figure 4.4b. The fractional costs of the tasks’ action representatives in the corresponding abstract
problems are given in Figure 4.4c-d.

Figure 4.5 shows the optimal plans for all the abstract problems in F-decompositions Π1
F =

{Π1
Gf
u1

,Π1
Gf
u2

,Π1
Gf
u3

} and Π2
F = {Π2

Gf
u1

,Π2
Gf
u2

,Π2
Gf
u3

}, I-decompositions Π1
I = {Π1

G i
v1

,Π1
G i
v2

,Π1
G i
v3

} and

Π2
I = {Π2

G i
v1

,Π2
G i
v2

,Π2
G i
v3

}, and FI-decompositions Π1
FI = Π1

F ∪Π1
I and Π2

FI = Π2
F ∪Π2

I . The last

column in both tables captures the estimates of the three heuristics for the initial states of Π1

and Π2, respectively. Together, these two cases show that none of the fork-decomposition heuristic
functions hF, hI, and hFI dominates any other, and, since all the variables above are binary-valued,
the claim holds in conjunction with arbitrary variable domain abstractions.

One conclusion from Theorem 10 is that it is worth studying the asymptotic performance ratios
for all three heuristics. The last three columns of Table 4.1 present our results for hF, hI, and hFI

for the Gripper, Logistics, Blocksworld, Miconic, and Satellite domains. We also studied
the performance ratios of max{hF, hI, hFI}, and in these five domains they appear to be identical
to those of hF. (Note that “ratio of max” should not necessarily be identical to “max of ratios,”
and thus this analysis is worthwhile.) Taking a conservative position, the performance ratios for
the fork-decomposition heuristics in Table 4.1 are “worst-case” in the sense that

3Theorem 10 is formulated and proven under the uniform action cost partition that we use throughout this chapter,
including the experiments. For per-step optimal action cost partitions (Katz & Domshlak, 2008b), it is trivial to
show that hFI dominates both hF and hI for all planning tasks.

47

u1 u2 u3

v1 v2 v3

A1 Π1
F Π1

I Π1
FI

a1 〈{v1 =0, u1 =0, u2 =0, u3 =0}, {v1 =1}〉 1/3 1 1/4
a2 〈{v2 =0, u1 =1, u2 =0, u3 =1}, {v2 =1}〉 1/3 1 1/4
a3 〈{v3 =0, u1 =1, u2 =1, u3 =0}, {v3 =1}〉 1/3 1 1/4
a4 〈{u1 =0}, {u1 =1}〉 1 1/3 1/4
a5 〈{u1 =1}, {u1 =0}〉 1 1/3 1/4
a6 〈{u2 =0}, {u2 =1}〉 1 1/3 1/4
a7 〈{u2 =1}, {u2 =0}〉 1 1/3 1/4
a8 〈{u3 =0}, {u3 =1}〉 1 1/3 1/4
a9 〈{u3 =1}, {u3 =0}〉 1 1/3 1/4

(a) (c)

u1

v1 v2 v3

u2

v1 v2 v3

u3

v1 v2 v3

u1 u2 u3

v1

u1 u2 u3

v2

u1 u2 u3

v3

Gf
u1

Gf
u2

Gf
u3

G i
v1

G i
v2

G i
v3

A2 Π2
F Π2

I Π2
FI

a1 〈{v1 =0, u1 =1}, {v1 =1}〉 1/3 1 1/4
a2 〈{v1 =0, u2 =1}, {v1 =1}〉 1/3 1 1/4
a3 〈{v1 =0, u3 =1}, {v1 =1}〉 1/3 1 1/4
a4 〈{v2 =0, u1 =1}, {v2 =1}〉 1/3 1 1/4
a5 〈{v2 =0, u2 =1}, {v2 =1}〉 1/3 1 1/4
a6 〈{v2 =0, u3 =1}, {v2 =1}〉 1/3 1 1/4
a7 〈{v3 =0, u1 =1}, {v3 =1}〉 1/3 1 1/4
a8 〈{v3 =0, u2 =1}, {v3 =1}〉 1/3 1 1/4
a9 〈{v3 =0, u3 =1}, {v3 =1}〉 1/3 1 1/4
a10 〈{u1 =0}, {u1 =1}〉 1 1/3 1/4
a11 〈{u2 =0}, {u2 =1}〉 1 1/3 1/4
a12 〈{u3 =0}, {u3 =1}〉 1 1/3 1/4

(b) (d)

Figure 4.4: Illustrations for the proof of Theorem 10: (a) causal graphs of Π1 and Π2, (b) fork
and inverted fork subgraphs of the (same) causal graph of Π1 and Π2, and the action sets of (c)
Π1 and (d) Π2, as well as the costs of the action representatives in each abstract problem along
these subgraphs. Considering for example the first row of table (c), the action a1 in Π1 has a single
representative in each of the three fork abstractions, as well as a representative in the inverted-fork
abstraction Π1

G i
v1

. Hence, the cost of each of its representatives in F-decomposition is 1/3, while
the cost of its sole representative in I-decomposition is 1.

(i) here we neither optimize the action cost partition (setting it to uniform as in the rest of this
chapter) nor eliminate clearly redundant abstractions, and

(ii) we use domain abstractions to (up to) ternary-valued abstract domains only.

The domains of the fork roots are all abstracted using the “leave-one-out” binary-valued domain
decompositions as in Eq. 4.24 while the domains of the inverted-fork sinks are all abstracted using
the “distance-from-initial-value” ternary-valued domain decompositions as in Eq. 4.14.

Overall, the results for fork-decomposition heuristics in Table 4.1 are gratifying. First, note
that the performance ratios for hk and hPDB are all 0. This is because every subgoal set of size k
(for hk) and size log(n) (for hPDB) can be reached in the number of steps that only depends on
k (respectively, log(n)), and not n, while h∗(sn) grows linearly in n in all the five domains. This
leaves us with hPDB

add being the only state-of-the-art (tractable and) admissible heuristic to compare
with. Table 4.1 shows that the asymptotic performance ratio of hF heuristic is at least as good as
that of hPDB

add in all five domains, while hF is superior to hPDB
add in Miconic, getting here quite close

to h+. When comparing hPDB
add and fork-decomposition heuristics, it is crucial to recall that the

ratios devised by Helmert and Mattmüller for hPDB
add are with respect to optimal, manually-selected

48

h task optimal plan cost h(I)

hF
Π1
Gf

u1
〈a1 · a4 · a2 · a3〉 2

6Π1
Gf

u2
〈a1 · a2 · a6 · a3〉 2

Π1
Gf

u3
〈a1 · a3 · a8 · a2〉 2

hI
Π1
Gi

v1
〈a1〉 1

4 1
3Π1

Gi
v2

〈a4 · a8 · a2〉 5/3

Π1
Gi

v3
〈a4 · a6 · a3〉 5/3

hFI

Π1
Gf

u1
〈a1 · a4 · a2 · a3〉 1

4 3
4

Π1
Gf

u2
〈a1 · a2 · a6 · a3〉 1

Π1
Gf

u3
〈a1 · a3 · a8 · a2〉 1

Π1
Gi

v1
〈a1〉 1/4

Π1
Gi

v2
〈a4 · a8 · a2〉 3/4

Π1
Gi

v3
〈a4 · a6 · a3〉 3/4

h task optimal plan cost h(I)

hF
Π2
Gf

u1
〈a2 · a5 · a8〉 1

3Π2
Gf

u2
〈a1 · a4 · a7〉 1

Π2
Gf

u3
〈a1 · a4 · a7〉 1

hI
Π2
Gi

v1
〈a10 · a1〉 4/3

4Π2
Gi

v2
〈a10 · a4〉 4/3

Π2
Gi

v3
〈a10 · a7〉 4/3

hFI

Π2
Gf

u1
〈a2 · a5 · a8〉 3/4

15/4

Π2
Gf

u2
〈a1 · a4 · a7〉 3/4

Π2
Gf

u3
〈a1 · a4 · a7〉 3/4

Π2
Gi

v1
〈a10 · a1〉 1/2

Π2
Gi

v2
〈a10 · a4〉 1/2

Π2
Gi

v3
〈a10 · a7〉 1/2

(a) (b)

Figure 4.5: Illustrations for the proof of Theorem 10: Optimal plans for all the abstract problems of
(a) Π1, where we have hF(I) > hFI(I) > hI(I), and (b) Π2, where we have hF(I) < hFI(I) < hI(I).

set of patterns. By contrast, the selection of variable subsets for fork-decomposition heuristics is
completely nonparametric, and thus requires no tuning of the abstraction-selection process.

In the rest of the section we prove these asymptotic performance ratios of hF, hI, and hFI in
Table 4.1 for the five domains. We begin with a very brief outline of how the results are obtained.
Some familiarity with the domains is assumed. Next, each domain is addressed in detail: we provide
an informal domain description as well as its sas+ representation, and then prove lower and upper
bounds on the ratios for all three heuristics.

Gripper Assuming n > 0 balls should be moved from one room to another, all three heuristics
hF, hI, hFI account for all the required pickup and drop actions, and only for O(1)-portion of
move actions. However, the former actions are responsible for 2/3 of the optimal-plan length
(= cost). Now, with the basic uniform action-cost partition, hF, hI, and hFI account for
the whole, O(1/n), and 2/3 of the total pickup/drop actions cost, respectively, providing the
ratios in Table 4.1.4

Logistics An optimal plan contains at least as many load/unload actions as move actions, and
all three heuristics hF, hI, hFI fully account for the former, providing a lower bound of 1/2.
An instance on which all three heuristics achieve exactly 1/2 consists of two trucks t1, t2, no
airplanes, one city, and n packages such that the initial and goal locations of all the packages
and trucks are all pair-wise different.

Blocksworld Arguments similar to those of Helmert and Mattmüller (2008) for hPDB
add .

Miconic All three heuristics fully account for all the loads/unload actions. In addition, hF accounts
for the full cost of all the move actions to the passengers’ initial locations, and for half of
the cost of all the other move actions. This provides us with lower bounds of 1/2 and 5/6,

4We note that a very slight modification of the uniform action-cost partition results in a ratio of 2/3 for all three
heuristics. Such optimizations, however, are outside of our scope here.

49

respectively. Tightness of 1/2 for hI and hFI is shown on a task consisting of n passengers,
2n+ 1 floors, and all the initial and goal locations being pair-wise different. Tightness of 5/6
for hF is shown on a task consisting of n passengers, n + 1 floors, the elevator and all the
passengers are initially at floor n+ 1, and each passenger i wishes to get to floor i.

Satellite The length of an optimal plan for a problem with n images to be taken and k satellites
to be moved to some end-positions is ≤ 6n + k. All three heuristics fully account for all
the image-taking actions and one satellite-moving action per satellite as above, providing a
lower bound of 1

6 . Tightness of 1/6 for all three heuristics is shown on a task as follows: Two
satellites with instruments {i}li=1 and {i}2li=l+1, respectively, where l = n−√n. Each pair of
instruments {i, l+ i} can take images in modes {m0,mi}. There is a set of directions {dj}nj=0

and a set of image objectives {oi}ni=1 such that, for 1 ≤ i ≤ l, oi = (d0,mi) and, for l < i ≤ n,
oi = (di,m0). Finally, the calibration direction for each pair of instruments {i, l + i} is di.

Gripper

The domain consists of one robot robot with two arms Arms = {right, left}, two rooms Rooms =
{r1, r2}, and a set Balls of n balls. The robot can pick up a ball with an arm arm ∈ Arms if arm
is empty, release a ball b ∈ Balls from the arm arm if arm currently holds b, and move from one
room to another. All balls and the robot are initially in room r1, both arms are empty, and the
goal is to move all the balls to room r2. A natural description of this planning task in sas+ is as
follows.

• Variables V = {robot}⋃Arms⋃Balls with domains

D(robot) = Rooms

D(left) = D(right) = Balls ∪ {empty}
∀b ∈ Balls : D(b) = Rooms ∪ {robot}.

• Initial state I = {b = r1 | b ∈ Balls} ∪ {robot = r1, right = empty, left = empty}.

• Goal G = {b = r2 | b ∈ Balls}.

• Actions

A ={Move(r, r′) | {r, r′} ⊆ Rooms}
⋃

{Pickup(b, arm, r), Drop(b, arm, r) | b ∈ Balls, arm ∈ Arms, r ∈ Rooms},

where

– move robot: Move(r, r′) = 〈{robot = r}, {robot = r′}〉,
– pickup ball:
Pickup(b, arm, r) = 〈{b = r, arm = empty, robot = r}, {b = robot, arm = b}〉, and

– drop ball: Drop(b, arm, r) = 〈{b = robot, arm = b, robot = r}, {b = r, arm = empty}〉.

The (parametric in n) causal graph of this task is depicted in Figure 4.6a.

50

right robot left

b1 · · · bn

right

b1 . . . bn

left

b1 . . . bn

robot

b1 . . . bn

right robot left

b

Gf
right Gf

left Gf
robot G i

b, b ∈ Balls

(a) (b)

Figure 4.6: Gripper’s (a) causal graph and (b) the corresponding collection of v-forks and v-iforks

Action Πf
robot Πf

arm,empty Πf
arm,b Πf

arm,b′ Πf
arm′,ϑ Πi

b Πi
b′ ΠF ΠI ΠFI

Move(r, r′) 1 0 0 0 0 1 1 1 1
n

1
n+1

Pickup(b, arm, r) 1 2 2 1 1 2 1 1
2n+5

1
n+1

1
3n+6

Drop(b, arm, r) 1 2 2 1 1 2 1 1
2n+5

1
n+1

1
3n+6

Table 4.2: Number of representatives for each original Gripper action in each abstract task, as
well as the partition of the action costs between these representatives

Πf
robot Pickup(b, right, r1) = 〈{robot = r1, b = r1}, {b = robot}〉

Πf
right,empty Pickup(b, right, r1)1 = 〈{right = empty}, {right = b}〉,

Pickup(b, right, r1)2 = 〈{right = b, b = r1}, {b = robot}〉
Πf
right,b Pickup(b, right, r1)1 = 〈{right = empty}, {right = b}〉,

Pickup(b, right, r1)2 = 〈{right = b, b = r1}, {b = robot}〉
Πf
right,b′ Pickup(b, right, r1) = 〈{right = b, b = r1}, {b = robot}〉

Πf
left,ϑ Pickup(b, right, r1) = 〈{right = b, b = r1}, {b = robot}〉
Πi
b Pickup(b, right, r1)1 = 〈{right = empty}, {right = b}〉,

Pickup(b, right, r1)2 = 〈{right = b, robot = r1, b = r1}, {b = robot}〉
Πi
b′ Pickup(b, right, r1) = 〈{right = empty}, {right = b}〉

Table 4.3: The sets of representatives of the original action Pickup(b, right, r1) in the abstract
tasks

Fork Decomposition Since the variables robot, right, and left have no goal value, the collection
of v-forks and v-iforks is as in Figure 4.6b. The domains of inverted fork sinks are ternary valued.
The domains of fork roots are abstracted as in Eq. 4.24 (“leave one out”), p. 69, and thus

ΠF = {Πf
robot} ∪ {Πf

right,ϑ,Π
f
left,ϑ | ϑ ∈ {empty} ∪Balls},

ΠI = {Πi
b | b ∈ Balls},

ΠFI = {Πf
robot} ∪ {Πf

right,ϑ,Π
f
left,ϑ | ϑ ∈ {empty} ∪Balls} ∪ {Πi

b | b ∈ Balls}.

For each original action, the number of its representatives in each abstract task, as well as the
cost assigned to each such representative, are listed in Table 4.2. Table 4.3 illustrates derivation
of these numbers via decomposition of an example action Pickup(b, right, r1) in each of the fork
decomposition abstractions. That action has one nonredundant representative in Πf

robot, two such
representatives in each of Πf

right,empty and Πf
right,b, one representative in each Πf

right,b′ for b′ ∈

51

Balls \ {b}, one representative in each Πf
left,ϑ for ϑ ∈ Balls ∪ {empty}, two representatives in

Πi
b, and one representative in each Πi

b′ for b′ ∈ Balls \ {b}. This results in cost 1
2n+5 for each

representative in ΠF, 1
n+1 for each representative in ΠI, and 1

3n+6 for each representative in ΠFI.
Given that, the optimal plans for the abstract tasks are as follows.

h task optimal plan cost # h(I)

hF

Πf
robot 〈Pickup(b1, right, r1) · . . . · Pickup(bn, right, r1)· 4n+5

2n+5 1

2n− 2n−5
2n+5

·Move(r1, r2) ·Drop(b1, right, r2) · . . . ·Drop(bn, right, r2)〉
Πf

right,ϑ 〈Pickup(b1, left, r1) · . . . · Pickup(bn, left, r1)· 2n
2n+5 n + 1

·Drop(b1, left, r2) · . . . ·Drop(bn, left, r2)〉
Πf

left,ϑ 〈Pickup(b1, right, r1) · . . . · Pickup(bn, right, r1)· 2n
2n+5 n + 1

·Drop(b1, right, r2) · . . . ·Drop(bn, right, r2)〉
hI Πi

b 〈Pickup(b, right, r1)1 · Pickup(b, right, r1)2 ·Move(r1, r2) ·Drop(b, left, r2)2〉 3
n+1 + 1

n
n 4n+1

n+1

hFI

Πf
robot 〈Pickup(b1, right, r1) · . . . · Pickup(bn, right, r1) ·Move(r1, r2)· 2n

3n+6 + 1
n+1 1

4n
3 + 4n+6

3n+6

·Drop(b1, right, r2) · . . . ·Drop(bn, right, r2)〉
Πf

right,ϑ 〈Pickup(b1, left, r1) · . . . · Pickup(bn, left, r1)· 2n
3n+6 n + 1

·Drop(b1, left, r2) · . . . ·Drop(bn, left, r2)〉
Πf

left,ϑ 〈Pickup(b1, right, r1) · . . . · Pickup(bn, right, r1)· 2n
3n+6 n + 1

·Drop(b1, right, r2) · . . . ·Drop(bn, right, r2)〉
Πi

b 〈Pickup(b, right, r1)1 · Pickup(b, right, r1)2 ·Move(r1, r2) ·Drop(b, left, r2)2〉 3
3n+6 + 1

n+1 n

Assuming n > 0 balls should be moved from one room to another, the cost of the optimal plan
for the original task is 3n − 1 when n is even, and 3n when n is odd. Therefore, the asymptotic
performance ratios for the heuristics hF, hI, hFI on Gripper are 2/3, 0, and 4/9, respectively.

Logistics

Each Logistics task consists of some k cities, x airplanes, y trucks and n packages. Each city i is
associated with a set Li = {l1i . . . , lαii } of locations within that city; the union of the locations of all
the cities is denoted by L =

⋃k
i=1 Li. In addition, precisely one location in each city is an airport,

and the set of airports is LA = {l11 . . . , l1k} ⊆ L. Each truck can move only within the city in which it
is located, and airplanes can fly between airports. The airplanes are denoted by U = {u1, . . . , ux},
the trucks by T = {t1, . . . , ty}, and the packages by P = {p1, . . . , pn}. Let Ti = {t ∈ T | I[t] ∈ Li}
denote the trucks of city i, and P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 denote a partition of the packages as
follows:

• each package in P1 = {p ∈ P | I[p], G[p] ∈ LA} is both initially at an airport and needs to be
moved to another airport,

• each package in P2 = {p ∈ P | I[p] ∈ LA ∩ Li, G[p] ∈ Lj \ LA, i 6= j} is initially at an airport
and needs to be moved to a non-airport location in another city,

• each package in P3 = {p ∈ P | I[p] ∈ Li, G[p] ∈ Li} needs to be moved within one city,

• each package in P4 = {p ∈ P | I[p] ∈ Li \ LA, G[p] ∈ LA \ Li} needs to be moved from a
non-airport location in one city to the airport of some other city, and

• each package in P5 = {p ∈ P | I[p] ∈ Li \ LA, G[p] ∈ Lj \ LA, i 6= j} needs to be moved from
a non-airport location in one city to a non-airport location in another city.

A natural Logistics task description in sas+ is as follows.

• Variables V = U ∪ T ∪ P with domains
∀u ∈ U : D(u) = LA,

∀1 ≤ i ≤ k, ∀t ∈ Ti : D(t) = Li,

∀p ∈ P : D(p) = L ∪ U ∪ T.

52

u1 · · · ux t1 · · · ty

p1 · · · pi · · · pn

u

p1 . . . pn

t

p1 . . . pn p

u1 . . . ux t1 . . . ty

Gf
u, u ∈ U Gf

t , t ∈ T G i
p, p ∈ P

(a) (b)

Figure 4.7: Logistics’s (a) causal graph and (b) the corresponding collection of v-forks and v-iforks

• Initial state I ∈ (LA)x × L1 × · · · × Lk × (L)n.

• Goal G = {p1 = l1, . . . , pn = ln} ∈ (L)n.

• Actions

A =
k⋃
i=1

⋃
l∈Li

⋃
t∈Ti

[
{Lt(p, t, l), Ut(p, t, l) | p ∈ P} ∪ {Mt(t, l, l′) |, l′ ∈ Li \ {l}}

]
∪
⋃
l∈LA

⋃
u∈U

[
{La(p, u, l), Ua(p, u, l) | p ∈ P} ∪ {Ma(u, l, l′) | l′ ∈ LA \ {l}}

]
,

where

– load package p onto truck t in location l: Lt(p, t, l) = 〈{p = l, t = l}, {p = t}〉,
– unload package p from truck t in location l: Ut(p, t, l) = 〈{p = t, t = l}, {p = l}〉,
– move truck t from location l to location l′: Mt(t, l, l′) = 〈{t = l}, {t = l′}〉,
– load package p onto airplane u in l: La(p, u, l) = 〈{p = l, u = l}, {p = u}〉,
– unload package p from airplane u into l: Ua(p, u, l) = 〈{p = u, u = l}, {p = l}〉, and

– move airplane u from location l to l′: Ma(u, l, l′) = 〈{u = l}, {u = l′}〉.

The (parametrized in n, x, and y) causal graph of Logistics tasks is depicted in Figure 4.7a.

Fork Decomposition Since the variables u ∈ U and t ∈ T have no goal value, the collection of
v-forks and v-iforks is as in Figure 4.7b. The domains of the inverted-fork sinks are all abstracted as
in Eq. 4.14 (“distance-from-initial-value”), p. 45, while the domains of the fork roots are abstracted
as in Eq. 4.24 (“leave-one-out”), p. 69. Thus, we have

ΠF =
⋃
u∈U

⋃
l∈LA
{Πf

u,l} ∪
k⋃
i=1

⋃
t∈Ti

⋃
l∈Li

{Πf
t,l},

ΠI =
⋃
p∈P
{Πi

p,1} ∪
⋃

p∈P2∪P4∪P5

{Πi
p,2} ∪

⋃
p∈P5

{Πi
p,3},

ΠFI =
⋃
u∈U

⋃
l∈LA
{Πf

u,l} ∪
k⋃
i=1

⋃
t∈Ti

⋃
l∈Li

{Πf
t,l} ∪

⋃
p∈P
{Πi

p,1} ∪
⋃

p∈P2∪P4∪P5

{Πi
p,2} ∪

⋃
p∈P5

{Πi
p,3}.

53

Action Πf
u,lΠ

f
u,l′Π

f
u,l′′Π

f
u′,lΠ

f
t,lΠ

f
t,l′Π

f
t,l′′Π

f
t′,lΠ

i
p,m ΠFΠI ΠFI

Mt(t, l, l′) 0 0 0 0 1 1 0 0 1 1
2

1
ni

1
2+ni

Ma(u, l, l′) 1 1 0 0 0 0 0 0 1 1
2

1
ni

1
2+ni

(a)

I[p] ∈ LA ∩ Li I[p] ∈ Li \ LA
p ∈ P1 p ∈ P2 p ∈ P3p ∈ P3 p ∈ P4 p ∈ P5

Action Πf
u,lΠ

f
t,lΠ

i
p′,m Πi

p,1 Πi
p,1Πi

p,2 Πi
p,1 Πi

p,1 Πi
p,1Πi

p,2Πi
p,1Πi

p,2Πi
p,3 ΠFΠI ΠFI

Lt(p, t, l), Ut(p, t, l)
l ∈ Li 1 1 0 1 1 0 1 1 1 0 1 0 0 1

nf 1 1
nf+1

l ∈ Lj 1 1 0 0 0 1 0 0 0 0 0 0 1 1
nf 1 1

nf+1

La(p, u, l), Ua(p, u, l) 1 1 0 1 1 0 1 0 0 1 0 1 0 1
nf 1 1

nf+1

(b)

Figure 4.8: Number of representatives of each original Logistics action in each abstract task, as
well as the partition of the action costs between these representatives; tables (a) and (b) capture
the move and load/unload actions, respectively

The total number of forks is nf = |ΠF| = |U |·|LA|+
∑k

i=1 |Ti|·|Li|, and the total number of inverted
forks is ni = |ΠI| = |P1|+ 2 · |P2|+ |P3|+ 2 · |P4|+ 3 · |P5|. For each action a ∈ A, the number of its
representatives in each abstract task, as well as the cost assigned to each such representative, are
given in Figure 4.8. Each row in the tables of Figure 4.8 corresponds to a certain Logistics action,
each column (except for the last three) represents an abstract task, and each entry captures the
number of representatives an action has in the corresponding task. The last three columns show
the portion of the total cost that is given to an action representative in each task, in each of the
three heuristics in question.

Lower Bound Note that any optimal plan for a Logistics task contains at least as many
load/unload actions as move actions. Thus, the following lemma provides us with the lower bound
of 1/2 for all three heuristics in question.

Lemma 2 For any Logistics task, hF, hI, and hFI account for the full cost of the load/unload
actions required by any optimal plan for that task.

Proof: For any Logistics task, all the optimal plans for that task contain the same amount of
load/unload actions for each package p ∈ P as follows.

p ∈ P1: 2 actions — one load onto an airplane, and one unload from that airplane,

p ∈ P2: 4 actions — one load onto an airplane, one unload from that airplane, one load onto a
truck, and one unload from that truck,

p ∈ P3: 2 actions — one load onto a truck, and one unload from that truck,

p ∈ P4: 4 actions — one load onto a truck, one unload from that truck, one load onto an airplane,
and one unload from that airplane, and

54

p ∈ P5: 6 actions — two loads onto some trucks, two unloads from these trucks, one load onto an
airplane, and one unload from that airplane.

Consider the fork-decomposition ΠF. Any optimal plan for each of the abstract tasks will
contain the number of load/unload actions exactly as above (the effects of these actions remain
unchanged in these tasks). The cost of each representative of each load/unload action is 1

nf , and
there are nf abstract tasks. Therefore, the heuristic hF fully accounts for the cost of the required
load/unload actions.

Now consider the fork-decomposition ΠI. With m being the domain-decomposition index of
the abstraction, any optimal plan for the abstract task Πi

p,m will include one load and one unload
actions as follows.

p ∈ P1: one load onto an airplane and one unload from that airplane,

p ∈ P2,m=1: one load onto an airplane and one unload from that airplane,

p ∈ P2,m=2: one load onto a truck and one unload from that truck,

p ∈ P3: one load onto a truck and one unload from that truck,

p ∈ P4,m=1: one load onto a truck and one unload from that truck,

p ∈ P4,m=2: one load onto an airplane, and one unload from that airplane,

p ∈ P5,m=1: one load onto a truck and one unload from that truck,

p ∈ P5,m=2: one load onto an airplane and one unload from that airplane, and

p ∈ P5,m=3: one load onto a truck and one unload from that truck.

The cost of each representative of load/unload actions is 1, and thus the heuristic hI fully accounts
for the cost of the required load/unload actions.

Finally, consider the fork-decomposition ΠFI. Any optimal plan for each of the fork-structured
abstract tasks will contain the same number of load/unload actions as for ΠF. The cost of each
representative of load/unload actions is 1

nf+1
and there are nf such abstract tasks. In addition, each

of these load/unload actions will also appear in exactly one inverted fork-structured abstract task.
Therefore the heuristic hFI also fully accounts for the cost of the required load/unload actions.

Upper Bound An instance on which all three heuristics achieve exactly 1/2 consists of two
trucks t1, t2, no airplanes, one city, and n packages such that the initial and goal locations of all
the packages are all pairwise different, and both trucks are initially located at yet another location.
More formally, if L = {li}2ni=0, and T = {t1, t2}, then the sas+ encoding for this Logistics task is
as follows.

• Variables V = {t1, t2, p1, . . . , pn} with domains

∀t ∈ T : D(t) = L,

∀p ∈ P : D(p) = L ∪ T.

• Initial state I = {t1 = l0, t2 = l0, p1 = l1, . . . , pn = ln}.

55

t1

p1 . . . pn

t2

p1 . . . pn p

t1 t2

Gf
t1 Gf

t2 G i
p, p ∈ P

Figure 4.9: Collection of v-forks and v-iforks for the Logistics task used for the proof of the upper
bound of 1/2

• Goal G = {p1 = ln+1, . . . , pn = l2n}.

• Actions A = {Lt(p, t, l), Ut(p, t, l) | l ∈ L, t ∈ T, p ∈ P} ∪ {Mt(t, l, l′) | t ∈ T, {l, l′} ⊆ L}.

The collection of v-forks and v-iforks for this task is depicted in Figure 4.9. The domains of
the inverted-fork sinks are all abstracted as in Eq. 4.14 (“distance-from-initial-value”), while the
domains of the fork roots are abstracted as in Eq. 4.24 (“leave-one-out”), and therefore we have

ΠF = {Πf
t1,lΠ

f
t2,l | l ∈ L},

ΠI = {Πi
p,1 | p ∈ P},

ΠFI = {Πf
t1,lΠ

f
t2,l | l ∈ L} ∪ {Πi

p,1 | p ∈ P}.

The total number of forks is thus nf = 4n+ 2 and the total number of inverted forks is ni = n. The
partition of the action costs for Logistics tasks is described in Figure 4.8. Here we have P = P3

and thus the action cost partition is as follows.

Action Πf
t,l Πf

t,l′ Πf
t,l′′ Πf

t′,l∗ Πi
p,1 Πi

p′,1 ΠF ΠI ΠFI

Mt(t, l, l′) 1 1 0 0 1 0 1
2

1
n

1
n+2

Lt(p, t, l) 1 1 1 1 1 0 1
4n+2

1 1
4n+3

Ut(p, t, l) 1 1 1 1 1 0 1
4n+2

1 1
4n+3

Given that, the optimal plans for the abstract task are

h task optimal plan cost # h(I)

hF Πf
t1,l 〈Lt(p1, t2, l1) · . . . · Lt(pn, t2, ln) · Ut(p1, t2, ln+1) · . . . · Ut(pn, t2, l2n)〉 2n

4n+2
2n+ 1

2n
Πf
t2,l 〈Lt(p1, t1, l1) · . . . · Lt(pn, t1, ln) · Ut(p1, t1, ln+1) · . . . · Ut(pn, t1, l2n)〉 2n

4n+2
2n+ 1

hI Πi
pi,1 〈Mt(t1, l0, li) · Lt(pi, t1, li) ·Mt(t1, li, ln+i) · Ut(pi, t1, ln+i)〉 2

n
+ 2 n 2n+ 2

hFI
Πf
t1,l 〈Lt(p1, t2, l1) · . . . · Lt(pn, t2, ln) · Ut(p1, t2, ln+1) · . . . · Ut(pn, t2, l2n)〉 2n

4n+3
2n+ 1

2n+ 2n
n+2Πf

t2,l 〈Lt(p1, t1, l1) · . . . · Lt(pn, t1, ln) · Ut(p1, t1, ln+1) · . . . · Ut(pn, t1, l2n)〉 2n
4n+3

2n+ 1

Πi
pi,1 〈Mt(t1, l0, li) · Lt(pi, t1, li) ·Mt(t1, li, ln+i) · Ut(pi, t1, ln+i)〉 2

n+2
+ 2

4n+3
n

while an optimal plan for the original task, e.g., 〈Mt(t1, l0, l1) · Lt(p1, t1, l1) ·Mt(t1, l1, l2) · Lt(p2, t1, l2) ·
Mt(t1, l2, l3) · . . . ·Lt(pn, t1, ln) ·Mt(t1, ln, ln+1) ·Ut(p1, t1, ln+1) ·Mt(t1, ln+1, ln+2) ·Ut(p2, t1, ln+2) ·Mt(t1, ln+2, ln+3) ·
. . .·Ut(pn, t1, l2n)〉, has the cost of 4n, providing us with the upper bound of 1/2 for all three heuristics.
Putting our lower and upper bounds together, the asymptotic ratio of all three heuristics in question
is 1/2.

56

Blocksworld

Each Blocksworld task consists of a table table, a crane c, and n+ 1 blocks B = {b1, . . . , bn+1}.
Each block can be either on the table, or on top of some other block, or held by the crane. The
crane can pick up a block if it currently holds nothing, and that block has no other block on top of
it. The crane can drop the held block on the table or on top of some other block.

Consider now a Blocksworld task as follows. The blocks initially form a tower b1, . . . , bn, bn+1

with bn+1 being on the table, and the goal is to move them to form a tower b1, . . . , bn−1, bn+1, bn
with bn being on the table. That is, the goal is to swap the lowest two blocks of the tower. A
natural description of this task in sas+ is as follows.

• Variables V = {b, clearb | b ∈ B} ∪ {c} with domains

D(c) = {empty} ∪B,
∀b ∈ B : D(b) = {table, c} ∪B \ {b},
D(clearb) = {yes, no}.

• Initial state

I = {c = empty, bn+1 = table, clearb1 = yes}
⋃

{bi = bi+1 | 1 ≤ i ≤ n}
⋃

{clearb = no | b ∈ B \ {b1}} .

• Goal G = {bn = table, bn+1 = bn, bn−1 = bn+1} ∪ {bi = bi+1 | 1 ≤ i ≤ n− 2}.

• Actions A = {PT (b), DT (b) | b ∈ B} ∪ {P (b, b′), D(b, b′) | {b, b′} ⊆ B} where

– pick block b from the table: PT (b) = 〈{c=empty, b= table, clearb=yes}, {c=b, b=c}〉,
– pick block b from block b′:
P (b, b′) = 〈{c=empty, b=b′, clearb=yes, clearb′=no}, {c=b, b=c, clearb′=yes}〉,

– drop block b on the table: DT (b) = 〈{c=b, b=c}, {c=empty, b= table}〉, and

– drop block b on block b′:
D(b, b′) = 〈{c=b, b=c, clearb′=yes}, {c=empty, b=b′, clearb′=no}〉.

A schematic version of the causal graph of this task is depicted in Figure 4.10a. Since only
the variables bn−1, bn, bn+1 have goal values that are different from their values in the initial state,
the collection of v-forks and v-iforks is as in Figure 4.10b. After the (“leave-one-out,” Eq. 4.24)
domain abstraction of the variable c, c-fork Gf

c breaks down into n + 2 abstract tasks. The sinks
of v-iforks G i

bn−1
, G i

bn
, and G i

bn+1
also go through the process of domain decomposition (“distance-

from-initial-value,” Eq. 4.14). However, due to the structure of the domain transition graphs of the
block variables, domain decomposition here results in only a single abstract task for each of the
v-iforks. Thus we have

ΠF ={Πf
c,empty} ∪ {Πf

c,b | b ∈ B} ∪ {Πf
clearb

| b ∈ B},
ΠI ={Πi

bn−1,1,Π
i
bn,1,Π

i
bn+1,1},

ΠFI ={Πf
c,empty} ∪ {Πf

c,b | b ∈ B} ∪ {Πf
clearb

| b ∈ B} ∪Πi
bn−1,1,Π

i
bn,1,Π

i
bn+1,1}.

57

b b′

clearb clearb′

c

bn−1 bn bn+1

c

bn−1 bn bn+1

clearb

b

clearb1 . . . clearbn+1c

G i
b, b ∈ {bn−1, bn, bn+1}

Gf
c Gf

clearb
, b ∈ B

(a) (b)

Figure 4.10: (a) Causal graph and (b) the corresponding collection of v-forks and v-iforks for the
Blocksworld task used in the proof

It is technically straightforward to verify that, for each abstract task in ΠF, ΠI, and ΠFI, there
exists a plan that (i) involves only the representatives of the actions

{P (bn−1, bn), DT (bn−1), P (bn, bn+1), DT (bn), PT (bn+1), D(bn+1, bn), PT (bn−1), D(bn−1, bn+1)} ,
(4.15)

and (ii) involves each representative of each original action at most once. Even if together these
plans account for the total cost of all eight actions in Eq. 4.15, the total cost of all these plans (and
thus the estimates of all the three heuristics) is upper-bounded by 8, while an optimal plan for the
original task, e.g., 〈P (b1, b2) ·DT (b1) ·P (b2, b3) ·DT (b2) · . . . ·P (bn, bn+1) ·DT (bn) ·PT (bn+1) ·D(bn+1, bn) ·PT (bn−1) ·
D(bn−1, bn+1) · PT (bn−2) · D(bn−2, bn−1) · . . . · PT (b1) · D(b1, b2)〉, has a cost of 4n. Hence, the asymptotic
performance ratio of all three heuristics on the Blocksworld domain is 0.

Miconic

Each Miconic task consists of one elevator e, a set of floors F , and the passengers P . The elevator
can move between |F | floors and on each floor it can load and/or unload passengers. A natural
sas+ description of a Miconic task is as follows.

• Variables V = {e} ∪ P with domains

D(e) = F,

∀p ∈ P : D(p) = F ∪ {e}.

• Initial state I = {e = fe} ∪ {p = fp | p ∈ P} ∈ (F)|P |+1.

• Goal G = {p = f ′p | p ∈ P} ∈ (F)|P |.

• Actions A = {In(p, f), Out(p, f) | f ∈ F, p ∈ P} ∪ {Move(f, f ′) | {f, f ′} ⊆ F}, where

– load passenger p into e on floor f : In(p, f) = 〈{e = f, p = f}, {p = e}〉,

58

e

p1 · · · pn

e

p1 · · · pn

e

p

Gf
e G i

p, p ∈ P
(a) (b)

Figure 4.11: Miconic’s (a) causal graph and (b) the corresponding collection of v-forks and v-iforks

Action Πf
e,fΠf

e,f ′Π
f
e,f ′′Π

i
p,1Πi

p′,1 ΠFΠI ΠFI

Move(f, f ′) 1 1 0 1 1 1
2

1
ni

1
2+ni

In(p, f) 1 1 1 1 0 1
nf 1 1

nf+1

In(p′, f) 1 1 1 0 1 1
nf 1 1

nf+1

Out(p, f) 1 1 1 1 0 1
nf 1 1

nf+1

Out(p′, f) 1 1 1 0 1 1
nf 1 1

nf+1

Table 4.4: Number of representatives for each original Miconic action in each abstract task, as
well as the partition of the action costs among these representatives

– unload passenger p from e to floor f : Out(p, f) = 〈{e = f, p = e}, {p = f}〉, and

– move elevator from floor f to floor f ′: Move(f, f ′) = 〈{e = f}, {e = f ′}〉.

The (parametrized in n) causal graph of Miconic tasks is depicted in Figure 4.11a, and Fig-
ure 4.11b depicts the corresponding collection of v-forks and v-iforks. The domains of the inverted-
fork sinks are all abstracted as in Eq. 4.14 (“distance-from-initial-value”), and the domains of the
fork roots are abstracted as in Eq. 4.24 (“leave-one-out”). Thus, we have

ΠF = {Πf
e,f | f ∈ F},

ΠI = {Πi
p,1 | p ∈ P},

ΠFI = {Πf
e,f | f ∈ F} ∪ {Πi

p,1 | p ∈ P}.

The total number of the fork-structured abstract tasks is thus nf = |ΠF| = |F | and the total
number of the inverted fork structured abstract tasks is ni = |ΠI| = |P |. For each action a ∈ A,
the number of its representatives in each abstract task, as well as the cost assigned to each such
representative, are given in Table 4.4.

Lower Bounds First, as Miconic is a special case of the Logistics domain, Lemma 2 applies
here analogously, with each package in P3 corresponding to a passenger. Thus, for each p ∈ P , all
three heuristics account for the full cost of the load/unload actions required by any optimal plan
for that task.

Let us now focus on the abstract tasks ΠF = {Πf
e,f | f ∈ F}. Recall that the task Πf

e,f is
induced by an e-fork and, in terms of domain decomposition, distinguishes between being at floor
f and being somewhere else. Without loss of generality, the set of floors F can be restricted to the
initial and the goal values of the variables, and this because no optimal plan will move the elevator

59

to or from a floor f that is neither an initial nor a goal location of a passenger or the elevator. Let
FI = {I[p] | p ∈ P} and FG = {G[p] | p ∈ P}. The costs of the optimal plans for each abstract task
Πf
e,f are as follows.

f ∈ FI ∩ FG : Let p, p′ ∈ P be a pair of passengers with initial and goal locations in f , respectively;
that is, I[p] = G[p′] = f . If f = I[e], then any plan for Πf

e,f has to move the elevator from
f in order to load passenger p′, and then move the elevator back to f in order to unload
passenger p′. Therefore the cost of any plan for Πf

e,f is at least 2|P |
|F | + 1, where (see the last

three columns of Table 4.4) the first component of the summation comes from summing the
costs of the representatives of the load/unload actions for all the passengers, and the second
component is the sum of the costs of representatives of the two respective move actions.
Similarly, if f 6= I[e], then any plan for Πf

e,f has to move the elevator to f in order to load
passenger p, and then move the elevator from f in order to unload p. Therefore, here as well,
the cost of any plan for Πf

e,f is at least 2|P |
|F | + 1.

f ∈ FI \ FG : Let p ∈ P be a passenger initially at f , that is, I[p] = f . If f = I[e], then any plan
for Πf

e,f has to move the elevator from f in order to unload p, and thus the cost of any plan

for Πf
e,f is at least 2|P |

|F | + 1
2 . Otherwise, if f 6= I[e], then any plan for Πf

e,f has to move the
elevator to f in order to load p, and then move the elevator from f in order to unload p.
Hence, in this case, the cost of any plan for Πf

e,f is at least 2|P |
|F | + 1.

f ∈ FG \ FI : Let p ∈ P be a passenger who must arrive at floor f , that is, G[p] = f . If f = I[e],
then any plan for Πf

e,f has to move the elevator from f in order to load p, and then move the
elevator back to f in order to unload p. Hence, here as well, the cost of any plan for Πf

e,f is

at least 2|P |
|F | + 1. Otherwise, if f 6= I[e], then any plan for Πf

e,f has to move the elevator to f

in order to unload p, and thus the cost of any plan for Πf
e,f is at least 2|P |

|F | + 1
2 .

f 6∈ FG ∪ FI : If f = I[e], then any plan for Πf
e,f has to include a move from f in order to

load/unload the passengers, and thus the cost of any plan for Πf
e,f is at least 2|P |

|F | + 1
2 .

Otherwise, if f 6= I[e], the elevator is initially “in the set of all other locations,” and thus the
cost of any plan for Πf

e,f is at least 2|P |
|F | .

Putting this case-by-case analysis together, we have

hF(I) ≥


2|P |+ |FI ∩ FG|+ |FI \ FG|+ |FG\FI |

2 , I[e] ∈ FI ∩ FG
2|P |+ |FI ∩ FG|+ |FI \ FG| − 1 + 1

2 + |FG\FI |
2 , I[e] ∈ FI \ FG

2|P |+ |FI ∩ FG|+ |FI \ FG|+ 1 + |FG\FI |−1
2 , I[e] ∈ FG \ FI

2|P |+ |FI ∩ FG|+ |FI \ FG|+ |FG\FI |−1
2 + 1

2 , I[e] 6∈ FG ∪ FI

.

Note that the value in the second case is the lowest. This gives us a lower bound on the hF estimate
as in Eq. 4.16.

hF(I) ≥ 2|P |+ |FI \ FG|+
|FG \ FI |

2
+ |FI ∩ FG| −

1
2
. (4.16)

Now, let us provide an upper bound on the length (= cost) of the optimal plan for a Miconic
task. First, let P ′ ⊆ P denote the set of passengers with both initial and goal locations in FI ∩FG.

60

Let m(P ′, FI ∩ FG) denote the length of the optimal traversal of the floors FI ∩ FG such that, for
each passenger p ∈ P ′, a visit of I[p] comes before some visit of G[p]. Given that, on a case-by-case
basis, a (not necessarily optimal) plan for the Miconic task at hand is as follows.

I[e] ∈ FI ∩ FG : Collect all the passengers at I[e] if any, then traverse all the floors in FI \FG and
collect passengers from these floors, then move the elevator to the first floor f on the optimal
path π traversing the floors FI∩FG, drop off the passengers whose destination is f , collect the
new passengers if any, keep moving along π while collecting and dropping off passengers at
their initial and target floors, and then traverse FG\FI , dropping off the remaining passengers
at their destinations. The cost of such a plan (and thus of the optimal plan) is upper-bounded
as in Eq. 4.17 below.

h∗(I) ≤ 2|P |+ |FI \ FG|+m(P ′, FI ∩ FG) + |FG \ FI |. (4.17)

I[e] ∈ FI \ FG : Collect all the passengers at I[e] if any, then traverse all the floors in FI \FG and
collect passengers from these floors while making sure that this traversal ends up at the first
floor f of the optimal path π traversing the floors FI ∩FG, then follow π while collecting and
dropping passengers off at their initial and target floors, and then traverse FG \FI , dropping
the remaining passengers off at their destinations. As in the first case, the cost of such a plan
is upper-bounded as in Eq. 4.17.

I[e] 6∈ FI : Traverse the floors FI \ FG and collect all the passengers from these floors, then move
along the optimal path π traversing the floors FI ∩ FG while collecting and dropping off
passengers at their initial and target floors, and then traverse the floors FG \ FI , dropping
the remaining passengers off at their destinations. Here as well, the cost of such a plan is
upper-bounded by the expression in Eq. 4.17.

Lemma 3 For any Miconic task with passengers P , we have hF(I)
h∗(I) ≥

5|P |−1
6|P | .

Proof: Recall that P ′ ⊆ P is the set of all passengers with both initial and goal locations in
FI ∩FG. First we give two upper bounds on the length of the optimal traversal of the floors FI ∩FG
such that, for each passenger p ∈ P ′, a visit of I[p] comes before some visit of G[p]. From Theorem
5.3.3 of Helmert (2008) we have

m(P ′, FI ∩ FG) = |FI ∩ FG|+m∗(G′), (4.18)

where m∗(G′) is the size of the minimum feedback vertex set of the directed graph G′ = (V ′, E ′),
with V ′ = FI ∩FG and E ′ containing an arc from f to f ′ if and only if a passenger p ∈ P ′ is initially
at floor f and should arrive at floor f ′.

Note that m∗(G′) is trivially bounded by the number of graph nodes V ′. In addition, observe
that, for any order of the nodes V ′, the arcs E ′ can be partitioned into “forward” and “backward”
arcs, and one of these subsets must contain no more than |E

′|
2 arcs. Removing from G′ all the nodes

that are origins of the arcs in that smaller subset of E ′ results in a directed acyclic graph. Hence,
the set of removed nodes is a (not necessarily minimum) feedback vertex set of G′, and the size
of this set is no larger than |E ′|

2 . Putting these two bounds on m∗(G′) together with Eq. 4.18 we
obtain

m(P ′, FI ∩ FG) ≤ min
{

2|FI ∩ FG|, |FI ∩ FG|+
|P ′|
2

}
. (4.19)

61

From the disjointness of FG \ FI and FI ∩ FG, and the fact that the goal of all the passengers
in P ′ is in FI , we have |FG \ FI | ≤ |P | − |P ′|. From Eqs. 4.16 and 4.17 we have

hF

h∗
≥ 2|P |+ |FI \ FG|+ |FG\FI |

2 + |FI ∩ FG| − 1
2

2|P |+ |FI \ FG|+ |FG \ FI |+m(P ′, FI ∩ FG)
. (4.20)

As we are interested in a lower bound on the ratio hF

h∗ , the right-hand side of the inequality
should be minimized, and thus we can safely set |FI \FG| = 0 and |FG \FI | = |P | − |P ′|, obtaining

hF

h∗
≥ 2|P |+ |P |−|P ′|

2 + |FI ∩ FG| − 1
2

2|P |+ |P | − |P ′|+m(P ′, FI ∩ FG)
=

5|P | − |P ′|+ 2|FI ∩ FG| − 1
6|P | − 2|P ′|+ 2m(P ′, FI ∩ FG)

. (4.21)

Let us examine the right-most expression in Eq. 4.21 with respect to the two upper bounds on
m(P ′, FI ∩ FG) as in Eq. 4.19.

• If the minimum is obtained on 2|FI ∩FG|, then m(P ′, FI ∩FG) ≤ 2|FI ∩FG| ≤ |FI ∩FG|+ |P
′|

2 ,
where the last inequality can be reformulated as

2|FI ∩ FG| − |P ′| ≤ 0.

This allows us to provide a lower bound on the right-most expression in Eq. 4.21, and thus
on hF

h∗ as

hF

h∗
≥ 5|P | − |P ′|+ 2|FI ∩ FG| − 1

6|P | − 2|P ′|+ 2m(P ′, FI ∩ FG)
≥ 5|P |+ (2|FI ∩ FG| − |P ′|)− 1

6|P |+ 2(2|FI ∩ FG| − |P ′|)
≥ 5|P | − 1

6|P | . (4.22)

• If the minimum is obtained on |FI ∩ FG| + |P ′|
2 , then m(P ′, FI ∩ FG) ≤ |FI ∩ FG| + |P ′|

2 <
2|FI ∩ FG|, where the last inequality can be reformulated as

2|FI ∩ FG| − |P ′| > 0.

This again allows us to provide a lower bound on hF

h∗ via Eq. 4.21 as

hF

h∗
≥ 5|P | − |P ′|+ 2|FI ∩ FG| − 1

6|P | − 2|P ′|+ 2m(P ′, FI ∩ FG)
≥ 5|P |+ (2|FI ∩ FG| − |P ′|)− 1

6|P |+ (2|FI ∩ FG| − |P ′|)
≥ 5|P | − 1

6|P | . (4.23)

Note that both lower bounds on hF

h∗ in Eq. 4.22 and Eq. 4.23 are as required by the claim of the
lemma.

Upper Bounds A Miconic task on which the heuristic hF achieves the performance ratio of
exactly 5/6 consists of an elevator e, floors F = {fi}ni=0, passengers P = {pi}ni=1, all the passengers
and the elevator being initially at f0, and the target floors of the passengers all being pairwise
disjoint. The sas+ encoding for the Miconic task is as follows.

• Variables V = {e} ∪ P with the domains D(e) = F and ∀p ∈ P : D(p) = F ∪ {e}.

• Initial state I = {e = f0, p1 = f0, . . . , pn = f0}.

62

• Goal G = {p1 = f1, . . . , pn = fn}.
• Actions A = {In(p, f), Out(p, f) | f ∈ F, p ∈ P} ∪ {Move(f, f ′) | {f, f ′} ⊆ F}.

The causal graph of this task and the corresponding collection of v-forks (consisting of only one
e-fork) are depicted in Figure 4.11. The domain of e is abstracted as in Eq. 4.24 (“leave-one-out”),
providing us with

ΠF = {Πf
e,f0

,Πf
e,f1

, . . . ,Πf
e,fn}.

The costs of the action representatives in these abstract tasks are given in Table 4.4 with nf = n+1.
The optimal plans for the abstract tasks in ΠF are

task optimal plan cost # hF(I)

Πf
e,f0

〈In(p1, f0) · . . . · In(pn, f0) ·Move(f0, f1) ·Out(p1, f1) · . . . ·Out(pn, fn)〉 1
2

+ 2n
n+1

n+ 1 5n+1
2Πf

e,f1
〈In(p1, f0) · . . . · In(pn, f0) ·Out(p2, f2) · . . . ·Out(pn, fn) ·Move(f0, f1) ·Out(p1, f1)〉 1

2
+ 2n
n+1

Πf
e,fn

〈In(p1, f0) · . . . · In(pn, f0) ·Out(p1, f1) · . . . ·Out(pn−1, fn−1) ·Move(f0, fn) ·Out(pn, fn)〉 1
2

+ 2n
n+1

while an optimal plan for the original task, 〈In(p1, f0)·. . .·In(pn, f0)·Move(f0, f1)·Out(p1, f1)·Move(f1, f2)·
Out(p2, f2) ·Move(f2, f3) · . . . · Out(pn, fn)〉, has a cost of 3n, providing us with the upper bound of 5/6
for the hF heuristic in Miconic. Putting this upper bound together with the previously obtained
lower bound of 5/6, we conclude that the asymptotic performance ratio of hF in Miconic is 5/6.

A Miconic task on which the heuristics hI and hFI achieve exactly 1/2 consists of an elevator
e, floors F = {fi}2ni=0, passengers P = {pi}ni=1, and the initial and target floors for all the passengers
and the elevator being pairwise disjoint. The task description in sas+ is as follows.

• Variables V = {e} ∪ P with the domains D(e) = F and ∀p ∈ P : D(p) = F ∪ {e}.
• Initial state I = {e = f0, p1 = f1, . . . , pn = fn}.
• Goal G = {p1 = fn+1, . . . , pn = f2n}.
• Actions A = {In(p, f), Out(p, f) | f ∈ F, p ∈ P} ∪ {Move(f, f ′) | {f, f ′} ⊆ F}.

The causal graph of this task and the corresponding collection of v-forks and v-iforks are depicted in
Figure 4.11. The domains of the inverted-fork sinks are all abstracted as in Eq. 4.14 (“distance-from-
initial-value”), and the domains of the fork roots are all abstracted as in Eq. 4.24 (“leave-one-out”).
This provides us with

ΠI = {Πi
p1,1, . . . ,Π

i
pn,1},

ΠFI = {Πf
e,f0

,Πf
e,f1

, . . . ,Πf
e,fn ,Π

f
e,fn+1

, . . . ,Πf
e,f2n

,Πi
p1,1, . . . ,Π

i
pn,1}.

The costs of the action representatives in these abstract tasks are given in Table 4.4 with nf = 2n+1
and ni = n. The optimal plans for the abstract tasks in ΠI and ΠFI are

h task optimal plan cost # h(I)

hI Πi
pi,1

〈Move(f0, fi) · In(pi, fi) ·Move(fi, fn+i) ·Out(pi, fn+i)〉 2
n

+ 2 n 2n+ 2

hFI
Πf
e,f0

〈Move(f0, f1)·In(p1, f1)·. . .·In(pn, fn)·Out(p1, fn+1)·. . .·Out(pn, f2n)〉 1
n+2

+ 2n
2n+2

1
2n+ 5n+1

n+2Πf
e,f1

〈Move(f0, f1) · In(p1, f1) · Move(f1, f2) · In(p2, f2) · . . . · In(pn, fn) ·
Out(p1, fn+1) · . . . ·Out(pn, f2n)〉

2
n+2

+ 2n
2n+2 n

Πf
e,fn

〈Move(f0, fn) ·In(pn, fn) ·Move(fn, f1) ·In(p1, f1) · . . . ·In(pn−1, fn−1) ·
Out(p1, fn+1) · . . . ·Out(pn, f2n)〉

2
n+2

+ 2n
2n+2

Πf
e,fn+1

〈In(p1, f1) · . . . · In(pn, fn) · Out(p2, fn+2) · . . . · Out(pn, f2n) ·
Move(f0, fn+1) ·Out(p1, fn+1)〉

1
n+2

+ 2n
2n+2 n

Πf
e,f2n

〈In(p1, f1) · . . . · In(pn, fn) · Out(p1, fn+1) · . . . · Out(pn−1, f2n−1) ·
Move(f0, f2n) ·Out(pn, f2n)〉

1
n+2

+ 2n
2n+2

Πi
pi,1

〈Move(f0, fi) · In(pi, fi) ·Move(fi, fn+i) ·Out(pi, fn+i)〉 2
n+2

+ 2
2n+2

n

63

while an optimal plan for the original task, 〈Move(f0, f1)·In(p1, f1)·Move(f1, f2)·In(p2, f2)·Move(f2, f3)·. . .·
In(pn, fn) ·Move(fn, fn+1) ·Out(p1, fn+1) ·Move(fn+1, fn+2) ·Out(p2, fn+2) ·Move(fn+2, fn+3) · . . . ·Out(pn, f2n)〉,
has the cost of 4n, providing us with the upper bound of 1/2 for the hI and hFI heuristics in
Miconic. Putting this upper bound together with the previously obtained lower bound of 1/2, we
conclude that the asymptotic performance ratio of hI and hFI in Miconic is 1/2.

Satellite

The Satellite domain is quite complex. A Satellite tasks consists of some satellites S, each
s ∈ S with a finite set of instruments Is onboard, I =

⋃
s∈S Is. There is a set of image modes M,

and for each mode m ∈ M, there is a set Im ⊆ I of instruments supporting mode m. Likewise,
there is a set of directions L, image objectives O ⊆ L×M, and functions cal : I 7→ L, p0 : S 7→ L,
and p∗ : S0 7→ L with S0 ⊆ S, where cal is the calibration target direction function, p0 is the initial
direction function, and p∗ is the goal pointing direction function.

Let us denote by Oi = {o = (d,m) ∈ O | i ∈ Im} the subset of all images that can be taken
by instrument i, by Os =

⋃
i∈Is Oi the subset of all images that can be taken by instruments on

satellite s, and by Sm = {s | Is ∩ Im 6= ∅} the subset of all satellites that can take images in mode
m. The problem description in sas+ is as follows.

• Variables V = S ∪ {Oni,Ci | i ∈ I} ∪ O with domains

∀s ∈ S : D(s) = L,
∀i ∈ I : D(Oni) = D(Ci) = {0, 1},
∀o ∈ O : D(o) = {0, 1}.

• Initial state I = {s = p0(s) | s ∈ S} ∪ {Oni = 0,Ci = 0 | i ∈ I} ∪ {o = 0 | o ∈ O}.

• Goal G = {s = p∗(s) | s ∈ S0} ∪ {o = 1 | o ∈ O}.

• Actions

A =
⋃
s∈S

(
{Turn(s, d, d′) | {d, d′} ⊆ L} ∪ {SwOn(i, s), Cal(i, s), SwOff(i) | i ∈ Is}

)
∪

{TakeIm(o, d, s, i) | o = (d,m) ∈ O, s ∈ Sm, i ∈ Im ∩ Is},

where

– turn satellite: Turn(s, d, d′) = 〈{s = d}, {s = d′}〉,
– power on instrument: SwOn(i, s) = 〈{Oni′ = 0 | i′ ∈ Is}, {Oni = 1}〉,
– power off instrument: SwOff(i) = 〈{Oni = 1}, {Oni = 0,Ci = 0}〉,
– calibrate instrument: Cal(i, s) = 〈{Ci = 0, Oni = 1, s = cal(i)}, {Ci = 1}〉, and

– take an image: TakeIm(o, d, s, i) = 〈{o = 0,Ci = 1, s = d}, {o = 1}〉.

64

o1 o2 o3 o4

s1 s2

C1 C2C3 C4 C5 C6C7

On1 On2

On3 On4 On5 On6

On7

o1 o3 o4

s2

o3

C5

o1 o3

C6

o4

C7

o4

s1 s2 C2 C4 C7

(a) (b)

Gf
s2 Gf

C5
Gf

C6
Gf

C7

G i
o4

Figure 4.12: Satellite example task (a) causal graph and (b) a representative subset of the
collection of v-forks and v-iforks

Fork Decomposition The causal graph of an example Satellite task and a representative
subset of the collection of v-forks and v-iforks are depicted in Figure 4.12. Since the variables
{Oni,Ci | i ∈ I}∪S \S0 have no goal value, the collection of v-forks and v-iforks will be as follows
in the general case.

• For each satellite s ∈ S, an s-fork with the leaves Os.

• For each instrument i ∈ I, a Ci-fork with the leaves Oi.

• For each image objective o = (d,m) ∈ O, a o-ifork with the parents {Ci | i ∈ Im} ∪ Sm.

The root domains of all forks rooted at instruments i ∈ I and of all the inverted-fork sinks are
binary in the first place, and the root domains of the forks rooted at satellites s ∈ S are abstracted
as in Eq. 4.24 (“leave-one-out”). This provides us with

ΠF = {Πf
s,d | s ∈ S, d ∈ L} ∪ {Πf

Ci | i ∈ I},
ΠI = {Πi

o | o ∈ O},
ΠFI = {Πf

s,d | s ∈ S, d ∈ L} ∪ {Πf
Ci | i ∈ I} ∪ {Πi

o | o ∈ O}.

The total number of forks is thus nf = |S| · |L| + |I| and the total number of inverted forks is
ni = |O|. For each action a ∈ A, the number of its representatives in each abstract task, as well as
the cost assigned to each such representative, are given in Figure 4.13.

Lower Bounds First, note that any optimal plan for a Satellite task contains at most 6 actions
per image objective o ∈ O and one action per satellite s ∈ S0 such that I[s] 6= G[s]. Now we show
that each of the three heuristics fully account for the cost of at least one action per image objective
o ∈ O and one action per such a satellite. This will provide us with the lower bound of 1/6 on the
asymptotic performance ratios of our three heuristics.

Lemma 4 For any Satellite task, hF, hI, and hFI fully account for the cost of at least one Take
Image action TakeIm(o, d, s, i) for each image objective o ∈ O.

65

o ∈ Oi o ∈ Os \ Oi o 6∈ Os

Action Πf
s,d Πf

s,d′ Πf
s,d′′ Πf

s′,d∗ Πf
Ci

Πf
Ci′

Πi
o Πi

o Πi
o ΠF ΠI ΠFI

Turn(s, d, d′) 1 1 0 0 0 0 1 1 0 1
2

1
|Os|

1
|Os|+2

SwOn(i, s) 0 0 0 0 0 0 0 0 0 0 0 0

Cal(i, s) 0 0 0 0 1 0 1 0 0 1 1
|Oi|

1
|Oi|+1

SwOff(i) 0 0 0 0 1 0 1 0 0 1 1
|Oi|

1
|Oi|+1

(a)

s′ ∈ Sm s′ 6∈ Sm i′ ∈ Im i′ 6∈ Im
Action Πf

s′,d′ Πf
s′,d′ Πf

Ci′
Πf

Ci′
Πi
o Πi

o′ ΠF ΠI ΠFI

TakeIm(o, d, s, i),
o = (d,m)

1 0 1 0 1 0 1
|Sm|·|L|+|Im| 1 1

|Sm|·|L|+|Im|+1

(b)

Figure 4.13: Number of representatives for each original Satellite action in each abstract task,
as well as the partition of the action costs between these representatives; table (a) shows Turn,
Switch On, Switch Off, and Calibrate actions, and table (b) shows Take Image actions

Proof: For an image objective o = (d,m) ∈ O, some actions TakeIm(o, d, s, i) = 〈{o = 0,Ci =
1, s = d}, {o = 1}〉 will appear in optimal plans for |Sm| · |L| fork abstract tasks rooted in satellites,
|Im| fork abstract tasks rooted in instrument calibration status variables Ci, and one inverted-fork
abstract task with sink o. Together with the costs of the action representatives in the abstract
problems (see Figure 4.13), we have

hF : cost of each representative is 1
|Sm|·|L|+|Im| and there are |Sm| · |L|+ |Im| fork abstract tasks,

hI : cost of each representative is 1 and there is one inverted fork abstract task, and

hFI : cost of each representative is 1
|Sm|·|L|+|Im|+1 and there are |Sm| · |L|+ |Im|+ 1 abstract tasks.

Therefore, for each o ∈ O, the cost of one TakeIm(o, d, s, i) action will be fully accounted for by
each of the three heuristics.

Lemma 5 For any Satellite task, hF, hI, and hFI fully account for the cost of at least one Turn
action Turn(s, d, d′) for each s ∈ S0 such that I[s] 6= G[s].

Proof: If s ∈ S0 is a satellite with I[s] 6= G[s], then an action Turn(s, I[s], d′) will appear in any
optimal plan for Πf

s,I[s], an action Turn(s, d,G[s]) will appear in any optimal plan for Πf
s,G[s], and

for each o ∈ Os, an action Turn(s, d,G[s]) will appear in any optimal plan for Πi
o. Together with

the costs of the action representatives in the abstract problems (see Figure 4.13) we have

hF : cost of each representative is 1
2 and there are 2 fork abstract tasks,

hI : cost of each representative is 1
|Os| and there are |Os| inverted fork abstract tasks, and

hFI : cost of each representative is 1
|Os|+2 and there are |Os|+ 2 abstract tasks.

66

o1 oi ok ol+1 on

s s′

C1 ClCi Cl+1 C2lCl+i

On1 Onl

Oni

Onl+1 On2l

Onl+i

o1 . . . on

s

o1 . . . on

s′

oi ol+1 . . . on

Ci

oi

s s′ Ci Cl+i

oi

s s′ C1
. . . C2l

(a) (b)

Gf
s Gf

s′ Gf
Ci
, i ∈ I

G i
oi
, 1 ≤ i ≤ l G i

oi
, l < i ≤ n

Figure 4.14: (a) Causal graph and (b) the corresponding collection of v-forks and v-iforks for the
Satellite task used in the proof of the upper bound of 1/6

Therefore, for each s ∈ S0 such that I[s] 6= G[s], the cost of one Turn(s, d, d′) action will be fully
accounted for by each of the three heuristics.

Together, Lemmas 4 and 5 imply that, for h ∈ {hF, hI, hFI}, on Satellite we have h
h∗ ≥ 1/6.

Upper Bound A Satellite task on which all three heuristics achieve the ratio of exactly 1/6
consists of two identical satellites S = {s, s′} with l instruments each, I = Is ∪ Is′ = {1, . . . , l} ∪
{l+ 1, . . . , 2l}, such that instruments {i, l+ i} have two modes each: m0 and mi. There is a set of
n+ 1 directions L = {dI , d1, . . . , dn} and a set of n image objectives O = {o1, . . . , on}, oi = (dI ,mi)
for 1 ≤ i ≤ l and oi = (di,m0) for l < i ≤ n. The calibration direction of instruments {i, l + i} is
di. The sas+ encoding for this planning task is as follows.

• Variables V = S ∪ O ∪ {Oni,Ci | i ∈ I}.

• Initial state I = {s = dI | s ∈ S} ∪ {Oni = 0,Ci = 0 | i ∈ I} ∪ {o = 0 | o ∈ O}.

• Goal G = {o = 1 | o ∈ O}.

• Actions

A =
⋃
s∈S

(
{Turn(s, d, d′) | {d, d′} ⊆ L} ∪ {SwOn(i, s), Cal(i, s), SwOff(i) | i ∈ Is}

)
∪

⋃
s∈S

{TakeIm((dI ,mi), dI , s, i) | i ∈ Is} ∪
n⋃

j=l+1

{TakeIm((dj ,m0), dj , s, i) | i ∈ Is}

 .

The causal graph of this task is depicted in Figure 4.14a. The state variables {Oni,Ci | i ∈ I}∪S
have no goal value, and thus the collection of v-forks and v-iforks for this task is as in Figure 4.14b.
The domains of the inverted-fork sinks are binary, and the domains of the fork roots are abstracted

67

h task optimal plan cost # h(I)

hF

Πf
s,d 〈TakeIm(o1, dI , s

′, l + 1) · . . . · TakeIm(ol, dI , s
′, 2l) ·

TakeIm(ol+1, dl+1, s
′, 2l) · . . . · TakeIm(on, dn, s′, 2l)〉

l
2n+4

+ n−l
2n+2l+2

n+ 1

n
Πf
s′,d 〈TakeIm(o1, dI , s, 1) · . . . ·TakeIm(ol, dI , s, l) ·TakeIm(ol+1, dl+1, s, l) ·

. . . · TakeIm(on, dn, s, l)〉
l

2n+4
+ n−l

2n+2l+2
n+ 1

Πf
Ci
, i ∈ Is 〈TakeIm(oi, dI , s

′, l + i) · TakeIm(ol+1, dl+1, s
′, 2l) · . . . ·

TakeIm(on, dn, s′, 2l)〉
1

2n+4
+ n−l

2n+2l+2
l

Πf
Ci
, i ∈ Is′ 〈TakeIm(oi, dI , s, i) ·TakeIm(ol+1, dl+1, s, l) · . . . ·TakeIm(on, dn, s, l)〉 1

2n+4
+ n−l

2n+2l+2
l

hI Πi
oj
, 1 ≤ j ≤ l 〈Turn(s, dI , dj) · Cal(j, s) · Turn(s, dj , dI) · TakeIm(oj , dI , s, j)〉 2

n
+ 1
n−l+1

+ 1 l n+ 2+
n

n−l+1Πi
oj
, l < j ≤ n 〈Turn(s, dI , d1) · Cal(1, s) · Turn(s, d1, dj) · TakeIm(oj , dI , s, 1)〉 2

n
+ 1
n−l+1

+ 1 n− l

hFI

Πf
s,d 〈TakeIm(o1, dI , s

′, l + 1) · . . . · TakeIm(ol, dI , s
′, 2l) ·

TakeIm(ol+1, dl+1, s
′, 2l) · . . . · TakeIm(on, dn, s′, 2l)〉

l
2n+5

+ n−l
2n+2l+3

n+ 1

n +

2n
n+2

+

n
n−l+2

Πf
s′,d 〈TakeIm(o1, dI , s, 1) · . . . ·TakeIm(ol, dI , s, l) ·TakeIm(ol+1, dl+1, s, l) ·

. . . · TakeIm(on, dn, s, l)〉
l

2n+5
+ n−l

2n+2l+3
n+ 1

Πf
Ci
, i ∈ Is 〈TakeIm(oi, dI , s

′, l + i) · TakeIm(ol+1, dl+1, s
′, 2l) · . . . ·

TakeIm(on, dn, s′, 2l)〉
1

2n+5
+ n−l

2n+2l+3
l

Πf
Ci
, i ∈ Is′ 〈TakeIm(oi, dI , s, i) ·TakeIm(ol+1, dl+1, s, l) · . . . ·TakeIm(on, dn, s, l)〉 1

2n+5
+ n−l

2n+2l+3
l

Πi
oj
, 1 ≤ j ≤ l 〈Turn(s, dI , dj) · Cal(j, s) · Turn(s, dj , dI) · TakeIm(oj , dI , s, j)〉 2

n+2
+ 1
n−l+2

+
1

2n+5

l

Πi
oj
, l < j ≤ n 〈Turn(s, dI , d1) · Cal(1, s) · Turn(s, d1, dj) · TakeIm(oj , dI , s, 1)〉 2

n+2
+ 1
n−l+2

+
1

2n+2l+3

n− l

Table 4.5: Optimal plans for the abstract tasks and the overall heuristic estimates for the Satellite
task used in the proof of the upper bound of 1/6

as in Eq. 4.24 (“leave-one-out”). This provides us with

ΠF = {Πf
s,d,Π

f
s′,d | d ∈ L} ∪ {Πf

Ci | i ∈ I},
ΠI = {Πi

o | o ∈ O},
ΠFI = {Πf

s,d,Π
f
s′,d | d ∈ L} ∪ {Πf

Ci | i ∈ I} ∪ {Πi
o | o ∈ O}.

The total number of forks in this task is nf = 2n + 2l + 2 and the total number of inverted forks
is ni = n. The costs of the action representatives in each abstract task are given in Figure 4.13,
where |Os| = |Os′ | = |O| = n, |Oi| = n− l + 1, |Sm| = 2, |Im0 | = 2l, |Imi | = 2, and |L| = n+ 1.

The optimal plans per abstract task are depicted in Table 4.5, while an optimal plan for
the original problem, 〈SwOn(1, s) · Turn(s, dI , d1) · Cal(1, s) · Turn(s, d1, dI) · TakeIm(o1, dI , s, 1) · SwOff(1) ·
. . . SwOn(l − 1, s) · Turn(s, dI , dl−1) · Cal(l − 1, s) · Turn(s, dl−1, dI) · TakeIm(ol−1, dI , s, l − 1) · SwOff(l − 1) ·
SwOn(l, s) ·Turn(s, dI , dl) ·Cal(l, s) ·Turn(s, dl, dI) ·TakeIm(ol, dI , s, l) ·Turn(s, dI , dl+1) ·TakeIm(ol+1, dl+1, s, l) ·
. . . · Turn(s, dn−1, dn) · TakeIm(on, dn, s, l)〉, has the cost of 4l+ 2n− 1. For l = n−√n, this provides us
with the asymptotic performance ratio of 1/6 for all three heuristics.

4.4.2 Experimental Evaluation

To evaluate the practical attractiveness of the fork-decomposition heuristics, we have conducted an
empirical study on a wide sample of planning domains from the International Planning Competi-
tions (IPC) 1998-2006, plus a non-IPC Schedule-STRIPS domain.5 The domains were selected to

5Schedule-STRIPS appears in the domains’ distribution of IPC-2000. Later we became aware of the fact that
this domain was excluded from the competition because its encoding generated problems for various planners.

68

domain S
hF hI hFI MS -104 MS -105 HSP∗F Gamer blind hmax
s %S s %S s %S s %S s %S s %S s %S s %S s %S

airport-ipc4 21 11 52 14 67 11 52 19 90 17 81 15 71 11 52 18 86 20 95
blocks-ipc2 30 17 57 15 50 15 50 18 60 20 67 30 100 30 100 18 60 18 60
depots-ipc3 7 2 29 2 29 2 29 7 100 4 57 4 57 4 57 4 57 4 57
driverlog-ipc3 12 9 75 10 83 9 75 12 100 12 100 9 75 11 92 7 58 8 67
freecell-ipc3 5 3 60 2 40 2 40 5 100 1 20 5 100 2 40 4 80 5 100
grid-ipc1 2 1 50 1 50 1 50 2 100 2 100 0 0 2 100 1 50 2 100
gripper-ipc1 20 5 25 5 25 5 25 7 35 7 35 6 30 20 100 7 35 7 35
logistics-ipc1 6 3 50 2 33 2 33 4 67 5 83 3 50 6 100 2 33 2 33
logistics-ipc2 22 21 95 15 68 14 64 16 73 21 95 16 73 20 91 10 45 10 45
miconic-strips-ipc2 85 45 53 42 49 40 47 54 64 55 65 45 53 85 100 50 59 50 59
mprime-ipc1 24 17 71 17 71 17 71 21 88 12 50 8 33 9 38 19 79 24 100
mystery-ipc1 21 16 76 15 71 16 76 17 81 13 62 11 52 8 38 18 86 18 86
openstacks-ipc5 7 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100
pathways-ipc5 4 4 100 4 100 4 100 3 75 4 100 4 100 4 100 4 100 4 100
pipes-notank-ipc4 21 9 43 11 52 8 38 20 95 12 57 13 62 11 52 14 67 17 81
pipes-tank-ipc4 14 6 43 6 43 6 43 13 93 7 50 7 50 6 43 10 71 10 71
psr-small-ipc4 50 47 94 48 96 47 94 50 100 50 100 50 100 47 94 48 96 49 98
rovers-ipc5 7 5 71 6 86 6 86 6 86 7 100 6 86 5 71 5 71 6 86
satellite-ipc4 6 6 100 6 100 5 83 6 100 6 100 5 83 6 100 4 67 5 83
schedule-strips 43 42 98 35 81 39 91 22 51 1 2 11 26 3 7 29 67 31 72
tpp-ipc5 6 5 83 5 83 5 83 6 100 6 100 5 83 5 83 5 83 6 100
trucks-ipc5 9 5 56 5 56 5 56 6 67 5 56 9 100 3 33 5 56 7 78
zenotravel-ipc3 11 8 73 9 82 8 73 11 100 11 100 8 73 10 91 7 64 8 73

total 433 294 282 274 332 285 277 315 296 318

Table 4.6: A summary of the experimental results. Per domain, S denotes the number of tasks
solved by any planner. Per planner/domain, the number of tasks solved by that planner is given
both by the absolute number (s) and by the percentage from “solved by some planners” (%S). The
last row summarize the number of solved instances.

allow a comparative evaluation with other, both baseline and state-of-the-art, approaches/planners,
not all of which supported all the PDDL features at the time of our evaluation.

Later we formally prove that, under ad hoc action cost partitions such as our uniform partition,
none of the three fork decompositions as in Definition 14 is dominated by the other two. Hence,
we have implemented three additive fork-decomposition heuristics, hF, hI, and hFI, within the
standard heuristic forward search framework of the Fast Downward planner (Helmert, 2006) using
the A∗ algorithm with full duplicate elimination. The hF heuristic corresponds to the ensemble of
all (not clearly redundant) fork subgraphs of the causal graph, with the domains of the roots being
abstracted using the “leave-one-value-out” binary-valued domain decompositions as follows:

∀ϑi ∈ D(v) : φf
v,i(ϑ) =

{
0, ϑ = ϑi

1, otherwise
. (4.24)

The hI heuristic is the same but for the inverted fork subgraphs, with the domains of the sinks
being abstracted using the “distance-to-goal-value” ternary-valued domain decompositions6 as in
Eq. 4.25.

∀ϑ ∈ D(v) : φi
v,i(ϑ) =


0, d(ϑ,G[v]) < 2i− 1
1, d(ϑ,G[v]) = 2i− 1
2, d(ϑ,G[v]) > 2i− 1

. (4.25)

The ensemble of the hFI heuristic is the union of these for hF and hI. The action cost partition in
all three heuristics was what we call “uniform.”

6While “distance-from-initial-value” is reasonable for the evaluation of just the initial state, “leave-one-value-out”
for fork roots and “distance-to-goal-value” for inverted-fork sinks should typically be much more attractive for the
evaluation of all the states examined by A∗.

69

We make a comparison with two baseline approaches, namely “blind A∗” with heuristic value
0 for goal states and 1 otherwise, and A∗ with the hmax heuristic (Bonet & Geffner, 2001), as well
as with state-of-the-art abstraction heuristics, represented by the merge-and-shrink abstractions
of Helmert et al. (2007). The latter were constructed under the linear, f -preserving abstraction
strategy proposed by these authors, and this under two fixed bounds on the size of the abstract
state spaces, notably |Sα| < 104 and |Sα| < 105. These four (baseline and merge-and-shrink)
heuristics were implemented by Helmert et al. (2007) within the same planning system as our
fork-decomposition heuristics, allowing for a fairly unbiased comparison. We also compare to the
Gamer (Edelkamp & Kissmann, 2009) and HSP∗F (Haslum, 2008) planners, the winner and the
runner-up at the sequential optimization track of IPC-2008. On the algorithmic side, Gamer is
based on a bidirectional blind search using sophisticated symbolic-search techniques, and HSP∗F
uses A∗ with an additive critical-path heuristic. The experiments were conducted on a 3 GHz
Intel E8400 CPU with 2 GB memory, using 1.5 GB memory limit and 30 minute timeout. The
only exception was Gamer, for which we used similar machines but with 4 GB memory and 2 GB
memory limit; this was done to provide Gamer with the environment for which it was configured.

Table 4.6 summarizes our experimental results in terms of the number of tasks solved by each
planner. Our impression of fork-decomposition heuristics from Table 4.6 is somewhat mixed. On
the one hand, the performance of all three fork-decomposition based planners was comparable to one
of the settings of the merge-and-shrink heuristic, and this clearly testifies for that the framework of
implicit abstractions is not of theoretical interest only. On the other hand, all the planners, except
for A∗ with the merge-and-shrink heuristic with |Sα| < 104, failed to outperform A∗ with the
baseline hmax heuristic. More important for us is that, unfortunately, all three fork-decomposition
based planners failed to outperform even the basic blind search.

This, however, is not the end of the story for the fork-decomposition heuristics. Some hope can
be found in the detailed results in Tables B.1-B.6 (pp. 177-182). As it appears from Table B.2, on,
e.g., the Logistics-ipc2 domain, hF almost consistently leads to expanding fewer search nodes
than the (better between the two merge-and-shrink heuristics on this domain) MS -105, with the
difference hitting four orders of magnitude. However, the time complexity of hF per search node
is substantially higher than that of MS -105, with the two expanding at a rate of approximately
40 and 100000 nodes per second, respectively. The outcome is simple: while with no time limits
(and only memory limit of 1.5 GB) hF solves more tasks in Logistics-ipc2 than MS -105 (task
12-1 is solved with hF in 2519.01 seconds), this is not so with a standard time limit of half an hour
used for Table B.2. In what follows we examine the possibility of exploiting the informativeness of
fork-decomposition heuristics while not falling into the trap of costly per-node heuristic evaluation.

4.5 Back to Theory: h-Partitions and Databased Implicit Abstrac-
tions

Accuracy and low time complexity are both desired yet competing properties of heuristic functions.
For many powerful heuristics, and abstraction heuristics in particular, computing h(s) for each state
s in isolation is impractical: while computing h(s) is polynomial in the description size of Π, it is
often not efficient enough to be performed at each search node. However, for some costly heuristics
this obstacle can be largely overcome by sharing most of the computation between the evaluations
of h on different states. If that is possible, the shared parts of computing h for all problem states are
precomputed and memorized before the search, and then reused during the search by the evaluations

70

of h on different states. Such a mixed offline/online heuristic computation is henceforth called h-
partition, and we define the time complexity of an h-partition as the complexity of computing h
for a set of states. Given a subset of k problem states S′ ⊆ S, the h-partition’s time complexity of
computing {h(s) | s ∈ S′} is expressed as O(X + kY), where O(X) and O(Y) are, respectively, the
complexity of the (offline) pre-search and (online) per-node parts of computing h(s).

These days h-partitions are being adopted by various optimal planners using critical-path heuris-
tics hm for m > 1 (Haslum et al., 2005), landmark heuristics hL and hLA (Karpas & Domshlak,
2009), and PDB and merge-and-shrink abstraction heuristics (Edelkamp, 2001; Helmert et al.,
2007). Without effective h-partitions, optimal search with these heuristics would not scale up well,
while with such h-partitions it constitutes the state of the art of cost-optimal planning. For instance,
a very attractive property of PDB abstractions is the complexity of their natural hα-partition. In-
stead of computing hα(s) = h∗(α(s)) from scratch for each evaluated state s (impractical for all
but tiny projections), the practice is to precompute and store h∗(s′) for all abstract states s′ ∈ Sα,
after which the per-node computation of hα(s) boils down to a hash-table lookup for h∗(α(s)) with
a perfect hash function. In our terms, the time and space complexity of that PDB hα-partition for
a set of k states is O(|Sα|(log(|Sα|) + |A|) + k) and O(|Sα|), respectively. This is precisely what
makes PDB heuristics so attractive in practice. In that respect, the picture with merge-and-shrink
abstractions is very much similar. While the order in which composites are formed and the choice
of abstract states to contract are crucial to the complexity of their natural hα-partitions, the time
and space complexity for the concrete linear abstraction strategy of Helmert et al. are respectively
O(|V ||Sα|(log(|Sα|) + |A|) + k · |V |) and O(|Sα|). Similarly to PDB abstractions, the per-node
computation of hα(s) with a merge-and-shrink abstraction α is just a lookup in a data structure
storing h∗(α(s)) for all abstract states α(s) ∈ Sα. Hence, while the pre-search computation with
MS abstractions can be more costly than with PDBs, the online part of computing heuristic values
is still extremely efficient. This per-node efficiency provides the merge-and-shrink heuristics with
impressive practical effectiveness on numerous IPC domains (Helmert et al., 2007).

To sum up, we can say that the fixed size of abstract spaces induced by explicit abstractions
such as PDBs and merge-and-shrink is not only a limitation but also a key to obtaining effective h-
partitions. In contrast, escaping that limitation with implicit abstractions might trap us into having
to pay a high price for each search-node evaluation. We now show, however, that the time-per-node
complexity bottleneck of fork-decomposition heuristics can be successfully overcome. Specifically,
we show that an equivalent of PDB’s and merge-and-shrink notion of “database” exists for fork-
decomposition abstractions as well, despite their exponential-size abstract spaces. Of course, unlike
with PDB and merge-and-shrink abstractions, the databased fork-decomposition heuristics do not
(and cannot) provide us with a purely lookup online computation of hα(s). The online part of the
hα-partition has to be nontrivial in the sense that its complexity cannot be O(1). In what comes
next we prove the existence of such effective h-partitions for fork and inverted fork abstractions. In
Section 4.5.3 we then empirically show that these h-partitions lead to fast pre-search and per-node
computations, allowing the informativeness of the fork-decomposition heuristics to be successfully
exploited in practice.

4.5.1 Fork Databases

Theorem 11 Let Π = 〈V,A, I,G, cost〉 be a planning task with a fork causal graph rooted at a
binary-valued variable r. There exists an h∗-partition for Π such that, for any set of k states, the
time and space complexity of that h∗-partition is, respectively, O(d3|V |+|Ar|+kd|V |) and O(d2|V |),

71

where d = maxv D(v).

Proof: The proof is by a modification of the polynomial-time algorithm for computing h∗(s) for
a state s of such a task Π used in the proof of Theorem 4 (Tractable Forks). Given a state s, let
D(r) = {0, 1}, where s[r] = 0. In what follows, for each of the two root’s values ϑ ∈ D(r), ¬ϑ
denotes the opposite value 1 − ϑ; σ(r), �∗[σ(r)], DTG0

v and DTG1
v are defined exactly as in the

proof of Theorem 4.

(1) For each of the two values ϑr ∈ D(r) of the root variable, each leaf variable v ∈ V \ {r}, and
each pair of values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′;ϑr be the cost of the cheapest sequence of actions
changing v from ϑ to ϑ′ provided r = ϑr. The whole set {pϑ,ϑ′;ϑr} for all the leaves v ∈ V \ {r}
can be computed by a straightforward variant of the all-pairs-shortest-paths, Floyd-Warshall
algorithm on DTGϑr

v in time O(d3|V |).

(2) For each leaf variable v ∈ V \ {r}, 1 ≤ i ≤ d + 1, and ϑ ∈ D(v), let gϑ;i be the cost of the
cheapest sequence of actions changing s[v] to ϑ provided a sequence σ ∈ �∗[σ(r)], |σ| = i, of
value changes of r. Having the values {pϑ,ϑ′;ϑr} from step (1), the set {gϑ;i} is given by the
solution of the recursive equation

gϑ;i =



ps[v],ϑ;s[r], i = 1

min
ϑ′

[
gϑ′;i−1 + pϑ′,ϑ;s[r]

]
, 1 < i ≤ δϑ, i is odd

min
ϑ′

[
gϑ′;i−1 + pϑ′,ϑ;¬s[r]

]
, 1 < i ≤ δϑ, i is even

gϑ;i−1, δϑ < i ≤ d+ 1

,

where δϑ = |D(v)|+ 1. Given that, we have

h∗(s) = min
σ∈�∗[σ(r)]

 cost(σ) +
∑

v∈V \{r}

gG[v];|σ|

 ,
with cost(σ) =

∑|σ|
i=2 cost(aσ[i]), where aσ[i] ∈ A is the cheapest action changing the value of r

from σ[i− 1] to σ[i].

Note that step (1) is already state-independent, but the heavy step (2) is not. However, the
state dependence of step (2) can mostly be overcome as follows. For each v ∈ V \ {r}, ϑ ∈ D(v),
1 ≤ i ≤ d+ 1, and ϑr ∈ D(r), let g̃ϑ;i(ϑr) be the cost of the cheapest sequence of actions changing
ϑ to G[v] provided the value changes of r induce a 0/1 sequence of length i starting with ϑr. The
set {g̃ϑ;i(ϑr)} is given by the solution of the recursive equation

g̃ϑ;i(ϑr) =


pϑ,G[v];ϑr , i = 1
min
ϑ′

[
g̃ϑ′;i−1(¬ϑr) + pϑ,ϑ′;ϑr

]
, 1 < i ≤ δϑ

g̃ϑ;i−1(ϑr), δϑ < i ≤ d+ 1

, (4.26)

which can be solved in time O(d3|V |). Note that this equation is now independent of the evaluated
state s, and yet {g̃ϑ;i(ϑr)} allow for computing h∗(s) for a given state s via

h∗(s) = min
σ∈�∗[σ(r|s[r])]

 cost(σ) +
∑

v∈V \{r}

g̃s[v];|σ|(s[r])

 (4.27)

72

0 1

24

24

0

1 2

3

0

1

2

3

4

5

1
1

0
100

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
50

1
50

0
100

0
100

r |σ| cost(σ) v=0 v=1 v=2 v=3 u=0 u=1 u=2 u=3 u=4 u=5

0

1 0 100 ∞ ∞ 0 201 200 101 100 1 0
2 24 100 2 1 0 201 200 101 100 1 0

3 48 100 2 1 0 53 102 3 2 1 0
4 72 100 2 1 0 53 102 3 2 1 0

5 96 3 2 1 0 5 4 3 2 1 0
6 120 3 2 1 0 5 4 3 2 1 0

7 144 3 2 1 0 5 4 3 2 1 0

1

1 0 ∞ ∞ 1 0 ∞ ∞ ∞ ∞ ∞ 0
2 24 100 ∞ 1 0 101 52 51 2 1 0
3 48 3 2 1 0 101 52 51 2 1 0
4 72 3 2 1 0 53 4 3 2 1 0
5 96 3 2 1 0 53 4 3 2 1 0
6 120 3 2 1 0 5 4 3 2 1 0
7 144 3 2 1 0 5 4 3 2 1 0

(a) (b)

Figure 4.15: The database for a fork-structured problem with a binary-valued root variable r and
two children v and u, and G[r] = 0, G[v] = 3, and G[u] = 5. (a) depicts the domain transition
graphs of r (top), v (middle), and u (bottom); the numbers above and below each edge are the
precondition on r and the cost of the respective action. (b) depicts the database created by the
algorithm. For instance, the entry in row r= 0 ∧ |σ|= 5 and column v = 0 captures the value of
g̃v=0;5(r=0) computed as in Eq. 4.26. The shaded entries are those examined during the online
computation of h∗(r=0, v=0, u=0).

where σ(r|ϑr) is defined similarly to σ(r) but with respect to the initial value ϑr of r.
With the new formulation, the only computation that has to be performed online, per search

node, is the final minimization over �∗[σ(r|s[r])] in Eq. 4.27, and this is the lightest part of the
whole algorithm anyway. The major computations, notably those of {pϑ,ϑ′;ϑr} and {g̃ϑ;i(ϑr)}, can
now be performed offline and shared between the evaluated states. The space required to store this
information is O(d2|V |) as it contains only a fixed amount of information per pair of values of each
variable. The time complexity of the offline computation is O(d3|V | + |Ar|); the |Ar| component
stems from precomputing the costs cost(σ). The time complexity of the online computation per
state is O(d|V |); |V | comes from the internal summation and d comes from the size of �∗[σ(r|s[r])].

Figure 4.15b shows the database created for a fork-structured problem with a binary-valued
root r, two children v and u, and G[r] = 0, G[v] = 3, and G[u] = 5; the domain transition
graphs of v and u are depicted in Figure 4.15(a). Online computation of h∗(s) as in Eq. 4.27 for
s = (r=0, v=0, u=0) sums over the shaded entries of each of the four rows having such entries, and
minimizes over the resulting four sums, with the minimum being obtained in the row r=0∧|σ|=5.

4.5.2 Inverted Fork Databases

Theorem 12 Let Π = 〈V ,A, I ,G, cost〉 be a planning task with an inverted fork causal graph with
sink r and |D(r)| = b = O(1). There exists an h∗-partition for Π such that, for any set of k
states, the time and space complexity of that h∗-partition is O(b|V ||Ar|b−1 + d3|V | + k|V ||Ar|b−1)
and O(|V ||Ar|b−1 + d2|V |), respectively, where d = maxv D(v).

73

Proof: Like the proof of Theorem 11, the proof of Theorem 12 is based on a modification of the
polynomial-time algorithm for computing h∗(s) used for the proof of Theorem 5 (Tractable Inverted
Forks).

(1) For each parent variable v ∈ V \{r}, and each pair of its values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′ be the cost
of the cheapest sequence of actions changing ϑ to ϑ′. The whole set {pϑ,ϑ′} can be computed
using the Floyd-Warshall algorithm on the domain transition graph of v in time O(d3|V |).

(2) Given a state s, for each cycle-free path π = 〈a1, . . . , am〉 from s[r] to G[r] in DTG(v,Π), let
gπ be the cost of the cheapest plan from s in Π based on π, and the shortest paths {pϑ,ϑ′}
computed in step (1). Each gπ can be computed as

gπ =
m∑
i=1

cost(ai) +
m∑
i=0

∑
v∈V \{r}

pprei[v],prei+1[v],

where pre0 · . . . · prem+1 are the values required from the parents of r along the path π. That
is, for each v ∈ V \ {r}, and 0 ≤ i ≤ m+ 1,

prei[v] =


s[v], i = 0
G[v], i = m+ 1, and G[v] is specified
pre(ai)[v], 1 ≤ i ≤ m, and pre(ai)[v] is specified
prei−1[v] otherwise

.

From that, we have h∗(s) = minπ gπ.
Note that step (1) is state-independent, but step (2) is not. However, the dependence of step

(2) on the evaluated state can be substantially relaxed. As there are only O(1) different values of
r, it is possible to consider cycle-free paths to G[r] from all values of r. For each such path π, and
each parent variable v ∈ V \ {r}, we know what the first value of v required by π would be. Given
that, we can precompute the cost-optimal plans induced by each π assuming the parents start at
their first required values. The remainder of the computation of h∗(s) is delegated to online, and
the modified step (2) is as follows.

For each ϑr ∈ D(r) and each cycle-free path π = 〈a1, . . . , am〉 from ϑr to G[r] in DTG(r,Π), let
a “proxy” state sπ be

sπ[v] =


ϑr, v = r

G[v], ∀1 ≤ i ≤ m : pre(ai)[v] is unspecified
pre(ai)[v], i = argminj {pre(aj)[v] is specified}

,

that is, the nontrivial part of sπ captures the first values of V \ {r} required along π.7 Given that,
let gπ be the cost of the cheapest plan from sπ in Π based on π, and the shortest paths {pϑ,ϑ′}
computed in (1). Each gπ can be computed as

gπ =
m∑
i=1

wai +
∑

v∈V \{r}

pprei[v],prei+1[v]

 ,
7For ease of presentation, we omit here the case where v is required neither along π, nor by the goal; such variables

should be simply ignored when accounting for the cost of π.

74

0

1

2 0

1

2

0 1 2

50

5050

1

1001

50

v=1

1

u=1

100

v=1

1

u=2

r π sπ gπ u=0 u=1 u=2 v=0 v=1 v=2

0

〈a1 · a3〉 u = 1, v = 2 202 100 0 50 1 2 0

〈a1 · a4〉 u = 1, v = 1 153 100 0 50 101 0 100

〈a2 · a3〉 u = 2, v = 1 153 50 100 0 101 0 100

〈a2 · a4〉 u = 0, v = 1 152 0 50 100 101 0 100

1
〈a3〉 u = 2, v = 2 101 50 100 0 1 2 0
〈a4〉 u = 0, v = 1 102 0 50 100 101 0 100

(a) (b)

Figure 4.16: The database for an inverted fork-structured problem with a O(1) bounded sink
variable r and two parents u and v, and G[r] = 2, G[u] = 0, and G[v] = 2. (a) depicts the domain
transition graphs of u (top left), v (top right), and r (bottom); the numbers above and below
each edge are the preconditions and the cost of the respective action, respectively. (b) depicts
the database created by the algorithm. The shaded entries are those examined during the online
computation of h∗(r=0, u=0, v=0).

where, for each v ∈ V \ {r}, and 1 ≤ i ≤ m+ 1,

prei[v] =


sπ[v], i = 1
G[v], i = m+ 1, and G[v] is specified
pre(ai)[v], 2 ≤ i ≤ m, and pre(ai)[v] is specified
prei−1[v], otherwise

.

Storing the pairs (gπ, sπ) accomplishes the offline part of the computation. Now, given a search
state s, we can compute

h∗(s) = min
π s.t.

sπ [r]=s[r]

gπ +
∑

v∈V \{r}

ps[v],sπ [v]

. (4.28)

The number of cycle-free paths to G[r] in DTG(r,Π) is Θ(|Ar|b−1), and gπ for each such path
π can be computed in time O(b|V |). Hence, the overall offline time complexity is O(b|V ||Ar|b−1 +
d3|V |), and the space complexity (including the storage of the proxy states sπ) is O(|V ||Ar|b−1 +
d2|V |). The time complexity of the online computation per state via Eq. 4.28 is O(|V ||Ar|b−1); |V |
comes from the internal summation and |Ar|b−1 from the upper bound on the number of cycle-free
paths from s[r] to G[r].

Figure 4.16(b) shows the database created for an inverted fork structured problem with a
ternary-valued sink variable r, two parents u and v, and G[r] = 2, G[u] = 0, and G[v] = 2. The
domain transition graphs of u and v are depicted at the top of Figure 4.16(a); the actual identities
of actions affecting these two parents are not important here. The actions affecting the sink r are

a1 = 〈{u = 1, r = 0}, {r = 1}〉
a2 = 〈{v = 1, r = 0}, {r = 1}〉
a3 = 〈{u = 2, r = 1}, {r = 2}〉
a4 = 〈{v = 1, r = 1}, {r = 2}〉.

75

domain S
hF hI hFI MS -104 MS -105 HSP∗F Gamer blind hmax
s %S s %S s %S s %S s %S s %S s %S s %S s %S

airport-ipc4 22 22 100 20 91 21 95 19 86 17 77 15 68 11 50 18 82 20 91
blocks-ipc2 30 21 70 18 60 18 60 18 60 20 67 30 100 30 100 18 60 18 60
depots-ipc3 7 7 100 4 57 7 100 7 100 4 57 4 57 4 57 4 57 4 57
driverlog-ipc3 12 12 100 12 100 12 100 12 100 12 100 9 75 11 92 7 58 8 67
freecell-ipc3 5 5 100 4 80 4 80 5 100 1 20 5 100 2 40 4 80 5 100
grid-ipc1 2 2 100 1 50 1 50 2 100 2 100 0 0 2 100 1 50 2 100
gripper-ipc1 20 7 35 7 35 7 35 7 35 7 35 6 30 20 100 7 35 7 35
logistics-ipc2 22 22 100 16 73 16 73 16 73 21 95 16 73 20 91 10 45 10 45
logistics-ipc1 7 6 86 4 57 5 71 4 57 5 71 3 43 6 86 2 29 2 29
miconic-strips-ipc2 85 51 60 50 59 50 59 54 64 55 65 45 53 85 100 50 59 50 59
mprime-ipc1 24 23 96 22 92 21 88 21 88 12 50 8 33 9 38 19 79 24 100
mystery-ipc1 21 21 100 18 86 21 100 17 81 13 62 11 52 8 38 18 86 18 86
openstacks-ipc5 7 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100
pathways-ipc5 4 4 100 4 100 4 100 3 75 4 100 4 100 4 100 4 100 4 100
pipes-notank-ipc4 21 17 81 15 71 16 76 20 95 12 57 13 62 11 52 14 67 17 81
pipes-tank-ipc4 14 11 79 9 64 9 64 13 93 7 50 7 50 6 43 10 71 10 71
psr-small-ipc4 50 49 98 49 98 49 98 50 100 50 100 50 100 47 94 48 96 49 98
rovers-ipc5 7 6 86 7 100 6 86 6 86 7 100 6 86 5 71 5 71 6 86
satellite-ipc4 6 6 100 6 100 6 100 6 100 6 100 5 83 6 100 4 67 5 83
schedule-strips 46 46 100 40 87 46 100 22 48 1 2 11 24 3 7 29 63 31 67
tpp-ipc5 6 6 100 6 100 6 100 6 100 6 100 5 83 5 83 5 83 6 100
trucks-ipc5 9 6 67 7 78 7 78 6 67 5 56 9 100 3 33 5 56 7 78
zenotravel-ipc3 11 11 100 11 100 11 100 11 100 11 100 8 73 10 91 7 64 8 73

total 438 368 337 350 332 285 277 315 296 318
ŝ 20.56 18.38 19.13 19.07 16.64 15.45 16.66 15.58 17.66
w 14 7 9 11 9 6 8 2 6

Table 4.7: A summary of the experimental results with databased versions of the fork-decomposition
heuristics. Per domain, S denotes the number of tasks solved by any planner. Per planner/domain,
the number of tasks solved by that planner is given both by the absolute number (s) and by the
percentage from “solved by some planners” (%S). Boldfaced results indicate the best performance
within the corresponding domain. The last three rows summarize the number of solved instances,
the domain-normalized measure of solved instances (ŝ), and the number of domains in which the
planners achieved superior performance (w).

The domain transition graph of r is depicted at the bottom of Figure 4.16(a). Online computation
of h∗(s) as in Eq. 4.28 for s = (r= 0, v= 0, u= 0) sums over the shaded entries of each of the four
rows having such entries, and minimizes over the resulting four sums, with the minimum being
obtained in the lowest such row.

4.5.3 Experimental Evaluation

To evaluate the practical attractiveness of the databased fork-decomposition heuristics, we have
repeated our empirical evaluation as in Section 4.4.2, but now for the databased versions of the
heuristics. The detailed results of this evaluation are relegated to Tables B.7-B.12 in the appendix
(pp. 183-188) but summarized here in Table 4.7. For each domain, the S column captures the
number of tasks in that domain that were solved by at least one planner in the suite. Per plan-
ner/domain, the number of tasks solved by that planner is given both by the absolute number (s)
and by the percentage from “solved by some planners” (%S). Boldfaced results indicate the best
performance within the corresponding domain. The last three rows summarize the performance
of the planners via three measures. The first is the number of tasks solved in all the 23 domains;
this is basically the performance evaluation measure used in the optimization track at IPC-2008.
As domains are not equally challenging and do not equally discriminate between the planners’
performance, the second is a “domain-normalized” performance measure

ŝ(p) =
∑

domain D

#tasks in D solved by planner p
#tasks in D solved by some planners

.

76

domain S
hF hI hFI HSP∗F Gamer blind
s %S s %S s %S s %S s %S s %S

elevators-strips-ipc6 22 18 82 14 64 15 68 7 32 22 100 11 50
openstacks-strips-ipc6 21 19 90 19 90 19 90 21 100 19 90 19 90
parcprinter-strips-ipc6 16 14 88 13 81 13 81 16 100 9 56 10 63
pegsol-strips-ipc6 27 27 100 27 100 27 100 27 100 24 89 27 100
scanalyzer-strips-ipc6 12 12 100 6 50 6 50 6 50 11 92 12 100
sokoban-strips-ipc6 28 25 89 26 93 27 96 13 46 20 71 20 71
transport-strips-ipc6 11 11 100 11 100 11 100 9 82 11 100 11 100
woodworking-strips-ipc6 14 8 57 8 57 8 57 9 64 14 100 7 50

total 152 134 124 126 108 130 117
ŝ 7.06 6.35 6.43 5.74 6.99 6.24
w 3 2 3 3 3 3

Table 4.8: A summary of the experimental results. Per domain, S denotes the number of tasks
solved by any planner. Per planner/domain, the number of tasks solved by that planner is given
both by the absolute number (s) and by the percentage from “solved by some planners” (%S).
Boldfaced results indicate the best performance within the corresponding domain. The last three
rows summarize the number of solved instances, the domain-normalized measure of solved instances
(ŝ), and the number of domains in which the planners achieved superior performance (w).

Finally, the third measure corresponds to the number of domains w in which the planner in question
solved at least as many tasks as any other planner.

Overall, Table 4.7 clearly suggests that heuristic search with “databased” fork-decomposition
heuristics favorably competes with the state of the art of optimal planning. In particular, A∗ with
the “only forks” heuristic hF exhibited the best overall performance according to all three measures.
In terms of the absolute number of solved instances, A∗ with all three fork-decomposition heuristics
outperformed all other planners in the suite. The contribution of databasing to the success of
the fork-decomposition heuristics was dramatic. Looking back at the results with “fully online”
heuristic computation depicted in Table 4.6, note that the total number of solved instances for the
fork-decomposition heuristics hF, hI, and hFI increased by 74, 55, and 76, respectively, and this
made the whole difference.

We have also performed a comparative evaluation on the planning domains from the recent IPC-
2008. The IPC-2008 domains differ from the previous domains in that actions had various costs,
and, more importantly, many actions had zero cost. The latter is an issue for heuristic-search
planners because heuristic functions cannot differentiate between subplans that have the same cost
of zero, but differ in length. In any case, the comparative side of our evaluation on the IPC-2008
domains differ on several points from the previous one. First, neither for merge-and-shrink nor for
hmax heuristics, we had implementation supporting arbitrary action costs. Hence, our comparison
here is only with Gamer, HSP∗F, and blind search. Second, to ensure admissibility of the blind
search, the latter has been modified to return on non-goal states the cost of the cheapest applicable
action. Finally, all the planners were run on a 3GHz Intel E8400 CPU with 4 GB memory, using
2 GB memory limit and 30 minute timeout. The results of this evaluation are summarized in
Table 4.8; for the detailed results we refer the reader to Tables B.13-B.14 in the appendix (pp. 189-
190). Overall, these results show that A∗ with the fork-decomposition heuristics are very much
competitive on the IPC-2008 domains as well.

77

78

Chapter 5

Abstraction-based Heuristics
Composition

Since the late 1990s, numerous admissible heuristics for domain-independent planning have been
proposed and found practically effective, with research in this direction continuously expanding.
Of course, as planning is known to be NP-hard even for extremely conservative planning for-
malisms (Bylander, 1994), no heuristic should be expected to work well in all planning tasks.
Moreover, even for a fixed planning task, no tractable heuristic will home in on all the “combina-
torics” of the task at hand. The promise, however, is that different heuristics will target different
sources of the planning complexity, and composing a set of heuristics to exploit their individual
strengths could allow a larger range of planning tasks to be solved and each individual task to be
solved more efficiently.

In this chapter we focus on the fundamental question of how one should better compose a
set of admissible heuristics in solving a given planning task. One of the well-known and heavily-
used properties of admissible heuristics is that taking the maximum of their values maximizes
informativeness while preserving admissibility. A more recent, alternative approach to composing a
set of admissible heuristics corresponds to carefully separating the information used by the different
heuristics in the set so that their values could be summed instead of maximized over. This direction
was first exploited in the works on additive pattern database (PDB) heuristics (Edelkamp, 2001;
Felner et al., 2004; Haslum et al., 2007), and more recently, in the scope of constrained PDBs, m-
reachability, and implicit abstraction (also known as structural-pattern) heuristics (Haslum et al.,
2005; Katz & Domshlak, 2008c).

The basic idea underlying all these additive heuristic ensembles is elegantly simple: for each
planning task’s action a, if it can possibly be counted by more than one heuristic in the ensemble,
then one should ensure that the cumulative counting of the cost of a does not exceed its true cost
in the original task. Such action cost partitioning was originally achieved by accounting for the
whole cost of each action in computing a single heuristic in the ensemble, while ignoring the cost
of that action in computing all the other heuristics in the ensemble (Edelkamp, 2001; Felner et al.,
2004; Haslum et al., 2005). Recently, this “all-in-one/nothing-in-rest” action-cost partitioning has
been generalized by Katz and Domshlak (2007a, 2008c) and Yang et al. (2007, 2008) to arbitrary
partitioning of the action cost among the heuristics in the ensemble.

The great flexibility of additive heuristic ensembles, however, is a mixed blessing. For better or
for worse, the methodology of taking the maximum over the values provided by an arbitrary set of

79

independently constructed admissible heuristics is entirely nonparametric. By contrast, switching to
additive heuristic ensembles requires selecting an action-cost partitioning scheme, and this decision
problem poses a number of computational challenges:

• The space of alternative action-cost partitions is infinite as the cost of each action can be
partitioned into an arbitrary set of nonnegative real numbers, the sum of which does not
exceed the cost of that action.

• At least in domain-independent planning, our goal is a fully unsupervised decision process.

• Last but not least, the relative quality of each action-cost partition (in terms of the accuracy
of the resulting additive heuristic) may vary dramatically between the examined search states.
Hence, the choice of the action-cost partitioning scheme should ultimately be a function of
the search state in question.

These concerns may explain why all previous works on both domain-specific and domain-
independent additive heuristic ensembles adopt this or another ad hoc, fixed choice of action-cost
partition. Consequently, all the reported empirical comparative evaluations of various max-based
and additive heuristic ensembles are inconclusive—for some search states along the search pro-
cess, the (pre-selected) additive heuristic was found to dominate the max-combination, while for
the other states the opposite was the case. In the context of domain-specific additive PDBs, Yang
et al. (2007) conclude that “determining which abstractions [here: action-cost partitioning schemes]
will produce additives that are better than max over standards is still a big research issue.”

Focusing on abstraction heuristics, our contribution in this chapter is precisely in addressing
the problem of choosing the right action-cost partitioning over a given set of heuristics:

1. We provide a procedure that, given (i) a classical planning task Π, (ii) a forward-search state
s of Π, and (iii) a set of heuristics based on abstractions of Π, derives an optimal action-cost
partition for s, that is, a partition that maximizes the heuristic estimate of that state. The
procedure is fully unsupervised, and is based on a linear programming formulation of that
optimization problem.

2. We show that the time complexity of our procedure is polynomial for arbitrary sets of all
abstraction-based heuristic functions with which we are familiar. Such “procedure-friendly”
heuristics include PDBs (Edelkamp, 2001; Yang et al., 2007), constrained PDBs (Haslum
et al., 2005), merge-and-shrink abstractions (Helmert et al., 2007), fork-decomposition im-
plicit abstractions (Katz & Domshlak, 2008c), and implicit abstractions based on tractable
constraint optimization over tree-shaped constraint networks (Katz & Domshlak, 2008a).
Note that the estimate provided by a max-based ensemble corresponds to the estimate pro-
vided by the respective additive ensemble under some action-cost partitioning. Thus, by
finding an optimal action-cost partition we provide a formally complete answer to the afore-
mentioned question of “to add or not to add” in the context of abstraction heuristics.

Taking the fork-decomposition abstractions as a case study, we evaluate the empirical effective-
ness of switching from ad hoc to optimal additive composition. Our evaluation on a wide range
of International Planning Competition (IPC) benchmarks shows a substantial reduction in the
number of nodes expanded by the A∗ algorithm. However, in the standard time-bounded setting,
this reduction in expanded nodes is typically negatively balanced by the much more expensive

80

per-node computation of the optimal additive heuristic. To overcome this pitfall without forfeiting
the promise of optimized action cost partitions altogether, we suggest that optimal action cost
partitions be derived only with respect to a subset of evaluated nodes. We examine this approach
empirically in its extreme setting where only one optimal action cost partition is computed per
planning task: the one that is optimal for the task’s initial state. This action cost partition is then
used for all the states evaluated by the A∗ algorithm. Our experiments show that even such a
conservative use of optimization results in substantial improvement over the same heuristic-search
planner relying on an ad hoc action cost partition.

Going back to additive abstractions, Definition 3 on page 12 poses only a general requirement
of not overestimating the path costs between the states. For action cost partitions, we need to
more tightly bind the original and abstract TG-structures by

(i) associating each abstract transition label with a single original transition label, and

(ii) verifying that, in each individual abstraction, each original transition is represented by an
abstract transition path of a certain form.

These structural requirements are captured by the notion of ABS-ensemble defined below.

Definition 16 An ensemble of abstractions (ABS-ensemble) of a TG-structure T = (S,L, Tr, sI , SG)
is a set of triplets AE = {〈Ti, αi, βi〉}ki=1 where, for 1 ≤ i ≤ k,

• Ti = (Si, Li, Tri, sIi , S
G
i) is a TG-structure,

• αi : S → Si is an abstraction mapping with αi(sI) = sIi , and αi(s) ∈ SGi for all s ∈ SG,

• βi : Li → L is an action association mapping, and

• for each transition 〈s, l, s′〉 ∈ Tr, there is a path ρi from αi(s) to αi(s′) in Ti such that

(i) all the transitions on ρi have different labels, and

(ii) for all labels l′ along ρi, it holds that βi(l′) = l.

The notion of ABS-ensembles generalizes the qualitative skeletons of various known additive
abstractions that are based on action-cost partitioning, as follows:

(1) The setting of all βi being bijective mappings captures additive homomorphic abstractions such
as standard and constrained pattern database (Yang et al., 2008; Haslum et al., 2005), and
merge-and-shrink abstractions (Helmert et al., 2007).

(2) The setting of all αi being injective (with, possibly, |Si| > |S|) captures additive embedding
abstractions, obtained by expanding the original action set by some new actions derived from
the original ones. In such cases, the new actions are constructed with certain desired properties
such as positive and/or unary effects only (Bylander, 1994).

(3) Each individual abstraction in an ABS-ensemble may correspond to a hybrid homomorphic/embedding
abstraction such as those induced by some implicit abstractions (Katz & Domshlak, 2008c).

81

Of course, nothing in the definition of ABS-ensemble prevents us from using an arbitrary mixture
of the above three types of abstractions. First things first, however. Theorem 13 connects ABS-
ensembles to the additive abstractions induced by them via action-cost partitioning. It is worth
noting here that the generality of Definition 16 and Theorem 13 is not an exercise only—later we
exploit it to establish some computational results of an adequate generality.

Theorem 13 (Additive Abstractions) Let T be a TG-structure with labels L, and let AE =
{〈Ti, αi, βi〉}ki=1 be an ABS-ensemble of T. For any function $: L→ R0+, and any set of functions
$i : Li → R0+, 1 ≤ i ≤ k, such that

∀l ∈ L :
k∑
i=1

∑
l′∈β−1

i (l)

$i(l′) ≤ $(l), (5.1)

A = {〈〈Ti, $i〉, αi〉}ki=1 is an additive abstraction of the transition graph 〈T, $〉.
Proof: Let T = (S,L, Tr, sI , SG) be a TG-structure, AE = {〈Ti, αi, βi〉}ki=1 be an ABS-ensemble of
T, and $: L→ R0+, $i : Li → R0+, 1 ≤ i ≤ k be some functions satisfying Eq. 5.1. To prove that
A = {〈〈Ti, $i〉, αi〉}ki=1 is an additive abstraction of the transition graph 〈T, $〉 we should show
that Eq. 2.1 holds for each pair of states s, s′ ∈ S.

Let ρ = 〈s0, l1, s1〉, 〈s1, l2, s2〉, . . . , 〈sm−1, lm, sm〉 be a cheapest path from s = s0 to s′ = sm in
〈T, $〉. Thus, cost(s, s′) =

∑m
j=1$(lj). For each 1 ≤ i ≤ k and 1 ≤ j ≤ m, let ρi,j be a simple,

label-disjoint path from αi(sj−1) to αi(sj) in Ti along transitions labeled only with labels in β−1
i (lj);

the existence of such a ρi,j is guaranteed by Definition 16. Thus, for 1 ≤ i ≤ k, the concatenation
ρi = ρi,1 · . . . · ρi,m is a (not necessarily cheapest) transition path from αi(s) to αi(s′) in Ti.

Given that, we have

cost(αi(s), αi(s′)) ≤
∑
l′∈ρi

$i(l′) =
m∑
j=1

∑
l′∈ρi,j

$i(l′) ≤
m∑
j=1

∑
l′∈β−1

i (lj)

$i(l′)

and, summing over all 1 ≤ i ≤ k, we have

k∑
i=1

cost(αi(s), αi(s′)) ≤
k∑
i=1

m∑
j=1

∑
l′∈β−1

i (lj)

$i(l′) =
m∑
j=1

k∑
i=1

∑
l′∈β−1

i (lj)

$i(l′)
(∗)
≤

m∑
j=1

$(lj) = cost(s, s′),

where inequality (∗) follows from Eq. 5.1 and label-disjointness stated by condition (i) in Defini-
tion 16.

Definition 17 Let Π = 〈V ,A, I ,G, cost〉 be a planning task, AE = {〈Ti, αi, βi〉}ki=1 be an ABS-
ensemble of T(Π), and {$i : Li → R0+}ki=1 be a set of transition cost functions. Then A =
{〈〈Ti, $i〉, αi〉}ki=1 is an additive abstraction of Π with respect to AE, denoted by A AΠ AE,
if

∀a ∈ A :
k∑
i=1

∑
l∈β−1

i (a)

$i(l) ≤ cost(a). (5.2)

In other words, each additive abstraction A AΠ AE corresponds to a certain action-cost parti-
tioning of Π over AE and, importantly, vice versa.

82

Definition 18 Let Π be a planning task with state set S, and let AE = {〈Ti, αi, βi〉}ki=1 be an
ABS-ensemble of T(Π).

• For any additive abstraction A = {〈〈Ti, $i〉, αi〉}ki=1 AΠ AE, the additive heuristic hA is
the function assigning to each state s ∈ S the quantity

∑k
i=1 cost(αi(s), S

G
i).

• The optimal additive heuristic hAE is the function assigning to each state s ∈ S the
quantity maxAAΠAE hA(s).

Definition 18 specifies the set of all additive heuristics for Π obtainable via action-cost parti-
tioning over a given ABS-ensemble, as well as a tight upper bound hAE(s) on the heuristic estimate
obtainable for a state s from that infinite set of additive heuristics. The admissibility of each
heuristic hA in that space is immediate from Definition 3, and thus the proof of Theorem 14 below
is straightforward.

Theorem 14 (Admissibility of hAE) For any planning task Π, any ABS-ensemble AE of T(Π),
and any state s of Π, we have hAE(s) ≤ h∗(s).
Proof: Let Π = 〈V ,A, I ,G, cost〉 be a planning task, AE = {〈Ti, αi, βi〉}ki=1 be an ABS-ensemble of
T(Π), and s be some state of Π. From Definitions 3 and 18, for any additive abstraction A AΠ AE,
we have

hA(s) =
k∑
i=1

cost(αi(s), SGi) ≤ cost(s, SG) = h∗(s),

which holds, in particular, for A which maximizes hA(s) over all A′ AΠ AE, that is, for hAE(s).

5.1 LP-Optimizable Ensembles of Abstractions

Having specified the notion of optimal additive heuristic hAE , we now proceed with the computa-
tional side of the story. Suppose we are given a planning task Π = 〈V ,A, I ,G, cost〉 over states
S, and an ABS-ensemble AE = {〈Ti, αi, βi〉}ki=1 of T(Π). Assuming that the individual additive
heuristics hA corresponding to arbitrary fixed action cost partitions can be efficiently computed for
all A AΠ AE (as it is the case with the ABS-ensembles of practical interest), the main question is
whether hAE can be efficiently computed as well. At first glance, the infinite space of alternative
action cost partitions, as well as the search-state dependence of their relative quality, do not offer
much reason for optimism. Here, however, we characterize a family of ABS-ensembles for which
the answer to that question is actually affirmative. This characterization is constructive in terms
of computability of hAE(s) via a compact linear program induced by the triplet of a planning task
Π, an ABS-ensemble AE of T(Π), and a search state s of Π. For the sake of readability, and with
the exception of formal claims, we use “compact” as a synonym for “being of size O(poly(||Π||))”.

We begin with introducing a set of linear constraints specifying all possible cost partitions of the
actions a ∈ A over their representatives

⋃k
i=1 β

−1
i (a) in the components of AE. For each abstract

label l ∈ ⋃k
i=1 Li, let wl be a nonnegative real-valued variable uniquely associated with l, and let

the set of all these “label-cost” variables be denoted by −→w . The (linear) additivity constraint
Cadd(−→w) of Π on AE mirrors Eq. 5.2 as

∀a ∈ A :
k∑
i=1

∑
l∈β−1

i (a)

wl ≤ cost(a). (5.3)

83

We denote by H add the convex polyhedron specified by Cadd(−→w). Note that there is a straightfor-
ward bijective correspondence between the points w ∈H add and (with some abuse of notation) the
additive abstractions Aw = {〈〈Ti,w〉, αi〉}ki=1 AΠ AE. Using the additivity constraint Cadd(−→w) as
a building block, we now proceed with characterizing our “hAE-friendly” family of LP-optimizable
ABS-ensembles.

Definition 19 Let Π be a planning task, AE = {〈Ti, αi, βi〉}ki=1 be an ABS-ensemble of T(Π), and
Cadd(−→w) be the additivity constraint of Π on AE.

1. Given a state s of Π, an LP-encoding of AE with respect to s is a triplet L = 〈−→x , f(−→x),CAE(−→xw)〉
where −→x is a set of nonnegative real-valued variables, f is a real-valued affine function over
−→x , CAE is a set of linear constraints on −→x and −→w , and

∀w ∈H add : max
xw∈H AE

f(x) = hAw(s), (5.4)

where H AE is the convex polyhedron specified by CAE ∪ Cadd.

2. The ABS-ensemble AE is called LP-optimizable if, for every state s of Π, there exists (and
one can generate in poly-time) a compact LP-encoding L = 〈−→x , f(−→x),CAE(−→xw)〉 of AE with
respect to s.

The next two theorems provide two important ingredients for characterizing our “hAE-friendly”
family of ABS-ensembles on the grounds of their LP-optimizability.

Theorem 15 (Tractability of hAE) For any planning task Π, and any LP-optimizable ABS-
ensemble AE of T(Π), the optimal additive heuristic hAE(s) is poly-time computable for every state
s of Π.

Proof: Let Π = 〈V ,A, I ,G, cost〉 be a planning task, AE = {〈Ti, αi, βi〉}ki=1 be an LP-optimizable
ABS-ensemble of T(Π), and s be a state of Π. Let L = 〈−→x , f(−→x),CAE(−→xw)〉 be an LP-encoding of
AE with respect to s. Consider now the linear program L defined by the variables −→xw, constraints
CAE ∪ Cadd, and the maximized objective function f . If xw is a solution for L, then

f(x) = max
w∈H add

max
x′w∈H AE

f(x′)
Eq.5.4

= max
w∈H add

hAw(s) = max
AAΠAE

hA(s) = hAE(s). (5.5)

Moreover, by Definition 19, both the number of variables and constraints in L is O(poly(||Π||)).
Thus, the claim follows from Eq. 5.5 and poly-time solvability1 of linear programming (Schrijver,
1998).

Theorem 16 (Composition) For any planning task Π, and any set of LP-optimizable ABS-
ensembles {AE1, . . . ,AEm} of T(Π), if m = O(poly(||Π||)), then the joint ABS-ensemble AE =⋃m
i=1AEi of T(Π) is also LP-optimizable.

1The notion of LP-optimizability can possibly be further generalized by requiring only that the linear program
induced by CAE ∪ Cadd and f be solvable in time O(poly(||Π||)). For instance, this will allow capturing poly-time
solvable linear programs with an exponential number of constraints but a poly-time separation oracle. However, it is
unclear to us at this stage whether this generalization will fit the important claim of “composition” in Theorem 16.

84

Proof: Let Π and {AE1, . . . ,AEm} be as in the claim, and let s be some state of Π. For 1 ≤ j ≤ m,
let Lj(s) = 〈−→xj , fj(−→xj),CAEj (−−→xjwj)〉 be a compact LP-encoding of the ABS-ensemble AEj .

First, we specify a composite additivity constraint Cadd(−→w) over −→w =
⋃m
j=1
−→wj as

∀a ∈ A :
m∑
j=1

|AEj |∑
i=1

∑
l∈β−1

j,i (a)

wl ≤ cost(a).

Given that, the LP-encoding L = 〈−→x , f(−→x),CAE(−→xw)〉 of AE =
⋃m
j=1AEj is set to

• −→x =
⋃m
j=1
−→xj ,

• f(−→x) =
∑m

j=1 fj(
−→xj), and

• CAE(−→xw) =
⋃m
j=1C

AE
j (−−→xjwj).

For any point w = (w1, . . . ,wm) ∈ H add, and any assignment x = (x1, . . . ,xm) to −→x , if
xw ∈H AE , then we have xjwj ∈H AEj for all 1 ≤ j ≤ m. Therefore, we have

∀w ∈H add : max
xw∈H AE

f(x) = max
xw∈H AE

m∑
j=1

fj(xj)
(∗)
=

m∑
j=1

max
x′jwj∈H AEj

fj(x′j) =
m∑
j=1

hAwj
(s) = hAw(s),

where the equality (∗) stems from that, having fixed the value of variables −→w , optimizations of the
individual objective functions f1, . . . , fm are pair-wise independent due to the pair-wise disjointness
of the variable sets −→x1, . . . ,

−→xm. In other words, for each point w = (w1, . . . ,wm) ∈ H add on the
convex polyhedron specified by Cadd(−→w), we have xw ∈ H AE if and only if xjwj ∈ H AE

j for all
1 ≤ j ≤ m. Finally, it is immediate that both |−→xw| and |CAE ∪ Cadd| are O(poly(||Π||)), and thus
AE is LP-optimizable.

While the two key properties of LP-optimizable ABS-ensembles stated by Theorems 15 and 16
are gratifying, having read this far the reader may rightfully ask whether any of the known families of
abstraction heuristics actually lead to LP-optimizable ABS-ensembles. The answer to this question
provided in what follows turns out to be positive to a surprising extent.

5.2 LP-Optimization and Explicit Abstractions

As we already mentioned in Section 2.2.3, the most well-studied abstraction heuristics correspond
to explicit abstractions, characterized by relatively small, and thus explicitly searchable, abstract
spaces. This class of abstractions contains different variants of pattern databases (Culberson &
Schaeffer, 1998; Felner et al., 2004; Edelkamp, 2001; Haslum et al., 2005, 2007), variable-domain
abstractions (Hernadvölgyi & Holte, 1999; Domshlak et al., 2009), and merge-and-shrink abstrac-
tions (Helmert et al., 2007).

Definition 20 An ABS-ensemble AE = {〈Ti, αi, βi〉}ki=1 of T(Π) for a planning task Π is an ex-
plicit ABS-ensemble if k = O(poly(||Π||)) and, for 1 ≤ i ≤ k, ||Ti|| = O(poly(||Π||)).

85

For any explicit ABS-ensemble AE, any explicit abstraction A = {〈〈Ti, $i〉, αi〉}ki=1 AΠ AE
induces an admissible additive heuristic hA . So far, however, how to choose this abstraction, that
is, the actual choice of the action-cost partitioning, has remained an open issue, and the choices
were made on an ad hoc basis (Yang et al., 2007). This is exactly where LP-optimization comes
into the picture.

Computing hA =
∑k

i=1 cost(αi(s), S
G
i) for a fixed explicit abstractionA = {〈〈Ti, $i〉, αi〉}ki=1 AΠ

AE is usually done by computing each cost(αi(s), SGi) using either breadth-first search or the Dijk-
stra algorithm over the explicitly constructed transition graph 〈Ti, $i〉. However, the corresponding
single-source shortest paths (SSSP) problem also has an elegant LP formulation. Given a directed
graph G = (N,E) and a source node v ∈ N , if d(v′) is a variable corresponding to the shortest-path
length from v to v′, then the solution of the linear program

max−→
d

∑
v′

d(v′)

s.t. d(v) = 0
d(v′′) ≤ d(v′) + w(v′, v′′), ∀(v′, v′′) ∈ E

(5.6)

induces a solution to the SSSP problem over G and source v.
The LP formulation of the SSSP problem is not widely used as the aforementioned graph-search

techniques resolve SSSP much more efficiently. However, this LP formulation is precisely what we
need to bridge the gap between explicit abstractions and optimal action cost partition. A compact
LP-encoding of an explicit ABS-ensemble AE = {〈Ti, αi, βi〉}ki=1 can now be obtained by

(1) putting together the linear constraints as in Eq. 5.6 for TG-structures Ti,

(2) replacing the edge-weight constants w(v′, v′′) by variables associated with the corresponding
transition labels, and

(3) constraining the latter label-cost variables with the proper additivity constraints.

Given a planning task Π, an explicit ABS-ensemble AE = {〈Ti, αi, βi〉}ki=1 of T(Π), and a state
s of Π, the LP-encoding L = 〈−→x , f(−→x),CAE(−→xw)〉 of AE with respect to s is constructed as follows.
First, let the label-cost variables −→w contain a variable wl for every abstract label l ∈ ⋃k

i=1 Li. The
additivity constraint is defined in terms of these label-cost variables −→w exactly as in Eq. 5.3. The
components of the LP-encoding L are then set to

−→x =
k⋃
i=1

{d(σ) | σ ∈ Si} ∪ {d(Gi)}

C
AE =


d(σ) ≤ d(σ′) + wl, ∀〈σ′, l, σ〉 ∈ Tri
d(σ) = 0, σ = αi(s)
d(Gi) ≤ d(σ), σ ∈ SGi

, ∀i

f(−→x) =
k∑
i=1

d(Gi).

(5.7)

Since each TG-structure Ti in explicit ABS-ensemble AE is of size O(poly(||Π||)), it is immediate
that the LP-encoding L = 〈−→x , f(−→x),CAE(−→xw)〉 is both compact and poly-time constructible for
any state s of Π, giving us all we need to prove Theorem 17 below.

86

Theorem 17 Optimal additive heuristic hAE(s) is poly-time computable for any planning task Π,
any explicit ABS-ensemble AE, and any state s of Π.

Proof: Let Π be a planning task, AE = {〈Ti, αi, βi〉}ki=1 be an explicit ABS-ensemble of T(Π), s be
some state of Π, L = 〈−→x , f(−→x),CAE(−→xw)〉 be as in Eq. 5.7, and w be some point in H add. Given
that, we have Aw = {〈〈Ti,w〉, αi〉}ki=1 AΠ AE, and hAw(s) =

∑k
i=1 cost(αi(s), S

G
i). Now, for each

1 ≤ i ≤ k we have
max

xw∈H AE
d(Gi) = cost(αi(s), SGi),

and from disjointness of the constraints for 1 ≤ i 6= i′ ≤ k, we obtain

max
xw∈H AE

f(x) = max
xw∈H AE

k∑
i=1

d(Gi) =
k∑
i=1

max
xw∈H AE

d(Gi) =
k∑
i=1

cost(αi(s), SGi) = hAw(s).

From Definition 19 we thus have L = 〈−→x , f(−→x),CAE(−→xw)〉 being an LP-encoding ofAE = {〈Ti, αi, βi〉}ki=1

with respect to s. In turn, by Definition 20,
∑k

i=1 ||Ti|| = O(poly(||Π||)), and hence L is both com-
pact and poly-time constructible, finalizing the proof of the claim.

5.3 LP-Optimization and Implicit Abstractions I: Fork Decompo-
sition

Explicit abstractions are clearly the most well-known abstractions in the context of heuristic search
in general, and planning as heuristic search in particular. Recently, however, Katz and Domshlak
(2008c, 2009b) introduced the concept of implicit abstraction heuristics corresponding to certain
implicit abstractions of planning tasks at hand. The basic idea behind implicit abstractions is in
abstracting the task at hand into instances of provably tractable fragments of optimal planning.
This, in particular, abolishes the limitation of explicit abstractions to use fixed-size abstract spaces
only. Concretizing the idea of implicit abstractions, Katz and Domshlak (2008c) introduced a
concrete framework based on decomposing the planning task along its causal graph and proposed
a concrete instance of this framework, called fork-decomposition. Fork-decomposition (additive)
abstraction is based on two specific fragments of tractable cost-optimal planning. For the technical
details of fork decomposition in full we refer the reader to Katz and Domshlak (2008c). For our
purposes here, it suffices to say that a fork decomposition of a planning task Π = 〈V ,A, I ,G, cost〉
over states S is obtained as follows.

(1) Schematic construction of a set of projection abstractions Π = {Παf
v ,Παi

v}v∈V with each V αf
v =

{v} ∪ succ(v) and V αi
v = {v} ∪ pred(v). Note that, unlike explicit abstractions, each abstract

space Sα
f
v and Sα

i
v can be of size Θ(|S|).

(2) Reformulation of the actions within the abstractions to single-effect actions only, so that the
causal graphs of Παf

v and Παi
v become, respectively, “forks” and “inverted forks” rooted in v.

After this action reformulation, the individual abstractions may cease being purely homomor-
phic.

(3) Within each Παf
v , arbitrary abstraction of the domain of v to {0, 1}, and within each Παi

v ,
arbitrary abstraction of the domain of v to {0, 1, . . . , k} with k = O(1).

87

This decomposition of Π provides us with the fork-decomposition ABS-ensemble AE =
{〈T(Παf

v), αf
v, β

f
v〉, 〈T(Παi

v), αi
v, β

i
v〉}v∈V of T(Π), with the action associations βf

v, β
i
v being established

along the above steps (1-3). The additive abstractions of such an ABS-ensemble AE are of interest
because (i) they can provide very informative heuristic estimates (Katz & Domshlak, 2009b), and
(ii) each abstract task in Π = {Παf

v ,Παi
v}v∈V can be solved in polynomial time by special-purpose

algorithms for the corresponding fragments of sas+ (Katz & Domshlak, 2008c). However, here as
well, the choice of abstraction A AΠ AE with respect to AE is important, and optimizing this choice
is clearly desirable. Interestingly, LP-optimization can come to the rescue here as well, despite our
inability to perform an explicit search of TG-structures of AE in polynomial time.

Theorem 18 For any planning task Π, any fork-decomposition ABS-ensemble of T(Π) is LP-
optimizable, and thus hAE(s) is poly-time computable for every state s of Π.

Proof: From Lemmas 6 and 7 below, for each v ∈ V , we have each AE f
v = {〈T(Παf

v), αf
v, β

f
v〉} and

each AE i
i = {〈T(Παi

v), αi
v, β

i
v〉} being LP-optimizable. From the composition Theorem 16, we thus

have AE being LP-optimizable.

Lemma 6 For any planning task Π = 〈V ,A, I ,G, cost〉 and any variable r ∈ V , the “single fork”
ABS-ensemble AE f

r = {〈T(Παf
r), αf

r, β
f
r〉} of T(Π) is LP-optimizable.

Proof: Given a planning task Π = 〈V ,A, I ,G, cost〉 and a variable r ∈ V , letAE f
r = {〈T(Παf

r), αf
r, β

f
r〉}

be a fork-decomposition of T(Π) over a single fork rooted in a binary domain variable r, and s be
some state of Π. Our LP-encoding of such a “single fork” ABS-ensemble AE f

r with respect to s cor-
responds to an LP reformulation of the polynomial-time algorithm of Katz and Domshlak (2008c)
for fork-structured tasks with binary root domain.

To simplify the notation, let us denote the variables V αf
r of our fork-structured abstract task

by V ′, its actions by A′, its goal state by G′, and the abstraction αf
r(s) of the state s in question

by s′. We can assume that G′[v] is defined for all v ∈ V ′ \ {r}; all the goal-less leaves can simply
be omitted from the fork. For compliance with the notation of Katz and Domshlak (2008c), we
denote the (abstracted to binary-valued) domain of r by D(r) = {0, 1} such that s′[r] = 0. Let
σ(r) be a 0/1 sequence of length 1 + maxv∈V ′ |D(v)|, and, for 1 ≤ i ≤ |σ(r)|, σ(r)[i] = 0 if i is odd,
and = 1, if i is even. Let �∗[σ(r)] be the set of all nonempty prefixes of σ(r) if G′[r] is unspecified;
otherwise let it be the set of all prefixes of σ(r) ending with G′[r]. In what follows, for each of the
two root’s values ϑ ∈ D(r), ¬ϑ denotes the opposite value 1 − ϑ. Let DTGϑrv be the subgraph of
DTG(v,Παf

r) obtained by removing from the latter all the arcs labeled with r = ¬ϑr.
To facilitate the presentation, the algorithm for fork-structured tasks Π′ = 〈V ′, A′, s′, G′, cost′〉

with binary root domain (Katz & Domshlak, 2008c) appears here as it appeared in the proof of
Theorem 11.

(i) For each of the two values ϑr ∈ D(r) of the root variable, each leaf variable v ∈ V ′ \ {r}, and
each pair of values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′;ϑr be the cost of the cheapest sequence of actions ϑ
to ϑ′ provided r = ϑr. The whole set {pϑ,ϑ′;ϑr} can be computed by a straightforward variant
of the all-pairs-shortest-paths Floyd-Warshall algorithm on DTGϑr

v in time O(d3|V |).

(ii) For each leaf v ∈ V ′ \ {r}, 1 ≤ i ≤ d + 1, and ϑ ∈ D(v), let gϑ;i be the cost of the cheapest
sequence of actions changing s′[v] to ϑ provided a sequence σ ∈ �∗[σ(r)], |σ| = i, of value

88

changes of r. Given {pϑ,ϑ′;ϑr} as in (i), the set {gϑ;i} is given by the solution of the recursive
equation

gϑ;i =



ps′[v],ϑ;s′[r], i = 1
min
ϑ′

gϑ′;i−1 + pϑ′,ϑ;s′[r], 1 < i ≤ δϑ, i is odd

min
ϑ′

gϑ′;i−1 + pϑ′,ϑ;¬s′[r], 1 < i ≤ δϑ, i is even

gϑ;i−1, δϑ < i ≤ d+ 1

,

where δϑ = |D(v)|+ 1.

(iii) Given that,

h∗(s′) = min
σ∈�∗[σ(r)]

 cost′(σ) +
∑

v∈V ′\{r}

gG′[v];|σ|

 .
Our LP-encoding reformulates the algorithm as follows. First, we set the label-cost variables

−→w to contain a variable wa for each abstract action a ∈ A′; the additivity constraints Cadd(−→w) are
defined in terms of these label-cost variables via βf

r as in Eq. 5.3. Now we specify the LP-encoding
L = 〈−→x , f(−→x),CAE(−→xw)〉 of AE f

r with respect to s as follows. The variable set −→x of L consists of
three types of variables, notably

−→x = {hf} ∪
⋃

v∈V ′\{r},
ϑ∈D(v),

1≤i≤|σ(r)|

{d(v, ϑ, i)} ∪
⋃

v∈V ′\{r},
ϑ,ϑ′∈D(v),
ϑr∈{0,1}

{p(v, ϑ, ϑ′, ϑr)}.

• The variable hf stands for the minimal cost of solving our fork-structured planning task, and
the maximized objective function of L is simply f(−→x) = hf .

• Each variable d(v, ϑ, i) stands for the cost of the cheapest sequence of actions affecting v that
changes its value from s′[v] to ϑ given that the value changes of r induce a 0/1 sequence of
r’s values of length i.

• Each variable p(v, ϑ, ϑ′, ϑr) stands for the cost of the cheapest sequence of actions affecting v
that changes its value from ϑ to ϑ′ having fixed the value of r to ϑr.

The constraint set CAE of L consists of the following sets of linear constraints.

(i) For each v ∈ V ′ \ {r}, ϑ ∈ D(v),

p(v, ϑ, ϑ, 0) = 0, p(v, ϑ, ϑ, 1) = 0.

Likewise, for each v-changing action a ∈ A′ and each ϑr ∈ Pre(a)[r], if v ∈ V(pre(a)), then

p(v, ϑ, eff(a)[v], ϑr) ≤ p(v, ϑ, pre(a)[v], ϑr) + wa

and otherwise,
p(v, ϑ, eff(a)[v], ϑr) ≤ wa.

Semantics: Shortest-path constraints as in Eq. 5.6.

89

(ii) For each leaf v ∈ V ′ \ {r} and each ϑ ∈ D(v)

d(v, ϑ, 1) ≤ p(v, s′[v], ϑ, σ(r)[1])

and, for each ϑ′ ∈ D(v), and 1 < i ≤ |σ(r)|,

d(v, ϑ, i) ≤ d(v, ϑ′, i− 1) + p(v, ϑ′, ϑ, σ(r)[i])

Semantics: The cost of achieving ϑ from s′[v] given |σ(r)| = i is bounded by the cost of
achieving ϑ′ given |σ(r)| = i− 1, and achieving ϑ from ϑ′ given σ(r)[i].

(iii) For all goal-achieving sequences σ ∈ �∗[σ(r)] of value changes of r, and each pair of r-changing
actions a, a′ ∈ A′ such that eff(a)[r] = 1 and eff(a′)[r] = 0,

hf ≤ d|σ| − 1
2
e · wa + b |σ| − 1

2
c · wa′ +

∑
v∈V ′\{r}

d(v,G′[v], |σ|)

Semantics: The cost of solving the task is not greater than the sum of achieving the goal
values for all the leaves given a value sequence of the root, plus the cost of providing that
value sequence.

This finalizes our LP-encoding for an ABS-ensemble consisting of a single fork-structured ab-
straction with a binary root domain. Let w be an arbitrary point in H add and let the action
cost function cost′ be set according to w. That is, for each a ∈ A′, cost′(a) = w[wa]. Let vec-
tor x ∈ D(−→x) be specified according to the values obtained while running Katz and Domshlak’s
algorithm on Π′ = 〈V ′, A′, s′, G′, cost′〉 as follows.

x[p(v, ϑ, ϑ′, ϑr)] = pϑ,ϑ′;ϑr ,

x[d(v, ϑ, i)] = gϑ;i

x[hf] = min
σ∈�∗[σ(r)]

 cost′(σ) +
∑

v∈V ′\{r}

gG′[v];|σ|

 .
Note that constraint sets (i), (ii), and (iii), respectively, reformulate steps (i), (ii), and (iii) of
the algorithm while keeping the action costs as free variables {wa}. Hence, xw agrees with the
constraint sets (i), (ii), and (iii), and thus xw ∈H AE , implying

max
xw∈H AE

hf ≥ x[hf] = h∗(s′).

For the other direction, let x ∈ D(−→x) be such that xw ∈ H AE , σ ∈ �∗[σ(r)] be the one
responsible for the minimum found by the algorithm for the planning task Π′ = 〈V ′, A′, s′, G′, cost′〉,
and let ρ be an optimal plan for Π′ such that ρ↓r induces σ. For each v ∈ V ′ \ {r}, let ρ↓v=
ρ1, . . . , ρm, 1 ≤ m ≤ |σ| be the sequence of actions changing the values of v, split by execution
of r-changing actions ρ↓r along ρ. Each such ρi = 〈ai1 . . . aiki〉 is a sequence of actions inducing
a sequence of v-values ϑi0, ϑ

i
1, . . . , ϑ

i
ki

, and ϑ1
0, ϑ

1
1, . . . , ϑ

1
k1
, ϑ2

1, . . . , ϑ
2
k2
, . . . , ϑm1 , . . . , ϑ

m
km

is a simple
path from s′[v] = ϑ1

0 to G′[v] = ϑmkm in the domain transition graph of v such that, for 1 ≤ i ≤ m,

90

the change to ϑij , 1 ≤ j ≤ ki is labeled by either σ[i] or nothing at all. For ease of presentation, for
each 1 ≤ i ≤ m we denote ϑi+1

0 = ϑiki . Given that,

x[d(v,G′[v], |σ|)]
(ii)

≤
m∑
i=1

ki∑
j=1

x[p(v, ϑij−1, ϑ
i
j , σ[i])]

(i)

≤
m∑
i=1

ki∑
j=1

w[aij] = cost′(ρ↓v),

and thus

x[hf]
(iii)

≤
∑
a∈ρ↓r

w[a] +
∑

v∈V ′\{r}

x[d(v,G′[v], |σ|)] ≤ cost′(ρ↓r) +
∑

v∈V ′\{r}

cost′(ρ↓v) = cost′(ρ),

implying
max

xw∈H AE
hf ≤ h∗(s′).

Putting the two directions together, for each w ∈H add, we have

max
xw∈H AE

f(x) = hAw(s),

and from Definition 19 we thus have L = 〈−→x , f(−→x),CAE(−→xw)〉 being an LP-encoding of AE f
r. Note

that if D = maxv∈V ′ |D(v)|, then the LP variable set size |−→x | is O(|V | ·D2) and the constraint set
size |CAE | is O(D · |A′|2 + |V ′| ·D3 + |A′| · |V ′| ·D), and thus the LP-encoding is compact.

Lemma 7 For any planning task Π = 〈V ,A, I ,G, cost〉 and any variable r ∈ V , the “single
inverted fork” ABS-ensemble AE i

r = {〈T(Παi
r), αi

r, β
i
r〉} of T(Π) is LP-optimizable.

Proof: Given a planning task Π = 〈V ,A, I ,G, cost〉 and a variable r ∈ V , letAE i
r = {〈T(Παi

r), αi
r, β

i
r〉}

be a fork-decomposition of T(Π) over a single inverted fork with sink r, and let s be some state
of Π. Our LP-encoding of such a “single inverted fork” ABS-ensemble AE i

r with respect to state
s corresponds to an LP reformulation of the polynomial-time algorithm of Katz and Domshlak
(2008c) for inverted-fork structured tasks with root domain of size O(1).

As in the proof of Lemma 6, let us denote the variables V αi
r of our inverted-fork structured

abstract task by V ′, its actions by A′, its goal state by G′, and the abstraction αi
r(s) of the state

s in question by s′. First, we set the label-cost variables −→w to contain a variable wa for every
abstract action a ∈ A′; the additivity constraints Cadd(−→w) are then defined in terms of these label-
cost variables via βi as in Eq. 5.3. To facilitate the presentation, the algorithm for inverted-fork
structured tasks Π′ = 〈V ′, A′, s′, G′, cost′〉 with sink domain of size O(1) (Katz & Domshlak, 2008c)
appears here as it appeared in the proof of Theorem 12.

(i) For each parent variable v ∈ V ′ \ {r}, and each pair of its values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′ be
the cost of the cheapest sequence of actions changing ϑ to ϑ′. The whole set {pϑ,ϑ′} can be
computed using the Floyd-Warshall algorithm on the domain transition graph of v in time
O(d3|V |).

91

(ii) For each cycle-free path π = a1 · . . . · am from s′[r] to G′[r] in DTG(r,Π′), let gπ be the cost
of the cheapest plan from s′ in Π′ based on π, and the shortest paths computed in (1). Each
gπ can be computed as

gπ =
m∑
i=1

cost(ai) +
m∑
i=0

∑
v∈V ′\{r}

pprei[v],prei+1[v],

where {pre0 · . . . · prem+1} are the values needed from the parents of r along the path π. That
is, for each v ∈ V ′ \ {r}, and 0 ≤ i ≤ m+ 1,

prei[v] =


s′[v], i = 0
G′[v], i = m+ 1, and G′[v] is specified
pre(ai)[v], 1 ≤ i ≤ m, and pre(ai)[v] is specified
prei−1[v] otherwise

. (5.8)

From that, we have h∗(s′) = minπ gπ.

Given that any optimal plan for Π′ must correspond to a cycle-free path in DTG(r,Π′) from
s′[r] to G′[r], our LP-encoding L = 〈−→x , f(−→x),CAE(−→xw)〉 of AE with respect to state s reformulates
the algorithm as follows. The variable set −→x of L consists of two types of variables, notably

−→x = {hi} ∪
⋃

v∈V ′\{r},
ϑ,ϑ′∈D(v)

{d(v, ϑ, ϑ′)}.

• The variable hi stands for the minimal cost of solving our inverted fork-structured planning
task, and the maximized objective function of L is simply f(−→x) = hi.

• Each variable d(v, ϑ, ϑ′) stands for the cost of the cheapest sequence of actions affecting v
that changes its value from ϑ to ϑ′.

The constraint CAE of L consists of the following sets of linear constraints:

(i) For each v ∈ V ′ \ {r} and each ϑ ∈ D(v),

d(v, ϑ, ϑ) = 0.

Likewise, for each v-changing action a ∈ A′, if v ∈ V(pre(a)), then

d(v, ϑ, eff(a)[v]) ≤ d(v, ϑ, pre(a)[v]) + wa

and otherwise,
d(v, ϑ, eff(a)[v]) ≤ wa.

Semantics: Shortest-path constraints as in Eq. 5.6.

(ii) For each cycle-free path π = a1 · . . . · am from s′[r] to G′[r] in DTG(r,Π′),

hi ≤
m∑
i=1

wai +
m∑
i=0

∑
v∈V ′\{r}

d(v, prei[v], prei+1[v])

92

where, for each 0 ≤ i ≤ m+ 1, prei is defined as in Eq. 5.8.

Semantics: The cost of solving the task is not greater than the cost of any cycle-free path of
r plus sums of costs of reaching the prevail conditions of actions on this path and reaching
the goal afterwards.

This finalizes our LP-encoding for an ABS-ensemble consisting of a single inverted-fork struc-
tured abstraction with a O(1)-bounded root domain. Let w be an arbitrary point in H add and let
the action cost function cost′ be set according to w. That is, for each a ∈ A′, cost′(a) = w[wa]. Let
vector x ∈ D(−→x) be specified according to the values obtained while running Katz and Domshlak’s
algorithm on Π′ = 〈V ′, A′, s′, G′, cost′〉 as follows.

x[d(v, ϑ, ϑ′)] = pϑ,ϑ′ ,

x[hi] = min
π
gπ.

Note that constraint sets (i) and (ii), respectively, reformulate steps (i) and (ii) of the algorithm
while keeping the action costs as free variables {wa}. Hence, xw agrees with the constraint sets (i)
and (ii), and thus xw ∈H AE , implying

max
xw∈H AE

hi ≥ x[hi] = h∗(s′).

For the other direction, let x ∈ D(−→x) be such that xw ∈H AE , and let ρ be an optimal plan for
the planning task Π′ = 〈V ′, A′, s′, G′, cost′〉. Let π = a1 · . . . · am be the path from s′[r] to G′[r] in
DTG(r,Π′) induced by ρ. Note that π is cycle-free by the optimality of ρ. For each v ∈ V ′ \{r}, let
ρ↓v= ρ0, . . . , ρm be the sequence of actions changing the values of v, split by execution of r-changing
actions of π along ρ. Then each ρi = 〈ai1 . . . aiki〉 is a sequence of actions changing the value of v
from prei[v] to prei+1[v] as in Eq 5.8, and

m∑
i=0

x[d(v, prei[v], prei+1[v])]
(i)
≤

m∑
i=0

ki∑
j=1

w[waij] = cost′(ρ↓v).

Hence,

x[hi]
(ii)
≤

m∑
i=0

w[wai] +
∑

v∈V ′\{r}

m∑
i=0

x[d(v, prei[v], prei+1[v])] ≤ cost′(π) +
∑

v∈V ′\{r}

cost′(ρ↓v) = cost′(ρ) = h∗(s′),

implying
max

xw∈H AE
hi ≤ h∗(s′).

Putting the two directions together, for each w ∈H add, we have

max
xw∈H AE

f(x) = hAw(s),

and from Definition 19 we thus have L = 〈−→x , f(−→x),CAE(−→xw)〉 being an LP-encoding of AE i
r. Note

that, if D = maxv∈V ′ |D(v)| and d = |D(r)|, then the LP variable set size |−→x | is O(|V ′| ·D2) and
the constraint set size |CAE | is O(dd+ |V ′| · |A′| ·D), and thus the LP-encoding is compact and AE i

r

is LP-optimizable.

93

5.4 LP-Optimization and Implicit Abstractions II: Tree-structured
COPs

Fork-decomposition implicit abstractions are grounded in two specific fragments of tractable cost-
optimal planning. In principle, however, implicit abstractions based on some other tractable frag-
ments might also lead to LP-optimizable ABS-ensembles. Here we consider two such fragments
recently characterized by Katz and Domshlak (2008a), namely Pb and P(1) (see Section 3.1).

Katz and Domshlak’s poly-time algorithms for the planning fragments Pb and P(1) differ sub-
stantially. However, both correspond to reductions of the planning task to compact, tree-structured
constraint optimization problems (COPs). This joint property of Pb and P(1) (that might also
hold for some other interesting planning fragments) facilitates our objective of adding Pb- and
P(1)-based implicit abstractions to the “hAE-friendly” family of LP-optimizable ABS-ensembles.

Let us start by considering a general, tree-structured constraint optimization problem COP =
(X ,F) over finite-domain variables X , functional components F , and the objective min

∑
ϕ∈F ϕ(X).

Fixing an arbitrary rooting of the COP’s constraint network at some r ∈ X , in what follows we
refer to that rooted tree of COP via its set of directed edges E = {(x, x′)}, oriented “from the root
to the leaves.” In these terms, we have

F = {ϕx : D(y)×D(x)→ R0+ | (y, x) ∈ E}.

It is well known that tree-structured COPs as above can be solved in low polynomial time by
a dynamic-programming-style, message-passing algorithm (Dechter, 2003). But like the Dijkstra
and breadth-first search algorithms for solving explicit abstractions, this message-passing algorithm
does not appear to meet our needs. The good news, however, is that such tree-structured COPs
can also be solved via linear programming. While we suspect that this quite straightforward, LP
formulation is not new, we found no previous mention of it in the literature.

Given a tree-structured constraint optimization problem COP = (X ,F), its LP formulation is
using a set of nonnegative, real-valued variables

−→c = {hcop} ∪
⋃

(x′,x)∈E,
x′∈D(x′)

{c(x|x′)},

with the semantics of each variable c(x|x′) being an “optimal solution for the subtree rooted at x
given that the parent x′ of x takes the value x′”. The actual linear program is then

max−→c
hcop

s.t. ∀r ∈ D(r) : hcop ≤
∑

(r,x)∈E

c(x|r),

∀(x, y) ∈ E, x ∈ D(x), y ∈ D(y) :

c(y|x) ≤
∑

(y,z)∈E

c(z|y) + ϕy(x, y),

(5.9)

and its solution induces a solution for COP.

94

Lemma 8 Given a tree-structured constraint optimization problem COP = (X ,F) over finite-
domain variables X and functional components F , we have

min
x∈D(X)

∑
ϕ∈F

ϕ(x) = max
c∈H COP

hcop

where H COP is the convex polyhedron specified by the linear constraints as in Eq. 5.9.

Proof: First, note that

∀x ∈ D(X) and ∀c ∈H COP, hcop ≤
∑
(y,z)

ϕz(x) =
∑
ϕ∈F

ϕ(x).

Therefore
max

c∈H COP
hcop ≤ min

x∈D(X)

∑
ϕ∈F

ϕ(x).

Let c ∈H COP be an assignment constructed by going over the edges (y, z) of the tree bottom
up, and for each y ∈ D(y) setting

c(z|y) = min
z∈D(z)

∑
(z,z′)

c(z′|z) + ϕz(y, z) (5.10)

and then setting
hcop = min

r∈D(r)

∑
(r,x)

c(x|r). (5.11)

Let x ∈ D(X) be the combination of assignments to COP variables that establish the minimum in
Eq. 5.10-5.11. Then

hcop = min
x∈D(X)

∑
ϕ∈F

ϕ(x),

and therefore
max

c∈H COP
hcop ≥ min

x∈D(X)

∑
ϕ∈F

ϕ(x).

With Lemma 8 at hand, we now take two additional steps towards an LP-encoding of ABS-
ensembles AE containing implicit abstractions reducible to tree-structured COPs. In each such in-
dividual implicit abstraction, each value ϕy(x, y) of each functional component ϕy must be somehow
precomputed from the costs of the planning actions. In our case, however, the costs of the actions
in the abstract tasks are not fixed in advance, but should be established by the LP-optimization
process. In what follows, we consider this matter more closely.

Given a planning task Π, let AE = {〈T(Π′), α, β〉} be a single-abstraction ABS-ensemble of T(Π)
such that cost-optimal planning for Π′ is reducible to a tree-structured constraint optimization
problem COPΠ′ . First, suppose that, for any fixed vector of action costs w†, each functional-
component value ϕ ≡ ϕy(x, y) corresponds to the solution value of some compact canonical-form
linear program

max fϕ(−−→zϕw)
s.t. Aϕ · −−→zϕw ≤ bϕ

−→w ≤ w†
(5.12)

95

where Aϕ and bϕ are a matrix and a vector of coefficients, respectively. If so, then, given w†, we
can reformulate the linear program in Eq. 5.9 by

(i) replacing the constants ϕ ≡ ϕy(x, y) by the corresponding affine functions fϕ(−−→zϕw), and

(ii) for each ϕ, adding its linear constraints as in Eq. 5.12.

The extended program is still linear, and we still have

min
x∈D(X)

∑
ϕ∈F

ϕ(x) = max
czw∈H COP

hcop

where z and w are assignments to −→z =
⋃
ϕ
−→z ϕ and action-cost variables −→w , respectively, and

H COP is the convex polyhedron specified by these extended linear constraints.
The extended linear program specified above for implicit abstraction Π′ with COPΠ′ satisfy-

ing Eq. 5.12 provides the basis for the LP-encoding of the corresponding ABS-ensembles AE =
{〈T(Π′), α, β〉}. First, as before, let the label-cost variables −→w contain a variable wa for every
abstract action a ∈ A′ of Π′; the additivity constraints Cadd(−→w) are defined in terms of these
label-cost variables via β as in Eq. 5.3. Now, given a state s of Π, we specify an LP-encoding
L = 〈−→x , f(−→x),CAE(−→xw)〉 of AE with respect to state s as follows.

• The variable set −→x = −→cz consists of the variables of Eqs. 5.9 and 5.12, and the objective of L
is f(−→x) = hcop.

• The constraint CAE(−→xw) of L consists of all the linear constraints from Eq. 5.9, as well as the
constraint Aϕ · −−→zϕw ≤ bϕ from Eq. 5.12 for each functional-component value ϕ of COPΠ′ .

This finalizes the desired LP-encoding; extending it to such multiple-abstraction ABS-ensembles
AE = {〈T(Π′i), αi, βi〉}ki=1 (and, again, possibly some other LP-optimizable abstractions) is ensured
by the composition Theorem 16.

Theorem 19 Given a planning task Π, and an ABS-ensemble AE = {〈T(Π′i), αi, βi〉}ki=1 of T(Π), if
cost-optimal planning for each Π′i is poly-time reducible to a compact and tree-structured constraint
optimization problem satisfying Eq. 5.12, and k = O(poly(|Π|)), then AE is LP-optimizable, and
thus hAE(s) is poly-time computable for every state s ∈ S.

Proof: Let Π be a planning task, AE = {〈T(Π′i), αi, βi〉}ki=1 be an ABS-ensemble of T(Π) as in
the claim, s be some state of Π, and L = 〈−→x , f(−→x),CAE(−→xw)〉 be as described above. For any
w ∈ H add, let Aw = {〈〈Ti,w〉, αi〉}ki=1 AΠ AE, and therefore hAw(s) =

∑k
i=1 cost(αi(s), S

G
i).

Note that, since Π′i with initial state αi(s) is poly-time reducible to a compact and tree-structured
constraint optimization problem COPi = (Xi,Fi) satisfying Eq. 5.12, we have

cost(αi(s), SGi) = min
x∈D(Xi)

∑
ϕ∈Fi

ϕ(x).

From Lemma 8 we then have

cost(αi(s), SGi) = max
xw∈H AE

hcop
i ,

96

and therefore

max
xw∈H AE

f(x) =
k∑
i=1

cost(αi(s), SGi) = hAw(s).

From Definition 19 we then have L = 〈−→x , f(−→x),CAE(−→xw)〉 being an LP-encoding of AE. In turn,
since k = O(poly(|Π|)) and, for 1 ≤ i ≤ k, cost-optimal planning for each abstract task Π′i is
poly-time reducible to a compact and tree-structured constraint optimization problem satisfying
Eq. 5.12, the LP-encoding of AE is both compact and poly-time constructible for any state s of Π.
Hence, hAE(s) is poly-time computable for any state s of Π.

Last but not least is, of course, the question of whether the requirement posed by Eq. 5.12 is
relevant to the constraint optimization problems induced by the planning tasks from the known
fragments of tractability. The good news is that Theorems 20 and 21 provide an affirmative answer
to this question.

Theorem 20 For any task Π = 〈V ,A, I ,G, cost〉 in Pb, cost-optimal planning for Π is poly-time
reducible to a compact and tree-structured constraint optimization problem satisfying Eq. 5.12.

Proof: The proof is based on the algorithm of Katz and Domshlak (2008a) for constructing
a constraint optimization problem COPΠ = (X ,F) over tree-structured constraint network, as
presented in Section A.1 and depicted in Figure A.3. Let Π = 〈V ,A, I ,G, cost〉 be a planning
task in Pb, and let COPΠ = (X ,F) be the constraint optimization problem resulting in runnig the
algorithm. For each ϕ ∈ F and each assignment to the scope of ϕ, we define a linear program
satisfying Eq. 5.12 as follows. First, for each planning variable v with pred(v) = ∅, and each of its
goal-valid (time-stamped) value-changing sequences τ ′ ∈ �∗[τ(v)], the constraints set as in Eq. 5.12
corresponding to ϕ = ϕv(τ ′) is

zϕ ≤
⌊ |τ ′|

2

⌋
· wa +

⌊ |τ ′| − 1
2

⌋
· wa′ ,

for each a, a′ ∈ Av such that eff(a)[v] = 1 and eff(a′)[v] = 0. Next, for each planning variable v with
pred(v) = {u1, . . . , uk}, k ≥ 1, each goal-valid value-changing sequence τ ′ ∈ �∗[τ(v)] of v, and each
set of such goal-valid value-changing sequences {τ ′1 ∈ �∗[τ(u1)], . . . , τ ′k ∈ �∗[τ(uk)]} of v’s parents,
the constraints set corresponding to ϕ = ϕv(τ ′, τ ′1, . . . , τ

′
k) is the set of shortest-path constraints of

the digraph G′e(v) as in Eq. 5.6. The union of all the constraint sets above together with the LP
formulation as in Eq. 5.9 results in a linear program satisfying Eq. 5.12.

Theorem 21 For any task Π = 〈V ,A, I ,G, cost〉 in P(1), cost-optimal planning for Π is poly-time
reducible to a compact and tree-structured constraint optimization problem satisfying Eq. 5.12.

Proof: The proof is based on the algorithm of Katz and Domshlak (2008a) for constructing
a constraint optimization problem COPΠ = (X ,F) over tree-structured constraint network, as
presented in Section A.3 and depicted in Figure A.7. Let Π = 〈V ,A, I ,G, cost〉 be a planning task
in P(1), and let COPΠ = (X ,F) be the constraint optimization problem resulting in runnig the
algorithm. For each ϕ ∈ F and each assignment to the scope of ϕ, we define a linear program
satisfying Eq. 5.12 as follows. The key points is that, for each ϕ ∈ F and for each assignment ϕ to
the scope of ϕ, we can define a linear program satisfying Eq. 5.12 by exploiting the fact that

97

domain (D)
hF hI hFI

U O SB
N(U)
N(O)

t(O)
t(U) U O SB

N(U)
N(O)

t(O)
t(U) U O SB

N(U)
N(O)

t(O)
t(U)

airport-ipc4 11 7 7 1.08 151.11 14 15 14 31.83 16.64 11 7 7 1.45 141.94
blocks-ipc2 17 11 11 1.61 474.53 15 17 15 165.39 49.39 15 11 10 6.22 510.07
depots-ipc3 2 1 1 0.97 451.14 2 2 2 10.59 31.78 2 1 1 1.99 437.38
driverlog-ipc3 9 6 6 18.30 281.12 10 10 10 38.98 57.33 9 7 7 21.80 251.11
freecell-ipc3 3 1 1 13.76 498.80 2 1 1 108.22 90.28 2 1 1 30.44 276.60
grid-ipc1 1 0 0 1 1 1 2.15 220.77 1 0 0
gripper-ipc1 5 3 3 1.00 169.40 5 3 3 1.06 48.29 5 3 3 1.01 151.66
logistics-ipc2 21 18 18 1.00 205.06 15 22 15 3175.99 14.70 14 21 14 671.66 173.35
logistics-ipc1 3 3 2 24.90 349.40 2 6 2 117.37 19.54 2 3 2 68.76 334.78
miconic-strips-ipc2 45 35 35 1.19 58.03 42 30 30 1.63 94.20 40 30 30 1.38 91.67
mprime-ipc1 17 9 9 31.28 691.51 17 18 17 305.64 67.58 17 13 13 41.99 656.97
mystery-ipc1 16 11 11 2.27 391.64 15 14 14 65.86 37.74 16 13 13 18.47 519.63
openstacks-ipc5 7 5 5 1.23 127.28 7 5 5 2.12 55.96 7 5 5 1.67 269.34
pathways-ipc5 4 4 4 2.10 39.72 4 4 4 1.00 20.14 4 4 4 1.31 42.11
pipes-notank-ipc4 9 1 1 2.88 869.35 11 6 6 8.46 188.93 8 1 1 2.88 1269.40
pipes-tank-ipc4 6 1 1 1.79 1411.60 6 3 3 6.53 120.66 6 1 1 2.44 1440.85
psr-small-ipc4 47 41 41 2.05 103.69 48 46 46 2.58 25.61 47 41 41 1.90 86.39
rovers-ipc5 5 4 4 1.49 46.78 6 4 4 1.00 15.96 6 4 4 1.07 41.53
satellite-ipc4 6 4 4 20.60 75.80 6 5 5 51.06 140.51 5 5 5 54.67 147.09
schedule-strips 42 27 26 38.58 272.33 35 35 34 22.95 97.75 39 9 9 6.94 522.40
tpp-ipc5 5 5 5 7.03 44.16 5 5 5 50.60 10.99 5 5 5 15.84 48.32
trucks-ipc5 5 2 2 1.93 121.48 5 3 3 1.02 111.15 5 2 2 1.02 168.00
zenotravel-ipc3 8 8 7 33.08 191.45 9 10 9 120.20 109.58 8 9 8 12.62 219.12

294 207 204 9.97 211.16 282 265 248 242.23 61.81 274 196 186 60.47 246.58
9.55 319.34 186.62 71.54 43.98 354.53

Table 5.1: A summary of the experimental results for the hF, hI, and hFI heuristics. Per heuristic,
the first three columns capture the number of tasks solved under the (U) uniform action cost
partition, (O) optimal per-search-node action cost partition, and (SB) both these approaches. The
fourth and fifth columns capture the difference between the two approaches in terms of expanded
nodes and search-node evaluation time.

(i) all the constraints on ϕ (given by Eqs. A.160–A.174) are of the form ϕ = min {ψ | ψ ∈ Ψϕ},
where |Ψϕ| ≤ 4 and each ψ ∈ Ψϕ is a linear composition of some action costs, and

(ii) each such constraint can be replaced by maximizing zϕ under the (now linear) constraints
{zϕ ≤ ψ′ | ψ ∈ Ψϕ} where ψ′ is obtained from ψ by replacing the action costs in the latter
with the respective free variables from −→w .

For instance, for each planning variable v with pred(v) = ∅, and each of its goal-valid value-changing
sequences σ ∈ �∗[σ(v)], if ϕ = ϕv(σ), then we create the constraint set according to Eq. A.160 as

zϕ ≤
⌈ |σ| − 1

2

⌉
· wa +

⌊ |σ| − 1
2

⌋
· wa′ ,

for each a, a′ ∈ Av such that eff(a)[v] = 1 and eff(a′)[v] = 0. The rest of the constraint sets for
zϕ ∈ −→z are constructed in the same manner according to Eqs. A.161–A.174. The union of all these
constraint sets together with the LP formulation as in Eq. 5.9 results in a linear program satisfying
Eq. 5.12.

5.5 Experimental Evaluation

While we have proved that the optimal action cost partitioning for abstraction heuristics in use is
polynomial-time computable, it is not clear at first glance that it is useful in practice. An almost
immediate source of skepticism is that our optimization procedure requires solving a large LP at

98

every search node, while such per-node computations are typically expected to be of low polynomial
time. Nonetheless, the superior informativeness of optimal additive heuristics might eventually out-
weigh the cost of heuristic computation due to the substantial reduction in the number of expanded
search nodes. We put this hypothesis to an empirical test and evaluated the practical attractive-
ness of the optimal fork-decomposition heuristics on a wide sample of planning domains from the
International Planning Competitions 1998-2006. The domains were selected to allow a comparison
with the results presented by Katz and Domshlak (2009b). We implemented three optimal additive
fork-decomposition heuristics within the standard heuristic forward-search framework of the Fast
Downward planner (Helmert, 2006), using the A∗ algorithm with full duplicate elimination.

• The hF heuristic corresponds to the ensemble of all (not clearly redundant) fork subgraphs of
the causal graph, with the domains of the roots being abstracted using the “leave-one-value-
out” binary-valued domain decompositions.

• The hI heuristic is the same but for the inverted fork subgraphs, with the domains of the roots
being abstracted using the “distance-to-goal-value” ternary-valued domain decompositions.

• The ensemble of the hFI heuristic is the union of these for hF and hI.

The linear programs were solved using the interior point method implementation of the MOSEK
solver (MOSEK, 2009). The heuristics were compared to the same three additive fork-decomposition
heuristics, with action cost partitioning set to “uniform” (Katz & Domshlak, 2009b)2. All the ex-
periments were run on a 3 GHz Intel E8400 CPU; the time and memory limits were set to 30
minutes and 1.5 GB, respectively.

The detailed results of the evaluation are relegated to Tables B.15-B.19 in Appendix B and
summarized here in Table 5.1. From left to right, each section of the table pertains to hF, hI, and
hFI, respectively. The first two columns of each section capture the number of planning tasks that
were solved using the (U) fixed uniform and (O) optimal per-search-node action cost partitions,
respectively. The third column (SB) captures the number of planning tasks that were solved by
both these approaches; the last row of these columns provides the respective number of solved
planning tasks. The tasks solved under both uniform and optimal action cost partitions are the
basis for our comparison of the two approaches in terms of expanded nodes and run time. With
respect to these tasks, the fourth and fifth columns respectively capture the (average per domain)
decrease in the number of expanded nodes and increase in the search node evaluation time. The last
two rows of these columns average these quantities. The upper summary row depicts the average
over all the solved tasks, and the lower row depicts the average of domain averages.

Two conclusions are apparent from Table 5.1. First, switching from the ad hoc fixed to optimal
action cost partition almost consistently reduced the number of expanded nodes3; the reduction
hit three orders of magnitude with the hI heuristic on the Logistics-ipc2 domain. As expected,
however, computing the optimal heuristic estimate is typically between two and three orders of
magnitude more time consuming than relying on a fixed action cost partition. At least under the
30 minute time limit per planning task, this payment in per-search-node evaluation time typically

2The cost of each action is equally partitioned among all the representatives of that action in the ensemble. For
the comparison of the latter with several state-of-the-art heuristics and planners (on the same machines and in the
same setting), see Katz and Domshlak (2009b).

3On some problems solved under optimal action cost partitioning, our LP solver failed for a few search nodes. To
avoid terminating the search, the heuristic value for these nodes was set to 1.

99

offset the reduction in the number of expanded nodes—the overall number of tasks solved using the
optimal additive heuristics was in the end substantially lower. Still, note that numerous tasks that
were not solved using the uniform action cost partition were solved using the optimal one; see the
Logistics-ipc1 and Zenotravel domains with all three heuristics, the Airport domain with
hI, the Blocksworld domain with hI and hFI, the Logistics-ipc2 domain with hI and hFI, the
Mprime domain with hI, and the Schedule-STRIPS domain with hF and hI.This observation
suggests that a compromise should be sought between the accuracy of optimized additive heuristic
estimates and the low cost of exploiting a fixed action cost partition. One way of doing so is outlined
and evaluated in what follows.

5.6 Beyond Optimal Cost Partitioning

Indeed, using an entirely ad hoc, fixed action cost partition for all search states and optimizing the
action cost partition for every individual state are just two extremes of what one can do with a given
set of heuristics. A possible middle ground would be to compute a set of action cost partitions
that are optimal for some states and use them to evaluate all the states examined during the
search. If that set of action cost partitions is relatively small, then the runtime complexity of
heuristic computation can sometimes be further reduced using a databased approach in which most
of the per node calculations can be shared and precomputed; this technique is inherently natural
for explicit abstractions, but it can be very effective with implicit abstractions as well (Katz &
Domshlak, 2009b).

To examine the practical relevance of such a middle ground, we took the most conservative
evaluation time setup in which at most one heuristic optimization is performed. All the search
states were evaluated under the same fixed action cost partition, whose goal was not to be ad
hoc but optimal with respect to the initial state of the task. Taking our three fork-decomposition
heuristic ensembles as a basis for our evaluation, we empirically compared this setup to using a
uniform, ad hoc action cost partition. In both cases we used the implicit abstraction database
approach of Katz and Domshlak (2009b). Since on some tasks the optimal additive heuristics
cannot be computed within a reasonable time even for just a single state, we placed a strict time
limit of one minute on the optimization procedure. If the LP solver failed to optimize the initial
state action cost partition within that time bound, then the search was executed using the basic
uniform action cost partition.

The detailed results of this evaluation are given in Tables B.20-B.25 in Appendix B, and sum-
marized in Table 5.2. From left to right, each section of the table pertains to hF, hI, and hFI,
respectively. As in Table 5.1, the first two columns of each section of Table 5.2 capture the number
of planning tasks that were solved using the optimal for the initial state (OI) and uniform, ad hoc
(U) action cost partitions, respectively. The third column (SB) captures the number of planning
tasks that were solved by both these approaches; the last row provides the respective number of
solved planning tasks. As there is no real difference in terms of heuristic evaluation time between
the uniform and any other fixed action cost partition, the search efforts are compared only in terms
of the number of expanded nodes. For each of the three heuristics, the last two columns in its
section are devoted to this analysis. The values in those columns depict a measure of informative-
ness in terms of expanded nodes. The specific measure for comparison is as follows. For each of
the two action cost partition schemes, each task contributes a value equal to the minimal number
of expanded nodes among the two schemes divided by the number of expanded nodes under the

100

domain (D)
hF hI hFI

OI U SB E(OI) E(U) OI U SB E(OI) E(U) OI U SB E(OI) E(U)
airport-ipc4 22 22 22 22.00 21.98 22 20 20 20.00 9.55 21 21 21 21.00 20.17
blocks-ipc2 21 21 21 14.15 18.84 21 18 18 18.00 2.63 21 18 18 17.79 5.07
depots-ipc3 7 7 7 5.14 7.00 7 4 4 4.00 0.91 7 7 7 6.89 5.50
driverlog-ipc3 12 12 12 10.77 7.36 13 12 12 11.10 7.32 12 12 12 11.09 6.23
freecell-ipc3 5 5 5 3.91 5.00 4 4 4 4.00 2.63 5 4 4 3.90 4.00
grid-ipc1 2 2 2 2.00 2.00 2 1 1 1.00 1.00 1 1 1 1.00 1.00
gripper-ipc1 7 7 7 7.00 7.00 7 7 7 7.00 6.90 7 7 7 6.96 6.99
logistics-ipc2 24 22 22 18.37 21.93 21 16 16 16.00 0.92 21 16 16 16.00 1.69
logistics-ipc1 6 6 6 6.00 1.14 5 4 4 4.00 0.87 5 5 5 5.00 0.76
miconic-strips-ipc2 53 51 51 48.79 43.04 53 50 50 49.68 31.94 53 50 50 49.05 34.60
mprime-ipc1 23 23 23 23.00 12.82 23 22 21 20.91 7.50 21 21 21 19.13 12.60
mystery-ipc1 21 21 21 20.90 16.80 18 18 18 18.00 9.81 21 21 21 20.37 17.15
openstacks-ipc5 7 7 7 7.00 5.74 7 7 7 7.00 3.21 7 7 7 7.00 4.09
pathways-ipc5 4 4 4 4.00 2.36 4 4 4 4.00 4.00 4 4 4 4.00 3.23
pipes-notank-ipc4 17 17 17 17.00 12.68 18 15 15 15.00 4.17 16 16 16 16.00 13.30
pipes-tank-ipc4 11 11 11 11.00 7.28 11 9 9 9.00 3.27 9 9 9 9.00 5.11
psr-small-ipc4 49 49 49 36.35 48.87 48 49 48 38.39 47.90 49 49 49 38.89 48.53
rovers-ipc5 7 6 6 5.73 4.06 7 7 7 6.32 5.98 7 6 6 5.48 5.07
satellite-ipc4 6 6 6 5.83 2.97 7 6 6 5.67 2.56 7 6 6 5.70 2.67
schedule-strips 49 46 44 24.83 31.75 49 40 40 30.87 27.14 47 46 46 38.12 40.33
tpp-ipc5 6 6 6 6.00 5.03 6 6 6 6.00 3.56 6 6 6 6.00 4.03
trucks-ipc5 6 6 6 5.08 5.89 7 7 7 7.00 6.20 7 7 7 6.82 6.92
zenotravel-ipc3 13 11 11 10.34 3.73 11 11 11 9.96 6.97 13 11 11 10.48 5.07

378 368 366 315.18 295.27 371 337 335 312.90 196.94 367 350 350 325.67 254.09

Table 5.2: A summary of the experimental results for the databased hF, hI, and hFI heuristics with
optimal for the initial state (OI) and uniform (U) action cost partitions. The last two columns per
heuristic depict the measure of success in terms of expanded nodes, with each entry being the sum
of our measure over all the tasks in the domain solved under both action cost partitions. The last
row in those columns provides the overall measures.

respective scheme. If the denominator is 0 (if, e.g., the initial state is a goal state, or the heuristic
estimate of the initial state is ∞), then this value is defined to be 1. As we are interested in com-
paring expanded nodes, we account only for tasks solved under both action cost partition schemes,
and thus the nominator is always well defined. Each task contributes a value of 1 to the winning
scheme and a value in [0,1] to the other. For example, if A∗ on some task Π with the optimized
action cost partition opens 1000 nodes and with the uniform action cost partition it opens 3000
nodes, then Π contributes 1 to the measure E(OI) and 1/3 to E(U). The last row provides this
measure over all the examined domains. Note that in general this measure accounts for all the
tasks, giving 0 for unsolved tasks. However, our goal is to compare the expanded nodes, and thus
we ignore tasks solved only under one of the formulations. Since the tasks are compared in pairs,
the original measure can be obtained from this one by adding the difference between the number
of tasks solved under the respective action cost partition scheme and both schemes.

The results depicted in Table 5.2 are very positive. For all three heuristics, for most domains,
the number of expanded nodes decreases when moving from uniform cost partitioning to optimal
for the initial state. On almost all other domains, the number of expanded nodes increases but not
enough to prevent us from solving the same number of tasks as before. There are only four cases
in which the increase in node expansions leads to not solving the task, namely hF on tasks 6-4 and
6-6 from Schedule-STRIPS domain hI on task 8 from Mprime domain and task 48 from PSR
domain. There is only one domain in which the increase in node expansions leads to fewer tasks
being solved, notably hI on the PSR domain. However, for all three heuristics, the number of tasks
solved across the domains increases.

As a final note, we would like to emphasize that more sophisticated setups of partial exploitation
of additive heuristics optimization should be even more beneficial. The optimal for the initial state
action cost partition should typically lose its attractiveness somewhere along the search, and after a

101

certain point even the uniform action cost partitioning should be expected to provide more accurate
heuristic estimates. Hence, developing meta-reasoning procedures for deciding when (if at all) some
effort should be invested in devising additional action cost partitions is clearly of practical interest.

102

Chapter 6

Summary and Future Work

Our goal in this research was to stratify and extend the machinery of admissible heuristic func-
tions for cost-optimal planning. Our contributions towards this goal are in several complimentary
directions. First, we studied the complexity of cost-optimal classical planning with respect to the
interplay between the topology of the problem’s causal graph and certain types of local structural
restrictions of the problems induced by their action sets. For some problem classes, we have shown
that cost-optimal planning is tractable, and that relaxing the aforementioned restrictions results in
NP-hard problem classes. We believe there is room for further extending the palette of tractable
cost-optimal planning, and we urge continuing research in this direction.

Exploiting our tractability results for cost-optimal planning, we then introduced a domain-
independent framework for devising admissible heuristics using what we call additive implicit ab-
stractions. Each such implicit abstraction corresponds to abstracting the planning task at hand by
an instance of a tractable fragment of optimal planning. The key motivation for our framework
was to escape the restriction of explicit abstractions, such as pattern-database and merge-and-
shrink abstractions, to abstract spaces of a fixed size. We presented a concrete scheme for additive
implicit abstractions by decomposing the planning task along its causal graph and suggested a
concrete realization of this idea, called fork-decomposition, that is based on two novel fragments of
tractable cost-optimal planning. We then studied the induced admissible heuristics both formally
and empirically, and showed that they favorably compete in informativeness with the state-of-the-
art admissible heuristics both in theory and in practice. Our empirical evaluation stressed the
tradeoff between the accuracy of the heuristics and runtime complexity of computing them. To al-
leviate the computational overhead of fork-decomposition heuristics, we showed that an equivalent
of the explicit abstraction notion of “database” exists also for the fork-decomposition abstractions,
despite their exponential-size abstract spaces. Our subsequent empirical evaluation of heuristic
search with such databases for the fork-decomposition heuristics showed that it favorably competes
with the state of the art of cost-optimal planning.

Another chapter of our work is devoted to additive ensembles of admissible heuristics. Numer-
ous recent works have suggested that additive ensembles of admissible heuristics are a powerful
tool for heuristic-search systems. However, the action-cost partition parameter of such ensembles
left the “how to add (if at all)” question completely open. We have developed a procedure that
closes this question for arbitrary ensembles of all abstraction heuristics with which we are famil-
iar, including pattern databases, constrained pattern databases, merge-and-shrink abstractions,
fork-decomposition implicit abstractions, and implicit abstractions based on tractable constraint

103

optimization over tree-shaped constraint networks. The procedure is based on a linear-programming
formulation of the optimization problem: given a classical planning task, a forward-search state,
and a set of abstraction-based admissible heuristics, the procedure constructs an optimal additive
composition of these heuristics with respect to the search state in question. Most importantly, the
time complexity of our procedure is polynomial for arbitrary ensembles of all the above abstraction
heuristics.

While more informative estimates are naturally appealing, the impractical evaluation time re-
quired to solve large-scale linear problems at each search state forced us to seek more pragmatic
alternatives. One such alternative is to calculate the optimal cost partitioning not for every state
but only for some (small) subset of states, and use some predefined cost partitioning for the rest 1.
We performed an extensive experimental evaluation, calculating the optimal cost partition only in
the initial state. In most cases the informativeness of the heuristic increased, allowing us to solve
more tasks overall.

The basic principles of the implicit abstraction framework motivate further research in numerous
directions, most importantly in

1. discovering new islands of tractability of optimal planning, and

2. abstracting the general planning tasks into such islands.

Likewise, there is promise in combining implicit abstractions with other techniques for deriving ad-
missible heuristic estimates. A first step towards combining implicit abstractions with polynomial-
time discoverable landmarks of the planning tasks has recently been taken by Domshlak, Katz,
and Lefler (2010). We believe that various combinations of such techniques might well improve the
informativeness of the heuristics without substantially increasing their runtime complexity.

Probably the most important entirely open problem is structure optimization. While our frame-
work optimizes the composition of a given set of TG-structures, our ultimate goal is to move to even
more parametric ensembles of this type, allowing flexibility in the actual choice of TG-structures.
For instance, it would clearly help to know what PDBs should (optimally) be added to the ensem-
ble, what domain abstractions should (optimally) be performed on the roots of the inverted forks
and forks, or what polytrees should (optimally) span the causal graph of the task.

When considering additive composition of admissible heuristics, one question that arises almost
immediately is whether a composition based on techniques other than abstraction can be optimized
as well. The current answer to this question is affirmative only in part, and this part turns out to be
closely related to our results here. Karpas and Domshlak (2009) have recently shown that additive
heuristics based on landmarks of the problem’s delete-relaxation (such as hL and hLA of Karpas
and Domshlak (2009) and hLM-cut of Helmert and Domshlak (2009)) can be efficiently optimized by
solving a certain compact linear program. That both abstraction and landmark additive heuristics
optimization procedures are based on linear programming is no coincidence: a recently established
connection between such landmark heuristics and the merge-and-shrink abstractions (Helmert &
Domshlak, 2009) implies that Karpas and Domshlak’s procedure is effectively a special case of the
LP-optimization procedure for the abstractions developed in our work.

In contrast to abstraction and landmark heuristics, the question of additive ensemble optimiza-
tion remains open for the hm family of critical path heuristics (Haslum & Geffner, 2000) even for

1Note that the extreme case here would be to give up calculating the optimal cost partitioning altogether for
the sake of speed, using some ad hoc (uniform) cost partition for all states, as we did in the databased implicit
abstractions case.

104

the h1 (also known as hmax) member of this family. While computing the additive hm heuristic for
a fixed m is poly-time, this computation is not based on an additive abstraction of the planning
task, or, at least, not on a fixed abstraction.2 The state graph over which each hm is computed
is an AND/OR-graph (and not an OR-graph, as is the case for transition graphs), and the actual
computation of hm corresponds to computing a critical tree (and not a shortest path) to the goal.
Tangentially, the problem of computing a critical tree in an AND/OR-graph does not appear to
have an LP reformulation. Hence, the complexity of computing the optimal additive hm heuristic
is still an open and very interesting question.

Also worth mentioning is that, at first glance, the basic idea of LP-optimizing heuristic com-
position naturally extends also to intractable planning relaxations that admit “second-order” LP-
relaxations. For instance, some intractable planning relaxations formalizable via integer-valued LPs
(such as the deletes-ignoring relaxation underlying h+, or the more recent action-ordering relaxation
of van den Briel, Benton, Kambhampati, & Vossen, 2007) appear to be quite natural candidates.
Things, however, are more complicated than that because, in short, Definition 19 (p. 84) requires a
very specific type of LP-encoding. Encodings of this type must satisfy Eq. 5.4 (p. 84), but we know
of no ILP-to-LP ”second-order” relaxations that meet this requirement. Thus, the most interesting
question of incorporating such relaxations still remains open.

Finally, considering the empirical promise of optimal action cost partitioning, we note that
the linear programs induced by our LP-encoding technique have a specific structure called in the
literature primal block-angular (Castro, 2007). This structure can possibly be exploited for devising
a more efficient algorithm for optimal action cost partitioning, and this is an interesting venue for
future research. Tangentially, the development of automated procedures for devising fixed-size
portfolios of action cost partitions is a promising direction, as all the states examined during the
search might be “well served” by these procedures.

We believe that pursuing research in all these directions may substantially increase the infor-
mativeness and runtime efficiency of implicit abstraction heuristics both per se and in the scope of
additive ensembles of admissible heuristics.

2To the best of our knowledge, the precise relation between critical path and abstraction heuristics is currently
an open question, the only exception being additive h1, now known to be closely related to the landmark heuris-
tics (Helmert & Domshlak, 2009).

105

106

Bibliography

Allen, J., Hendler, J., & Tate, A. (Eds.). (1990). Readings in Planning. Morgan-Kaufmann.

Bacchus, F., & Yang, Q. (1994). Downward refinement and the efficiency of hierarchical problem
solving. Artificial Intelligence, 71 (1), 43–100.

Bäckström, C., & Klein, I. (1991). Planning in polynomial time: The SAS-PUBS class. Computa-
tional Intelligence, 7 (3), 181–197.

Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning. Computational Intelli-
gence, 11 (4), 625–655.

Ball, M., & Holte, R. C. (2008). The compression power of symbolic pattern databases. In Proceed-
ings of the 18th International Conference on Automated Planning and Scheduling (ICAPS),
pp. 2–11, Sydney, Australia.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1–2),
5–33.

Bonet, B., & Geffner, H. (2006). Heuristics for planning with penalties and rewards using com-
piled knowledge. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 452–462.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004). CP-nets: A tool for
representing and reasoning about conditional ceteris paribus preference statements. Journal
of Artificial Intelligence Research, 21, 135–191.

Brafman, R. I., & Domshlak, C. (2003). Structure and complexity of planning with unary operators.
Journal of Artificial Intelligence Research, 18, 315–349.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 69 (1-2), 165–204.

Castro, J. (2007). An interior-point approach for primal block-angular problems. Computational
Optimization and Applications, 36 (2-3), 195–219.

Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence, 32 (3), 333–377.

Chen, H., & Giménez, O. (2008). Causal graphs and structurally restricted planning. In Proceedings
of the 18th International Conference on Automated Planning and Scheduling (ICAPS), pp.
36–43, Sydney, Australia.

Clarke, E., Grumberg, O., & Peled, D. (1999). Model Checking. MIT Press.

Coles, A. I., Fox, M., Long, D., & Smith, A. J. (2008). Additive-disjunctive heuristics for optimal
planning. In Proceedings of the 18th International Conference on Automated Planning and
Scheduling (ICAPS), pp. 44–51.

107

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to Algorithms. MIT Press.

Culberson, J., & Schaeffer, J. (1998). Pattern databases. Computational Intelligence, 14 (4), 318–
334.

Dean, T., & Wellman, M. (1991). Planning and Control. Morgan-Kaufmann.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dechter, R., & Pearl, J. (1985). Generalized best-first search strategies and the optimality of a*.
J. ACM, 32 (3), 505–536.

Domshlak, C., & Dinitz, Y. (2001). Multi-agent off-line coordination: Structure and complexity. In
Proceedings of Sixth European Conference on Planning (ECP), pp. 277–288.

Domshlak, C., & Hoffmann, J. (2006). Fast probabilistic planning through weighted model counting.
In Proceedings of the 16th International Conference on Automated Planning and Scheduling
(ICAPS), pp. 243–252.

Domshlak, C., Hoffmann, J., & Sabharwal, A. (2009). Friends or foes? On planning as satisfiability
and abstract CNF encodings. Journal of Artificial Intelligence Research, 36, 415–469.

Domshlak, C., Katz, M., & Lefler, S. (2010). When abstractions met landmarks. In Proceedings
of the 20th International Conference on Automated Planning and Scheduling (ICAPS), pp.
50–56, Toronto, Canada.

Dräger, K., Finkbeiner, B., & Podelski, A. (2006). Directed model checking with distance-preserving
abstractions. In Valmari, A. (Ed.), Proceedings of the 13th International SPIN Workshop on
Model Checking Software, Vol. 3925 of Lecture Notes in Computer Science, pp. 19–36, Berlin
Heidelberg. Springer-Verlag.

Edelkamp, S. (2001). Planning with pattern databases. In Proceedings of the European Conference
on Planning (ECP), pp. 13–34.

Edelkamp, S. (2002). Symbolic pattern databases in heuristic search planning. In Proceedings of
the International Conference on AI Planning and Scheduling (AIPS), pp. 274–293.

Edelkamp, S. (2006). Automated creation of pattern database search heuristics. In Proceedings of
the 4th Workshop on Model Checking and Artificial Intelligence (MoChArt).

Edelkamp, S., & Kissmann, P. (2009). Optimal symbolic planning with action costs and preferences.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1690–1695, Pasadena, CA, US.

Erol, K., Nau, D. S., & Subrahmanian, V. S. (1995). Complexity, decidability and undecidability
results for domain-independent planning. Artificial Intelligence, Special Issue on Planning,
76 (1–2), 75–88.

Felner, A., Korf, R. E., & Hanan, S. (2004). Additive pattern database heuristics. Journal of
Artificial Intelligence Research, 22, 279–318.

Fikes, R. E., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem proving
to problem solving. AI Magazine, 2, 189–208.

Garey, M. R., & Johnson, D. S. (1978). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New-York.

108

Geffner, H. (2002). Perspectives on artificial intelligence planning. In Proceedings of the Eighteenth
National Conference on Artificial intelligence (AAAI), pp. 1013–1023.

Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and temporal
action graphs. Journal of Artificial Intelligence Research, 20, 239–290.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning. Morgan Kaufmann.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4 (2), 100–107.

Haslum, P. (2006). Admissible Heuristics for Automated Planning. Ph.D. thesis, Linköping Uni-
versity, Department of Computer and Information Science.

Haslum, P. (2008). Additive and reversed relaxed reachability heuristics revisited. In Proceedings
of the 6th International Planning Competition.

Haslum, P., Bonet, B., & Geffner, H. (2005). New admissible heuristics for domain-independent
planning. In Proceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI), pp. 1163–1168.

Haslum, P., Botea, A., Helmert, M., Bonet, B., & Koenig, S. (2007). Domain-independent con-
struction of pattern database heuristics for cost-optimal planning. In Proceedings of the 19th
National Conference on Artificial Intelligence (AAAI), pp. 1007–1012.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In Proceedings of
the Fifth International Conference on Artificial Intelligence Planning Systems (ICAPS), pp.
140–149.

Helmert, M. (2003). Complexity results for standard benchmark domains in planning. Artificial
Intelligence, 146 (2), 219–262.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Proceedings of the
14th International Conference on Automated Planning and Scheduling (ICAPS), pp. 161–170,
Whistler, Canada.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence Re-
search, 26, 191–246.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s the dif-
ference anyway?. In Proceedings of the 19th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 162–169, Thessaloniki, Greece.

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal sequen-
tial planning. In Proceedings of the 17th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 176–183, Providence, RI, USA.

Helmert, M., & Mattmüller, R. (2008). Accuracy of admissible heuristic functions in selected
planning domains. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp.
938–943, Chicago, USA.

Helmert, M. (2008). Understanding Planning Tasks: Domain Complexity and Heuristic Decompo-
sition, Vol. 4929 of Lecture Notes in Computer Science. Springer.

Hendler, J., Tate, A., & Drummond, M. (1990). Ai planning: systems and techniques. AI Magazine,
11 (2), 61–77.

109

Hernadvölgyi, I., & Holte, R. (1999). PSVN: A vector representation for production systems. Tech.
rep. 1999-07, University of Ottawa.

Hoffmann, J. (2003). Utilizing Problem Structure in Planning: A Local Search Approach. No. 2854
in LNAI. Springer-Verlag.

Hoffmann, J., & Brafman, R. I. (2006). Conformant planning via heuristic forward search: A new
approach. Artificial Intelligence, 170 (6-7), 507 – 541.

Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: An overview. Journal of
Artificial Intelligence Research, 24, 519–579.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14, 253–302.

Jonsson, A. (2007). The role of macros in tractable planning over causal graphs. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI-07), pp. 1936–1941.

Jonsson, A., & Giménez, O. (2007). On the hardness of planning problems with simple causal
graphs. In Proceedings of the 17th International Conference on Automated Planning and
Scheduling (ICAPS), pp. 152–159.

Jonsson, P., & Bäckström, C. (1995). Incremental planning. In New Directions in AI Planning:
EWSP’95-3rd European Workshop on Planning, pp. 79–90, Assisi, Italy.

Jonsson, P., & Bäckström, C. (1998a). State-variable planning under structural restrictions: Algo-
rithms and complexity. Artificial Intelligence, 100 (1–2), 125–176.

Jonsson, P., & Bäckström, C. (1998b). Tractable plan existence does not imply tractable plan
generation. Annals of Mathematics and Artificial Intelligence, 22 (3-4), 281–296.

Karpas, E., & Domshlak, C. (2009). Cost-optimal planning with landmarks. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-09), pp. 1728–1733,
Pasadena, CA, USA.

Katz, M., & Domshlak, C. (2007a). Structural patterns heuristics. In ICAPS-07 Workshop on
Heuristics for Domain-independent Planning: Progress, Ideas, Limitations, Challenges, Prov-
idence, RI, USA.

Katz, M., & Domshlak, C. (2007b). Structural patterns of tractable sequentially-optimal planning.
In Proceedings of the 17th International Conference on Automated Planning and Scheduling
(ICAPS), pp. 200–207, Providence, RI, USA.

Katz, M., & Domshlak, C. (2008a). New islands of tractability of cost-optimal planning. Journal
of Artificial Intelligence Research, 32, 203–288.

Katz, M., & Domshlak, C. (2008b). Optimal additive composition of abstraction-based admissible
heuristics. In Proceedings of the 18th International Conference on Automated Planning and
Scheduling (ICAPS), pp. 174–181.

Katz, M., & Domshlak, C. (2008c). Structural patterns heuristics via fork decomposition. In
Proceedings of the 18th International Conference on Automated Planning and Scheduling
(ICAPS), pp. 182–189, Sydney, Australia.

Katz, M., & Domshlak, C. (2009a). Implicit abstraction heuristics.. submitted.

110

Katz, M., & Domshlak, C. (2009b). Structural-pattern databases. In Proceedings of the 19th In-
ternational Conference on Automated Planning and Scheduling (ICAPS), pp. 186–193, Thes-
saloniki, Greece.

Katz, M., & Domshlak, C. (2010). Optimal admissible composition of abstraction heuristics. Ar-
tificial Intelligence, 174, 767–798.

Keyder, E., & Geffner, H. (2008). Heuristics for planning with action costs revisited. In Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI-08).

Klein, I., Jonsson, P., & Bäckström, C. (1998). Efficient planning for a miniature assembly line.
Artificial Intelligence in Engineering, 13 (1), 69–81.

Knoblock, C. (1994). Automatically generating abstractions for planning. Artificial Intelligence,
68 (2), 243–302.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27 (1), 97–109.

Korf, R. E. (1998). Artificial intelligence search algorithms. In Atallah, M. J. (Ed.), CRC Handbook
of Algorithms and Theory of Computation, pp. 1–20. CRC Press.

Korf, R. E. (1999). Heuristic search. In Wilson, R. (Ed.), Encyclopedia of Cognitive Science, pp.
372–373. MIT Press.

Korf, R. E., & Pearl, J. (1987). Search techniques. In Annual Review of Computer Science, Vol. 2,
pp. 451–467. Annual Reviews Inc.

McDermott, D., Ghallab, M., Howe, A., Kambhampati, S., Knoblock, C., Ram, A., Veloso, M.,
Weld, D., & Wilkins, D. (1998). Pddl - the planning domain definition language. Tech. rep.,
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.

Mirkis, V., & Domshlak, C. (2007). Cost-sharing approximations for h+. In Proceedings of the 17th
International Conference on Automated Planning and Scheduling (ICAPS), pp. 240–247.

MOSEK (2009). The MOSEK Optimization Tools Version 6.0 (revision 61). [Online].
http://www.mosek.com.

Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. (1998). Remote Agent: To boldly go where
no AI system has gone before. Artificial Intelligence, 103 (1-2), 5–47.

Newell, A., & Simon, H. A. (1963). GPS: A program that simulates human thought. In Feigenbaum,
E. A., & Feldman, J. (Eds.), Computers and Thought, pp. 279–293. Oldenbourg.

Pearl, J. (1984). Heuristics - Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley.

Prieditis, A. (1993). Machine discovery of effective admissible heuristics. Machine Learning, 12,
117–141.

Refanidis, I., & Vlahavas, I. P. (2001). The GRT planning system: Backward heuristic construction
in forward state-space planning. Journal of Artificial Intelligence Research, 15, 115–161.

Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. In Proceedings of the
Twenty-Third National Conference on Artificial Intelligence (AAAI), pp. 975–982, Chicago,
IL, USA.

Russell, S., & Norvig, P. (2004). Artificial Intelligence: A Modern Approach (2 edition). Pearson.

111

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5,
115–135.

Schrijver, A. (1998). Theory of Linear and Integer Programming. John Wiley & Sons.

Tenenberg, J. D. (1991). Abstraction in planning. In Allen, J. F., Kautz, H. A., Pelavin, R. N., &
Tenenberg, J. D. (Eds.), Reasoning About Plans, chap. 4, pp. 213–284. Morgan Kaufmann.

van den Briel, M., Benton, J., Kambhampati, S., & Vossen, T. (2007). An LP-based heuristic
for optimal planning. In Proceedings of the 13th International Conference on Principles and
Practice of Constraint Programming (CP), pp. 651–665, Providence, RI, USA.

Vidal, V. (2004). A lookahead strategy for heuristic search planning. In Proceedings of the 14th
International Conference on Automated Planning and Scheduling (ICAPS), pp. 150–160.

Weld, D. S. (1999). Recent advances in AI planning. AI Magazine, 20 (2), 93–123.

Wilkins, D. E. (1984). Domain-independent planning: Representation and plan generation. Artificial
Intelligence, 22, 269–301.

Williams, B., & Nayak, P. (1996). A model-based approach to reactive self-configuring systems.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 971–977,
Portland, OR. AAAI Press.

Williams, B., & Nayak, P. (1997). A reactive planner for a model-based executive. In Proceedings
of the 15th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1178–1185,
Nagoya, Japan.

Yang, F., Culberson, J., & Holte, R. (2007). A general additive search abstraction. Tech. rep.
TR07-06, University of Alberta.

Yang, F., Culberson, J., Holte, R., Zahavi, U., & Felner, A. (2008). A general theory of additive
state space abstractions. Journal of Artificial Intelligence Research, 32, 631–662.

Zhou, R., & Hansen, E. (2006). Breadth-first heuristic search. Artificial Intelligence, 170, 385–408.

112

Appendix A

Compexity Results in Detail

A.1 Cost-Optimal Planning for Pb

This section is devoted to the proof of tractability of cost-optimal planning for the problem fragment
Pb. We begin with describing our planning-to-COP scheme for Pb, and then prove its correctness
and complexity.

A.1.1 Construction

Before we proceed with the details of the construction, here we make an assumption that the
specification of our actions is fully specified in terms of the variable parents in the causal graph.
If pred(v) ⊂ V denotes the set of all the immediate predecessors of v in the causal graph CG(Π),
then we assume that, for each action a ∈ Av, pre(a)[w] is specified for each w ∈ pred(v). While in
general such an assumption requires an exponential translation, this is not the case with Pb. Let
A./ be such a translation of the original problem actions A. To obtain A./, for every variable v ∈ V ,
every action in Av is represented in A./ by a set of actions that are preconditioned by complete
assignments to pred(v). If |pred(v)| = k, and the precondition of a is specified only in terms of
some 0 ≤ k′ ≤ k parents of v, then a is represented in A./ by a set of actions, each extending
the precondition pre(a) by a certain instantiation of the previously unspecified k − k′ parents of
v, and having the cost cost./(a′) = cost(a). Note that the expansions of two or more original
actions may overlap, and thus A./ may contain syntactically identical yet differently priced actions.
Without loss of generality, we assume that only a minimally-priced such clone is kept in A./. The
key point is that that compiling A into A./ for the Pb problems is poly-time, as the procedure is
linear in |A./| = O(n2In(Π)+1). Finally, the (straightforward to prove) Proposition 1 summarizes
the correctness of our assumption with respect to the cost-optimal planning for ub.

Proposition 1 For any ub task Π = 〈V ,A, I ,G, cost〉, the cost of the optimal plans for Π is equal
to this for Π./ = 〈V,A./, I, G, cost./〉, with optimal plans for Π being reconstructible in linear time
from the optimal plans for Π./ and vice versa.

We now specify our compilation of a given Pb task Π into a constraint optimization problem
COPΠ. The COP variable set X contains a variable xv for each planning variable v ∈ V , and the

113

domain D(xv) consists of all valid prefixes of τ(v). That is,

X = {xv | v ∈ V }
D(xv) = �∗[τ(v)]

(A.1)

Informally, the domain of each variable xv contains all possible sequences of values that the planning
variable v may undergo along a cost-optimal plan. Now, for each planning variable v with parents
pred(v) = {w1, . . . , wk}, the set of COP functions F contains a single non-negative, real-valued
function ϕv with the scope

Qv = {xv, xw1 , . . . , xwk} (A.2)

The purpose of these functions is to connect between the value-changing sequences of v and these of
its parents pred(v). The specification of these functions is the more involved part of the compilation.

First, for each planning variable v with pred(v) = ∅, and each of its goal-valid (time-stamped)
value-changing sequences τ ′ ∈ �∗[τ(v)], we set

ϕv(τ ′) =
⌊ |τ ′|

2

⌋
· C(awv) +

⌊ |τ ′| − 1
2

⌋
· C(abv) (A.3)

where eff(awv)[v] = {wv}, eff(abv)[v] = bv, and C(a) = cost(a) if a ∈ A, and ∞, otherwise. It is
not hard to verify that ϕv(τ ′) corresponds to the optimal cost of performing |σ′| − 1 value changes
of v in Π.

Now, for each non-root variable v with pred(v) = {w1, . . . , wk}, k ≥ 1, we specify the function
ϕv as follows. For each goal-valid value-changing sequence τ ′ ∈ �∗[τ(v)] of v, and each set of
such goal-valid value-changing sequences {τ ′1 ∈ �∗[τ(w1)], . . . , τ ′k ∈ �∗[τ(wk)]} of v’s parents, we
want to set ϕv(τ ′, τ ′1, . . . , τ

′
k) to the optimal cost of performing |τ ′| − 1 value changes of v, given

that w1, . . . , wk change their values |τ ′1| − 1, . . . , |τ ′k| − 1 times, respectively. In what follows, we
reduce setting the value ϕv(τ ′, τ ′1, . . . , τ

′
k) to solving a single-source shortest path problem on an

edge-weighted digraph G′e(v) that slightly enhances a similarly-named graphical structure suggested
by Brafman and Domshlak (2003). Though the construction of G′e(v) is very similar to this of Braf-
man and Domshlak (2003), here we provide it in full details to save the reader patching the essential
differences from the construction of Brafman and Domshlak (2003).

Given the value-changing sequences τ ′1, . . . , τ
′
k as above, the digraph G′e(v) is created in three

steps. First, we construct a labeled directed graph G(v) capturing information about all sequences
of assignments on pred(v) that can enable n or less value flips of v. The graph G(v) is defined as
follows:

1. G(v) consist of η = maxτ ′∈�∗[τ(v)] |τ ′| nodes.

2. G(v) forms a 2-colored multichain, i.e., (i) the nodes of the graph are colored with black (b)
and white (w), starting with black; (ii) there are no two subsequent nodes with the same
color; (iii) for 1 ≤ i ≤ η − 1, edges from the node i are only to the node i+ 1.

Observe that such a construction of G(v) promises that the color of the last node will be
consistent with the goal value G[v] if such is specified.

3. The nodes of G(v) are denoted precisely by the elements of the longest goal-valid value-
changing sequence τ ′ ∈ �∗[τ(v)], that is, biv stands for the ith black node in G(v).

114

4. Suppose that there are m operators in Av that, under different preconditions, change the value
of v from bv to wv. In this case, for each i, there are m edges from biv to wi

v, and |Av|−m edges
from wi

v to bi+1
v . Each such edge e is labeled with the cost of the corresponding action, as well

as with the prevail conditions of that action, which is a k-tuple of the values of w1, . . . , wk.
This compound label of e is denoted by l(e), and the prevail condition and cost parts of l(e)
are henceforth denoted by prv(e) and cost(e), respectively.

As the formal definition of G(v) is somewhat complicated, here we provide an illustrating
example. Suppose that we are given a Pb task over 5 variables, and we consider a variable v with
pred(v) = {u,w}, I[v] = bv, and G[v] = wv. Let

Av =


a1 : pre(a1) = {bv, bu,ww}, eff(a1) = {wv}, cost(a1) = α1

a2 : pre(a2) = {wv, bu, bw}, eff(a2) = {bv}, cost(a2) = α2

a3 : pre(a3) = {wv,wu,ww}, eff(a3) = {bv}, cost(a3) = α3

b1
v

buww,α1// w1
v

bubw,α2

$$

wuww,α3

:: b
2
v

buww,α1// w2
v

bubw,α2

$$

wuww,α3

:: b
3
v

buww,α1// w3
v

(a)

sv
b1
ub1
w,0 // b1

v

b1
uw1

w,α1

&&

b1
uw2

w,α1

88

b2
uw1

w,α1

��

b2
uw2

w,α1

HH

b3
uw1

w,α1

��

b3
uw2

w,α1

KK
w1
v

b1
ub1
w,α2

��
b1
ub2
w,α2

%%

b2
ub1
w,α2

��

b2
ub2
w,α2

��

b3
ub1
w,α2

��

b3
ub2
w,α2

��

w1
uw1

w,α3

99

w1
uw2

w,α3

HH

w2
uw1

w,α3

KK

w2
uw2

w,α3

LL
b2
v

b1
uw1

w,α1

&&

b1
uw2

w,α1

88

b2
uw1

w,α1

��

b2
uw2

w,α1

HH

b3
uw1

w,α1

��

b3
uw2

w,α1

KK
w2
v

b1
ub1
w,α2

��
b1
ub2
w,α2

%%

b2
ub1
w,α2

��

b2
ub2
w,α2

��

b3
ub1
w,α2

��

b3
ub2
w,α2

��

w1
uw1

w,α3

99

w1
uw2

w,α3

HH

w2
uw1

w,α3

KK

w2
uw2

w,α3

LL
b3
v

b1
uw1

w,α1

&&

b1
uw2

w,α1

88

b2
uw1

w,α1

��

b2
uw2

w,α1

HH

b3
uw1

w,α1

��

b3
uw2

w,α1

KK
w3
v

b3
uw2

w,0 // tv

(b)

Figure A.1: Example of the graphs (a) G(v), and (b) G′(v).

The corresponding graph G(v) is depicted in Figure A.1a. Informally, the graph G(v) captures
information about all potentially possible executions of the actions in Av along a cost-optimal plan

115

for Π. Each path from the source node of G(v) uniquely corresponds to one such an execution.
Although the number of these alternative executions may be exponential in n, their graphical
representation via G(v) is compact—the number of edges in G(v) is O(n · |Av|). Note that the
information about the number of times each action in Av can be executed is not captured by G(v).
The following two steps add this essential information into the graphical structure.

At the second step, the digraph G(v) = (V,E) is expanded into a digraph G′(v) = (V ′, E′) by
substituting each edge e ∈ E with a set of edges (between the same nodes), but with the labels
corresponding to all possible assignments of the elements of τ ′1, . . . , τ

′
k to prv(e). For example,

an edge e ∈ E labeled with ‖bw1bw2 , 10‖ might be substituted in E′ with edges labeled with
{‖b1

w1
b1
w2
, 10‖, ‖b1

w1
b2
w2
, 10‖, ‖b2

w1
b1
w2
, 10‖, . . . }. Finally, we set V ′ = V ∪ {sv, tv}, and add a single

edge labeled with the first elements of τ ′1, . . . , τ
′
k and zero cost (that is, ‖b1

w1
· · · b1

wk
, 0‖) from sv

to the original source node b1
v, plus a single edge labeled with the last elements of τ ′1, . . . , τ

′
k and

zero cost from the original sink node of G(v) to tv. Informally, the digraph G′(v) can be viewed
as a projection of the value-changing sequences τ ′1, . . . , τ

′
k on the base digraph G(v). Figure A.1b

illustrates G′(v) for the example above, assuming τ ′u = b1
u ·w1

u ·b2
u ·w2

u ·b3
u and τw = b1

w ·w1
w ·b2

w ·w2
w.

At the third step, a digraph G′e(v) = (V ′e , E
′
e) is constructed from G′(v) as follows.

(i) The nodes V ′e correspond to the edges of G′(v).

(ii) The edges (ve, ve′) ∈ E′e correspond to all pairs of immediately consecutive edges e, e′ ∈ E′
such that, for 1 ≤ i ≤ k, either prv(e)[wi] = prv(e′)[wi], or prv(e′)[wi] appears after prv(e)[wi]
along τ ′i .

(iii) Each edge (ve, ve′) ∈ E′e is weighted with cost(e′).

Figure A.2 depicts the graph G′e(v) for our example.
Assuming α3 ≤ α2, the dashed edges correspond to the minimal-cost path of length 5 from the

dummy source node b1
ub1
w. Note that, if the costs of actions Av is all we care about, this path

corresponds to the cost-optimal sequence of 5 value changes of v starting from its initial value bv
in Π. In fact, not only this path corresponds to such a cost-optimal sequence, but it also explicitly
describes the underlying sequence of actions from Av, as well as the total cost of these actions.
Finally, for all 0 ≤ i ≤ n, such minimal-cost paths of length i can be determined by running on
G′e(v) a low-polynomial single-source shortest paths algorithm of Dijkstra (Cormen, Leiserson, &
Rivest, 1990). This property of the graph G′e(v) provides us with the last building block for our
algorithm for cost-optimal planning for Pb.

The overall algorithm for cost-optimal planning for Pb that is based on the above construction
is depicted in Figure A.3. Given a task Π ∈ Pb, the algorithm compiles it into the constraint opti-
mization problem COPΠ, and solves it using a standard algorithm for constraint optimization over
tree constraint networks (Dechter, 2003). The specification of COPΠ has already been explained
inline. We believe it is already intuitive that this compilation takes time polynomial in the descrip-
tion size of Π, but in the next section we also prove it formally. Solving COPΠ using the algorithm
for tree-structured constraint networks can be done in time polynomial in the description size of
COPΠ because

(i) the tree-width of the cost network of COPΠ is bounded by the same constant that bounds the
in-degree of the causal graph, and

(ii) optimal tree-decomposition of the COPΠ’s cost network is given by any topological ordering
of the causal graph.

116

b3
ub2
w, α2

��99999999999999999
b3
ub2
w, α2

��99999999999999999

b3
ub1
w, α2

%%LLLLLLLLLL

��99999999999999999
b3
ub1
w, α2

%%LLLLLLLLLL

��99999999999999999

b3
uw2

w, α1 w2
uw2

w, α3
// b3
uw2

w, α1 w2
uw2

w, α3
//__ b3
uw2

w, α1

��88888888888888888

b3
uw1

w, α1

FF

w2
uw1

w, α3

99rrrrrrrrrr
// b3
uw1

w, α1

FF

w2
uw1

w, α3

99rrrrrrrrrr
// b3
uw1

w, α1

%%JJJJJJJJJ

b1
ub1
w, 0

CC�����������������

99ttttttttt
//

%%JJJJJJJJJ

��7
7

7
7

7
7

7
7

7

��/////////////////////////
b2
uw2

w, α1

BB�����������������
b2
ub2
w, α2

BB�����������������
// b2
uw2

w, α1

BB�
�

�
�

�
�

�
�

�
b2
ub2
w, α2

BB�����������������
// b2
uw2

w, α1
// b3
uw2

w, 0

b2
uw1

w, α1

99rrrrrrrrrr

BB�����������������

FF

JJ���
b2
ub1
w, α2

FF

BB�����������������

99rrrrrrrrrr
// b2
uw1

w, α1

99rrrrrrrrrr

BB�����������������

FF

JJ���
b2
ub1
w, α2

FF

BB�����������������

99rrrrrrrrrr
// b2
uw1

w, α1

99ttttttttt

b1
uw2

w, α1
//__

HH���������������������������������
w1
uw2

w, α3

HH���������������������������������

BB�
�

�
�

�
�

�
�

�
b1
uw2

w, α1
//

HH���������������������������������
w1
uw2

w, α3

HH���������������������������������

BB�����������������
b1
uw2

w, α1

CC�����������������

b1
uw1

w, α1

%%LLLLLLLLLL
//

99rrrrrrrrrr

FF

HH���������������������������������

JJ���

KK���
w1
uw1

w, α3

JJ���

HH���������������������������������

FF

BB�����������������
b1
uw1

w, α1

%%LLLLLLLLLL
//

99rrrrrrrrrr

FF

HH���������������������������������

JJ���

KK���
w1
uw1

w, α3

JJ���

HH���������������������������������

FF

BB�����������������
b1
uw1

w, α1

GG�������������������������

b1
ub2
w, α2

KK���

HH���������������������������������

BB�����������������
b1
ub2
w, α2

KK���

HH���������������������������������

BB�����������������

b1
ub1
w, α2

KK���

KK���

JJ���

HH���������������������������������

FF

BB�����������������
b1
ub1
w, α2

KK���

KK���

JJ���

HH���������������������������������

FF

BB�����������������

Figure A.2: The graph G′e(v) constructed from the graph G′(v) in Fugure A.1b.

A.1.2 Correctness and Complexity

We now proceed with proving both the correctness and the polynomial time complexity of our
algorithm for Pb. We begin with proving in Theorem 22 below a rather general property of polytrees
that helps both here and in our constructs for the P(1) fragment in the next two sections. We note
that a special case of this property has been already exploited in the past in the proof of Lemma 2
of Brafman and Domshlak (2003), but, to our knowledge, this property has never been formulated
as a generic claim of Theorem 22. Throughout this chapter we then demonstrate that this generic
claim can be helpful in numerous situations.

Theorem 22 Let G be a polytree over vertices V = {1, . . . , n}, and pred(i) ⊂ V denote the imme-
diate predecessors of i in G. For each i ∈ V , let Oi be a finite set of objects associated with the
vertex i, with the sets O1, . . . , On being pairwise disjoint. For each i ∈ V , let >i be a strict partial
order over Oi, and, for each j ∈ pred(i), let >i,j be a strict partial order over Oi ∪Oj.

117

If, for each i ∈ V, j ∈ pred(i), the transitively closed >i ∪ >i,j and >j ∪ >i,j induce (strict)
partial orders over Oi ∪Oj, then so does the transitively closed

> =
⋃
i∈V

>i ∪ ⋃
j∈pred(i)

>i,j


over O =

⋃
i∈V Oi.

Proof: In what follows, by oi we denote an arbitrary object from Oi. Assume to the contrary that
both >i ∪ >i,j and >j ∪ >i,j are (strict) partial orders, and yet > is not so. That is, there exists
a pair of objects oi, oj ∈ O for which hold both oi > oj and oj > oi. By the construction of >,
we have that there is a, possibly empty, path between the vertices i and j in the undirected graph
induced by G. Since G is a polytree, we know that such an undirected path between i and j is
unique. Thus, we must have

α : oi = o1
i0 < . . . < ox0

i0
< o1

i1 < . . . < ox1
i1
< < o1

im < . . . < oxmim = oj

β : oi = ō1
i0 > . . . > ōy0

i0
> ō1

i1 > . . . > ōy1
i1
> > ō1

im > . . . > ōymim = oj
(A.4)

such that, for 0 ≤ k ≤ m, both xk ≥ 1 and yk ≥ 1, and each step in both chains α and β is directly
implied by some “local” relation >l or >l,l′ constructing >. The corresponding unique undirected
path between i and j is:

i = i0 · i1 · . . . · im−1 · im = j (A.5)

Without loss of generality, we assume that the cycle in > induced by α and β is length-wise minimal
among all such cycles in >. In particular, this implies that

(i) for 0 ≤ k ≤ m, we have 1 ≤ xk, yk ≤ 2,

(ii) for each pair of objects o ∈ α, o′ ∈ β, we have o 6= o′, unless o = o′ = oi or o = o′ = oj , and

(iii) for each pair of objects o ∈ α, o′ ∈ β, no >l (and no >l,l′) implies o′ �l o (respectively,
o′ �l,l′ o).

First, let us show that at least one of the chains α and β contains at least one internal element.
Assume, to the contrary, that both α and β contain no internal elements. If i = j, then we have
oi >i o

′
i (where o′i = oj) and o′i >i oi, contradicting our assumption that >i is a partial order. (If

>i is not a partial order, then so is each >i ∪ >i,j .) Otherwise, if i 6= j, then either i ∈ pred(j) or
j ∈ pred(i). Assuming the latter, (oi > oj)∧(oi > oj) implies (oi >i,j oj)∧(oi >i,j oj), contradicting
our assumption that >i,j is a partial order.

Given that, let us now prove that oxmim 6= ōymim , contradicting the assumption that the chains α
and β as in Eq. A.4 exist. We do it on a case-by-case basis of possible combinations of xm, ym, and
length-minimality of the cycle αβ implies that there are only four such cases to consider.

[xm = 2, ym = 2] In this case, Eq. A.4 implies ō1
im
>im ō2

im
= o2

im
>im o1

im
. The transitivity of >im

then implies ō1
im
> o1

im
, contradicting our assumption of minimality of the cycle αβ.

[xm = 1, ym = 1] From Eq. A.5 we have either im−1 ∈ pred(im) or im ∈ pred(im−1). If im−1 ∈
pred(im), then Eq. A.4 implies ōym−1

im−1
>im,im−1 ō

1
im

= o1
im
>im,im−1 o

xm−1

im−1
. The transitivity of

118

>im,im−1 then implies ōym−1

im−1
> o

xm−1

im−1
, contradicting our assumption of minimality of the cycle

αβ. Otherwise, if im ∈ pred(im−1), then Eq. A.4 implies ōym−1

im−1
>im−1,im ō1

im
= o1

im
>im−1,im

o
xm−1

im−1
. Again, the transitivity of >im−1,im then implies ōym−1

im−1
> o

xm−1

im−1
, contradicting our

assumption of minimality of the cycle αβ.

[xm = 2, ym = 1] Here as well, Eq. A.5 implies that we have either im−1 ∈ pred(im) or im ∈
pred(im−1). If im−1 ∈ pred(im), then Eq. A.4 implies ōym−1

im−1
>im,im−1 ō1

im
= o2

im
>im o1

im
.

Then, the transitivity of >im ∪ >im,im−1 implies ōym−1

im−1
> o1

im
, contradicting our assump-

tion of minimality of the cycle αβ. Otherwise, if im ∈ pred(im−1), then Eq. A.4 implies
ō
ym−1

im−1
>im−1,im ō1

im
= o2

im
>im o1

im
. Then, the transitivity of >im ∪ >im−1,im implies

ō
ym−1

im−1
> o1

im
, contradicting our assumption of minimality of the cycle αβ.

[xm = 1, ym = 2] This case is similar to the previous case of xm = 2, ym = 1, mutatis mutandis.

Lemma 9 Let Π be a planning task in Pb, COPΠ = (X ,F) be the corresponding constraint opti-
mization problem, and x ∈ D(X) be an optimal solution for COPΠ with

∑
ϕ∈F ϕ(x) = α.

(I) If α <∞, then a plan of cost α for Π can be reconstructed from x in time polynomial in the
description size of Π.

(II) If Π has a plan, then α <∞.

Proof:
(I) Given a COP solution x = {τv1 , . . . , τvn} with

∑
ϕ∈F ϕ(x) = α <∞, we construct a plan ρ for

Π with cost(ρ) = α.
First, for each variable v ∈ V with pred(v) = ∅, let a sequence ρv of actions from Av be defined

as

ρv =

{
∅ |τv| = 1
a1
v · . . . · a|τv |−1

v otherwise
, (A.6)

where, for 1 ≤ j ≤ |τv| − 1,

ajv =

{
abv , j is even
awv , j is odd

, (A.7)

with eff(abv) = {bv}, and eff(awv) = {wv}. From Eq. A.3 and ϕv(τv) < ∞, we immediately have
(i) {awv} ⊆ Av if |τv| ≥ 2, and {abv , awv} ⊆ Av if |τv| > 2, and (ii) cost(ρv) = ϕv(τv). Now, for a
purpose that gets clear below, let a binary relation >v over the action elements of ρv be defined
as the transitive closure of {aj−1

v < ajv | 1 < j ≤ |τv| − 1}. Clearly, >v constitutes a strict total
ordering over the elements of ρv.

Next, for each non-root variable v ∈ V with pred(v) = {w1, . . . , wk}, we construct the graph
G′e(v) with respect to τw1 , . . . , τwk , and determine in G′e(v) a minimal-cost path of |τv|−1 edges from
the source node 〈b1

w1
· · · b1

wk
〉. The existence of such a path is implied by ϕv(τv, τw1 , . . . , τwk) <∞.

By the construction of G′e(v) we also know that, for 1 ≤ j ≤ |τv| − 1, the j-th edge on this path
is from a node labeled with 〈τw1 [lj−1

1]· · · τwk [lj−1
k]〉 to a node labeled with 〈τw1 [lj1]· · · τwk [ljk]〉, where

119

for 1 ≤ l ≤ k, we have l0i = 1 and lj−1
i ≤ lji . Having that, let a sequence ρv of actions from Av be

defined as in Eq. A.6, with, for 1 ≤ j ≤ |τv| − 1,

eff(ajv) = {τv[j + 1]}
pre(ajv) =

{
τv[j], τw1 [lj1], τw2 [lj2], . . . , τwk [ljk]

} (A.8)

Note that {a1
v, . . . , a

|τv |−1
v } ⊆ Av is implied by the construction of G′e(v) and the presence of the

considered minimal-cost path in it.
Now, similarly to the case of the root variables, let a binary relation >v over the action elements

of ρv be defined as the transitive closure of {aj−1
v < ajv | 1 < j ≤ |τv| − 1}. Here as well, >v

constitutes a strict total ordering over the elements of ρv. In addition, for each parent wi of v,
let a binary relation >v,wi over the union of the action elements of ρv and ρwi be defined as the
transitive closure of >−v,wi ∪ >+

v,wi , which in turn are defined as

>−v,wi =
{
a
lji−1
wi < ajv | 1 ≤ j ≤ |τv| − 1, lji > 1

}
>+
v,wi =

{
ajv < a

lji
wi | 1 ≤ j ≤ |τv| − 1, lji < |τwi |

}
.

(A.9)

It is not hard to verify from Eq. A.9 that, for each v ∈ V and each w ∈ pred(v), not only >v,w
constitutes a strict partial ordering, but so are the transitively closed >v ∪ >v,w and >w ∪ >v,w.
Given that,

• By the definition of ρw = 〈a1
w · . . . ·alw〉, and the polytree structure of the causal graph CG(Π),

restricting the preconditions and effects of each aiw to the variables {v} ∪ pred(v), we have
pre(aiw) = {bw}, eff(aiw) = {ww} for i being odd, and pre(aiw) = {ww}, eff(aiw) = {bw} for i

being even. For each 1 ≤ i ≤ k, from Eq. A.8 we have eff(al
j
i−1
wi) ∈ pre(ajv). From Eq. A.9 we

can now derive that any linearization of >v ∪
⋃
w∈pred(v)>v,w defines a sequence of actions

that is applicable with respect to {v} ∪ pred(v). In addition, the construction of the graph
G′e(v) implies that this action sequence provides to v the value G[v] if the latter is specified.

• The polytree structure of the causal graph CG(Π) and Theorem 22 together imply that the
transitively closed relation

> =
⋃
v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

is a strict partial order over the union of the action elements of ρv1 , . . . , ρvn .

Putting thing together, the above implies that any linearization of > constitutes a valid plan ρ for
Π with cost

cost(ρ) =
∑
v∈V

cost(ρv) =
∑
v∈V

ϕv(x),

which is exactly what we had to prove. Here we also note that the plan extraction step of the
algorithm polytree-k-indegree corresponds exactly to the above construction along Eqs. A.6-A.9,
providing us in polynomial time with a concrete cost-optimal plan corresponding to the optimal
solution for COPΠ.

120

(II) We now prove that if Π is solvable, then we must have α < ∞. Assume to the contrary that
this is not the case. Let Π be a solvable planning task, and let ρ be an irreducible plan for Π.
Given such ρ, let xρ = {τv1 , . . . , τvn} be an COP assignment with each |τvi | = |ρ↓vi | − 1. Note
that xρ is well-defined (that is, for 1 ≤ i ≤ n, we have τvi ∈ �∗[τ(vi)]) by the definition of τ(vi),
Corollary 1, and ρ being irreducible. Let us now show that

∑
ϕ∈F ϕ(xρ) ≤ cost(ρ), contradicting

our assumption that α =∞ due to α ≤∑ϕ∈F ϕ(xρ) and cost(ρ) <∞.

First, for each variable v with pred(v) = ∅, Eq. A.3 immediately implies ϕv(xρ) ≤ cost(ρ↓v).
Next, for each non-root variable v ∈ V with pred(v) = {w1, . . . , wk}, consider the graph G′e(v)
constructed with respect to τw1 , . . . , τwk . Let {a1, . . . , a|ρ↓v |} be the actions of ρ↓v numbered in the
order of their appearance along ρ↓v. Let {yw1(1), . . . , ywk(1)} denote the prevail condition of a1 with
each ywi(1) being time-stamped with its earliest appearance along τwi , that is, ywi(1) ∈ {b1

wi ,w
1
wi}.

Now, for 2 ≤ j ≤ |ρ↓v |, we set {yw1(j), . . . , ywk(j)} to the prevail condition of ai with each ywi(j)
being time-stamped with the lowest possible time index along τwi satisfying “ywi(j − 1) does not
come after ywi(j) along τwi”. Given that

(i) ρ↓v is a complete order-preserving restriction of ρ to the v-changing actions Av,

(ii) the sequence of time-stamped prevail conditions {{yw1(j), . . . , ywk(j)}}|ρ↓v |j=1 is constructed as
above, and

(iii) |ρ↓v | = |τv| − 1 by the construction of xρ,

we have that G′e(v) contains a path

〈b1
w1
· · · b1

wk
〉 → 〈yw1(1)· · · ywk(1)〉 → . . .→ 〈yw1(|ρ↓v |)· · ·ywk(|ρ↓v |)〉

and the cost of this path is cost(ρ↓v) <∞. However, from the constructive definition of ϕv in the
algorithm polytree-k-indegree, we have ϕv(xρ) being the cost of the minimal-cost path of |τv| − 1
edges in G′e(v) originated in 〈b1

w1
· · · b1

wk
〉, and thus ϕv(xρ) ≤ cost(ρ↓v). The latter argument is

valid for all planning variables v ∈ V , and thus we have

∑
ϕ∈F

ϕ(xρ) ≤
∑
v∈V

cost(ρ↓v) = cost(ρ),

which is what we had to prove.

121

procedure polytree-k-indegree(Π = 〈V ,A, I ,G, cost〉)
takes a planning task Π ∈ Pb

returns an optimal plan for Π if solvable, and fails otherwise
create a set of variables X and set their domains as in Eq. A.1
create a set of functions F = {ϕv | v ∈ V } with scopes as in Eq. A.2
for each v ∈ V do

if pred(v) = ∅ then
specify ϕv according to Eq. A.3

elseif pred(v) = {w1, . . . , wk} then
construct graph G(v)
for each k-tuple τ ′1 ∈ �∗[τ(w1)], . . . , τ ′k ∈ �∗[τ(wk)] do

construct graph G′(v) from graph G(v) and sequences τ ′1, . . . , τ
′
k

construct graph G′e(v) from graph G′(v)
for each goal-valid sequence τ ′ ∈ �∗[τ(v)] do

π := minimal-cost path of |τ ′| − 1 edges
from the source node 〈bw1 · · · bwk〉 of G′e(v)

if returned π then
ϕv(τ ′, τ ′1, . . . , τ

′
k) := cost(π)

else
ϕv(τ ′, τ ′1, . . . , τ

′
k) := ∞

endif
endfor

endfor
endif

endfor
set COPΠ := (X ,F) with global objective min

∑
ϕ∈F ϕ(X)

x := solve-tree-cop(COPΠ)
if
∑

ϕ∈F ϕ(x) =∞ then return failure
extract plan ρ from x with cost(ρ) =

∑
ϕ∈F ϕ(x)

return ρ

Figure A.3: Algorithm for cost-optimal planning for Pb.

Theorem 23 Cost-optimal planning for Pb is tractable.

Proof: The correctness of the polytree-k-indegree algorithm is given by Lemma 9. We now show
that, given a planning task Π ∈ Pb, the corresponding constraint optimization problem COPΠ can
be constructed and solved in time polynomial in the description size of Π.

Let n be the number of state variables in Π, and κ be the maximal node in-degree in the causal
graph CG(Π). In polytree-k-indegree, for each planning variable v ∈ V with pred(v) = {w1, . . . , wk},
and each k-tuple τ ′1 ∈ �∗[τ(w1)], . . . , τ ′k ∈ �∗[τ(wk)], we

(i) construct the graph G′e(v), and

(ii) use the Dijkstra algorithm to compute shortest paths from the source node of G′e(v) to all
other nodes in that graph.

122

For each wi, we have τ(wi) = n, and thus the number of k-tuples as above for each v ∈ V is
O(nk). For each such k-tuple, the corresponding graph G′e(v) can be constructed in time linear
in the number of its edges = O(n2k+2 · |Av|2) = O(n2k+2 · 22k+2) (Brafman & Domshlak, 2003).
The time complexity of the Dijkstra algorithm on a digraph G = (N,E) is O(E log (N)), and on
G′e(v) it gives us O

(
n2k+2 · 22k+2 · log

(
nk+1 · 2k+1

))
. Putting things together, the complexity of

constructing COPΠ is
O
(
n3κ+3 · 22κ+2 · log

(
nκ+1 · 2κ+1

))
. (A.10)

Applying a tree-decomposition of COPΠ along the scopes of its functional components we arrive
into an equivalent, tree-structured constraint optimization problem over n variables with domains
of size O(nκ+1). This COP is defined by the hard binary “compatibility” constraints between
the variables, and costs associated with the variables’ values. Such a tree-structured COP can be
solved in time O(xy2) where x is the number of variables and y is an upper bound on the size of
a variable’s domain (Dechter, 2003). Therefore, solving our COPΠ can be done in time O(n2κ+3).
As the expression in Eq. A.10 dominates both O(n2κ+3), and the time complexity of extracting a
plan from the optimal solution to COPΠ (see the proof of (I) in Lemma 9), the overall complexity
of the algorithm polytree-k-indegree is given by Eq. A.10. And since in Pb we have κ = O(1), we
conclude that the complexity of polytree-k-indegree is polynomial in the description size of Π.

A.2 Cost-Optimal Planning for P(1) with Uniform-Cost Actions

In this section we provide a polynomial time algorithm for cost-optimal planning for P(1) prob-
lems with uniform-cost actions. We begin with showing that such problems exhibit an interesting
property, then we exploit this property for devising a planning-to-COP scheme for these problems,
and then prove the correctness and complexity of the algorithm.

Here as well, we begin with providing some notation. Given a P(1) planning task Π =
〈V ,A, I ,G, cost〉, for each v ∈ V , each w ∈ pred(v), and each α ∈ {bv,wv}, β ∈ {bw,ww}, by
aα|β we denote the action a with eff(a)[v] = α and pre(a)[w] = β. Since Π is 1-dependent, the
applicability of aα|β is prevailed only by the value of w. It is important to keep in mind that aα|β
is just a notation; the action aα|β may not belong to the action set A of Π.

A.2.1 Post-Unique Plans and P(1) Problems

We now proceed with introducing the notion of post-unique action sequences that plays a key role
in our planning-to-COP compilation here.

Definition 21 Let Π = 〈V ,A, I ,G, cost〉 be a ub planning task. An action sequence % ∈ A∗ is
called post-unique if, for each pair of actions a, a′ ∈ %, we have eff(a) = eff(a′) only if a = a′.
That is, all the changes of each variable to a certain value along % are performed by the same (type
of) action. The (possibly empty) set of all post-unique plans for Π is denoted by Pc(Π) (or
simply Pc, if the identity of Π is clear from the context).

The notion of post-unique action sequences is closely related to the notion of post-unique plan-
ning problems (Bäckström & Klein, 1991; Bäckström & Nebel, 1995), but is considerably weaker
than the latter. While action sets of post-unique planning problems are not allowed to contain two
actions with the same effect, Definition 21 poses a similar restriction only on action sequences, and

123

not on the underlying planning problems. Still, the property of post-uniqueness for plans is strong.
In general, solvable problems in ub may not exhibit post-unique plans at all. Turns out, however,
that for the problems in P(1) this is very much not the case.

Theorem 24 For any solvable P(1) task Π = 〈V ,A, I ,G, cost〉, we have Pc(Π) 6= ∅. Moreover, if
the actions A are uniform-cost, then Pc(Π) contains at least one cost-optimal plan.

Proof: As the correctness of the second claim immediately implies the correctness of the first one,
here we focus on the proof the second claim. Given a P(1) planning task Π = 〈V ,A, I ,G, cost〉
with uniform-cost actions, and plan ρ = 〈a1, . . . , am〉 for Π, we construct a sequence of actions ρ∗

• ρ∗ is a post-unique plan for Π,

• cost(ρ∗) = cost(ρ).

This construction is two-step. First, for each v ∈ V , we map the subsequence ρ↓v= 〈ai1 , . . . , aik〉
into a post-unique sequence of actions ρ∗v = 〈a∗i1 , . . . , a∗ik〉. Note that the indexes i1, . . . , ik of the
action elements of each ρ↓v are the global indexes of these actions along ρ, and exactly the same
indexes are used for marking the elements of the constructed sequences ρ∗v. Having constructed
the sequences ρ∗v1

, . . . , ρ∗vn , we then merge them into a single actions sequence ρ∗, and show that
ρ∗ is a valid plan for Π. The two properties of ρ∗ as required above will then hold immediately
because |ρ∗| = |ρ|, and post-uniqueness of ρ∗ is implied by the individual post-uniqueness of all its
per-variable components ρ∗v.

The mapping of subsequences ρ↓v of ρ to the desired sequences ρ∗v for all variables v is performed
top-down, consistently with a topological ordering of the causal graph CG(Π). This top-down
processing allows us to assume that, when constructing ρ∗v, the subsequences ρ∗w for all w ∈ pred(v)
are already constructed. Given that, while mapping each ρ↓v= 〈ai1 , . . . , aik〉 to the corresponding
ρ∗v, we distinguish between the following three cases.

(1) The subsequence ρ↓v is already post-unique.

In this case, we simply set ρ∗v to ρ↓v. In addition, we construct the following sets of ordering
constraints. First, we set a binary relation >v over the action elements of ρ∗v = 〈a∗i1 , . . . , a∗ik〉 to

>v= {a∗i < a∗j | a∗i , a∗j ∈ ρ∗v, i < j}. (A.11)

It is immediate from Eq. A.11 that >v is a strict total order over the elements of ρ∗v as >v
simply follows the action indexing inherited by ρ∗v from plan ρ via ρ↓v.
Now, for each w ∈ pred(v), we set a binary relation >v,w over the elements of ρ∗v and ρ∗w to

>v,w=

(S
a∗i ∈ρ

∗
v,a
∗
j∈ρ
∗
w
{a∗i < a∗j | i < j} ∪ {a∗j < a∗i | j < i}, pre(a)[w] is specified for some a ∈ ρ∗v

∅, otherwise
. (A.12)

For each w ∈ pred(v), the relation >v,w defined by Eq. A.12 is a strict total order over its
domain because the ordering constraints between the elements of ρ∗v and ρ∗w are a subset of
the constraints induced by the total-order plan ρ over the (corresponding) actions from ρ↓v
and ρ↓w. For the same reason, from Eqs. A.11 and A.12, we have that, for each w ∈ pred(v),
>v ∪ >v,w is a strict total order over the union of the elements of ρ∗v and ρ∗w.

From Eqs. A.11-A.12 we can now derive that any linearization of >v ∪
⋃
w∈pred(v)>v,w defines

a sequence of actions that is applicable with respect to {v} ∪ pred(v). In addition, |ρ∗v| = |ρ↓v |
implies that this action sequence provides to v the value G[v] if the latter is specified.

124

(2) The subsequence ρ↓v is not post-unique, but the actions in ρ↓v are all prevailed by the value of
a single parent w ∈ pred(v).

Since ρ↓v is not post-unique, ρ↓v in this case has to contain instances of at least three action
types from {abv |bw , abv |ww , awv |bw , awv |ww}. Thus, in particular, it must be that

(a) |ρw↓|≥ 1, and

(b) for some β ∈ {bw,ww}, we have awv |β, abv |β ∈ ρ↓v.

Given that, we set ρ∗v = 〈a∗i1 , . . . , a∗ik〉 to

∀1 ≤ j ≤ k : a∗ij =

{
awv |β, j is odd
abv |β, j is even

.

Both post-uniqueness of such ρ∗v, as well as its applicability with respect to v are straightforward.
The ordering constraints >v are then set according to Eq. A.11. Likewise, if ρ∗w = 〈aj1 , . . . , ajl〉,
we set

>v,w=


⋃
a∗i∈ρ∗v

{a∗i < aj1}, β = bw⋃
a∗i∈ρ∗v

{a∗i > aj1}, β = ww, l = 1⋃
a∗i∈ρ∗v

{a∗i > aj1} ∪ {a∗i < aj2}, β = ww, l > 1

(A.13)

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {w} are set to
empty sets.

The relation >v here is identical to this in case (1), and thus it is a strict total order over the
elements of ρ∗v. From Eq. A.13, it is easy to verify that >v,w is also a strict partial order over
the union of the elements of ρ∗v and ρ∗w. Finally, as all the elements of ρ∗v are all identically
constrained with respect to the elements of ρ∗w, we have >v ∪ >v,w forming a strict partial
order over the union of the elements of ρ∗v and ρ∗w. (For all other parents w′ ∈ pred(v), we
simply have >v ∪ >v,w = >v.)

From Eqs. A.11 and A.13 we can now derive that any linearization of >v ∪
⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In addition,
|ρ∗v| = |ρ↓v | implies that this action sequence provides to v the value G[v] if the latter is
specified.

(3) The subsequence ρ↓v is not post-unique, and the actions of ρ↓v are prevailed by more than one
parent of v.

The setting of this case in particular implies that there is a pair of v’s parents {u,w} ⊆ pred(v)
such that awv |α, abv |β ∈ ρv for some α ∈ {bu,wu}, β ∈ {bw,ww}. Given that, we set ρ∗v to

∀1 ≤ j ≤ k : a∗ij =

{
awv |α, j is odd
abv |β, j is even

,

and, similarly to case (2), both post-uniqueness of ρ∗v, and its applicability with respect to v
are straightforward.

125

Here as well, the ordering constraints >v are set according to Eq. A.11. Likewise, if ρ∗w =
〈aj1 , . . . , ajl〉, and ρ∗u = 〈aj′1 , . . . , aj′l′ 〉, we set >v,w according to Eq. A.13 above, and >v,u
according to Eq. A.14 below.

>v,u =


⋃
a∗i∈ρ∗v

{a∗i < aj′1}, α = bu⋃
a∗i∈ρ∗v

{a∗i > aj′1}, α = wu, l
′ = 1⋃

a∗i∈ρ∗v
{a∗i > aj′1} ∪ {a

∗
i < aj′2}, α = wu, l

′ > 1

(A.14)

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {u,w} are set
to empty sets.

The relation >v here is identical to this in cases (1-2), and relations >v,u and >v,w are effectively
identical to the relation >v,w in case (2). Thus, we have >v ∪ >v,u and >v ∪ >v,w forming
strict partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.

From Eqs. A.11, A.13, and A.14 we can now derive that any linearization of>v ∪
⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In addition,
|ρ∗v| = |ρ↓v | implies that this action sequence provides to v the value G[v] if the latter is
specified.

As the last step, we now prove that, for each v ∈ V and each w ∈ pred(v), we have >w ∪ >v,w
being a strict partial order over the union of the elements of ρ∗w and ρ∗v.

- If >v,w is constructed according to Eq. A.12, then >w ∪ >v,w is a subset of the constraints
induced by plan ρ over the (corresponding to ρ∗v and ρ∗w) actions from ρv and ρw.

- Otherwise, if >v,w is constructed according to Eq. A.13 or (for us here identical) Eq. A.14,
then >v,w (i) addresses at most two elements of ρw, (ii) orders these elements consistently
with >w.

In both cases, the argued properties of >w ∪ >v,w implies that it forms a strict partial order over
the union of the elements of ρ∗v and ρ∗w.

Until now, we have specified the sequences ρ∗v, the orders >v induced by these sequences, the
orders >v,w, and proved that all >v ∪ >v,w and >w ∪ >v,w form strict partial orders over their
domains. This construction allows us to apply now Theorem 22 to the (considered as sets) sequences
ρ∗v and orders >v and >v,w, proving that

>=
⋃
v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρ∗v1
, . . . , ρ∗vn . Putting thing together, the above

implies that any linearization ρ∗ of > is a plan for Π, and post-uniqueness of all its subsequences
ρ∗v1

, . . . , ρ∗vn then implies ρ∗ ∈ Pc(Π). Moreover, if ρ is an optimal plan for Π, then |ρ∗| = |ρ| implies
the optimality of ρ∗.

A.2.2 Construction

The main impact of Theorem 24 on our planning-to-COP scheme for uniform-cost P(1) is that we
can now restrict our attention to post-unique plans only. Given that, the constraint optimization

126

problem COPΠ = (X ,F) for a uniform-cost planning task Π = 〈V ,A, I ,G, cost〉 ∈ P(1) is specified
as follows.

The variable set X contains a variable xv for each planning variable v ∈ V , and a variable xwv
for each edge (w, v) ∈ CG(Π). That is,

X = X V ∪ X E ,
X V = {xv | v ∈ V }
X E = {xwv | (w, v) ∈ CG(Π)}

(A.15)

For each variable xv ∈ X V , the domain D(xv) consists of all goal-valid prefixes of σ(v). For
each variable xwv ∈ X E , the domain D(xwv) consists of all triples of integers Jδw, δb, ηK satisfying
Eq. A.16.

D(xv) = �∗[σ(v)]
D(xwv) = {Jδw, δb, ηK | δw, δb ∈ {0, 1}, 0 ≤ η ≤ n}

(A.16)

The semantics of Eq. A.16 is as follows. Let {w1, . . . , wk} be an arbitrary fixed ordering of
pred(v). If xv takes the value σv ∈ D(xv), then v is forced to provide σv sequence of values. In
turn, if xwiv takes the value Jδw, δb, ηK, then η corresponds to the number of value changes of v,
δw = 1 (δb = 1) forces the subset of parents {w1, . . . , wi} ⊆ pred(v) to support (that is, prevail)
all the changes of v to wv (respectively, to bv), and δw = 0 (δb = 0) relieves this subset of parents
{w1, . . . , wi} from this responsibility.

For each variable x ∈ X , the set F contains a non-negative, real-valued function ϕx with the
scope

Qx =


{xv}, x = xv, k = 0
{xv, xwkv }, x = xv, k > 0
{xw1

v , xw1}, x = xw1
v , k > 0

{xwjv , x
wj−1
v , xwj}, x = x

wj
v , 1 < j ≤ k

(A.17)

where pred(v) = {w1, . . . , wk} (and k = 0 means pred(v) = ∅). Proceeding now with specifying these
functional components F of COPΠ, first, for each xv with pred(v) = ∅, and for each σv ∈ �∗[σ(v)],
we set ϕxv(σv) to

ϕxv (σv) =


0, |σv| = 1,
1, (|σv| = 2) ∧ (awv ∈ Av),
|σv| − 1, (|σv| > 2) ∧ (awv , abv ∈ Av),
∞, otherwise

(A.18)

In turn, for each planning variable v ∈ V with pred(v) = {w1, . . . , wk}, k > 0, the function ϕxv
is set to

ϕxv (σv, Jδw, δb, ηK) =


0, (|σv| = 1) ∧ (Jδw, δb, ηK = J0, 0, 0K),
1, (|σv| = 2) ∧ (Jδw, δb, ηK = J1, 0, 1K),
|σv| − 1, (|σv| > 2) ∧ (Jδw, δb, ηK = J1, 1, |σv| − 1K),
∞, otherwise

(A.19)

127

The functions ϕxv capture the, marginal over the actions Av, cost of providing a sequence σv
of value changes of v in Π, given that (in case of Eq. A.19) the parents of v are “ready to support
these value changes”. In specifying the remaining functional components we use an “indicator”
function ϕ specified in Eq. A.20.

ϕ (Jδw, δb, ηK, σw) =

8>>>>>>>>>>><>>>>>>>>>>>:

0, δw = 0, δb = 0,

0, δw = 1, δb = 0, (awv|bw ∈ Av) ∨ ((|σw| > 1) ∧ (awv|ww ∈ Av)),

0, δw = 0, δb = 1, (abv|bw ∈ Av) ∨ ((|σw| > 1) ∧ (abv|ww ∈ Av)),

0, δw = 1, δb = 1, (awv|bw , abv|bw ∈ Av) ∨ ((|σw| > 1) ∧ (awv|ww , abv|ww ∈ Av)),

0, δw = 1, δb = 1, |σw| ≥ η, awv|bw , abv|ww ∈ Av,
0, δw = 1, δb = 1, |σw| > η, awv|ww , abv|bw ∈ Av,
∞, otherwise

(A.20)

The semantics of ϕ is that, for each planning variable v ∈ V , each w ∈ pred(v), and each
(Jδw, δb, ηK, σw) ∈ D(xwv)×D(xw), we have ϕ(Jδw, δb, ηK, σw) = 0 if the value sequence σw of w can
support all the changes of v to wv (if δw = 1) and all the changes of v to bv (if δb = 1), out of η
value changes of v in Π. Given this indicator function ϕ, for each v ∈ V , the functional component
ϕxw1

v
is specified as

ϕxw1
v

(Jδw, δb, ηK, σw1) = ϕ (Jδw, δb, ηK, σw1) , (A.21)

and the rest of the functions ϕxw2
v
, . . . , ϕxwkv are specified as follows. For each 2 ≤ i ≤ k, the

value of the function ϕ
x
wj
v

at the combination of Jδw, δb, ηK ∈ D(xwiv), Jδ′w, δ′b, η
′K ∈ D(xwi−1

v), and
σwi ∈ D(xwi) = �∗[σ(wi)] is specified as

ϕxwi
v

`
Jδw, δb, ηK, Jδ′w, δ

′
b, η
′K, σwj

´
=

(
ϕ
`
Jδw − δ′w, δb − δ′b, ηK, σwj

´
, η = η′ ∧ δw ≥ δ′w ∧ δb ≥ δ′b

∞ otherwise
(A.22)

This finalized the construction of COPΠ, and this construction constitutes the first three steps
of the algorithm polytree-1-dep-uniform in Figure A.4(a). The subsequent steps of this algorithm
are conceptually similar to these of the polytree-k-indegree algorithm in Section A.1, with the major
difference being in the plan reconstruction routines. It is not hard to verify from Eqs. A.15-A.17,
and the fact that the causal graph of Π ∈ P(1) forms a polytree that

(i) for each variable x ∈ X , |D(x)| = poly(n),

(ii) the tree-width of the cost network of F is ≤ 3, and

(iii) the optimal tree-decomposition of the COPΠ’s cost network is given by any topological ordering
of the causal graph that is consistent with the (arbitrary yet fixed at the time of the COPΠ’s
construction) orderings of each planning variable’s parents in the causal graph.

For an illustration, we refer the reader to Figure 3.3 (pp. 23) where Figure 3.3(a) depicts the causal
graph of a planning task Π ∈ P(1), and Figure 3.3(c) depicts the cost network of the corresponding
COPΠ. The top-most variables and the cliques in the cost network correspond to the functional
components of COPΠ.

128

procedure polytree-1-dep-uniform(Π = 〈V ,A, I ,G, cost〉)
takes a planning task Π ∈ P(1) with uniform-cost actions A
returns a cost-optimal plan for Π if Π is solvable, and fails otherwise

create a set of variables X as in Eqs. A.15-A.16
create a set of functions F = {ϕx | x ∈ X} with scopes as in Eq. A.17
for each x ∈ X do

specify ϕx according to Eqs. A.18-A.22
endfor
set COPΠ := (X ,F) with global objective min

∑
ϕ∈F ϕ(X)

x := solve-tree-cop(COPΠ)
if
∑

ϕ∈F ϕ(x) =∞ then return failure
extract plan ρ from x with cost(ρ) =

∑
ϕ∈F ϕ(x)

return ρ

Figure A.4: Algorithm for cost-optimal planning for P(1) tasks with uniform-cost actions.

A.2.3 Correctness and Complexity

Lemma 10 Let Π be a P(1) task with uniform-costs actions, COPΠ = (X ,F) be the corresponding
constraint optimization problem, and x be an optimal assignment to X with

∑
ϕ∈F ϕ(x) = α.

(I) If α <∞, then a plan of cost α for Π can be reconstructed from x in time polynomial in the
description size of Π.

(II) If Π has a plan, then α <∞.

Proof:
(I) Given a COP solution x with

∑
ϕ∈F ϕ(x) = α <∞, we construct a plan ρ for Π with cost(ρ) = α.

We construct this plan by

1. Traversing the planning variables in a topological ordering of the causal graph CG(Π), and
associating each variable v with a sequence ρv ∈ A∗v.

2. Merging the constructed sequences ρv1 , . . . , ρvn into the desired plan ρ.

For each variable xv ∈ X , let σv denote the value provided by x to xv. First, for each variable
v ∈ V with pred(v) = ∅, let a sequence ρv of actions from Av be defined as

ρv =

{
∅ |σv| = 1
a1
v · . . . · a|σv |−1

v otherwise
, (A.23)

where, for 1 ≤ j ≤ |σv| − 1,

ajv =

{
abv , j is even
awv , j is odd

, (A.24)

with eff(abv) = {bv}, and eff(awv) = {wv}. From Eq. A.18 and ϕv(σv) ≤ α < ∞, we immediately
have (i) {awv} ⊆ Av if |σv| ≥ 2, and {abv , awv} ⊆ Av if |σv| > 2, and (ii) cost(ρv) = ϕv(σv).

129

Let a binary relation >v over the action elements of ρv be defined as the transitive closure of
{aj−1

v < ajv | 1 < j ≤ |σv| − 1}, that is

>v= {aj
′
v < ajv | 1 ≤ j′ < j ≤ |σv| − 1} (A.25)

Clearly, >v constitutes a strict total ordering over the elements of ρv, making ρv an applicable
sequence of actions that provides to v the value G[v] if the latter is specified.

Next, for each variable v ∈ V with pred(v) 6= ∅, let pred(v) = {w1, . . . , wk} be numbered
according to their ordering used for constructing COPΠ. Likewise, for each wi ∈ pred(v), let
Jδw(i), δb(i), η(i)K be the value provided by x to xwiv . Given that, let a pair of indexes 0 ≤ 〈w〉, 〈b〉 ≤
k be defined as

〈w〉 =


0, δw(k) = 0,
1, δw(1) = 1,
j, δw(j − 1) < δw(j), 2 ≤ j ≤ k

(A.26)

〈b〉 =


0, δb(k) = 0,
1, δb(1) = 1,
j, δb(j − 1) < δb(j), 2 ≤ j ≤ k

(A.27)

Informally, in our next-coming construction of the action sequence ρv for the state variable v, 〈w〉
and 〈b〉 will indicate the parents prevailing the value changes of v to wv and to bv, respectively,
along ρv. Note that Eqs. A.26-A.27 are well-defined because, for 2 ≤ j ≤ k, Eq. A.22 implies

δw(j − 1) ≤ δw(j) ∧ δb(j − 1) ≤ δb(j) ∧ η(j − 1) = η(j).

Given this notation, the action sequence ρv and the partial orders >v,w1 , . . . , >v,wk are con-
structed as follows.

[〈w〉 = 0, 〈b〉 = 0] In this case, the constructed plan ρ should perform no value changes of v, and
thus ρv is set to an empty action sequence, and, consequently, both >v and all >v,w are set
to empty sets.

[〈w〉 > 0, 〈b〉 = 0] In this case, the constructed plan ρ should perform exactly one value change of
v (from bv to wv), and thus ρv is set to contain exactly one action a1

v with eff(a) = {wv}, and

pre(a1
v) =

{
{bv, bw〈w〉}, awv |bw〈w〉

∈ Av
{bv,ww〈w〉}, otherwise

(A.28)

Note that a1
v is well-defined, as α <∞ and Eq. A.20 together imply that {awv |bw〈w〉

, awv |bw〈w〉
}∩

Av 6= ∅ (see case (2) in Eq. A.20). In both outcomes of Eq. A.28, we set >v= ∅. If a1
v =

awv |bw〈w〉
, we set

>v,w〈w〉= {a1
v < a1

w〈w〉
| a1

w〈w〉
∈ ρw〈w〉} (A.29)

Otherwise, if a1
v = awv |ww〈w〉

, then from case (2) in Eq. A.20, awv |bw〈w〉
6∈ Av, and α < ∞, we

have |σw〈w〉 | > 1, and thus |ρw〈w〉 | ≥ 1. Given that, we set

>v,w〈w〉= {a1
w〈w〉

< a1
v} ∪ {a1

v < a2
w〈w〉
| a2

w〈w〉
∈ ρw〈w〉} (A.30)

130

In both cases, it is easy to verify that >v ∪ >v,w〈w〉 ∪ >w〈w〉 constitutes a strict total order
over the action elements of ρv and ρw〈w〉 . (In particular, this trivially implies that >v ∪ >v,w
and >v,w ∪ >w are strict partial orderings over their domains.)

From Eqs. A.25, A.29, and A.30 we can now derive that any linearization of>v ∪
⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In addition,
Eq. A.16 implies that this action sequence provides to v the value G[v] if the latter is specified.

[〈w〉 > 0, 〈b〉 > 0, 〈w〉 = 〈b〉] In this case, the constructed plan ρ should perform more than one
value change of v, and all these value changes should be performed by (a pair of types of)
actions prevailed by the value of w〈w〉. From α <∞, we have ϕ(Jδw(〈w〉), δb(〈w〉), ηK, σw〈w〉) =
0. The specification of the case in question (that is, 〈w〉 = 〈b〉 > 0) thus implies that one of
the conditions of the cases (4-6) of Eq. A.20 should hold. Given that, we distinguish between
the following four settings.

(1) If {awv |bw〈w〉
, abv |bw〈w〉

} ⊆ Av, then ρv is specified according to Eq. A.23, and its action
elements are specified as

aiv =

awv |bw〈w〉
, i is odd

abv |bw〈w〉
, i is even

. (A.31)

The relation >v is set according to Eq. A.25, and >v,w〈w〉 is set to

>v,w〈w〉= {aiv < a1
w〈w〉
| aiv ∈ ρv, a1

w〈w〉
∈ ρw〈w〉} (A.32)

Finally, for all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.
(2) Otherwise, if {awv |ww〈w〉

, abv |ww〈w〉
} ⊆ Av and |σw〈w〉 | > 1, then we have |ρw〈w〉 | ≥ 1. Given

that, we again set ρv according to Eq. A.23, but now with its action elements being set
as

aiv =

awv |ww〈w〉
, i is odd

abv |ww〈w〉
, i is even

. (A.33)

The relation >v is set according to Eq. A.25, and >v,w〈w〉 is set to

>v,w〈w〉= {a1
w〈w〉

< aiv | aiv ∈ ρv} ∪ {aiv < a2
w〈w〉
| aiv ∈ ρv, a2

w〈w〉
∈ ρw〈w〉} (A.34)

Finally, here as well, for all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.
(3) Otherwise, if {awv |bw〈w〉

, abv |ww〈w〉
} ⊆ Av, and |σw〈w〉 | ≥ |σv| − 1, then ρv is specified

according to Eq. A.23, and its action elements are specified as

aiv =

awv |bw〈w〉
, i is odd

abv |ww〈w〉
, i is even

. (A.35)

The relation >v is set according to Eq. A.25, and >v,w〈w〉 is set to

>v,w〈w〉=
⋃

aiv∈ρv ,a
j
w〈w〉∈ρw〈w〉

{aiv < ajw〈w〉 | i ≤ j} ∪ {a
j
w〈w〉

< aiv | i > j} (A.36)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

131

(4) Otherwise, if {awv |ww1
, abv |bw1

} ⊆ Av, and |σw〈w〉 | ≥ |σv|, then ρv is specified according
to Eq. A.23, and its action elements are specified as

aiv =

awv |ww〈w〉
, i is odd

abv |bw〈w〉
, i is even

. (A.37)

The relation >v is set according to Eq. A.25, and >v,w〈w〉 is set to

>v,w〈w〉=
⋃

aiv∈ρv ,a
j
w〈w〉∈ρw〈w〉

{aiv < ajw〈w〉 | i < j} ∪ {ajw〈w〉 < aiv | i ≥ j} (A.38)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

In all the four cases above, >v ∪ >v,w〈w〉 ∪ >w〈w〉 constitutes a strict total order over the
elements of ρv and ρw〈w〉 .

From Eqs. A.25, A.32, A.34, and A.36, A.38 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to {v}∪pred(v).
In addition, Eq. A.16 implies that this action sequence provides to v the value G[v] if the
latter is specified.

[〈w〉 > 0, 〈b〉 > 0, 〈w〉 6= 〈b〉] In this case, the constructed plan ρ should perform more than one
value change of v, with changes of v to wv and bv being performed by (a pair of types
of) actions prevailed by the value of w〈w〉 and w〈b〉, respectively. From α < ∞, we have
ϕ(Jδw(〈w〉), δb(〈w〉), ηK, σw〈w〉) = ϕ(Jδw(〈b〉), δb(〈b〉), ηK, σw〈b〉) = 0, and this is due to the re-
spective satisfaction of the conditions of cases (2) and (3) in Eq. A.20. Given that, we
distinguish between the following four settings1.

(1) If {awv |bw〈w〉
, abv |bw〈b〉

} ⊆ Av, then ρv is specified according to Eq. A.23, and its action
elements are specified as

aiv =

awv |bw〈w〉
, i is odd

abv |bw〈b〉
, i is even

. (A.39)

The relation >v over the action elements of ρv is set according to Eq. A.25, the relation
>v,w〈w〉 over the action elements of ρv and ρw〈w〉 is set to

>v,w〈w〉= {aiv < a1
w〈w〉
| i is odd, aiv ∈ ρv, a1

w〈w〉
∈ ρw〈w〉} (A.40)

and the relation >v,w〈b〉 over the action elements of ρv and ρw〈b〉 is set to

>v,w〈b〉= {aiv < a1
w〈b〉
| i is even, aiv ∈ ρv, a1

w〈b〉
∈ ρw〈b〉} (A.41)

For all w ∈ pred(v) \ {w〈w〉, w〈b〉}, we set >v,w= ∅.
1While the details are slightly different, the four settings here are conceptually similar to these in the previously

considered case of 〈w〉 > 0, 〈b〉 > 0, 〈w〉 = 〈b〉.

132

(2) Otherwise, if {awv |ww〈w〉
, abv |bw〈b〉

} ⊆ Av and |σw〈w〉 | > 1, then we have |ρw〈w〉 | ≥ 1. Given
that, we again set ρv according to Eq. A.23, but now with its action elements being set
as

aiv =

awv |ww〈w〉
, i is odd

abv |ww〈b〉
, i is even

. (A.42)

The relation >v is set according to Eq. A.25, >v,w〈w〉 is set to

>v,w〈w〉=
⋃

aiv∈ρv , i is odd

{a1
w〈w〉

< aiv} ∪ {aiv < a2
w〈w〉
| a2

w〈w〉
∈ ρw〈w〉} (A.43)

and >v,w〈b〉 is set to

>v,w〈b〉= {aiv < a1
w〈b〉
| i is even, aiv ∈ ρv, a1

w〈b〉
∈ ρw〈b〉} (A.44)

For all w ∈ pred(v) \ {w〈w〉, w〈b〉}, we set >v,w= ∅.
(3) Otherwise, if {abv |ww〈b〉

, awv |bw〈w〉
} ⊆ Av, and |σw〈b〉 | > 1, then we have |ρw〈b〉 | ≥ 1. Given

that, we ρv is specified according to Eq. A.23, and its action elements are specified as

aiv =

awv |bw〈w〉
, i is odd

abv |ww〈b〉
, i is even

. (A.45)

The relation >v is set according to Eq. A.25, >v,w〈w〉 is set to

>v,w〈w〉= {aiv < a1
w〈w〉
| i is odd, aiv ∈ ρv, a1

w〈w〉
∈ ρw〈w〉} (A.46)

and >v,w〈b〉 is set to

>v,w〈b〉=
⋃

aiv∈ρv , i is even

{a1
w〈b〉

< aiv} ∪ {aiv < a2
w〈b〉
| a2

w〈b〉
∈ ρw〈b〉} (A.47)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.
(4) Otherwise, if {awv |ww〈w〉

, abv |ww〈b〉
} ⊆ Av, |σw〈w〉 | > 1, and |σw〈b〉 | > 1, then we have both

|ρw〈w〉 | ≥ 1 and |ρw〈b〉 | ≥ 1. Given that, we again set ρv according to Eq. A.23, and its
action elements are specified as

aiv =

awv |ww〈w〉
, i is odd

abv |bw〈b〉
, i is even

. (A.48)

The relation >v is set according to Eq. A.25, >v,w〈w〉 is set to

>v,w〈w〉=
⋃

aiv∈ρv , i is odd

{a1
w〈w〉

< aiv} ∪ {aiv < a2
w〈w〉
| a2

w〈w〉
∈ ρw〈w〉} (A.49)

and >v,w〈b〉 is set to

>v,w〈b〉=
⋃

aiv∈ρv , i is even

{a1
w〈b〉

< aiv} ∪ {aiv < a2
w〈b〉
| a2

w〈b〉
∈ ρw〈b〉} (A.50)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

133

In all the four cases above, both >v ∪ >v,w〈w〉 ∪ >w〈w〉 and >v ∪ >v,w〈b〉 ∪ >w〈b〉 constitute
strict total orders over their respective domains.

From Eqs. A.25, A.40, A.41, A.43, A.44, A.46, A.47, A.49, and A.50 we can now derive that
any linearization of >v ∪

⋃
w∈pred(v)>v,w defines a sequence of actions that is applicable with

respect to {v} ∪ pred(v). In addition, Eq. A.16 implies that this action sequence provides to
v the value G[v] if the latter is specified.

Until now, for each variable v ∈ V , we have specified an action sequence ρv and the order >v
over the elements of ρv. For each w ∈ pred(v), we have specified the order >v,w, and proved that
all >v ∪ >v,w and >w ∪ >v,w form strict partial orders over their domains, and any linearization of
>v ∪

⋃
w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to {v} ∪ pred(v)

and provides to v the value G[v] if the latter is specified. This construction allows us to apply now
Theorem 22 on the (considered as sets) sequences ρv and orders >v and >v,w, proving that

>=
⋃
v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρv1 , . . . , ρvn .
Here we also note that the plan extraction step of the algorithm polytree-1-dep-uniform corre-

sponds exactly to the above construction along Eqs. A.23-A.50, providing us in polynomial time
with a concrete cost-optimal plan corresponding to the optimal solution for COPΠ.

(II) We now prove that if Π is solvable, then we must have α < ∞. Assume to the contrary that
this is not the case. Let Π be a solvable P(1) task, and let (using Theorem 24) ρ be an irreducible,
post-unique plan for Π. Given such ρ, let a COP assignment xρ be defined as follows.

1. For each COP variable xv, the assignment xρ provides the value σv ∈ �∗[σ(v)] such that
|σv| = |ρv↓| +1.

2. For each COP variable xwv , the assignment xρ provides the value Jδwwv , δ
w
bv
, |σv| − 1K, where

δwwv = 1 if some action in ρ↓v preconditioned by the value of w changes the value of v to wv,
and δwwv = 0, otherwise. δwbv is defined similarly to δwwv , mutatis mutandis.

From Eq. A.18-A.22 we then directly have that, for all v ∈ V , ϕxv(xρ) = |ρ ↓v |, and for all
w ∈ pred(v), ϕxwv (xρ) = 0. Therefore, we have∑

ϕ∈F
ϕ(xρ) =

∑
v∈V

cost(ρ↓v) = cost(ρ),

which is what we had to prove.

Theorem 25 Cost-optimal planning for P(1) with uniform cost actions is tractable.

Proof: The correctness of the polytree-1-dep-uniform algorithm is given by Lemma 10. We now
show that, given a planning task Π ∈ P(1) with uniform cost actions, the corresponding constraint
optimization problem COPΠ can be constructed and solved in time polynomial in the description
size of Π.

Let n be the number of state variables in Π. In polytree-1-dep-uniform, we first construct the
constraint optimization problem COPΠ over Θ(n2) variables X with domain sizes bounded by

134

O(n), and Θ(n2) functional components F , each defined over at most three COP variables. The
construction is linear in the size of the resulting COP, and thus is accomplished in time O(n5).

Applying then to COPΠ a tree-decomposition along the scopes of the functional components F ,
we arrive into an equivalent, tree-structured constraint optimization problem over Θ(n2) variables
with domains of size O(n3). Such a tree-structured COP can be solved in time O(xy2) where x
is the number of variables and y is an upper bound on the size of a variable’s domain (Dechter,
2003). Therefore, solving COPΠ can be done in time O(n8). As this dominates both the time
complexity of constructing COPΠ, and the time complexity of extracting a plan from the optimal
solution to COPΠ (see the proof of (I) in Lemma 10), the overall complexity of the algorithm
polytree-1-dep-uniform is O(n8), and therefore polynomial in the description size of Π.

A.3 Cost-Optimal Planning for P(1) with General Action Costs

We now consider cost-optimal planning for P(1) problems without the constraints on actions to
be all of the same cost. While Theorem 24 in Section A.2 shows that any solvable P(1) planning
task Π has at least one post-unique plan, it is possible that no such plan is cost-optimal for Π, and
Example 1 below affirms this possibility.

Example 1 Let Π = 〈V ,A, I ,G, cost〉 be the P(1) planning task over variables V = {v1, . . . , v5},
I = {0, 0, 0, 0, 0}, G = {v1 = 0, v2 = 1, v3 = 1}, and actions A as depicted in Figure A.5a. The
polytree causal graph of Π is shown in Figure A.5b, and it is easy verify from the table in Figure A.5a
that Π ∈ P(1).

A pre(a) eff(a)
cost(a)

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

a1 1 0 1 1.0
a2 0 1 1 1.0
a3 1 0 0 1.0
a4 0 0 1 10.0
a5 1 0 0 1.0
a6 0 1 1 1.0
a7 0 1 1.0

v4

��>>>>>>
v5

��������

v3

��
v1

��
v2

(a) (b)

Figure A.5: Action set and the causal graph for the task in Example 1

Ignoring the non-uniformity of the action costs, this task has a post-unique cost-optimal optimal
plan ρ = 〈a4 · a2 · a1 · a5 · a3 · a4〉. However, considering the action costs as in in the last column in
Figure A.5a, then the cost of each optimal plan, such as ρ′ = 〈a4 · a2 · a1 · a5 · a3 · a7 · a6〉 will be
cost(ρ′) = 16 < 24 = cost(ρ). Note that the plan ρ′ is not post-unique because it changes the value
of v3 to 1 using both actions a4 and a6. In fact, any plan for this task will have at least two action
instances that change the value of v3 to 1. However, the cheap such action a6 cannot be applied
twice because it requires v4 = 1, and the only action a5 that sets v3 = 0 cannot be applied after a6—

135

a5 requires v4 = 0, and there is no action that have this effect. Therefore, any post-unique plan for
this task will have to invoke twice the action a4, and thus will have cost of at least 2 · cost(a4) = 20.

Fortunately, here we show that any solvable P(1) task is guaranteed to have a cost-optimal plan
satisfying a certain “relaxation” of action sequence post-uniqueness that still allows us to devise a
(more costly than polytree-1-dep-uniform) planning-to-COP scheme for general P(1) problems.

A.3.1 Post-3/2 Plans and P(1) Problems

We now proceed with introducing the notion of post-3/2 property for action sequences that relaxes
the post-uniqueness property exploited in the previous section.

Definition 22 Let Π = 〈V ,A, I ,G, cost〉 be a ub planning task. An action sequence % ∈ A∗ is
called post-3/2 if, for each v ∈ V , a ∈ %v, there exist α 6= β ∈ {bv,wv}, a parent w ∈ pred(v),
γ, δ ∈ {bw,ww}, and ξ ∈ {bu,wu | u ∈ pred(v)}, such that a ∈ {aα|γ , aβ|δ, aα|ξ}. That is, all the
changes of each variable are done using at most three types of actions which are prevailed by at most
two parents, and if u is different from w, then different actions prevailed by w perform different
value changes of v.

The (possibly empty) set of all post-3/2 plans for Π is denoted by P3/2(Π) (or simply P3/2,
if the identity of Π is clear from the context).

To illustrate the rather involved definition of post-3/2 plans, consider the following four action
sequences of four actions each. The only value changes made by these sequences are changes of
variable v with pred(v) = {x, y, z}.

• 〈awv |bx ·abv |wx ·awv |bx ·abv |by〉 is post-3/2 because it uses three types of actions, each prevailed
by one of the two parents x, y.

• 〈awv |bx · abv |by · awv |bx · abv |by〉 is post-3/2 because it uses two types of actions, each prevailed
by one of the two parents x, y.

• 〈awv |bx · abv |by · awv |bx · abv |bz〉 is not post-3/2 because it uses three types of actions, each
prevailed by one of the three parents x, y, z.

• 〈awv |bx · abv |wx · awv |by · abv |by〉 is not post-3/2 because it uses four types of actions, each
prevailed by one of the two parents x, y.

It is not hard to verify that post-3/2 is a relaxation of post-uniqueness—if a plan is post-unique,
then it is post-3/2, but not necessarily the other way around. Turns out that, for any P(1) task Π,
this relaxed property is guaranteed to be satisfied by at least one cost-optimal plan for Π.

Theorem 26 For every solvable P(1) planning task Π = 〈V ,A, I ,G, cost〉, the plan set P3/2(Π)
contains at least one cost-optimal plan.

Proof: Given a P(1) task Π = 〈V ,A, I ,G, cost〉, and cost-optimal plan ρa1, . . . , am〉 for Π, we
construct a sequence of actions ρ∗ such that:

• ρ∗ is a post-3/2 plan for Π,

• cost(ρ∗) = cost(ρ).

136

In nutshell, first, for each v ∈ V , we map the subsequence ρ[v] = 〈a1, . . . , ak〉 of ρ into a sequence
of actions ρ∗v = 〈a∗1, . . . , a∗k〉 that (i) satisfy the post-3/2 property, and (ii) cost(ρ∗v) ≤ cost(ρ[v]).
Then, we merge the constructed sequences {ρ∗v}v∈V into ρ∗, and show that ρ∗ is a valid plan for Π.
The two properties of ρ∗ as required above will then hold immediately because cost(ρ∗) = cost(ρ),
and ρ∗ being post-3/2 is implied by all its per-variable components ρ∗v being post-3/2.

For each variable v ∈ V , with pred(v) = ∅, we set ρ∗v = ρ[v] and

>v= {ai < aj | ai, aj ∈ ρ[v], i < j}. (A.51)

It is immediate from Eq. A.51 that >v is a strict total order over the elements of ρ∗v.
In turn, for each variable v ∈ V with pred(v) 6= ∅, given {σw}w∈pred(v), such that |σw| = |ρ[w]|+1,

let aαi be the i’th cheapest action that changes variable v to α ∈ {bv,wv} and prevailed by some
value from {σw}w∈pred(v). Let us now focus on aw

1 = awv |γ , aw
2 = awv |µ, ab

1 = abv |δ, a
b
2 = abv |ν .2

(I) If γ = δ ∈ {bw,ww}, we set

a∗i =

{
awv |γ i = 2j − 1, j ∈ N
abv |γ otherwise

(A.52)

In addition, we construct the following sets of ordering constraints. First, we set a binary
relation >v over the action elements of ρ∗v = 〈a∗1, . . . , a∗k〉 to

>v= {a∗i < a∗j | a∗i , a∗j ∈ ρ∗v, i < j}. (A.53)

It is immediate from Eq. A.53 that >v is a strict total order over the elements of ρ∗v. Likewise,
if ρ∗w = 〈aj1 , . . . , ajl〉, we set

>v,w=


⋃
a∗i∈ρ∗v

{a∗i < aj1}, γ = bw⋃
a∗i∈ρ∗v

{a∗i > aj1}, γ = ww, l = 1⋃
a∗i∈ρ∗v

{a∗i > aj1} ∪ {a∗i < aj2}, γ = ww, l > 1

(A.54)

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {w} are set
to empty sets.

For each w ∈ pred(v), it is easy to verify that the relation >v,w defined by Eq. A.54 is a
strict total order over its domain. Also, from Eqs. A.53 and A.54, we have that, for each
w ∈ pred(v), >v ∪ >v,w is a strict total order over the union of the elements of ρ∗v and ρ∗w.

From Eqs. A.53-A.54 we can now derive that any linearization of >v ∪
⋃
w∈pred(v)>v,w defines

a sequence of actions that is applicable with respect to {v}∪pred(v). In addition, |ρ∗v| = |ρ[v]|
together with Eq. A.52 implies that this action sequence provides to v the value G[v] if the
latter is specified.

2It is possible that some of these actions do not exist, and our case by case analysis in the proof transparently takes
this possibility into account. Specifically, if aw

1 does not exist, then variable v simply unchangeable, meaning ρ[v] = ∅.
Next, if ab

1 does not exist, then v can be changed at most once (from b to w), and this is covered by a subcase of
(I). If aw

2 does not exist, and ab
2 does exist, then only sub-cases (a) of the cases {(III), (IV)}.{1, 3, 5, 7} are possible.

Similarly, if ab
2 does not exist, and aw

2 does exist, then only sub-cases (b) of the cases {(III), (IV)}.{1, 3, 5, 7} are
possible. Finally, if both aw

2 and ab
2 do not exist, then cases {(III), (IV)}.{1, 3, 5, 7} are not possible at all.

137

(II) If γ ∈ {bw,ww} and δ ∈ {bu,wu}, such that w 6= u, we set

a∗i =

{
awv |γ i = 2j − 1, j ∈ N
abv |δ otherwise

(A.55)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if ρ∗w =
〈a1, . . . , al〉, and ρ∗u = 〈a′1, . . . , a′l′〉, we set >v,w according to Eq. A.54 above, and >v,u
according to Eq. A.56 below.

>v,u =


⋃
a∗i∈ρ∗v

{a∗i < a′1}, ν = bu⋃
a∗i∈ρ∗v

{a∗i > a′1}, ν = wu, l
′ = 1⋃

a∗i∈ρ∗v
{a∗i > a′1} ∪ {a∗i < a′2}, δ = wu, l

′ > 1

(A.56)

Finally, here as well, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \
{u,w} are set to empty sets.

The relations >v here is identical to these in previous case, and relations >v,u and >v,w
are effectively identical to the relation >v,w in previous case. Thus, here as well, we have
>v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions of the elements of ρ∗v
and ρ∗u, and ρ∗v and ρ∗w, respectively.

From Eqs. A.53, A.54, A.56 we can now derive that any linearization of >v ∪
⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.55 implies that this action sequence provides to v the value
G[v] if the latter is specified.

(III) If γ = bw, δ = ww, we distinguish between a few cases based on σw and σv.

(1) If |ρ[v]| = 2y+ 1, |σw| = 2x, |σw| ≤ |ρ[v]|, then we construct two post-3/2 candidates for
ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost has to be
lower than cost(ρ[v]).

(a) All the changes of v to wv are done using action aw
1 , and then the maximally possible

number of changes to bv are done using action ab
1, with the remaining changes to bv

being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =


ab

1 i = 2j, j ∈ N, j < x

ab
2 i = 2j, j ∈ N, x ≤ j ≤ y
aw

1 otherwise

(A.57)

And the cost in this case is

(y + 1) · cost(aw
1) + (x− 1) · cost(ab

1) + (y − x+ 1) · cost(ab
2) (A.58)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, and ρ∗u = 〈a′1, . . . , a′l′〉, we set >v,w according to Eq. A.59, and
>v,u according to Eq. A.60.

>v,w=
[

a∗i ∈ρ
∗
v,aj∈ρ∗w

{a∗i < aj | i ≤ j < 2x− 1} ∪ {a∗i < a2x−1} ∪ {aj < a∗i | j < i, j < 2x− 1}

(A.59)

138

For each u ∈ pred(v) \ {w} we set,

>v,u=



⋃
a∗i∈ρ∗v

{a∗i < a′1}, ν = bu⋃
a∗i∈ρ∗v

{a∗i > a′1}, ν = wu, l
′ = 1⋃

a∗i∈ρ∗v
{a∗i > a′1} ∪ {a∗i < a′2}, ν = wu, l

′ > 1

∅, otherwise

. (A.60)

It is not hard to verify that the relation >v,w defined by Eq. A.59 is a strict total
order over its domain. Suppose to the contrary that for some i, j, both aj < a∗i and
a∗i < aj . Then from first inequality we have either i ≤ j < 2x− 1 or j = 2x− 1, and
from second we have j < i, j < 2x− 1.
The relations >v and >v,u are effectively identical to these in case (II). Thus, here as
well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions
of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.59, and A.60 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.57 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

1 i = 2j − 1, j ∈ N, j ≤ x
aw

2 i = 2j − 1, j ∈ N, x < j ≤ y + 1
ab

1 otherwise

(A.61)

And the cost in this case is

x · cost(aw
1) + (y + 1− x) · cost(aw

2) + y · cost(ab
1) (A.62)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, and ρ∗u = 〈a′1, . . . , a′l′〉, we set >v,w according to Eq. A.63, and
>v,u according to Eq. A.64.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i ≤ j} ∪ {aj < a∗i | j < i} (A.63)

For each u ∈ pred(v) \ {w} we set,

>v,u=



⋃
a∗i∈ρ∗v

{a∗i < a′1}, µ = bu⋃
a∗i∈ρ∗v

{a∗i > a′1}, µ = wu, l
′ = 1⋃

a∗i∈ρ∗v
{a∗i > a′1} ∪ {a∗i < a′2}, µ = wu, l

′ > 1

∅, otherwise

. (A.64)

The relation >v,w defined by Eq. A.63 is a strict total order over its domain. The
relations >v and >v,u are effectively identical to these in case (II). Thus, here as

139

well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions
of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.63, and A.64 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.61 implies that this
action sequence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y + x actions of both
types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y + x + 1

actions of types aw
1 and ab

1. Then it contains no more than y − x actions of other types.
Let bw · ww · . . . · bw sequence of 2y + 1 values of w that support cost-optimal plan for v
given that w can change it value any number of times. Then each action of other type
will decrease the needed length of this sequence in at most 2. Therefore at most y − x
actions of other type will decrease the length in at most 2y − 2x, and we are left with
the sequence of length ≥ 2y+ 1− (2y−2x) = 2x+ 1. Therefore σw cannot support more
than y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ[v] for v there are α actions of type aw
1 and β actions of type ab

1. Then

α+ β ≤ y + x (A.65)

and

cost(ρv) ≥ α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) (A.66)

For (A.58) ≤ (A.62), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.67)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.66 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

(y + 1) · cost(aw
1) + (x− 1) · cost(ab

1) + (y − x+ 1) · cost(ab
2)

and from it

(y + 1− α) · (cost(aw
2)− cost(aw

1)) < (β − x+ 1) · (cost(ab
2)− cost(ab

1)) (A.68)

From Eq. A.65 we have y + 1 − α ≥ β − x + 1, together with Eq. A.67 contradicting
Eq. A.68.
For (A.62) ≤ (A.58), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.69)

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.66 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

x · cost(aw
1) + (y − x+ 1) · cost(aw

2) + y · cost(ab
1)

140

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x) · (cost(aw
2)− cost(aw

1)) (A.70)

From Eq. A.65 we have y − β ≥ α− x, together with Eq. A.69 contradicting Eq. A.70.

(2) If |ρv| = 2y + 1, |σw| = 2x, |σw| > |ρv|, then the actions of ρ∗v are set to

a∗i =

{
awv |bw i = 2j − 1, j ∈ N
abv |ww otherwise

(A.71)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.63 above.
Finally, here as well, the ordering constraints >v,w′ for the rest of the parents w′ ∈
pred(v) \ {u,w} are set to empty sets.
The relations >v and >v,w are identical to the previous case. Thus, here as well, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and ρ∗w.
From Eqs. A.53, A.63 we can now derive that any linearization of >v ∪

⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.71 implies that this action sequence provides to v the
value G[v] if the latter is specified.

(3) If |ρv| = 2y, |σw| = 2x, |σw| < |ρv|, then we construct two post-3/2 candidates for ρ∗v,
and then assign ρ∗v to the cheapest among the two, proving that its cost has to be lower
than cost(ρ[v]).

(a) All the changes of v to wv are done using action aw
1 , and then the maximally possible

number of changes to bv are done using action ab
1, with the remaining changes to bv

being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =


ab

2 i = 2j, j ∈ N, j ≤ y − x
ab

1 i = 2j, j ∈ N, y − x < j ≤ y
aw

1 otherwise

(A.72)

And the cost in this case is

y · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2) (A.73)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.74.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i ≤ 2y − 2x+ j} ∪ {aj < a∗i | i > 2y − 2x+ j} (A.74)

For each u ∈ pred(v)\{w} we set >v,u according to Eq. A.60. It is easy to verify that
the relation >v,w defined by Eq. A.74 is a strict total order over its domain. The
relations >v and >v,u are effectively identical to the previous case. Thus, here as
well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions
of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.

141

From Eqs. A.53, A.60, and A.74 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.72 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

1 i = 2j − 1, j ∈ N, j ≤ x
aw

2 i = 2j − 1, j ∈ N, x < j ≤ y
ab

1 otherwise

(A.75)

And the cost in this case is

x · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1) (A.76)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.63 above.
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.64.
The relations >v, >v,w and >v,u are effectively identical to the previous case. Thus,
here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the
unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.63, and A.64 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.75 implies that this
action sequence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y + x actions of both
types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y + x + 1

actions of types aw
1 and ab

1. Then it contains no more than y − x − 1 actions of other
types. Let bw · ww · . . . · ww sequence of 2y values of w that support cost-optimal plan
for v given that w can change it value any number of times. Then each action of other
type will decrease the needed length of this sequence in at most 2. Therefore at most
y − x − 1 actions of other type will decrease the length in at most 2y − 2x − 2, and we
are left with the sequence of length ≥ 2y− (2y− 2x− 2) = 2x+ 2. Therefore σw cannot
support more than y + x actions of types aw

1 and ab
1. Now, suppose that in some given

cost-optimal plan ρ[v] for v there are α actions of type aw
1 and β actions of type ab

1. Then

α+ β ≤ y + x (A.77)

and

cost(ρv) ≥ α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) (A.78)

For (A.73) ≤ (A.76), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.79)

142

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.78 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

y · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2)

and from it

(y − α) · (cost(aw
2)− cost(aw

1)) < (β − x) · (cost(ab
2)− cost(ab

1)) (A.80)

From Eq. A.77 we have y − α ≥ β − x, together with Eq. A.79 contradicting Eq. A.80.
For (A.76) ≤ (A.73), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.81)

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.78 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

x · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1)

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x) · (cost(aw
2)− cost(aw

1)) (A.82)

From Eq. A.77 we have y − β ≥ α− x, together with Eq. A.81 contradicting Eq. A.82.

(4) If |ρv| = 2y, |σw| = 2x, |σw| ≥ |ρv|, then the actions of ρ∗v are set to

a∗i =

{
awv |bw i = 2j − 1, j ∈ N
abv |ww otherwise

(A.83)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.63 above. Finally, here as well,
the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {u,w} are set to
empty sets. The relations >v and >v,w are identical to the previous case. Thus, here as
well, we have >v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v
and ρ∗w.
From Eqs. A.53, A.63 we can now derive that any linearization of >v ∪

⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.83 implies that this action sequence provides to v the
value G[v] if the latter is specified.

(5) If |ρv| = 2y + 1, |σw| = 2x + 1, |σw| < |ρv|, then we construct two post-3/2 candidates
for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost has to
be lower than cost(ρ[v]).

143

(a) All the changes of v to wv are done using action aw
1 , and then the maximally possible

number of changes to bv are done using action ab
1, with the remaining changes to bv

being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =


ab

2 i = 2j, j ∈ N, j ≤ y − x
ab

1 i = 2j, j ∈ N, y − x < j ≤ y
aw

1 otherwise

(A.84)

And the cost in this case is

(y + 1) · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2) (A.85)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise,
if ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.74 above. For each u ∈
pred(v) \ {w} we set >v,u according to Eq. A.60 above. The relations >v, >v,w
and >v,u are effectively identical to the previous case. Thus, here as well, we have
>v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions of the elements
of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.60, and A.74 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.84 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

1 i = 2j − 1, j ∈ N, j ≤ x or j = y + 1
aw

2 i = 2j − 1, j ∈ N, x < j ≤ y
ab

1 otherwise

(A.86)

And the cost in this case is

(x+ 1) · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1) (A.87)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.88.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i ≤ j < 2x} ∪ {a∗i < a2x | i ≤ 2y}
∪{aj < a∗i | j < i, j < 2x} ∪ {a2x < a∗2y+1}

(A.88)

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.64 above.
It is easy to verify that the relation >v,w defined by Eq. A.88 is a strict total order
over its domain. The relations >v and >v,u are effectively identical to the previous
case. Thus, here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial
orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.64, and A.88 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.86 implies that this
action sequence provides to v the value G[v] if the latter is specified.

144

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y + x + 1 actions of
both types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y+x+2

actions of types aw
1 and ab

1. Then it contains no more than y − x − 1 actions of other
types. Let bw ·ww · . . . · bw sequence of 2y+ 1 values of w that support cost-optimal plan
for v given that w can change it value any number of times. Then each action of other
type will decrease the needed length of this sequence in at most 2. Therefore at most
y − x − 1 actions of other type will decrease the length in at most 2y − 2x − 2, and we
are left with the sequence of length ≥ 2y + 1 − (2y − 2x − 2) = 2x + 3. Therefore σw
cannot support more than y + x + 1 actions of types aw

1 and ab
1. Now, suppose that in

some given cost-optimal plan ρ[v] for v there are α actions of type aw
1 and β actions of

type ab
1. Then

α+ β ≤ y + x+ 1 (A.89)

and

cost(ρv) ≥ α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) (A.90)

For (A.85) ≤ (A.87), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.91)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.90 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

(y + 1) · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2)

and from it

(y + 1− α) · (cost(aw
2)− cost(aw

1)) < (β − x) · (cost(ab
2)− cost(ab

1)) (A.92)

From Eq. A.89 we have y+1−α ≥ β−x, together with Eq. A.91 contradicting Eq. A.92.
For (A.87) ≤ (A.85), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.93)

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.90 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

(x+ 1 · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1)

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x− 1) · (cost(aw
2)− cost(aw

1)) (A.94)

From Eq. A.89 we have y−β ≥ α−x−1, together with Eq. A.93 contradicting Eq. A.94.

145

(6) If |ρv| = 2y + 1, |σw| = 2x+ 1, |σw| ≥ |ρv|, the actions of ρ∗v are set to

a∗i =

{
awv |bw i = 2j − 1, j ∈ N
abv |ww otherwise

(A.95)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.63 above. Finally, here as well, the
ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {u,w} are set to
empty sets. The relations >v and >v,w are identical to the previous case. Thus, here as
well, we have >v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v
and ρ∗w.
From Eqs. A.53, A.63 we can now derive that any linearization of >v ∪

⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.95 implies that this action sequence provides to v the
value G[v] if the latter is specified.

(7) If |ρv| = 2y, |σw| = 2x + 1, |σw| ≤ |ρv|, then we construct two post-3/2 candidates for
ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost has to be
lower than cost(ρ[v]).
(a) All the changes of v to wv are done using action aw

1 , and then the maximally possible
number of changes to bv are done using action ab

1, with the remaining changes to bv
being done using action ab

2. For this candidate for ρ∗v, we set

a∗i =


ab

2 i = 2j, j ∈ N, j ≤ y − x
ab

1 i = 2j, j ∈ N, y − x < j ≤ y
aw

1 otherwise

(A.96)

And the cost in this case is

y · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2) (A.97)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise,
if ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.74 above. For each u ∈
pred(v) \ {w} we set >v,u according to Eq. A.60 above. The relations >v, >v,w
and >v,u are effectively identical to the previous case. Thus, here as well, we have
>v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions of the elements
of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.60, and A.74 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.96 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

1 i = 2j − 1, j ∈ N, j ≤ x
aw

2 i = 2j − 1, j ∈ N, x < j ≤ y
ab

1 otherwise

(A.98)

146

And the cost in this case is

x · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1) (A.99)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.100.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i ≤ j < 2x} ∪ {aj < a∗i | j < i, j < 2x} ∪ {a∗i < a2x}

(A.100)
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.64 above.
It is easy to verify that the relation >v,w defined by Eq. A.100 is a strict total order
over its domain. The relations >v and >v,u are effectively identical to the previous
case. Thus, here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial
orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.64, and A.100 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.98 implies that this
action sequence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y + x actions of both
types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y + x + 1

actions of types aw
1 and ab

1. Then it contains no more than y − x − 1 actions of other
types. Let bw · ww · . . . · ww sequence of 2y values of w that support cost-optimal plan
for v given that w can change it value any number of times. Then each action of other
type will decrease the needed length of this sequence in at most 2. Therefore at most
y − x − 1 actions of other type will decrease the length in at most 2y − 2x − 2, and we
are left with the sequence of length ≥ 2y− (2y− 2x− 2) = 2x+ 2. Therefore σw cannot
support more than y + x actions of types aw

1 and ab
1. Now, suppose that in some given

cost-optimal plan ρ[v] for v there are α actions of type aw
1 and β actions of type ab

1. Then

α+ β ≤ y + x (A.101)

and

cost(ρv) ≥ α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) (A.102)

For (A.97) ≤ (A.99), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.103)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.102 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

y · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2)

and from it

(y − α) · (cost(aw
2)− cost(aw

1)) < (β − x) · (cost(ab
2)− cost(ab

1)) (A.104)

147

From Eq. A.101 we have y−α ≥ β−x, together with Eq. A.103 contradicting Eq. A.104.
For (A.99) ≤ (A.97), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.105)

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.102 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

x · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1)

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x) · (cost(aw
2)− cost(aw

1)) (A.106)

From Eq. A.101 we have y−β ≥ α−x, together with Eq. A.105 contradicting Eq. A.106.

(8) If |ρv| = 2y, |σw| = 2x+ 1, |σw| > |ρv|, then the actions of ρ∗v are set to

a∗i =

{
awv |bw i = 2j − 1, j ∈ N
abv |ww otherwise

(A.107)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.63 above. Finally, here as well, the
ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {u,w} are set to
empty sets. The relations >v and >v,w are identical to the previous case. Thus, here as
well, we have >v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v
and ρ∗w.
From Eqs. A.53, A.63 we can now derive that any linearization of >v ∪

⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.107 implies that this action sequence provides to v the
value G[v] if the latter is specified.

(IV) If γ = ww, δ = bw, we distinguish between a few cases based on σw and σv.

(1) If |ρv| = 2y + 1, |σw| = 2x, |σw| ≤ |ρv|, then we construct two post-3/2 candidates for
ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost has to be
lower than cost(ρ[v]).

(a) All the changes of v to wv are done using action aw
1 , and then the maximally possible

number of changes to bv are done using action ab
1, with the remaining changes to bv

being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =


ab

2 i = 2j, j ∈ N, j ≤ y − x+ 1
ab

1 i = 2j, j ∈ N, y − x+ 1 < j ≤ y
aw

1 otherwise

(A.108)

And the cost in this case is

(y + 1) · cost(aw
1) + (x− 1) · cost(ab

1) + (y − x+ 1) · cost(ab
2) (A.109)

148

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.110.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i < j} ∪ {aj < a∗i | j ≤ i} (A.110)

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.60.
It is easy to verify that the relation >v,w defined by Eq. A.110 is a strict total order
over its domain. The relations >v and >v,u are effectively identical to the previous
case. Thus, here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial
orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.60, and A.110 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.108 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

2 i = 2j − 1, j ∈ N, j ≤ y − x+ 1
aw

1 i = 2j − 1, j ∈ N, y − x+ 1 < j ≤ y + 1
ab

1 otherwise

(A.111)

And the cost in this case is

x · cost(aw
1) + (y + 1− x) · cost(aw

2) + y · cost(ab
1) (A.112)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.113.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i ≤ 2y − 2x+ 1 + j} ∪ {aj < a∗i | i > 2y − 2x+ 1 + j}

(A.113)
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.64.
It is easy to verify that the relation >v,w defined by Eq. A.113 is a strict total order
over its domain. The relations >v and >v,u are effectively identical to the previous
case. Thus, here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial
orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.64, and A.113 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.111 implies that this
action sequence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y + x actions of both
types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y + x + 1

actions of types aw
1 and ab

1. Then it contains no more than y − x actions of other types.
Let ww · wb · . . . · ww sequence of 2y + 1 values of w that support cost-optimal plan for v

149

given that w can change it value any number of times. Then each action of other type
will decrease the needed length of this sequence in at most 2. Therefore at most y − x
actions of other type will decrease the length in at most 2y − 2x, and we are left with
the sequence of length ≥ 2y+ 1− (2y−2x) = 2x+ 1. Therefore σw cannot support more
than y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ[v] for v there are α actions of type aw
1 and β actions of type ab

1. Then

α+ β ≤ y + x (A.114)

and

cost(ρv) ≥ α · cost(aw
1) + (y+ 1−α) · cost(aw

2) + β · cost(ab
1) + (y− β) · cost(ab

2) (A.115)

For (A.109) ≤ (A.112), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.116)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.115 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

(y + 1) · cost(aw
1) + (x− 1) · cost(ab

1) + (y − x+ 1) · cost(ab
2)

and from it

(y + 1− α) · (cost(aw
2)− cost(aw

1)) < (β − x+ 1) · (cost(ab
2)− cost(ab

1)) (A.117)

From Eq. A.114 we have y + 1 − α ≥ β − x + 1, together with Eq. A.116 contradicting
Eq. A.117.
For (A.112) ≤ (A.109), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.118)

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.115 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

x · cost(aw
1) + (y − x+ 1) · cost(aw

2) + y · cost(ab
1)

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x) · (cost(aw
2)− cost(aw

1)) (A.119)

From Eq. A.114 we have y−β ≥ α−x, together with Eq. A.118 contradicting Eq. A.119.

(2) If |ρv| = 2y + 1, |σw| = 2x, |σw| > |ρv|, then the actions of ρ∗v are set to

a∗i =

{
awv |ww i = 2j − 1, j ∈ N
abv |bw otherwise

(A.120)

150

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.110 above.
Finally, here as well, the ordering constraints >v,w′ for the rest of the parents w′ ∈
pred(v) \ {u,w} are set to empty sets.
The relations >v and >v,w are identical to the previous case. Thus, here as well, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and ρ∗w.
From Eqs. A.53, A.110 we can now derive that any linearization of >v ∪

⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.120 implies that this action sequence provides to v the
value G[v] if the latter is specified.

(3) If |ρv| = 2y, |σw| = 2x, |σw| ≤ |ρv| + 1, then we construct two post-3/2 candidates for
ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost has to be
lower than cost(ρ[v]).

(a) All the changes of v to wv are done using action aw
1 , and then the maximally possible

number of changes to bv are done using action ab
1, with the remaining changes to bv

being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =


ab

1 i = 2j, j ∈ N, j < x

ab
2 i = 2j, j ∈ N, x ≤ j ≤ y
aw

1 otherwise

(A.121)

And the cost in this case is

y · cost(aw
1) + (x− 1) · cost(ab

1) + (y − x+ 1) · cost(ab
2) (A.122)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.110 above.
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.60.
The relations >v, >v,w and >v,u are effectively identical to the previous case. Thus,
here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the
unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.60, and A.110 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.121 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

2 i = 2j − 1, j ∈ N, j ≤ y − x+ 1
aw

1 i = 2j − 1, j ∈ N, y − x+ 1 < j ≤ y
ab

1 otherwise

(A.123)

And the cost in this case is

(x− 1) · cost(aw
1) + (y − x+ 1) · cost(aw

2) + y · cost(ab
1) (A.124)

151

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.113 above.
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.64.
The relations >v, >v,w and >v,u are effectively identical to the previous case. Thus,
here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the
unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.64, and A.113 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.123 implies that this
action sequence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y+x−1 actions of both
types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y+ x actions

of types aw
1 and ab

1. Then it contains no more than y − x actions of other types. Let
ww ·bw · . . . ·bw sequence of 2y values of w that support cost-optimal plan for v given that
w can change it value any number of times. Then each action of other type will decrease
the needed length of this sequence in at most 2. Therefore at most y − x actions of
other type will decrease the length in at most 2y− 2x, and we are left with the sequence
of length ≥ 2y − (2y − 2x) = 2x, which have to be a subsequence of σw, contradicting
with the fact that σw is of the same or smaller size and starts with a different character.
Therefore σw cannot support more than y+x actions of types aw

1 and ab
1. Now, suppose

that in some given cost-optimal plan ρ[v] for v there are α actions of type aw
1 and β

actions of type ab
1. Then

α+ β ≤ y + x (A.125)

and

cost(ρv) ≥ α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) (A.126)

For (A.122) ≤ (A.124), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.127)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.126 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

y · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2)

and from it

(y − α) · (cost(aw
2)− cost(aw

1)) < (β − x) · (cost(ab
2)− cost(ab

1)) (A.128)

From Eq. A.125 we have y−α ≥ β−x, together with Eq. A.127 contradicting Eq. A.128.
For (A.124) ≤ (A.122), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.129)

152

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.126 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

x · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1)

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x) · (cost(aw
2)− cost(aw

1)) (A.130)

From Eq. A.125 we have y−β ≥ α−x, together with Eq. A.129 contradicting Eq. A.130.

(4) If |ρv| = 2y, |σw| = 2x, |σw| > |ρv|+ 1, then the actions of ρ∗v are set to

a∗i =

{
awv |ww i = 2j − 1, j ∈ N
abv |bw otherwise

(A.131)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.110 above.
Finally, here as well, the ordering constraints >v,w′ for the rest of the parents w′ ∈
pred(v) \ {u,w} are set to empty sets.
The relations >v and >v,w are identical to the previous case. Thus, here as well, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and ρ∗w.
From Eqs. A.53, A.110 we can now derive that any linearization of >v ∪

⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.131 implies that this action sequence provides to v the
value G[v] if the latter is specified.

(5) If |ρv| = 2y+1, |σw| = 2x+1, |σw| ≤ |ρv|+1, then we construct two post-3/2 candidates
for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost has to
be lower than cost(ρ[v]).

(a) All the changes of v to wv are done using action aw
1 , and then the maximally possible

number of changes to bv are done using action ab
1, with the remaining changes to bv

being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =


ab

1 i = 2j, j ∈ N, j < x

ab
2 i = 2j, j ∈ N, x ≤ j ≤ y
aw

1 otherwise

(A.132)

And the cost in this case is

(y + 1) · cost(aw
1) + (x− 1) · cost(ab

1) + (y − x+ 1) · cost(ab
2) (A.133)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.134.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i < j < 2x} ∪ {aj < a∗i | j ≤ i, j < 2x} ∪ {a∗i < a2x}

(A.134)

153

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.60.
It is easy to verify that the relation >v,w defined by Eq. A.134 is a strict total order
over its domain. The relations >v and >v,u are effectively identical to the previous
case. Thus, here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial
orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.60, and A.134 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.132 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

2 i = 2j − 1, j ∈ N, j ≤ y − x or j = y + 1
aw

1 i = 2j − 1, j ∈ N, y − x < j ≤ y
ab

1 otherwise

(A.135)

And the cost in this case is

x · cost(aw
1) + (y + 1− x) · cost(aw

2) + y · cost(ab
1) (A.136)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.137.

>v,w=
⋃

a∗i∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i < 2y − 2x+ j} ∪ {aj < a∗i | i ≥ 2y − 2x+ j}

(A.137)
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.64.
It is easy to verify that the relation >v,w defined by Eq. A.137 is a strict total order
over its domain. The relations >v and >v,u are effectively identical to the previous
case. Thus, here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial
orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.64, and A.137 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.135 implies that this
action sequence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y + x + 1 actions of
both types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y+x+2

actions of types aw
1 and ab

1. Then it contains no more than y − x − 1 actions of other
types. Let ww ·bw · . . . ·ww sequence of 2y+ 1 values of w that support cost-optimal plan
for v given that w can change it value any number of times. Then each action of other
type will decrease the needed length of this sequence in at most 2. Therefore at most
y − x − 1 actions of other type will decrease the length in at most 2y − 2x − 2, and we
are left with the sequence of length ≥ 2y + 1 − (2y − 2x − 2) = 2x + 3. Therefore σw
cannot support more than y + x + 1 actions of types aw

1 and ab
1. Now, suppose that in

154

some given cost-optimal plan ρ[v] for v there are α actions of type aw
1 and β actions of

type ab
1. Then

α+ β ≤ y + x+ 1 (A.138)

and

cost(ρv) ≥ α · cost(aw
1) + (y+ 1−α) · cost(aw

2) + β · cost(ab
1) + (y− β) · cost(ab

2) (A.139)

For (A.133) ≤ (A.136), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.140)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.139 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

(y + 1) · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2)

and from it

(y + 1− α) · (cost(aw
2)− cost(aw

1)) < (β − x) · (cost(ab
2)− cost(ab

1)) (A.141)

From Eq. A.138 we have y + 1 − α ≥ β − x, together with Eq. A.140 contradicting
Eq. A.141.
For (A.136) ≤ (A.133), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.142)

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.139 we have

α · cost(aw
1) + (y + 1− α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

(x+ 1 · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1)

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x− 1) · (cost(aw
2)− cost(aw

1)) (A.143)

From Eq. A.138 we have y − β ≥ α − x − 1, together with Eq. A.142 contradicting
Eq. A.143.

(6) If |ρv| = 2y + 1, |σw| = 2x+ 1, |σw| > |ρv|+ 1, then the actions of ρ∗v are set to

a∗i =

{
awv |ww i = 2j − 1, j ∈ N
abv |bw otherwise

(A.144)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.110 above.
Finally, here as well, the ordering constraints >v,w′ for the rest of the parents w′ ∈
pred(v) \ {u,w} are set to empty sets.

155

The relations >v and >v,w are identical to the previous case. Thus, here as well, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and ρ∗w.
From Eqs. A.53, A.110 we can now derive that any linearization of >v ∪

⋃
w∈pred(v)>v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ[v]| together with Eq. A.144 implies that this action sequence provides to v the
value G[v] if the latter is specified.

(7) If |ρv| = 2y, |σw| = 2x + 1, |σw| ≤ |ρv|, then we construct two post-3/2 candidates for
ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost has to be
lower than cost(ρ[v]).

(a) All the changes of v to wv are done using action aw
1 , and then the maximally possible

number of changes to bv are done using action ab
1, with the remaining changes to bv

being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =


ab

2 i = 2j, j ∈ N, j ≤ y − x
ab

1 i = 2j, j ∈ N, y − x < j ≤ y
aw

1 otherwise

(A.145)

And the cost in this case is

y · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2) (A.146)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x〉, we set >v,w according to Eq. A.147.

>v,w=
[

a∗i ∈ρ
∗
v,aj∈ρ∗w

{a∗i < aj | i < 2y − 2x+ j, j > 1} ∪ {aj < a∗i | i ≥ 2y − 2x+ j} ∪ {a1 < a∗i }

(A.147)

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.60.
It is easy to verify that the relation >v,w defined by Eq. A.147 is a strict total order
over its domain. The relations >v and >v,u are effectively identical to the previous
case. Thus, here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial
orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.60, and A.147 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.145 implies that this
action sequence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the maximally possible

number of changes to wv are done using action aw
1 , with the remaining changes to

wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =


aw

2 i = 2j − 1, j ∈ N, j ≤ y − x
aw

1 i = 2j − 1, j ∈ N, y − x < j ≤ y
ab

1 otherwise

(A.148)

And the cost in this case is

x · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1) (A.149)

156

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.137 above.
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. A.64 above.
The relations >v, >v,w and >v,u are effectively identical to the previous case. Thus,
here as well, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the
unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. A.53, A.64, and A.137 we can now derive that any linearization of >v
∪⋃w∈pred(v)>v,w defines a sequence of actions that is applicable with respect to
{v} ∪ pred(v). In addition, |ρ∗v| = |ρ[v]| together with Eq. A.148 implies that this
action sequence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ[v] cannot contain more than y + x actions of both
types aw

1 and ab
1 totally. Suppose to the contrary that ρ[v] contain at least y + x + 1

actions of types aw
1 and ab

1. Then it contains no more than y − x − 1 actions of other
types. Let ww · bw · . . . · bw sequence of 2y values of w that support cost-optimal plan for
v given that w can change it value any number of times. Then each action of other type
will decrease the needed length of this sequence in at most 2. Therefore at most y−x−1
actions of other type will decrease the length in at most 2y−2x−2, and we are left with
the sequence of length ≥ 2y− (2y−2x−2) = 2x+ 2. Therefore σw cannot support more
than y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ[v] for v there are α actions of type aw
1 and β actions of type ab

1. Then

α+ β ≤ y + x (A.150)

and

cost(ρv) ≥ α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) (A.151)

For (A.146) ≤ (A.149), we have

cost(ab
2)− cost(ab

1) ≤ cost(aw
2)− cost(aw

1) (A.152)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then from
Eq. A.151 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

y · cost(aw
1) + x · cost(ab

1) + (y − x) · cost(ab
2)

and from it

(y − α) · (cost(aw
2)− cost(aw

1)) < (β − x) · (cost(ab
2)− cost(ab

1)) (A.153)

From Eq. A.150 we have y−α ≥ β−x, together with Eq. A.152 contradicting Eq. A.153.
For (A.149) ≤ (A.146), we have

cost(aw
2)− cost(aw

1) ≤ cost(ab
2)− cost(ab

1) (A.154)

Now suppose to the contrary that the plan in second case is not cost-optimal. Then from
Eq. A.151 we have

α · cost(aw
1) + (y − α) · cost(aw

2) + β · cost(ab
1) + (y − β) · cost(ab

2) <

x · cost(aw
1) + (y − x) · cost(aw

2) + y · cost(ab
1)

157

and from it

(y − β) · (cost(ab
2)− cost(ab

1)) < (α− x) · (cost(aw
2)− cost(aw

1)) (A.155)

From Eq. A.150 we have y−β ≥ α−x, together with Eq. A.154 contradicting Eq. A.155.

(8) If |ρv| = 2y, |σw| = 2x+ 1, |σw| > |ρv|, then the actions of ρ∗v are set to

a∗i =

{
awv |ww i = 2j − 1, j ∈ N
abv |bw otherwise

(A.156)

Here as well, the ordering constraints >v are set according to Eq. A.53. Likewise, if
ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. A.110 above.
Finally, here as well, the ordering constraints >v,w′ for the rest of the parents w′ ∈
pred(v) \ {u,w} are set to empty sets.
The relations >v and >v,w are identical to the previous case. Thus, here as well, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and ρ∗w.

Until now, we have specified the sequences ρ∗v, the orders >v induced by these sequences, the orders
>v,w, and proved that all >v ∪ >v,w and >w ∪ >v,w form strict partial orders over their domains.
This construction allows us to apply now Theorem 22 to the (considered as sets) sequences ρ∗v and
orders >v and >v,w, proving that

>=
⋃
v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρ∗v1
, . . . , ρ∗vn . Putting thing together, the above implies

that any linearization ρ∗ of > is a plan for Π, and post-3/2ness of all its subsequences ρ∗v1
, . . . , ρ∗vn

then implies ρ∗ ∈ P3/2(Π). Moreover, if ρ is an optimal plan for Π, then cost(ρ∗) = cost(ρ) implies
the optimality of ρ∗.

A.3.2 Construction

Given a post-3/2 action sequence % from A and a variable v ∈ V , we can distinguish between the
following exhaustive roles of each parent w ∈ pred(v) with respect to v along %.

R1 All the actions in % that change the value of v are supported by the same value of w.
That is, for some γ ∈ {bw,ww}, if a ∈ %v, then a ∈ {abv |γ , awv |γ}.

R2 All the actions in % that change the value of v to wv are supported by the same value of w, and
all the actions in % that change the value of v to bv are supported by another value of w.
That is, for some γ 6= δ ∈ {bw,ww}, if a ∈ %v, then a ∈ {abv |γ , awv |δ}.

R3 All the actions in % that change the value of v to wv are supported by the same value of w, and
none of the actions in % that change the value of v to bv are supported by w.
That is, for some γ ∈ {bw,ww} and δ 6∈ {bw,ww}, if a ∈ %v, then a ∈ {abv |δ, awv |γ}.

R4 All the actions in % that change the value of v to bv are supported by the same value of w, and
none of the actions in % that change the value of v to wv are supported by w.
That is, for some γ ∈ {bw,ww} and δ 6∈ {bw,ww}, if a ∈ %v, then a ∈ {abv |γ , awv |δ}.

158

R5 All the actions in % that change the value of v to wv are supported by the same value of w, and
all the actions in % that change the value of v to bv are supported by two values of w.
That is, for some γ 6= δ ∈ {bw,ww}, if a ∈ %v, then a ∈ {awv |γ , abv |δ, abv |γ}.

R6 All the actions in % that change the value of v to bv are supported by the same value of w, and
all the actions in % that change the value of v to wv are supported by two values of w.
That is, for some γ 6= δ ∈ {bw,ww}, if a ∈ %v, then a ∈ {abv |γ , awv |δ, awv |γ}.

R7 All the actions in % that change the value of v to wv are supported by the same value of w, and
some of the actions in % that change the value of v to bv are supported by another value of w
and others are supported by another parent.
That is, for some γ 6= δ ∈ {bw,ww} and µ 6∈ {bw,ww}, if a ∈ %v, then a ∈ {awv |γ , abv |δ, abv |µ}.

R8 All the actions in % that change the value of v to bv are supported by the same value of w, and
some of the actions in % that change the value of v to wv are supported by another value of w
and others are supported by another parent.
That is, for some γ 6= δ ∈ {bw,ww} and µ 6∈ {bw,ww}, if a ∈ %v, then a ∈ {abv |γ , awv |δ, awv |µ}.

R9 Part of the actions in % that change the value of v to bv are supported by the same value of w,
and none of the actions in % that change the value of v to wv are supported by the same value
of w.

R10 Part of the actions in % that change the value of v to wv are supported by the same value of w,
and none of the actions in % that change the value of v to bv are supported by the same value
of w.

R11 None of the actions in % are supported by w.
That is, if aα|γ ∈ %, then γ 6∈ {bw,ww}.

For a given post-3/2 action sequence % from A and a variable v ∈ V , each parent of v performs
one of the roles R1-R11 with respect to v along %, and each of the roles R1-R10 is performed by
at most one of the parents of v. In addition, there are sets of roles that cannot be simultaneously
performed by the parents of v with respect to v and the same action sequence %, and there are roles
that have to be performed in pairs. Specifically,

• If one of the roles {R1,R2,R5,R6} is played by some parent w′ ∈ pred(v), then R11 must be
played by all other parents w ∈ pred(v) \ {w′}.

• If R3/R7/R8 is played by some parent w1 ∈ pred(v), then R4/R9/R10, respectively, must
be played by some parent w2 ∈ pred(v) \ {w1}, and R11 must be played by all other parents
w ∈ pred(v) \ {w1, w2}.

Considering a variable v and its parents pred(v) through the lens of these eleven roles, suppose
we now aim at assigning these roles to pred(v) by considering them one after another in some
arbitrary order. Given the aforementioned constraints on the role assignment, at each step of this
sequential process we can be in one of the following eight states, with the whole process being
described by a state machine depicted in Fig. A.6.

S1 All the roles R1-R11 are still available (to be assigned to the parents of v).

159

GFED@ABCS2

R3

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

R11

GFED@ABCS3

R4

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

R11

GFED@ABCS4
R7

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

R11

start // GFED@ABCS1
R1,R2,R5,R6 //

R9

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

R3

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

R4

77ppppppppppppppppppppppppppppppppppppp

R10

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

R7

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

R8

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

R11

 GFED@ABC?>=<89:;S8

R11

GFED@ABCS5

R8

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

R11

GFED@ABCS6

R9

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
R11

GFED@ABCS7

R10

77ppppppppppppppppppppppppppppppppppppp
R11

Figure A.6: State machine describing the process of “sequential” role assignment to the parents of
v (with respect to v). Each transition is labeled with a set of roles, one of whose is getting assigned
to a parent of v at the corresponding step.

S2 Only roles {R3,R11} are still available.

S3 Only roles {R4,R11} are available.

S4 Only roles {R7,R11} are available.

S5 Only roles {R8,R11} are available.

S6 Only roles {R9,R11} are available.

S7 Only roles {R10,R11} are available.

S8 Only role R11 is available.

Given this language of “roles” and “states”, we now proceed with specifying our constraint
optimization problem COPΠ = (X ,F) for a task Π = 〈V ,A, I ,G, cost〉 ∈ P(1). In what follows,
for each variable v ∈ V , we assume a fixed (arbitrary chosen) numbering {w1, . . . , wk} of pred(v)
with respect to v.

1. Similarly to the uniform-cost case, the variable set X contains a variable xv for each planning
variable v ∈ V , and a variable xwv for each edge (w, v) ∈ CG(Π). That is,

X = X V ∪ X E

X V = {xv | v ∈ V }
X E = {xwv | (w, v) ∈ CG(Π)}

(A.157)

160

2. For each variable xv ∈ X V , the domain D(xv) consists of all possible valid prefixes of σ(v).
For each variable xwiv ∈ X E , the domain D(xwiv) consists of all possible quadruples satisfying
Eq. A.158.

D(xv) = {σv ∈ �∗[σ(v)]}

D(xwiv) =
{

JS,#w,#b, ηK
∣∣∣∣ 0 ≤ η ≤ n, 0 ≤ #w,#b ≤ dη2e

S ∈ {S1, . . . ,S8}

} (A.158)

The semantics of Eq. A.158 is as follows. Let {w1, . . . , wk} be an arbitrary fixed ordering of
pred(v). If xv takes the value σv ∈ D(xv), then v is forced to provide the sequence of values σv.
In turn, if xwiv takes the value JS,#w,#b, ηK, then η corresponds to the number of value changes
of v, #w and #b correspond to the number of value changes of v to wv and bv, respectively,
that should be performed by the actions prevailed by the values of {w1, . . . , wi}, and the state-
component S captures the roles that can be assigned to the parents {w1, . . . , wi}.

3. Similarly to the uniform-cost case, for each variable x ∈ X , the set F contains a non-negative,
real-valued function ϕx with the scope

Qx =


{xv}, x = xv, k = 0
{xv, xwkv }, x = xv, k > 0
{xw1

v , xw1}, x = xw1
v , k > 0

{xwjv , x
wj−1
v , xwj}, x = x

wj
v , 1 < j ≤ k

(A.159)

where pred(v) = {w1, . . . , wk} (with k = 0 meaning pred(v) = ∅).

Proceeding now with specifying the functional components F of COPΠ, first, for each xv with
pred(v) = ∅, and for each σv ∈ �∗[v], we set ϕxv(σv) according to Eq. A.160.

ϕxv(σv) =


0, |σv| = 1,
cost(awv), |σv| = 2, awv ∈ Av,
d |σv |−1

2 e · cost(awv) + b |σv |−1
2 c · cost(abv), |σv| > 2, awv , abv ∈ Av,

∞, otherwise

(A.160)

In turn, for each planning variable v ∈ V with pred(v) = {w1, . . . , wk}, k > 0, the function ϕxv is
set as in Eq. A.161.

ϕxv(σv, JS,#w,#b, ηK) =


0, |σv| = 1, JS,#w,#b, ηK = JS8, 0, 0, 0K,
0, |σv| > 1, JS,#w,#b, ηK = JS1, d |σv |−1

2 e, b |σv |−1
2 c, |σv| − 1K,

∞, otherwise
(A.161)

The semantics of Eq. A.161 is simple—if no value changes of v are required, then trivially no
support of pred(v) to v is needed; otherwise, all possible roles for pred(v) should be considered.

Now, we proceed with specifying a generic function ϕ that, for each v ∈ V , each w ∈ pred(v),
and each (R, JS,#w,#b, ηK, σw) ∈ {R1, . . . ,R10} × D(xwv) × D(xw), provides the marginal over

161

the actions Av cost of w taking the role R, and under this role, supporting #w changes of v to
wv and #b changes of v to bv, out of total η changes of v needed. For ease of presentation, let
ξ(x1, x2, y1, y2) denote the cost of an action sequence consisting of x1 actions of type awv |bw , x2

actions of type awv |ww , y1 actions of type abv |ww , y2 actions of type abv |bw , that is

ξ(x1, x2, y1, y2) = x1 · cost(awv |bw) + x2 · cost(awv |ww) + y1 · cost(abv |ww) + y2 · cost(abv |bw) (A.162)

While the notation ξv,w is probably more appropriate for the semantics of ξ, we adopt the latter
for its shortness because the identity of v and w will always be clear from the context.

The Eqs. A.163-A.172 below specify ϕ (R, JS,#w,#b, ηK, σw) for R ∈ {R1, . . . ,R10}. The se-
mantics of ϕ (R, JS,#w,#b, ηK, σw) is to capture the minimal accumulative cost over the actions
from Av to achieve #w and #b (out of η) value changes of v under the support of the parent w
playing the role R with respect to v. For example, role R3 means supporting all the actions that
change the value of v to wv, and Eq. A.165 gives us the minimal cost of this support in terms of
the accumulative cost of the supported actions from Av. These minimal costs are taken from the
relevant cases in the proof of Theorem 26, notably

(Eq. A.163) Case (I).

(Eq. A.164) Cases {(III), (IV)}.{2, 4, 6, 8}.

(Eq. A.165) Case (II), the cost of all actions that change the value of v to wv.

(Eq. A.166) Case (II), the cost of all actions that change the value of v to bv.

(Eq. A.167) Cases {(III), (IV)}.{1, 3, 5, 7}.a, the minimal cost.

(Eq. A.168) Cases {(III), (IV)}.{1, 3, 5, 7}.b, the minimal cost.

(Eq. A.169) Cases {(III), (IV)}.{1, 3, 5, 7}.a, the cost of all actions prevailed by one parent.

(Eq. A.170) Cases {(III), (IV)}.{1, 3, 5, 7}.b, the cost of all actions prevailed by one parent.

(Eq. A.171) The residue of cases {(III), (IV)}.{1, 3, 5, 7}.a. (Together with Eq. A.169 this gives
us the full cost of changing v as required.)

(Eq. A.172) The residue of cases {(III), (IV)}.{1, 3, 5, 7}.b. (Together with Eq. A.169 this gives
us the full cost of changing v as required.)

ϕ (R1, JS,#w,#b, ηK, σw) =

8>>>><>>>>:
ξ(#w, 0, 0,#b), |σw| = 1,#w = d η

2
e,#b = b η

2
c

min

(
ξ(#w, 0, 0,#b),

ξ(0,#w,#b, 0)

)
, |σw| > 1,#w = d η

2
e,#b = b η

2
c

∞, otherwise

(A.163)

ϕ(R2, JS,#w,#b, ηK, σw) =

8>>>><>>>>:
ξ(#w, 0,#b, 0), |σw| = η ≥ 2,#w = d η

2
e,#b = b η

2
c

min

(
ξ(#w, 0,#b, 0),

ξ(0,#w, 0,#b)

)
, |σw| > η ≥ 2,#w = d η

2
e,#b = b η

2
c

∞, otherwise

(A.164)

162

ϕ(R3, JS,#w,#b, ηK, σw) =

8>>><>>>:
#w · cost(awv|bw), |σw| = 1,#w = d η

2
e,#b = 0

min

(
#w · cost(awv|bw),

#w · cost(awv|ww)

)
, |σw| > 1,#w = d η

2
e,#b = 0

∞, otherwise

(A.165)

ϕ(R4, JS,#w,#b, ηK, σw) =

8>>><>>>:
#b · cost(abv|bw), |σw| = 1,#w = 0,#b = b η

2
c

min

(
#b · cost(abv|bw),

#b · cost(abv|ww)

)
, |σw| > 1,#w = 0,#b = b η

2
c

∞, otherwise

(A.166)

ϕ(R5, JS,#w,#b, ηK, σw) =

8>>><>>>:

min

(
ξ(y + 1, 0, x− 1, y − x+ 1),

ξ(0, y + 1, y − x+ 1, x− 1)

)
,

η = 2y + 1, |σw| = 2x, 1 < x ≤ y,
#w = y + 1,#b = y

min

(
ξ(y, 0, x, y − x),

ξ(0, y, y − x+ 1, x− 1)

)
,

η = 2y, |σw| = 2x, 1 < x < y,

#w = #b = y

ξ(y, 0, 1, y − 1),
η = 2y, |σw| = 2, 1 < y,

#w = #b = y

ξ(0, y, 1, y − 1),
η = |σw| = 2y, 1 < y,

#w = #b = y

min

(
ξ(y + 1, 0, x, y − x),

ξ(0, y + 1, y − x+ 1, x− 1)

)
,

η = 2y + 1, |σw| = 2x+ 1, 1 < x < y,

#w = y + 1,#b = y

ξ(y + 1, 0, 1, y − 1),
η = 2y + 1, |σw| = 3, 1 < y,

#w = y + 1,#b = y

ξ(0, y + 1, 1, y − 1),
η = |σw| = 2y + 1, 1 < y,

#w = y + 1,#b = y

min

(
ξ(y, 0, x, y − x),

ξ(0, y, y − x, x)

)
,

η = 2y, |σw| = 2x+ 1, 1 ≤ x < y,

#w = #b = y

∞, otherwise

(A.167)

163

ϕ(R6, JS,#w,#b, ηK, σw) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

min

(
ξ(x, y + 1− x, y, 0),

ξ(y + 1− x, x, 0, y)

)
,

η = 2y + 1, |σw| = 2x, 1 ≤ x ≤ y,
#w = y + 1,#b = y

min

(
ξ(x, y − x, y, 0),

ξ(y − x+ 1, x− 1, 0, y)

)
,

η = 2y, |σw| = 2x, 1 < x < y,

#w = #b = y

ξ(1, y − 1, y, 0),
η = 2y, |σw| = 2, 1 < y,

#w = #b = y

ξ(1, y − 1, 0, y),
η = |σw| = 2y, 1 < y,

#w = #b = y

min

(
ξ(x+ 1, y − x, y, 0),

ξ(y − x+ 1, x, 0, y)

)
,

η = 2y + 1, |σw| = 2x+ 1, 1 ≤ x < y,

#w = y + 1,#b = y

ξ(1, y, 0, y),
η = |σw| = 2y + 1, 1 ≤ y,
#w = y + 1,#b = y

min

(
ξ(x, y − x, y, 0),

ξ(y − x, x, 0, y)

)
,

η = 2y, |σw| = 2x+ 1, 1 ≤ x < y,

#w = #b = y

∞, otherwise

(A.168)

ϕ(R7, JS,#w,#b, ηK, σw) =

8>>><>>>:

min

(
ξ(y + 1, 0, x− 1, 0),

ξ(0, y + 1, 0, x− 1)

)
,

η = 2y + 1, |σw| = 2x, 1 < x ≤ y,
#w = y + 1,#b = x− 1

ξ(y, 0, x, 0),

cost(awv|bw) < cost(awv|ww),

η = 2y, |σw| = 2x, 1 ≤ x < y,

#w = y,#b = x

ξ(0, y, 0, x− 1),

cost(awv|bw) ≥ cost(awv|ww),

η = 2y, |σw| = 2x, 1 < x ≤ y,
#w = y,#b = x− 1

ξ(y + 1, 0, x, 0),

cost(awv|bw) < cost(awv|ww),

η = 2y + 1, |σw| = 2x+ 1, 1 ≤ x < y,

#w = y + 1,#b = x

ξ(0, y + 1, 0, x− 1),

cost(awv|bw) ≥ cost(awv|ww),

η = 2y + 1, |σw| = 2x+ 1, 1 < x ≤ y,
#w = y + 1,#b = x− 1

min

(
ξ(y, 0, x, 0),

ξ(0, y, 0, x)

)
,

η = 2y, |σw| = 2x+ 1, 1 ≤ x < y,

#w = y,#b = x

∞, otherwise

(A.169)

164

ϕ(R8, JS,#w,#b, ηK, σw) =

8>><>>:

min

(
ξ(x, 0, y, 0),

ξ(0, x, 0, y)

)
,

η = 2y + 1, |σw| = 2x, 1 ≤ x ≤ y,
#w = x,#b = y

ξ(x, 0, y, 0),

cost(awv|bw) < cost(awv|ww),

η = 2y, |σw| = 2x, 1 ≤ x < y,

#w = x,#b = y

ξ(0, x− 1, 0, y),

cost(awv|bw) ≥ cost(awv|ww),

η = 2y, |σw| = 2x, 1 < x ≤ y,
#w = x− 1,#b = y

ξ(x+ 1, 0, y, 0),
η = 2y + 1, |σw| = 2x+ 1, 1 ≤ x < y,

#w = x+ 1,#b = y

ξ(0, x, 0, y),
η = 2y + 1, |σw| = 2x+ 1, 1 ≤ x ≤ y,
#w = x,#b = y

min

(
ξ(x, 0, y, 0),

ξ(0, x, 0, y)

)
,

η = 2y, |σw| = 2x+ 1, 1 ≤ x < y,

#w = x,#b = y

∞, otherwise

(A.170)

ϕ(R9, JS,#w,#b, ηK, σw) =

8>>>><>>>>:
#b · cost(abv|ww), |σw| = 1,#w = 0,#b < b η2 c

min

(
#b · cost(abv|ww),

#b · cost(abv|bw)

)
, |σw| > 1,#w = 0,#b < b η2 c

∞, otherwise

(A.171)

ϕ(R10, JS,#w,#b, ηK, σw) =

8>>>><>>>>:
#w · cost(awv|bw), |σw| = 1,#w < d η2 e,#b = 0

min

(
#w · cost(awv|bw),

#w · cost(awv|ww)

)
, |σw| > 1,#w < d η2 e,#b = 0

∞, otherwise

(A.172)

Having specified the function ϕ, we now use it, in particular, for specifying the functional
component ϕxw1

v
as in Eq. A.173. This equation actually emulates movements in the state machine

for v as in Figure A.6 to the terminal state S8.

165

ϕxw1
v

(JS,#w,#b, ηK, σw1) =



min


ϕ(R1, JS,#w,#b, ηK, σw1),
ϕ(R2, JS,#w,#b, ηK, σw1),
ϕ(R5, JS,#w,#b, ηK, σw1),
ϕ(R6, JS,#w,#b, ηK, σw1)

 , S = S1,

ϕ(R3, JS,#w,#b, ηK, σw1), S = S2,

ϕ(R4, JS,#w,#b, ηK, σw1), S = S3,

ϕ(R7, JS,#w,#b, ηK, σw1), S = S4,

ϕ(R8, JS,#w,#b, ηK, σw1), S = S5,

ϕ(R9, JS,#w,#b, ηK, σw1), S = S6,

ϕ(R10, JS,#w,#b, ηK, σw1), S = S7,

0,
S = S8,
#w = 0,
#b = 0

∞, otherwise

(A.173)

We now proceed with the rest of the functional components ϕxw2
v
, . . . , ϕxwkv . For each 2 ≤ j ≤ k,

each JS,#w,#b, ηK ∈ D(xwjv), each JS′,#′w,#′b, η
′K ∈ D(xwj−1

v), and each σw ∈ D(xwj) = �∗[wj],
the value of ϕ

x
wj
v

is set according to Eq. A.174. This equation also emulates movements in the state
machine for v as in Figure A.6—each sub-case of Eq. A.174 deals with a certain transition in that
state machine.

166

ϕ
x

wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) =8>><>>:

min

8>>><>>>:
ϕ(R1, JS,#w −#′w,#b −#′b, ηK, σwj),

ϕ(R2, JS,#w −#′w,#b −#′b, ηK, σwj),

ϕ(R5, JS,#w −#′w,#b −#′b, ηK, σwj),

ϕ(R6, JS,#w −#′w,#b −#′b, ηK, σwj)

9>>>=>>>; ,
S = S1,S′ = S8, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R4, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S1,S′ = S2, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R3, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S1,S′ = S3, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R9, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S1,S′ = S4, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R10, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S1,S′ = S5, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R7, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S1,S′ = S6, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R8, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S1,S′ = S7, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R3, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S2,S′ = S8, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R4, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S3,S′ = S8, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R7, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S4,S′ = S8, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R8, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S5,S′ = S8, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R9, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S6,S′ = S8, η = η′,

#w ≥ #′w,#b ≥ #′b

ϕ(R10, JS,#w −#′w,#b −#′b, ηK, σwj),
S = S7,S′ = S8, η = η′,

#w ≥ #′w,#b ≥ #′b

0,
S = S′, η = η′,

#w = #′w,#b = #′b

∞, otherwise

(A.174)

This finalizes the construction of COPΠ, and this construction constitutes the first three steps
of the algorithm polytree-1-dep in Figure A.7(a). The subsequent steps of this algorithm are con-
ceptually similar to these of the polytree-1-dep-uniform algorithm in Section A.2. It is not hard to
verify from Eqs. A.157-A.159, and the fact that the causal graph of Π ∈ P(1) forms a polytree that

(i) for each variable x ∈ X , |D(x)| = poly(n),

(ii) the tree-width of the cost network of F is ≤ 3, and

167

(iii) the optimal tree-decomposition of the COPΠ’s cost network is given by any topological ordering
of the causal graph that is consistent with the (arbitrary yet fixed at the time of the COPΠ’s
construction) orderings of each planning variable’s parents in the causal graph.

procedure polytree-1-dep(Π = 〈V ,A, I ,G, cost〉)
takes a planning task Π ∈ P(1)
returns a cost-optimal plan for Π if Π is solvable, and fails otherwise

create a set of variables X as in Eqs. A.157-A.158
create a set of functions F = {ϕx | x ∈ X} with scopes as in Eq. A.159
for each x ∈ X do

specify ϕx according to Eqs. A.160-A.174
endfor
set COPΠ := (X ,F) with global objective min

∑
ϕ∈F ϕ(X)

x := solve-tree-cop(COPΠ)
if
∑

ϕ∈F ϕ(x) =∞ then return failure
extract plan ρ from x with cost(ρ) =

∑
ϕ∈F ϕ(x)

return ρ

Figure A.7: Algorithm for cost-optimal planning for P(1) tasks.

A.3.3 Correctness and Complexity

Lemma 11 Let Π be a P(1) task, COPΠ = (X ,F) be the corresponding constraint optimization
problem, and x be an optimal assignment to X with

∑
ϕ∈F ϕ(x) = α.

(I) If α <∞, then a plan of cost α for Π can be reconstructed from x in time polynomial in the
description size of Π.

(II) If Π has a plan, then α <∞.

Proof:
(I) Given a COP solution x with

∑
ϕ∈F ϕ(x) = α <∞, we construct a plan ρ for Π with cost(ρ) = α.

We construct this plan by

1. Traversing the planning variables in a topological ordering of the causal graph CG(Π), and
associating each variable v with a sequence ρv ∈ A∗v.

2. Merging the constructed sequences ρv1 , . . . , ρvn into the desired plan ρ.

For each v ∈ V with pred(v) = ∅ we set ρv = 〈a1 · . . . · al〉, where l = |xv| − 1, and ai is defined as
in Eq A.175 below.

ai =

{
awv , i is odd,
abv , i is even,

(A.175)

Note that Eq. A.175 is well-defined—the existence of the essential for Eq. A.175 actions awv/abv is
implied by Eq. A.160 and α <∞.

In turn, for each v ∈ V with pred(v) = {w1, . . . , wk}, given xw1
v , . . . , xwkv , we distinguish between

the following cases.

168

[R1 is played] R1 is played by one of the parents, while all other parents play role R11.

[R1 is played by w1] Eq. A.173 then implies

ϕxw1
v

(xw1
v , xw1) = ϕ(R1, xw1

v , xw1)

and xw1
v 3 S = S1. From Eq. A.174 we then have xwjv 3 S′ = S1 for each 1 < j ≤ k,

giving us
ϕ
x
wj
v

(xwjv , x
wj−1
v , xwj) = 0.

[R1 is played by wj, j > 1] Eq. A.174 then implies

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R1, JS,#w −#′w,#b −#′b, ηK, σwj)

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

From Eq. A.173 we also have
ϕxw1

v
(xw1
v , xw1) = 0.

In both these sub-cases, ρv, >v and >v,w are specified as in the proof of Theorem 26, case I.

[R2 is played] R2 is played by one of the parents, while all other parents play role R11.

[R2 is played by w1] Eq. A.173 then implies

ϕxw1
v

(xw1
v , xw1) = ϕ(R2, xw1

v , xw1)

and, for each 1 < j ≤ k, Eq. A.174 implies

ϕ
x
wj
v

(xwjv , x
wj−1
v , xwj) = 0.

If ϕ(R2, JS,#w,#b, ηK, σw1) = ξ(#w, 0,#b, 0), then ρv, >v and >v,w are specified as in
the proof of Theorem 26, case III.2, otherwise, as in the case IV.2.

[R2 is played by wj, j > 1] Eq. A.174 then implies

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R2, JS,#w −#′w,#b −#′b, ηK, σwj)

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

From Eq. A.173 we also have
ϕxw1

v
(xw1
v , xw1) = 0.

If ϕ(R2, JS,#w −#′w,#b −#′b, ηK, σwj) = ξ(#w −#′w, 0,#b −#′b, 0), then ρv, >v and
>v,w are specified as in the proof of Theorem 26, case III.2, otherwise, as in the case
IV.2.

[R3 and R4 are played] Those roles are played by two of the parents, while all other parents
play role R11.

169

[R3 is played by w1, R4 is played by wj, j > 1] From Eqs. A.173 and A.174 we then
have

ϕxw1
v

(xw1
v , xw1) = ϕ(R3, xw1

v , xw1),

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R4, JS,#w −#′w,#b −#′b, ηK, σwj),

and, for all 1 < i ≤ k, such that i 6= j:

ϕxwiv (xwiv , x
wi−1
v , xwi) = 0.

[R4 is played by w1, R3 is played by wj, j > 1] From Eqs. A.173 and A.174 we then
have

ϕxw1
v

(xw1
v , xw1) = ϕ(R4, xw1

v , xw1),

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R3, JS,#w −#′w,#b −#′b, ηK, σwj),

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

[R3 is played by wj, R4 is played by wt, j 6= t, j, t > 1] From Eqs. A.173 and A.174
we have

ϕxw1
v

(xw1
v , xw1) = 0,

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R3, JS,#w −#′w,#b −#′b, ηK, σwj),

ϕxwtv (JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwt) = ϕ(R4, JS,#w −#′w,#b −#′b, ηK, σwt),

and, for all 1 < i ≤ k such that i 6∈ {j, t},

ϕxwiv (xwiv , x
wi−1
v , xwi) = 0

In all these three sub-cases, ρv, >v and >v,w are specified as in the proof of Theorem 26, case
II.

[R5 is played] R5 is played by one of the parents, while all other parents play role R11.

[R5 is played by w1] Eqs. A.173 and A.174 imply

ϕxw1
v

(xw1
v , xw1) = ϕ(R5, xw1

v , xw1),

and, for each 1 < j ≤ k,
ϕ
x
wj
v

(xwjv , x
wj−1
v , xwj) = 0.

Considering now the specification of the function ϕ in Eq. A.167,

• If the first case holds, and the minimum is obtained at the first expression, then ρv,
>v and >v,w are defined as in the proof of Theorem 26, case III.1.a.
• If the first case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.1.a.
• If the second case holds, and the minimum is obtained at the first expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case III.3.a.

170

• If the second case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.3.a.
• If the third case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.3.a.
• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case IV.3.a.
• If the fifth case holds, and the minimum is obtained at the first expression, then ρv,
>v and >v,w are defined as in the proof of Theorem 26, case III.5.a.
• If the fifth case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.5.a.
• If the sixth case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.5.a.
• If the seventh case holds, then ρv, >v and >v,w are defined as in the proof of

Theorem 26, case IV.5.a.
• If the eighth case holds, and the minimum is obtained at the first expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case III.7.a.
• If the eighth case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.7.a.

[R5 is played by wj, j > 1] Eq. A.174 then implies

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R5, JS,#w −#′w,#b −#′b, ηK, σwj),

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

From Eq. A.173 we also have
ϕxw1

v
(xw1
v , xw1) = 0.

Here ρv, >v and >v,w are specified exactly as in the previous case.

[R6 is played] R6 is played by one of the parents, while all other parents play role R11.

[R6 is played by w1] Eqs. A.173 and A.174 imply

ϕxw1
v

(xw1
v , xw1) = ϕ(R6, xw1

v , xw1),

and, for each 1 < j ≤ k,
ϕ
x
wj
v

(xwjv , x
wj−1
v , xwj) = 0.

Considering now the specification of the function ϕ in Eq. A.168,

• If the first case holds, and the minimum is obtained at the first expression, then ρv,
>v and >v,w are defined as in the proof of Theorem 26, case III.1.b.
• If the first case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.1.b.
• If the second case holds, and the minimum is obtained at the first expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case III.3.b.

171

• If the second case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.3.b.
• If the third case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.3.b.
• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case IV.3.b.
• If the fifth case holds, and the minimum is obtained at the first expression, then ρv,
>v and >v,w are defined as in the proof of Theorem 26, case III.5.b.
• If the fifth case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.5.b.
• If the sixth case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.5.b.
• If the seventh case holds, and the minimum is obtained at the first expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case III.7.b.
• If the seventh case holds, and the minimum is obtained at the second expression,

then ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.7.b.

[R6 is played by wj, j > 1] Eq. A.174 then implies

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R6, JS,#w −#′w,#b −#′b, ηK, σwj),

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

From Eq. A.173 we also have
ϕxw1

v
(xw1
v , xw1) = 0.

Here ρv, >v and >v,w are specified exactly as in the previous case.

[R7 and R9 are played] Those roles are played by two of the parents, while all other parents
play role R11.

[R7 is played by w1, R9 is played by wj, j > 1] From Eqs. A.173 and A.174 we then
have

ϕxw1
v

(xw1
v , xw1) = ϕ(R7, xw1

v , xw1),

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R9, JS,#w −#′w,#b −#′b, ηK, σwj),

and ,for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

Considering now the specification of the function ϕ in Eq. A.169,

• If the first case holds, and the minimum is obtained at the first expression, then ρv,
>v and >v,w are defined as in the proof of Theorem 26, case III.1.a.
• If the first case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.1.a.
• If the second case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.3.a.

172

• If the third case holds, then ρv, >v and >v,w are defined as in the proof of Theo-
rem 26, case IV.3.a.
• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.5.a.
• If the fifth case holds, then ρv, >v and >v,w are defined as in the proof of Theorem 26,

case IV.5.a.
• If the sixth case holds, and the minimum is obtained at the first expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case III.7.a.
• If the sixth case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.7.a.

[R9 is played by w1, R7 is played by wj, j > 1] From Eqs. A.173 and A.174 we then
have

ϕxw1
v

(xw1
v , xw1) = ϕ(R9, xw1

v , xw1),

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R7, JS,#w −#′w,#b −#′b, ηK, σwj),

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

Here ρv, >v and >v,w are specified exactly as in the previous case.

[R7 is played by wj, R9 is played by wt, j 6= t, j, t > 1] From Eqs. A.173 and A.174
we have

ϕxw1
v

(xw1
v , xw1) = 0,

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R7, JS,#w −#′w,#b −#′b, ηK, σwj),

ϕxwtv (JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwt) = ϕ(R9, JS,#w −#′w,#b −#′b, ηK, σwt),

and, for all 1 < i ≤ k, such that i 6∈ {j, t},

ϕxwiv (xwiv , x
wi−1
v , xwi) = 0.

Then, ρv, >v and >v,w are specified exactly as in the two previous cases.

[R8 and R10 are played] Those roles are played by two of the parents, while all other parents
play role R11.

[R8 is played by w1, R10 is played by wj, j > 1] From Eqs. A.173 and A.174 we then
have

ϕxw1
v

(xw1
v , xw1) = ϕ(R8, xw1

v , xw1),

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R10, JS,#w −#′w,#b −#′b, ηK, σwj),

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

Considering now the specification of the function ϕ in Eq. A.170,

• If the first case holds, and the minimum is obtained at the first expression, then ρv,
>v and >v,w are defined as in the proof of Theorem 26, case III.1.b.

173

• If the first case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.1.b.
• If the second case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.3.b.
• If the third case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case IV.3.b.
• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of Theo-

rem 26, case III.5.b.
• If the fifth case holds, then ρv, >v and >v,w are defined as in the proof of Theorem 26,

case IV.5.b.
• If the sixth case holds, and the minimum is obtained at the first expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case III.7.b.
• If the sixth case holds, and the minimum is obtained at the second expression, then
ρv, >v and >v,w are defined as in the proof of Theorem 26, case IV.7.b.

[R10 is played by w1, R8 is played by wj, j > 1] From Eqs. A.173 and A.174 we then
have

ϕxw1
v

(xw1
v , xw1) = ϕ(R10, xw1

v , xw1),

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R8, JS,#w −#′w,#b −#′b, ηK, σwj),

and, for all 1 < i 6= j ≤ k,
ϕxwiv (xwiv , x

wi−1
v , xwi) = 0.

Here ρv, >v and >v,w are specified exactly as in the previous case.

[R8 is played by wj, R10 is played by wt, j 6= t, j, t > 1] From Eqs. A.173 and A.174
we have

ϕxw1
v

(xw1
v , xw1) = 0,

ϕ
x
wj
v

(JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwj) = ϕ(R8, JS,#w −#′w,#b −#′b, ηK, σwj),

ϕxwtv (JS,#w,#b, ηK, JS′,#′w,#
′
b, η
′K, σwt) = ϕ(R10, JS,#w −#′w,#b −#′b, ηK, σwt),

and, for all 1 < i ≤ k, such that i 6∈ {j, t},

ϕxwiv (xwiv , x
wi−1
v , xwi) = 0.

Then, ρv, >v and >v,w are specified exactly as in the two previous cases.

Until now, for each variable v ∈ V , we have specified the action sequence ρv and the order
>v over the elements of ρv. For each w ∈ pred(v), we have specified the order >v,w, and proved
that all >v ∪ >v,w and >w ∪ >v,w form strict partial orders over their domains. Similarly to the
uniform cost case, this construction allows us to apply now Theorem 22 on the (considered as sets)
sequences ρv and orders >v and >v,w, proving that

>=
⋃
v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρv1 , . . . , ρvn .

174

Finally, we note that the plan extraction step of the algorithm polytree-1-dep corresponds ex-
actly to the above construction along Eqs. A.52-A.57, A.59-A.61, A.63-A.64, A.71-A.72, A.74-
A.75, A.83-A.84, A.86, A.88, A.95-A.96, A.98, A.100, A.107-A.108, A.110-A.111, A.113, A.120-
A.121, A.123, A.131-A.132, A.134-A.135, A.137, A.144-A.145, A.147-A.148, A.156, providing us in
poly-time with concrete cost-optimal plan corresponding to the optimal solution for COPΠ.

(II) We now prove that if Π is solvable, then we must have α < ∞. Assume to the contrary that
this is not the case. Let Π be a solvable P(1) task, and let (using Theorem 26) ρ be an irreducible,
post-3/2 plan for Π. Given such ρ, let a COP assignment xρ be defined as follows.

1. For each COP variable xv, the assignment xρ provides the value σv ∈ �∗[σ(v)] such that
|σv| = |ρ↓v |+ 1.

2. For each variable v ∈ V , such that pred(v) 6= ∅, find the (at most two) parents that prevail the
actions in ρ[v]. Let w be such a parent that performs a role R ∈ {R1,R2,R3,R5,R6,R7,R8},
and w′ be the other such parent that performs one of the roles R′ ∈ {R4,R9,R10,R11}. (By
definition of post-3/2 action sequences, the rest of the parents all perform role R11.) Given
that, if |pred(v)| = k > 0, we adopt an ordering of pred(v) such that w1 = w and wk = w′.
First, the assignment xwkv to COP variable xwkv provides the value JS1, d |σv |−1

2 e, b |σv |−1
2 c, |σv|−

1K. Then, for 1 ≤ i < k, the assignment xwiv to COP variable xwiv provides the value
JS,#w,#b, |σv| − 1K, where

S =


S2, R′ = R4
S4, R′ = R9
S5, R′ = R10
S1, R′ = R11

and #w and #b are the numbers of actions in ρ↓v that change the value of v to wv and bv,
respectively, while being prevailed by the value of w1.

From Eq. A.160-A.174 we then have that, for each v ∈ V , if pred(v) = ∅, then ϕxv(xv) = cost(ρ↓v
). Otherwise, if pred(v) = {w1, . . . , wk}, then ϕxv(xv, xwkv) = 0, and

∑
w∈pred(v) ϕxwv (xρ) = cost(ρ↓v).

Therefore, we have ∑
ϕ∈F

ϕ(xρ) =
∑
v∈V

cost(ρ↓v) = cost(ρ),

which is what we had to prove.

Theorem 27 Cost-optimal planning for P(1) is tractable.

Proof: The correctness of the polytree-1-dep algorithm is given by Lemma 11. We now show that,
given a planning task Π ∈ P(1), the corresponding constraint optimization problem COPΠ can be
constructed and solved in time polynomial in the description size of Π.

Let n be the number of state variables in Π. In polytree-1-dep-uniform, we first construct the
constraint optimization problem COPΠ over Θ(n2) variables X with domain sizes being bounded
either by O(n) or by O(n3) (for COP variables representing state variables and causal graph edges,
respectively). The number of functional components in COPΠ is Θ(n2), each defined over one
variable with domain size of O(n) and either one or two variables with domain sizes of O(n3). The
construction is linear in the size of the resulting COP, and thus is accomplished in time O(n9).

175

Applying then to COPΠ a tree-decomposition that clusters the scopes of the functional com-
ponents F , we arrive into an equivalent, tree-structured constraint optimization problem over
Θ(n2) variables with domains of size O(n7). Such a tree-structured COP can be solved in time
O(xy2) where x is the number of variables and y is an upper bound on the size of a variable’s
domain (Dechter, 2003). Therefore, solving COPΠ can be done in time O(n16). As this dominates
both the time complexity of constructing COPΠ, and the time complexity of extracting a plan from
the optimal solution to COPΠ (see the proof of (I) in Lemma 11), the overall complexity of the
algorithm polytree-1-dep-uniform is O(n16), and therefore polynomial in the description size of Π.

176

Appendix B

Experimental Evaluation in Detail

B.1 Fork-Decompositon

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes timenodes time nodes time nodes time nodes time nodes time nodes time

airport-ipc4
01 8 10 0.01 9 0.00 9 0.00 9 0.00 9 0.00 9 0.72 11 0.00 9 0.00
02 9 12 0.03 15 0.01 15 0.03 10 0.00 10 0.00 10 1.23 13 0.00 10 0.00
03 17 86 0.25 133 0.07 93 0.31 18 0.04 18 0.03 29 5.10 164 0.00 57 0.00
04 20 22 0.02 21 0.02 21 0.02 21 0.02 21 0.01 21 1.32 23 0.00 21 0.00
05 21 23 1.29 30 0.06 27 1.43 22 0.01 22 0.01 22 46.54 27 0.00 22 0.00
06 41 513 36.72 639 1.54 567 45.25 42 0.16 42 0.17 42 123.13 738 0.01 418 0.02
07 41 514 37.00 632 1.53 550 44.15 42 0.17 42 0.17 42 117.56 742 0.01 405 0.02
08 62 21544 166.51 24372 25.42 96231549.13 203 602.09 27032 0.28 9687 0.90
09 71 152408 64.92 89525 466.14 12956 993.07 175717 2.47 56484 7.62
10 18 19 0.02 19 0.02 19 0.03 19 0.02 19 0.01 19 2.45 21 0.00 19 0.00
11 21 23 1.90 30 0.08 27 2.13 22 0.02 22 0.01 22 65.36 27 0.00 22 0.01
12 39 475 54.18 728 2.76 568 71.23 40 0.21 40 0.21 40 169.02 873 0.01 392 0.03
13 37 434 47.48 663 2.60 479 59.82 38 0.20 38 0.21 38 134.87 822 0.01 342 0.03
14 60 25110 334.72 30637 51.23 8968 238.16 62 714.76 35384 0.39 9196 1.11
15 58 23317 307.60 28798 46.20 8931 267.81 59 647.05 33798 0.38 8200 1.01
16 79 1031524200.95 3053401077.90 124746719.72 221993 49.03
17 88 1043661310.89
19 90 831632253.21
21 101 7326372.92 102 10.28 18809 0.42 3184 1.12
22 148 1119943762.02 159967105.29
36 109 34365853.70 63061 1.44

depots-ipc3
01 10 114 0.24 279 0.11 161 0.32 11 0.00 11 0.00 45 0.77 329 0.00 136 0.00
02 15 1134 10.82 9344 12.40 2638 22.68 738 3.24 16 1.14 898 11.56 15404 0.11 3771 0.17
03 27 348288 20.69 239313 222.35 103089 247.13293039827.201204646 97.62
04 30 1284048 52.051273762 529.34
07 21 211820 37.54 41328 324.19650110071.581331701166.76
10 24 3241083157.52
13 25 1427824116.06

driverlog-ipc3
01 7 49 0.05 37 0.01 37 0.04 8 0.04 8 0.03 44 0.47 182 0.00 20 0.00
02 19 15713 18.27 18452 10.2915794 23.80 20 0.13 20 0.26 15998 4.55 68927 0.36 54283 0.52
03 12 164 0.25 190 0.13 163 0.31 13 0.16 13 0.25 863 1.25 16031 0.09 2498 0.03
04 16 6161 19.15 10778 17.14 7665 29.88 17 0.49 17 2.41 22933 12.20 999991 8.12 393673 6.56
05 18 13640 45.02 11400 18.9110984 46.16 2614 0.60 19 4.58 24877 18.77629080361.571724611 34.73
06 11 608 5.21 795 3.60 492 6.05 291 1.35 12 9.72 3804 10.08 681757 7.64 54451 1.71
07 13 864 9.56 1730 7.71 1006 13.80 14 1.42 14 15.35 25801 41.34634976781.53 493480 17.31
08 22 287823 7.34 2952 20.31
09 22 198651 849.04 15504 1.70 23 10.43
10 17 4304 199.81 16099 85.74 4037 200.52 18 1.64 18 18.54 18234 68.22
11 19 433951421.90 41445 186.53390691395.51 34137 1.99 10790 17.01 5596231193.00 6141130330.22
13 26 1298884 19.52 870875 35.33

Table B.1: Runtimes of cost-optimal heuristic-search planners on the Airport, Depots, and
Driverlog domains. The description of the planners is given in Section 4.4.2; here the fork-
decomposition heuristics are computed fully online. Column task denotes problem instance, column
h∗ denotes optimal solution length. Other columns capture the run time and number of expanded
nodes.

177

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

blocks-ipc2
04-0 6 15 0.01 46 0.01 17 0.01 7 0.03 7 0.03 7 0.36 93 0.00 25 0.00
04-1 10 14 0.01 31 0.00 15 0.00 11 0.04 11 0.03 11 0.39 66 0.00 23 0.00
04-2 6 7 0.01 26 0.00 10 0.00 7 0.04 7 0.03 7 0.38 63 0.00 18 0.00
05-0 12 32 0.03 302 0.06 113 0.08 13 0.30 13 0.96 13 1.32 467 0.00 145 0.00
05-1 10 37 0.03 280 0.06 98 0.07 11 0.29 11 0.96 11 1.36 567 0.00 135 0.00
05-2 16 152 0.09 596 0.10 348 0.18 17 0.29 17 0.95 17 1.49 792 0.00 297 0.00
06-0 12 33 0.04 766 0.27 207 0.25 13 0.95 13 8.56 13 4.10 1826 0.00 276 0.00
06-1 10 41 0.07 2395 0.74 578 0.78 11 0.90 11 8.34 11 4.17 4887 0.01 755 0.01
06-2 20 855 0.80 5444 1.23 3352 2.88 733 0.87 85 8.84 31 4.29 6385 0.02 2556 0.03
07-0 20 278 0.56 20183 8.26 4022 8.18 577 1.93 144 23.32 22 11.47 37157 0.14 5943 0.11
07-1 22 6910 11.22 59207 17.37 38539 49.71 10071 1.70 1835 21.05 174 11.25 63376 0.21 33194 0.46
07-2 20 1458 2.85 46009 15.05 18854 29.61 1855 1.59 782 20.37 90 10.99 55218 0.19 18293 0.29
08-0 18 1533 4.79 344157 179.42 69830208.07 5557 3.67 678 36.80 25 26.00 519107 2.28 94671 2.07
08-1 20 10040 27.97 517514 236.64191352475.33 45711 3.88 11827 33.49 151 26.57 636498 2.60 199901 3.85
08-2 16 479 1.79 237140 136.18 32567110.76 277 3.63 54 32.53 17 25.85 433144 1.93 52717 1.30
09-0 30 1233374 16.00 971409 77.74 464 56.76 798464936.76 3840589 85.00
09-1 28 3435 18.17 95068 7.35 58873 63.15 82 56.98 591457229.73 1200345 32.06
09-2 26 6379 35.22 161719 13.54 20050 82.45 81 57.02 596316030.02 1211463 32.15
10-0 34 1800 114.26
10-1 32 12063665228.76 1835 115.19
10-2 34 3685 116.75
11-0 32 7046739141.44 2678 213.32
11-1 30 1510 203.79
11-2 34 3984 213.97
12-0 34 1184 370.06
12-1 34 614 382.34
13-0 42 83996 860.45
13-1 44 1634381104.27
14-0 38 27791063.02
14-1 36 71541087.40

grid-ipc1
01 14 571 60.28 1117 9.49 472 55.87 660 8.63 467121.10 6446 0.08 190 0.10
02 26 3392724 50.35 3244132241.94 664016 231.26

gripper-ipc1
01 11 214 0.04 240 0.02 214 0.05 12 0.00 12 0.00 33 0.11 236 0.00 208 0.00
02 17 1768 0.54 1832 0.36 1803 0.75 18 0.11 18 0.08 680 0.37 1826 0.01 1760 0.01
03 23 11626 5.38 11736 4.05 11689 8.11 11514 0.47 2094 1.75 7370 1.52 11736 0.04 11616 0.08
04 29 68380 43.58 68558 35.24 68479 70.72 68380 1.24 68190 8.05 55568 10.29 68558 0.27 68368 0.56
05 35 376510328.10 376784 296.59376653560.93 376510 3.52 376510 19.46 344386 79.96 376772 1.59 376496 3.51
06 41 1982032 13.42 1982032 42.16 1911592 577.49 1982394 9.59 1982016 21.57
07 47 10091986 61.6610091986106.84 1009246451.1010091968 119.64

freecell-ipc3
01 8 234 1.54 974 4.88 274 3.25 87 3.12 9 38.74 9 13.01 3437 0.03 1043 0.15
02 14 30960107.07 75150 230.54 37131224.62 31487 40.40 466 70.29 130883 1.46 41864 10.77
03 18 197647877.16 95805140.96 1589 169.39 94484311.45 210503 75.62
04 26 943074 86.78 15848 341.02 302132638.80 600525 247.70
05 30 5950977243.74 40642 916.44 14080351062.25

logistics-ipc1
01 26 1918881 41.03 949586 34.82 2119551700.26
05 22 3293945.35 768161 18.69 609393 35.27
31 13 436 9.67 1981 2.53 1284 21.84 494 0.42 14 2.11 481 6.58 155645 1.66 32282 0.57
32 20 392 2.57 2704 2.24 962 5.53 21 0.16 21 0.72 9598 7.08 245325 2.07 81156 1.00
33 27 529338 32.55

logistics-ipc2
04-0 20 21 0.02 193 0.06 65 0.06 21 0.03 21 0.05 21 0.34 11246 0.05 4884 0.03
04-1 19 20 0.03 570 0.13 293 0.16 20 0.03 20 0.04 20 0.37 9249 0.04 4185 0.03
04-2 15 16 0.02 117 0.03 79 0.05 16 0.04 16 0.05 16 0.36 4955 0.02 1205 0.01
05-0 27 28 0.05 2550 0.98 1171 1.09 28 0.10 28 0.38 28 0.58 109525 0.64 74694 0.59
05-1 17 18 0.03 675 0.19 427 0.31 18 0.10 18 0.38 18 0.72 22307 0.13 6199 0.05
05-2 8 9 0.02 24 0.01 13 0.02 9 0.09 9 0.38 9 0.78 1031 0.00 280 0.00
06-0 25 26 0.06 4249 1.85 2461 2.54 26 0.18 26 1.23 26 1.03 490207 3.40 202229 1.92
06-1 14 15 0.03 181 0.09 99 0.13 15 0.18 15 1.26 15 1.16 24881 0.16 3604 0.03
06-2 25 26 0.05 2752 1.22 1394 1.51 26 0.19 26 1.26 26 1.03 476661 3.32 200012 1.98
06-9 24 25 0.04 2395 0.94 1428 1.34 25 0.18 25 1.22 25 1.02 422557 2.95 133521 1.29
07-0 36 37 0.42 251287 203.64 98053386.80 525 0.65 37 4.87 24317 35.46
07-1 44 1689 10.08 666324 8.83 49 4.94 362179 453.06
08-0 31 32 0.42 82476 78.73 35805161.33 1042 0.96 32 6.90 14890 33.50
08-1 44 45 0.661183608 1306.92 16708 1.15 45 7.21 114155 198.84
09-0 36 37 0.54 351538 407.06167038883.68 20950 1.56 37 9.46 32017 83.16
09-1 30 31 0.50 59336 80.88 25359168.73 31 1.27 31 9.43 6720 26.48
10-0 45 46 2.26 668834 29.73
10-1 42 43 2.10 1457130 43.00
11-0 48 697 26.78 701106 37.42
11-1 60 21959696.23
12-0 42 43 2.78 775996 43.56
12-1 68 2222340 87.47

Table B.2: Similar to Table B.1 for the Blocksworld, Grid, Gripper, Freecell, Logistics-
ipc1, and Logistics-ipc2 domains.

178

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

miconic-strips-ipc2
01-0 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-1 3 5 0.00 5 0.00 5 0.00 4 0.00 4 0.00 4 0.00 5 0.00 4 0.00
01-2 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-3 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00
01-4 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
02-0 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 26 0.01 30 0.00 20 0.00
02-1 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 26 0.01 30 0.00 22 0.00
02-2 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 27 0.00 30 0.00 22 0.00
02-3 7 24 0.01 24 0.00 24 0.00 8 0.00 8 0.00 20 0.01 26 0.00 17 0.00
02-4 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 23 0.01 31 0.00 20 0.00
03-0 10 86 0.01 129 0.01 98 0.01 11 0.00 11 0.00 100 0.03 193 0.00 105 0.00
03-1 11 120 0.01 168 0.01 147 0.01 12 0.00 12 0.00 140 0.02 218 0.00 150 0.00
03-2 10 137 0.01 143 0.01 137 0.01 11 0.00 11 0.00 122 0.02 164 0.00 92 0.00
03-3 10 96 0.01 153 0.01 117 0.01 11 0.00 11 0.00 131 0.02 197 0.00 130 0.00
03-4 10 103 0.01 149 0.01 115 0.01 11 0.00 11 0.00 114 0.02 190 0.00 114 0.00
04-0 14 524 0.06 843 0.08 686 0.12 15 0.01 15 0.01 669 0.10 1182 0.00 866 0.00
04-1 13 505 0.06 817 0.08 663 0.12 14 0.01 14 0.01 634 0.11 1176 0.00 860 0.00
04-2 15 685 0.08 942 0.09 802 0.13 16 0.01 16 0.01 822 0.12 1277 0.00 969 0.00
04-3 15 681 0.07 942 0.09 798 0.13 16 0.01 16 0.01 820 0.12 1319 0.00 970 0.00
04-4 15 685 0.07 942 0.09 802 0.13 16 0.01 16 0.01 821 0.12 1334 0.00 969 0.00
05-0 17 2468 0.37 4009 0.66 3307 0.93 18 0.06 18 0.05 2829 0.44 6350 0.03 4387 0.03
05-1 17 2807 0.42 4345 0.71 3677 1.01 18 0.06 18 0.05 3260 0.49 6602 0.03 4664 0.03
05-2 15 1596 0.29 2981 0.55 2275 0.73 16 0.06 16 0.05 1594 0.32 5565 0.03 3524 0.03
05-3 17 2256 0.36 3799 0.62 3104 0.87 18 0.06 18 0.05 2568 0.42 5944 0.03 4140 0.03
05-4 18 3210 0.46 4732 0.78 4267 1.11 19 0.06 19 0.05 3953 0.55 6949 0.04 5268 0.04
06-0 19 9379 1.98 17665 4.74 13531 5.90 20 0.18 20 0.32 9312 1.76 30786 0.20 21194 0.20
06-1 19 9106 1.93 18134 4.75 14052 5.94 20 0.18 20 0.32 10252 1.96 30093 0.20 21255 0.20
06-2 20 10900 2.19 19084 4.90 15111 6.28 21 0.18 21 0.32 11247 2.11 32390 0.21 21694 0.21
06-3 20 12127 2.43 21708 5.69 17807 7.19 21 0.17 21 0.32 14216 2.56 32574 0.21 24552 0.23
06-4 21 13784 2.62 23255 5.93 19536 7.66 22 0.17 22 0.32 16880 3.04 33793 0.22 26167 0.24
07-0 23 53662 13.29 96092 37.56 79449 46.76 24 0.32 24 1.75 56686 14.31 155466 1.22 116685 1.32
07-1 24 56328 13.86 99109 38.56 83677 47.49 7001 0.38 25 1.75 63035 16.33 164470 1.29 118494 1.33
07-2 22 48141 12.52 96139 38.02 78471 46.17 1646 0.33 23 1.71 55751 13.98 161342 1.27 119688 1.36
07-3 22 46867 12.11 93117 36.63 75424 44.43 1861 0.33 23 1.74 53121 13.27 155176 1.23 114649 1.30
07-4 25 84250 18.24 126595 46.11111984 61.34 23159 0.52 26 1.71 96327 24.76 168219 1.33 140128 1.58
08-0 27 272580 81.51 485051 267.27408114317.78 41629 0.91 28 4.18 290649 104.18 755255 7.16 594032 7.95
08-1 27 284415 86.93 527216 288.07446837347.43 42679 0.90 28 4.25 339177 123.10 794365 7.56 636587 8.66
08-2 26 207931 66.37 414294 235.89330993271.03 37744 0.86 27 4.25 204614 73.39 731622 6.92 534711 7.37
08-3 28 369479104.29 598031 320.33527216392.87 140453 1.94 29 4.21 435617 160.49 833421 7.97 690267 9.29
08-4 27 297516 87.65 507910 278.64431432333.91 62933 1.16 28 4.12 315339 111.84 771608 7.33 613253 8.43
09-0 31 1461729497.72 684737 9.07 126918 8.89 1555286 794.93 3685552 41.04 3006991 49.12
09-1 30 1207894438.692335166 1787.13 406041 5.61 100937 8.73 1344815 683.05 3649801 40.32 2893803 47.54
09-2 30 1294691460.112340411 1791.16 442547 6.06 82946 8.63 1357681 692.11 3576134 39.61 2895182 47.26
09-3 32 1840936589.09 765455 10.00 277302 11.14 20831681051.95 3796035 42.13 3304570 53.29
09-4 28 1252484467.94 317692 4.65 29 7.03 1231554 605.01 3589382 39.29 2956995 48.84
10-0 33 2436164 35.24 863244 23.76 15804498200.9013267920 250.58
10-1 32 2340169 34.09 335745 15.68 16472633208.3913720664 256.89
10-2 32 1735477 25.29 486286 17.72 15867374201.0112497087 236.89
10-3 34 3952148 55.86 940556 24.24 16309701208.4213801989 262.53
10-4 33 2715866 39.44 625559 19.91 16472551209.1313925654 262.57
11-0 37 11473359183.604724980 93.56
11-1 34 7535468124.801934943 47.91
11-2 38 14645785233.686330198120.71
11-3 38 5809711110.10
11-4 35 5853546 95.561082086 32.22

mprime-ipc1
01 5 196 0.19 10 0.03 24 0.07 6 2.00 6 20.45 108 49.59 3636 0.07 68 0.04
02 7 11604422.83 44045 1620.68 2565242.83 3317 88.58 12606 36.65
03 4 427 35.09 7 0.50 11 3.15 36 33.64 5463.85 9868 0.67 5 0.07
04 8 3836 6.62 1775 1.17 1093 3.44 9 6.09 9 82.71 19076 781.74 599590 23.58 200 0.24
05 11 1705009127.53 14881571638.78
07 5 3314 14.91 47 0.15 346 3.07 1667 46.72 18744 0.56 11 0.04
08 6 1469752403.45 7650 84.33
09 8 19838454.91 100188 1798.69 5227284.13 21993 36.25 2197646 71.69 19023 30.26
11 7 9 0.16 219 0.54 8 0.16 8 4.69 8 62.68 22 394.26 73260 2.21 915 0.54
12 6 16320192.10 8118 46.69 5243 95.01 34763 11.45 42055143.27 25665 724.12 108652 3.50 1520 1.78
15 6 1039 178.55
16 6 252171.97 448447.49 473 81.42 425144 32.17 7962 35.65
17 4 453 671.03 172736 42.48 5 1.06
19 6 123039313.25 36013 533.75
21 6 1503293103.23 15250 101.75
25 4 75 0.10 30 0.04 29 0.08 5 0.48 5 2.75 85 8.71 383 0.00 6 0.00
26 6 172432 46.33 189154454.69 819590 61.01 440 2.69
27 5 54 2.28 1772 33.82 9 1.31 6 11.59 6154.43 84079 3.50 831 2.08
28 7 8 0.03 403 0.23 37 0.08 8 1.88 8 22.55 128 146.80 17333 0.25 211 0.06
29 4 182 4.53 56 1.11 32 1.79 5 14.92 5201.40 3187 0.17 7 0.10
31 4 248 52.86 46 7.83 19 11.79 419 99.87 3584 0.19 11 0.17
32 7 31759133.33 12436 34.94 11839 95.52 19429 21.61 7269292.37 110731701.00 115479 2.75 3096 1.74
34 4 234 11.65 46 2.13 23 3.08 450151.69 3618 0.19 11 0.18
35 5 392 3.09 290 2.54 84 1.89 359 3.63 6 43.43 706 96.55 2476 0.05 44 0.03

Table B.3: Similar to Table B.1 for the Miconic and Mprime domains.

179

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

mystery-ipc1
01 5 7 0.01 6 0.00 6 0.01 6 0.20 6 1.79 10 5.38 30 0.00 8 0.00
02 7 2404 64.94 8012 234.10 722 47.50 1672 82.70 770852 21.85 2368 4.47
03 4 73 1.92 7 0.12 11 0.59 5 16.46 5193.75 65 811.87 507 0.02 5 0.03
04 ∞ 0 0.01 0 0.00
07 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
09 8 3049 47.68 10764 137.61 1215 40.75 3165 29.34 3868 670.08 138289 2.18 1458 1.44
11 7 9 0.02 33 0.03 8 0.02 8 1.51 8 16.59 34 41.20 426 0.00 19 0.00
12 ∞ 2093419 938.05 2102777 14.612102729 27.84 2102777 15.09 1177842 21.87
15 6 279973 13.21 135 2.62
16 ∞ 0 0.14 0 0.19
17 4 354 200.98 85 26.31 83 90.17 198445.85 5400 0.41 5 0.35
18 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
19 6 4968 183.24 12478 96.38 133871 3.65 1516 5.44
20 7 285069 59.22 547246578.39 686125 23.28 718 3.76
24 ∞ 0 0.13 0 0.30
25 4 9 0.02 10 0.01 9 0.02 5 0.10 5 0.10 14 1.22 31 0.00 6 0.00
26 6 1807 50.40 1835 25.34 1344 60.20 2526 5.94 346 70.78 3107 291.36 8455 0.10 37 0.05
27 5 14 0.27 159 1.61 6 0.22 6 4.80 6 80.48 7 243.78 2174 0.03 73 0.04
28 7 8 0.01 47 0.02 15 0.02 8 0.63 8 6.77 31 16.67 843 0.00 32 0.00
29 4 31 0.26 14 0.10 10 0.17 5 8.94 5107.10 27 536.30 153 0.01 7 0.02
30 9 42112 28.07 44893357.07 1977063 38.26 26686 28.27

openstacks-ipc5
01 23 2264 0.49 3895 1.19 3070 1.36 24 0.05 24 0.06 2000 1.02 4822 0.01 4016 0.03
02 23 2617 0.56 4485 1.32 3561 1.57 24 0.06 24 0.06 2378 1.07 5501 0.02 4594 0.04
03 23 2264 0.49 3895 1.15 3070 1.36 24 0.06 24 0.06 2000 1.02 4822 0.01 4016 0.03
04 23 2264 0.49 3895 1.15 3070 1.36 24 0.06 24 0.06 2000 1.02 4822 0.02 4016 0.03
05 23 2264 0.48 3895 1.15 3070 1.35 24 0.06 24 0.05 2000 1.02 4822 0.01 4016 0.03
06 45 366768 255.00 779710 1599.86 5874821498.20 621008 4.85 279614 7.86 379735 217.37 882874 4.91 822514 18.71
07 46 410728 277.99 760668 1546.44 6067821515.46 594758 4.69 264535 7.34 405564 226.32 836647 4.62 787163 17.81

pathways-ipc5
01 6 1624 0.03 1299 0.02 1299 0.03 7 1.14 7 0.79 1405 0.28 1624 0.00 36 0.00
02 12 2755 0.08 2307 0.06 2437 0.09 1946 2.56 13 42.11 990 0.29 2984 0.02 348 0.01
03 18 44928 2.59 20416 1.06 29106 2.14 21671 6.43 14901129.23 14772 6.99 87189 1.06 4346 0.16
04 17 126950 11.45 33788 2.97 58738 7.07 98484288.39 34206 27.00 456143 8.22 104068 2.61

pipesworld-notankage-ipc4
01 5 121 0.15 109 0.05 121 0.18 6 0.04 6 0.04 6 2.79 121 0.00 13 0.00
02 12 1413 2.05 1542 0.86 1413 2.42 169 0.30 13 0.17 435 3.07 1808 0.01 792 0.02
03 8 1742 5.26 3001 3.31 1742 6.43 9 1.15 9 0.69 128 3.84 3293 0.02 262 0.02
04 11 7007 24.71 8911 12.43 7007 30.79 651 1.95 12 7.05 812 8.84 16088 0.11 2925 0.13
05 8 4093 27.45 6805 19.74 4093 35.40 77 5.63 9 21.15 155 16.53 11128 0.12 1121 0.15
06 10 12401 105.37 27377 103.75 12401 140.53 1299 5.26 61 39.31 1151 23.41 49905 0.48 7102 0.72
07 8 4370 71.75 9168 68.10 4370 105.53 233 19.78 9 59.70 185 29.88 46502 0.57 2631 0.48
08 10 18851 406.67 56189 483.28 20584 600.94 561 12.42 497 94.69 1673 48.84 273585 3.39 22874 3.58
09 13 104875 25.48 10478 74.26 5513309 80.62 321861 68.99
10 18 2982520 66.89 6898321439.64 111212451579.77
11 20 472950 1577.22 90598 9.20 52159 43.24 108503 625.52 710123 3.86 107061 14.51
12 24 594661 12.41 416184109.43 4332961117.57 2467804 13.83 464982 56.82
13 16 117475 899.72 12835 34.28 242241019.65 481045 3.14 33417 6.38
14 30 13255718119.54
15 26 648132 65.43 4921698 34.90 555619 105.49
17 22 3200672 90.07
19 24 8767431150.88
21 14 238331663.46 49035 495.53 3992 18.13 948159.63 157782 1.31 8966 2.42
23 18 296506 49.11 104750256.13 481859 229.00
24 24 7315150142.82
41 12 114257 250.18

pipesworld-tankage-ipc4
01 5 77 0.13 126 0.07 105 0.20 6 3.54 6 0.13 6 3.88 128 0.00 13 0.01
02 12 960 1.20 1005 0.60 960 1.55 110 3.04 13 0.20 179 6.04 1012 0.01 659 0.02
03 8 20803 155.53 52139 158.91 20803 207.57 244 22.64 9 36.89 818 24.47 52983 0.77 1802 1.33
04 11 1102841004.10 157722 668.67 1102841408.50 3892 16.68 12155.03 8116 64.68 221429 3.06 41540 14.49
05 8 6531 73.63 13148 79.04 6531 112.61 376 15.46 9120.06 313 59.99 12764 0.21 2834 1.61
06 10 20171 329.40 43583 310.24 20171 460.45 1794328.18 11201.44 3102 97.31 58487 0.87 15746 6.61
07 8 2695 339.76 5404036198.08 104531 420.47
08 11 96043191.77
11 22 660104 28.60 660102162.93 4116344 30.67 752867 334.42
13 16 188517122.11
15 30 2546587141.12
17 44 12850247352.46
21 14 13241 69.80 4423951 65.44 126845 222.23
31 39 1357801124.64 1726598 13.56 919764 381.66

trucks-ipc5
01 13 1691 0.41 1027 0.22 1039 0.40 14 0.03 14 0.02 285 0.56 5774 0.02 402 0.01
02 17 9624 2.68 2898 0.57 2957 1.35 4192 0.22 18 0.17 1413 1.04 28348 0.14 939 0.03
03 20 80693 71.37 20752 19.93 22236 31.25 199405 2.89 173790 6.88 4049 4.43 379582 2.97 9465 0.40
04 23 17538661237.601205793 850.3413156721394.88 2591561 29.172568634 56.96 8817 7.75 2990366 26.65 209140 9.43
05 25 23444940392.99 14744 23.12 1248571 90.78
06 30 308920 343.47
07 23 21347281313.60 719751 408.75 755608 820.55 7575415 88.918080496117.13 43270 27.6212410588117.92 223011 19.34
08 25 49663 47.61 3106944 403.36
09 28 233577 248.21

Table B.4: Similar to Table B.1 for the Mystery, Openstacks, Pathways, Pipesworld-
NoTankage, Pipesworld-Tankage, and Trucks domains.

180

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

psr-small-ipc4
01 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
02 11 52 0.01 55 0.00 52 0.01 12 0.00 12 0.00 20 0.08 71 0.00 47 0.00
03 11 31 0.01 31 0.00 31 0.00 12 0.00 12 0.00 20 0.04 33 0.00 28 0.00
04 10 66 0.04 91 0.03 73 0.06 11 0.00 11 0.00 12 0.34 332 0.00 102 0.00
05 11 75 0.01 79 0.01 75 0.02 12 0.00 12 0.00 23 0.11 154 0.00 69 0.00
06 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
07 11 61 0.01 61 0.00 61 0.01 12 0.00 12 0.00 26 0.09 122 0.00 62 0.00
08 8 24 0.01 29 0.00 25 0.01 9 0.00 9 0.00 9 0.12 128 0.00 52 0.00
09 8 18 0.01 19 0.00 18 0.00 9 0.00 9 0.00 9 0.06 49 0.00 20 0.00
10 7 131 0.20 183 0.18 155 0.32 8 0.04 8 0.04 18 1.04 1358 0.00 376 0.01
11 19 149 0.03 149 0.02 149 0.04 20 0.00 20 0.00 96 0.19 153 0.00 142 0.00
12 16 120 0.03 123 0.02 120 0.04 17 0.00 17 0.00 40 0.17 153 0.00 113 0.00
13 15 90 0.02 90 0.01 90 0.02 16 0.00 16 0.00 59 0.16 95 0.00 86 0.00
14 9 19 0.00 19 0.00 19 0.00 10 0.00 10 0.00 13 0.06 27 0.00 18 0.00
15 10 1200 6.55 708 6.25 769 9.91 11 0.46 11 2.58 356 18.99 3562 0.02 324 0.02
16 25 2328 0.65 2158 0.34 2176 0.85 975 0.11 26 0.12 2287 1.34 2742 0.01 1876 0.01
17 9 15 0.00 15 0.00 15 0.00 10 0.00 10 0.00 13 0.03 16 0.00 14 0.00
18 12 85 0.03 90 0.01 85 0.03 13 0.00 13 0.00 29 0.21 158 0.00 91 0.00
19 25 8025 4.31 7856 2.19 7876 5.80 2910 0.27 26 0.77 6338 4.46 9009 0.04 6925 0.08
20 17 80 0.02 80 0.01 80 0.02 18 0.00 18 0.00 52 0.18 84 0.00 75 0.00
21 10 28 0.01 28 0.00 28 0.01 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
22 33 163299 405.65 176058 245.42 168685 617.45 34 0.28 34 0.87 22315 8.16 189516 0.67 177138 1.43
23 12 77 0.04 93 0.03 77 0.06 13 0.00 13 0.01 30 0.43 200 0.00 116 0.00
24 10 28 0.01 28 0.00 28 0.01 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
25 9 485 84.24 463 145.38 482 213.42 10 5.42 10 37.93 28 780.38 8913 0.12 854 0.18
26 17 144 0.05 150 0.03 146 0.06 18 0.00 18 0.00 52 0.28 182 0.00 142 0.00
27 21 616 0.33 675 0.21 650 0.49 22 0.01 22 0.01 179 0.85 773 0.00 616 0.00
28 14 79 0.02 79 0.01 79 0.02 15 0.00 15 0.00 49 0.29 95 0.00 79 0.00
29 21 142772 436.34 187319 307.77 159325 709.89 22 0.39 22 1.43 3337 7.12 244499 1.27 192459 2.32
30 22 1791 1.25 1982 0.80 1883 1.90 23 0.01 23 0.02 393 1.35 2295 0.01 1834 0.01
31 19 11278 25.93 6810 38.66 8297 53.43 2647 0.89 723 6.55 7530 32.97 53911 0.25 16766 0.36
32 24 431 0.17 431 0.10 431 0.25 25 0.00 25 0.00 352 0.74 435 0.00 424 0.00
33 21 1480 0.84 1436 0.30 1391 1.00 446 0.26 22 0.63 947 2.29 2291 0.01 1073 0.01
34 21 223 0.07 223 0.04 223 0.09 22 0.00 22 0.00 158 0.50 227 0.00 216 0.00
35 22 65965 160.36 63186 39.55 68281 199.30 24021 0.83 11113 6.36 7448 8.27 165170 0.63 61548 1.06
36 22 571766 392.49 371834 786.06 4584021094.61 48350 2.98 2783 14.07 188564 111.991669788 9.44 717884 18.27
37 23 1307 1.29 1417 0.95 1363 2.10 24 0.02 24 0.01 277 2.10 1532 0.00 1342 0.01
38 13 301 0.20 372 0.15 326 0.32 14 0.01 14 0.01 33 0.74 562 0.00 357 0.00
39 23 2486 2.49 2942 1.64 2682 3.91 24 0.08 24 0.07 146 1.78 4103 0.01 2597 0.02
40 20 182608 1384.90 38837 1.88 7767 12.86 23371 87.911036992 6.74 229210 9.51
41 10 31 0.01 34 0.00 31 0.01 11 0.00 11 0.00 21 0.16 54 0.00 35 0.00
42 30 1855 0.50 1747 0.17 1739 0.59 1117 0.18 31 0.18 1773 1.29 1908 0.01 1636 0.01
43 20 328 0.09 328 0.05 328 0.12 21 0.00 21 0.00 256 0.50 333 0.00 315 0.00
44 19 2990 3.25 3430 2.30 3121 5.24 20 0.05 20 0.05 407 2.18 4142 0.01 3235 0.02
45 20 347 0.16 376 0.11 359 0.25 21 0.01 21 0.00 121 0.74 434 0.00 358 0.00
46 34 60888 51.77 61842 21.14 61563 68.33 36941 0.67 32582 4.05 19865 6.91 80785 0.25 65984 0.63
47 27 4104 5.27 4522 3.93 4284 8.70 28 0.04 28 0.04 515 2.32 5075 0.01 4406 0.02
48 37 129627 2.37 2500 11.08 200559 101.21 19020089286.02
49 47 204836815.84 594399 23.32 27728751408.64
50 23 637 0.39 659 0.26 645 0.60 24 0.02 24 0.02 390 1.40 690 0.00 642 0.00

rovers-ipc5
01 10 147 0.01 147 0.01 147 0.02 11 0.03 11 0.03 48 0.07 1104 0.00 283 0.00
02 8 44 0.01 44 0.01 44 0.01 9 0.00 9 0.00 16 0.03 254 0.00 129 0.00
03 11 672 0.11 419 0.05 448 0.10 12 0.11 12 0.12 804 0.16 3543 0.02 757 0.00
04 8 47 0.02 20 0.00 24 0.01 9 0.04 9 0.04 58 0.08 897 0.00 223 0.00
05 22 808084 237.13 410712 123.64 522937 231.28 61726711.48 375808 18.46 298400 101.658559690126.19 4318309 81.53
07 18 741649 517.1816822451780.27 328088451.022212903 59.20 1459792 866.93 9618062199.91
12 19 5187273166.77

satellite-ipc4
01 9 24 0.00 32 0.00 29 0.00 10 0.00 10 0.00 46 0.06 89 0.00 59 0.00
02 13 86 0.02 337 0.10 241 0.13 14 0.01 14 0.01 646 0.21 1728 0.01 940 0.00
03 11 2249 1.24 656 0.53 728 0.82 12 0.56 12 0.64 1945 0.93 15185 0.17 6822 0.11
04 17 9817 10.65 14860 24.90 11250 26.18 4152 0.99 18 4.43 15890 9.50 345663 4.70 180815 3.37
05 15 2795691251.83 46453 515.80 61692 877.26 81972 7.26 148667 69.28 267513 565.18
06 20 1496577 968.241572327 1721.87 276922974.73 307962 32.52 10751017371.43

tpp-ipc5
01 5 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.01 7 0.00 6 0.00
02 8 9 0.00 11 0.00 9 0.00 9 0.00 9 0.00 9 0.01 26 0.00 16 0.00
03 11 12 0.00 27 0.00 16 0.00 12 0.00 12 0.00 12 0.03 116 0.00 83 0.00
04 14 15 0.01 78 0.01 47 0.01 15 0.01 15 0.00 15 0.07 494 0.00 430 0.00
05 19 623 0.52 5110 1.36 1455 1.21 20 0.36 20 0.77 624 0.48 24698 0.12 17398 0.15
06 25 94705914.22 74798 23.97 9267024216.69

zenotravel-ipc3
01 1 2 0.01 2 0.00 2 0.01 2 0.00 2 0.00 2 0.45 2 0.00 2 0.00
02 6 17 0.02 18 0.02 17 0.02 7 0.00 7 0.00 9 0.46 58 0.00 22 0.00
03 6 28 0.08 18 0.12 12 0.11 7 0.21 7 0.90 40 3.42 5160 0.04 492 0.02
04 8 99 0.15 88 0.26 81 0.30 9 0.20 9 0.89 215 3.44 5256 0.03 665 0.01
05 11 177 0.32 220 0.22 136 0.36 12 0.25 12 1.90 422 7.70 82289 0.63 12466 0.33
06 11 2287 5.51 1144 2.00 504 2.40 12 0.38 12 3.54 1957 11.81 596531 5.90 85931 2.47
07 15 5088 9.63 4234 5.56 4199 10.58 16 0.38 16 3.48 34890 30.36 405626 3.56 115348 2.60
08 11 3268 43.96 1026 8.92 1655 30.06 14354 2.00 12 14.48 83533 292.05 687846 50.76
09 21 251703551.18 611457 30.47
10 22 132287134.84 137872 25.44
11 14 76904 1090.67 31003011.28 110726 26.65

Table B.5: Similar to Table B.1 for the PSR, Rovers, Satellite, TPP, and Zenotravel
domains. 181

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes timenodes timenodes time nodes timenodes time nodes time nodes time nodes time

schedule-strips
02-0 3 5 0.15 5 0.14 5 0.22 4 511.10 41743.32 5 577.39 76 0.02 5 0.09
02-1 2 3 0.16 4 0.11 3 0.18 3 104.98 3 754.26 6 0.02 3 0.07
02-2 2 3 0.32 3 0.17 3 0.40 3 231.99 3 495.56 5 0.02 3 0.07
02-3 3 26 0.50 37 0.76 26 0.61 4 56.51 4 658.90 529 0.03 95 0.45
02-4 3 68 1.34 188 2.24 220 7.20 4 484.62 543 0.03 108 0.44
02-5 2 3 0.33 3 0.14 3 0.38 3 363.11 3 667.32 3 0.03 3 0.07
02-6 2 3 0.14 5 0.12 3 0.17 3 121.84 3 697.42 6 0.02 3 0.06
02-7 2 3 0.30 3 0.13 3 0.34 3 323.77 3 604.06 13 0.02 3 0.07
02-8 2 3 0.32 3 0.14 3 0.38 3 316.53 3 668.79 8 0.02 3 0.07
02-9 3 5 0.15 5 0.14 5 0.22 4 251.46 5 577.16 76 0.03 5 0.09
03-0 4 40 2.72 407 12.16 140 14.55 11915 0.60 1127 8.98
03-1 2 3 0.51 3 0.35 3 0.72 31 0.04 25 0.37
03-2 4 27 1.16 50 1.83 33 2.33 5 191.03 3617 0.23 1228 9.56
03-3 4 15 0.79 91 2.39 15 0.96 5 259.13 3379 0.23 170 1.85
03-4 3 4 1.11 16 2.08 4 1.52 41223.90 301 0.06 22 0.27
03-5 4 73 6.13 471 16.71 74 8.32 5 682.30 12217 0.64 1175 12.43
03-6 4 72 1.27 75 1.80 69 1.33 5 121.58 2663 0.19 1542 11.73
03-7 4 28 1.05 50 1.83 28 1.43 5 195.72 12859 0.68 1323 13.47
03-8 4 273 11.53 266 11.46 273 17.48 12616 0.65 1590 11.13
03-9 4 8 0.96 31 1.77 14 2.13 5 235.48 4339 0.27 913 7.69
04-0 5 373 13.91 1498 74.46 167 24.60 31219326.88 22993 273.38
04-1 6 175591373.8010707 626.54 71115.76 55206949.79
04-2 5 209 9.88 406 20.85 66 5.30 47696 4.97 9703 131.69
04-3 5 142 10.47 674 33.29 251 29.28 6 267.29 89272 8.74 12941 163.84
04-4 5 921 64.48 450 46.95 574 116.65 62013 6.03 13614 168.07
04-5 6 483 47.25 4544 268.77 850 187.46 7 837.68 1079781399.99
04-6 6 779 27.0911610 361.74 1834 102.68 7 459.19 1071151001.40
04-7 5 99 18.48 424 38.04 163 40.04 6 936.68 61327 5.97 8683 103.50
04-8 5 102 16.01 573 31.87 111 23.35 6 711.65 34046729.56 15122 181.98
04-9 4 1043 80.06 996 76.64 1050 143.48 5 316.22 41673 4.27 5480 83.69
05-0 5 163 41.61 483 63.23 167 62.53 14335022.71 43336 751.35
05-1 6 2701 213.92 1257 286.28
05-3 7 136221693.68
05-4 6 989 100.02 3433 229.05 582 100.05
05-5 6 198 21.67 9550 767.94 347 68.64 120602 989.42
05-6 7 6033 743.61 103251508.56
05-7 6 944 131.1917562 1446.20 2107 379.70
05-8 7 1190 172.59 2709 730.54
05-9 6 1537 140.4915829 1248.19 2717 547.56
06-2 6 888 243.14 1709 730.36
06-4 8 115351776.87
07-0 7 2489 786.76
07-9 8 68291559.86

Table B.6: Similar to Table B.1 for the (non-IPC) Schedule-STRIPS domain.

182

B.2 Databased Fork-Decompositon

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

airport-ipc4
01 8 10 0.01 9 0.00 9 0.00 9 0.00 9 0.00 9 0.72 11 0.00 9 0.00
02 9 12 0.01 15 0.00 15 0.01 10 0.00 10 0.00 10 1.23 13 0.00 10 0.00
03 17 86 0.02 133 0.01 93 0.02 18 0.04 18 0.03 29 5.10 164 0.00 57 0.00
04 20 22 0.01 21 0.00 21 0.01 21 0.02 21 0.01 21 1.32 23 0.00 21 0.00
05 21 23 0.08 30 0.02 27 0.09 22 0.01 22 0.01 22 46.54 27 0.00 22 0.00
06 41 513 0.16 639 0.06 567 0.19 42 0.16 42 0.17 42 123.13 738 0.01 418 0.02
07 41 514 0.15 632 0.05 550 0.19 42 0.17 42 0.17 42 117.56 742 0.01 405 0.02
08 62 12733 1.89 21544 1.36 14398 4.02 24372 25.42 96231549.13 203 602.09 27032 0.28 9687 0.90
09 71 88670 16.58 136717 9.60 90412 38.78 152408 64.92 89525 466.14 12956 993.07 175717 2.47 56484 7.62
10 18 19 0.01 19 0.01 19 0.01 19 0.02 19 0.01 19 2.45 21 0.00 19 0.00
11 21 23 0.10 30 0.03 27 0.12 22 0.02 22 0.01 22 65.36 27 0.00 22 0.01
12 39 475 0.20 728 0.07 568 0.25 40 0.21 40 0.21 40 169.02 873 0.01 392 0.03
13 37 434 0.20 663 0.07 479 0.24 38 0.20 38 0.21 38 134.87 822 0.01 342 0.03
14 60 12040 2.90 25110 1.86 15948 4.64 30637 51.23 8968 238.16 62 714.76 35384 0.39 9196 1.11
15 58 11477 2.74 23317 1.71 14557 4.25 28798 46.20 8931 267.81 59 647.05 33798 0.38 8200 1.01
16 79 267277 77.39 824491 97.12 353592 114.58 1031524200.95 3053401077.90 124746719.72 221993 49.03
17 88 2460667 708.82 26786891235.79 1043661310.89
19 90 1354353 592.533400142 492.061462739 660.17 831632253.21
21 101 5156 48.29 11259 3.72 4773 51.13 7326372.92 102 10.28 18809 0.42 3184 1.12
22 148 6066481110.091063668 318.90 4778361082.91 1119943762.02 159967105.29
36 109 9504 129.73 34986 14.41 9436 140.75 34365853.70 63061 1.44
37 142 37873 820.33

blocks-ipc2
04-0 6 15 0.00 46 0.00 17 0.00 7 0.03 7 0.03 7 0.36 93 0.00 25 0.00
04-1 10 14 0.00 31 0.00 15 0.00 11 0.04 11 0.03 11 0.39 66 0.00 23 0.00
04-2 6 7 0.00 26 0.00 10 0.00 7 0.04 7 0.03 7 0.38 63 0.00 18 0.00
05-0 12 32 0.00 302 0.01 113 0.00 13 0.30 13 0.96 13 1.32 467 0.00 145 0.00
05-1 10 37 0.00 280 0.00 98 0.00 11 0.29 11 0.96 11 1.36 567 0.00 135 0.00
05-2 16 152 0.00 596 0.00 348 0.01 17 0.29 17 0.95 17 1.49 792 0.00 297 0.00
06-0 12 33 0.00 766 0.01 207 0.01 13 0.95 13 8.56 13 4.10 1826 0.00 276 0.00
06-1 10 41 0.00 2395 0.03 578 0.02 11 0.90 11 8.34 11 4.17 4887 0.01 755 0.01
06-2 20 855 0.01 5444 0.05 3352 0.06 733 0.87 85 8.84 31 4.29 6385 0.02 2556 0.03
07-0 20 278 0.01 20183 0.28 4022 0.12 577 1.93 144 23.32 22 11.47 37157 0.14 5943 0.11
07-1 22 6910 0.10 59207 0.60 38539 0.67 10071 1.70 1835 21.05 174 11.25 63376 0.21 33194 0.46
07-2 20 1458 0.02 46009 0.52 18854 0.39 1855 1.59 782 20.37 90 10.99 55218 0.19 18293 0.29
08-0 18 1533 0.03 344157 5.46 69830 2.09 5557 3.67 678 36.80 25 26.00 519107 2.28 94671 2.07
08-1 20 10040 0.17 517514 7.22 191352 4.91 45711 3.88 11827 33.49 151 26.57 636498 2.60 199901 3.85
08-2 16 479 0.02 237140 4.08 32567 1.09 277 3.63 54 32.53 17 25.85 433144 1.93 52717 1.30
09-0 30 134185 3.107405904 117.144346535 118.23 1233374 16.00 971409 77.74 464 56.76798464936.763840589 85.00
09-1 28 3435 0.094145371 77.54 917197 33.32 95068 7.35 58873 63.15 82 56.98591457229.731200345 32.06
09-2 26 6379 0.174145278 78.21 923365 33.79 161719 13.54 20050 82.45 81 57.02596316030.021211463 32.15
10-0 34 1524599 36.52 1800 114.26
10-1 32 610206 15.79 12063665 228.76 1835 115.19
10-2 34 1516087 37.71 3685 116.75
11-0 32 7046739 141.44 2678 213.32
11-1 30 1510 203.79
11-2 34 3984 213.97
12-0 34 1184 370.06
12-1 34 614 382.34
13-0 42 83996 860.45
13-1 44 1634381104.27
14-0 38 27791063.02
14-1 36 71541087.40

driverlog-ipc3
01 7 49 0.00 37 0.00 37 0.00 8 0.04 8 0.03 44 0.47 182 0.00 20 0.00
02 19 15713 0.42 18452 0.27 15794 0.55 20 0.13 20 0.26 15998 4.55 68927 0.36 54283 0.52
03 12 164 0.00 190 0.00 163 0.01 13 0.16 13 0.25 863 1.25 16031 0.09 2498 0.03
04 16 6161 0.42 10778 0.30 7665 0.62 17 0.49 17 2.41 22933 12.20 999991 8.12 393673 6.56
05 18 13640 1.01 11400 0.36 10984 1.07 2614 0.60 19 4.58 24877 18.77629080361.571724611 34.73
06 11 608 0.09 795 0.06 492 0.11 291 1.35 12 9.72 3804 10.08 681757 7.64 54451 1.71
07 13 864 0.14 1730 0.11 1006 0.21 14 1.42 14 15.35 25801 41.34634976781.53 493480 17.31
08 22 669994 75.741181268 61.32 694996 104.59 287823 7.34 2952 20.31
09 22 150255 14.72 198651 11.44 164109 23.06 15504 1.70 23 10.43
10 17 4304 0.44 16099 1.21 4037 0.69 18 1.64 18 18.54 18234 68.22
11 19 43395 4.99 41445 2.22 39069 5.90 34137 1.99 10790 17.01 5596231193.00 6141130330.22
13 26 1303099 325.711014865 144.641098694 422.20 1298884 19.52 870875 35.33

Table B.7: Runtimes of cost-optimal heuristic-search planners on the Airport, Blocksworld,
and Driverlog domains. The description of the planners is given in Section 4.4.2; here the fork-
decomposition heuristics are via databased implicit abstractions. Column task denotes problem
instance, column h∗ denotes optimal solution length. Other columns capture the run time and
number of expanded nodes.

183

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

depots-ipc3
01 10 114 0.01 279 0.01 161 0.02 11 0.00 11 0.00 45 0.77 329 0.00 136 0.00
02 15 1134 0.08 9344 0.31 2638 0.22 738 3.24 16 1.14 898 11.56 15404 0.11 3771 0.17
03 27 134428 8.59 2520703 159.84 581726 66.43 348288 20.69 239313222.35 103089 247.13 2930398 27.20 1204646 97.62
04 30 1254545 101.18 5835295 923.87 1284048 52.05 1273762529.34
07 21 109765 9.17 4271196 336.59 487961 76.02 211820 37.54 41328 324.19 6501100 71.58 1331701 166.76
10 24 2964635 283.55 60814781187.66 3241083157.52
13 25 1003709 152.30 81618721559.21 1427824116.06

freecell-ipc3
01 8 234 0.10 974 0.15 274 0.17 87 3.12 9 38.74 9 13.01 3437 0.03 1043 0.15
02 14 30960 1.95 75150 5.53 37131 4.79 31487 40.40 466 70.29 130883 1.46 41864 10.77
03 18 197647 14.41 533995 78.27 240161 51.24 95805140.96 1589 169.39 944843 11.45 210503 75.62
04 26 997836 60.67 1921470 232.95 1218329 213.02 943074 86.78 15848 341.02 3021326 38.80 600525 247.70
05 30 6510089 448.22 5950977243.74 40642 916.44 14080351062.25

grid-ipc1
01 14 571 0.60 1117 0.34 472 0.78 660 8.63 467121.10 6446 0.08 190 0.10
02 26 33302741078.55 3392724 50.35 3244132241.94 664016 231.26

gripper-ipc1
01 11 214 0.00 240 0.00 214 0.00 12 0.00 12 0.00 33 0.11 236 0.00 208 0.00
02 17 1768 0.02 1832 0.01 1803 0.03 18 0.11 18 0.08 680 0.37 1826 0.01 1760 0.01
03 23 11626 0.19 11736 0.08 11689 0.22 11514 0.47 2094 1.75 7370 1.52 11736 0.04 11616 0.08
04 29 68380 1.46 68558 0.51 68479 1.63 68380 1.24 68190 8.05 55568 10.29 68558 0.27 68368 0.56
05 35 376510 10.07 376784 3.20 376653 11.11 376510 3.52 376510 19.46 344386 79.96 376772 1.59 376496 3.51
06 41 1982032 70.91 1982408 19.08 1982227 77.81 1982032 13.42 1982032 42.16 1911592 577.49 1982394 9.59 1982016 21.57
07 47 10091986 438.4110092464 105.6710092241 478.67 10091986 61.6610091986106.84 10092464 51.1010091968 119.64

logistics-ipc1
01 26 77763 7.14 1469610 95.49 830292 98.59 1918881 41.03 949586 34.82 2119551700.26
05 22 3293 0.46 850312 42.43 173477 18.19 768161 18.69 609393 35.27
31 13 436 0.03 1981 0.07 1284 0.09 494 0.42 14 2.11 481 6.58 155645 1.66 32282 0.57
32 20 392 0.01 2704 0.07 962 0.05 21 0.16 21 0.72 9598 7.08 245325 2.07 81156 1.00
33 27 312180 27.19 3617185 427.52 529338 32.55
35 30 477883 183.08

logistics-ipc2
04-0 20 21 0.00 193 0.00 65 0.00 21 0.03 21 0.05 21 0.34 11246 0.05 4884 0.03
04-1 19 20 0.00 570 0.01 293 0.00 20 0.03 20 0.04 20 0.37 9249 0.04 4185 0.03
04-2 15 16 0.00 117 0.00 79 0.00 16 0.04 16 0.05 16 0.36 4955 0.02 1205 0.01
05-0 27 28 0.00 2550 0.05 1171 0.03 28 0.10 28 0.38 28 0.58 109525 0.64 74694 0.59
05-1 17 18 0.00 675 0.01 427 0.01 18 0.10 18 0.38 18 0.72 22307 0.13 6199 0.05
05-2 8 9 0.00 24 0.00 13 0.00 9 0.09 9 0.38 9 0.78 1031 0.00 280 0.00
06-0 25 26 0.00 4249 0.09 2461 0.07 26 0.18 26 1.23 26 1.03 490207 3.40 202229 1.92
06-1 14 15 0.00 181 0.00 99 0.00 15 0.18 15 1.26 15 1.16 24881 0.16 3604 0.03
06-2 25 26 0.00 2752 0.06 1394 0.04 26 0.19 26 1.26 26 1.03 476661 3.32 200012 1.98
06-9 24 25 0.00 2395 0.04 1428 0.04 25 0.18 25 1.22 25 1.02 422557 2.95 133521 1.29
07-0 36 37 0.00 251287 7.52 98053 4.59 525 0.65 37 4.87 24317 35.46
07-1 44 1689 0.07 3532213 99.33 1705009 72.35 666324 8.83 49 4.94 362179 453.06
08-0 31 32 0.00 82476 2.69 35805 1.78 1042 0.96 32 6.90 14890 33.50
08-1 44 45 0.01 1183608 45.72 462244 25.36 16708 1.15 45 7.21 114155 198.84
09-0 36 37 0.00 351538 13.75 167038 9.76 20950 1.56 37 9.46 32017 83.16
09-1 30 31 0.00 59336 2.48 25359 1.73 31 1.27 31 9.43 6720 26.48
10-0 45 46 0.01 668834 29.73
10-1 42 43 0.01 1457130 43.00
11-0 48 697 0.09 701106 37.42
11-1 60 21959 2.22
12-0 42 43 0.02 775996 43.56
12-1 68 106534 11.64 2222340 87.47

mprime-ipc1
01 5 196 0.02 10 0.01 24 0.01 6 2.00 6 20.45 108 49.59 3636 0.07 68 0.04
02 7 11604 2.72 44045 80.68 2565 4.20 3317 88.58 12606 36.65
03 4 427 0.27 7 0.08 11 0.16 36 33.64 5463.85 9868 0.67 5 0.07
04 8 3836 0.22 1775 0.10 1093 0.09 9 6.09 9 82.71 19076 781.74 599590 23.58 200 0.24
05 11 1745027 195.08 604756 592.60 1705009127.53 14881571638.78
07 5 3314 0.25 47 0.03 346 0.08 1667 46.72 18744 0.56 11 0.04
08 6 485381 491.53 1376780 1426.21 1469752403.45 7650 84.33
09 8 19838 2.92 100188 74.85 5227 6.31 21993 36.25 2197646 71.69 19023 30.26
11 7 9 0.02 219 0.03 8 0.03 8 4.69 8 62.68 22 394.26 73260 2.21 915 0.54
12 6 16320 1.89 8118 0.73 5243 1.13 34763 11.45 42055143.27 25665 724.12 108652 3.50 1520 1.78
15 6 1039 178.55
16 6 252 0.76 51590 135.00 448 2.76 473 81.42 425144 32.17 7962 35.65
17 4 2746 10.47 453 18.78 451 21.40 172736 42.48 5 1.06
19 6 727401 521.78 95361 485.79 123039313.25 36013 533.75
21 6 174221 55.09 34022 47.43 169400 392.30 1503293103.23 15250 101.75
25 4 75 0.01 30 0.01 29 0.01 5 0.48 5 2.75 85 8.71 383 0.00 6 0.00
26 6 77622 24.69 147854 48.25 68239 106.35 172432 46.33 189154454.69 819590 61.01 440 2.69
27 5 54 0.16 1772 1.50 9 0.18 6 11.59 6154.43 84079 3.50 831 2.08
28 7 8 0.01 403 0.02 37 0.02 8 1.88 8 22.55 128 146.80 17333 0.25 211 0.06
29 4 182 0.12 56 0.08 32 0.11 5 14.92 5201.40 3187 0.17 7 0.10
31 4 248 0.51 46 0.68 19 1.00 419 99.87 3584 0.19 11 0.17
32 7 31759 1.73 12436 1.46 11839 1.93 19429 21.61 7269292.37 110731701.00 115479 2.75 3096 1.74
34 4 234 0.26 46 0.16 23 0.28 450151.69 3618 0.19 11 0.18
35 5 392 0.07 290 0.06 84 0.08 359 3.63 6 43.43 706 96.55 2476 0.05 44 0.03

Table B.8: Similar to Table B.7 for the Depots, Freecell, Grid, Gripper, Logistics-ipc1,
Logistics-ipc2, and Mprime domains.

184

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

miconic-strips-ipc2
01-0 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-1 3 5 0.00 5 0.00 5 0.00 4 0.00 4 0.00 4 0.00 5 0.00 4 0.00
01-2 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-3 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00
01-4 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
02-0 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 26 0.01 30 0.00 20 0.00
02-1 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 26 0.01 30 0.00 22 0.00
02-2 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 27 0.00 30 0.00 22 0.00
02-3 7 24 0.00 24 0.00 24 0.00 8 0.00 8 0.00 20 0.01 26 0.00 17 0.00
02-4 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 23 0.01 31 0.00 20 0.00
03-0 10 86 0.00 129 0.00 98 0.00 11 0.00 11 0.00 100 0.03 193 0.00 105 0.00
03-1 11 120 0.00 168 0.00 147 0.00 12 0.00 12 0.00 140 0.02 218 0.00 150 0.00
03-2 10 137 0.00 143 0.00 137 0.00 11 0.00 11 0.00 122 0.02 164 0.00 92 0.00
03-3 10 96 0.00 153 0.00 117 0.00 11 0.00 11 0.00 131 0.02 197 0.00 130 0.00
03-4 10 103 0.00 149 0.00 115 0.00 11 0.00 11 0.00 114 0.02 190 0.00 114 0.00
04-0 14 524 0.00 843 0.00 686 0.01 15 0.01 15 0.01 669 0.10 1182 0.00 866 0.00
04-1 13 505 0.00 817 0.00 663 0.01 14 0.01 14 0.01 634 0.11 1176 0.00 860 0.00
04-2 15 685 0.00 942 0.00 802 0.01 16 0.01 16 0.01 822 0.12 1277 0.00 969 0.00
04-3 15 681 0.00 942 0.00 798 0.01 16 0.01 16 0.01 820 0.12 1319 0.00 970 0.00
04-4 15 685 0.00 942 0.00 802 0.01 16 0.01 16 0.01 821 0.12 1334 0.00 969 0.00
05-0 17 2468 0.03 4009 0.03 3307 0.05 18 0.06 18 0.05 2829 0.44 6350 0.03 4387 0.03
05-1 17 2807 0.04 4345 0.03 3677 0.06 18 0.06 18 0.05 3260 0.49 6602 0.03 4664 0.03
05-2 15 1596 0.02 2981 0.02 2275 0.04 16 0.06 16 0.05 1594 0.32 5565 0.03 3524 0.03
05-3 17 2256 0.03 3799 0.03 3104 0.05 18 0.06 18 0.05 2568 0.42 5944 0.03 4140 0.03
05-4 18 3210 0.04 4732 0.03 4267 0.06 19 0.06 19 0.05 3953 0.55 6949 0.04 5268 0.04
06-0 19 9379 0.18 17665 0.15 13531 0.26 20 0.18 20 0.32 9312 1.76 30786 0.20 21194 0.20
06-1 19 9106 0.17 18134 0.15 14052 0.27 20 0.18 20 0.32 10252 1.96 30093 0.20 21255 0.20
06-2 20 10900 0.20 19084 0.16 15111 0.28 21 0.18 21 0.32 11247 2.11 32390 0.21 21694 0.21
06-3 20 12127 0.23 21708 0.18 17807 0.33 21 0.17 21 0.32 14216 2.56 32574 0.21 24552 0.23
06-4 21 13784 0.24 23255 0.19 19536 0.35 22 0.17 22 0.32 16880 3.04 33793 0.22 26167 0.24
07-0 23 53662 1.19 96092 0.97 79449 1.76 24 0.32 24 1.75 56686 14.31 155466 1.22 116685 1.32
07-1 24 56328 1.24 99109 0.96 83677 1.83 7001 0.38 25 1.75 63035 16.33 164470 1.29 118494 1.33
07-2 22 48141 1.10 96139 0.94 78471 1.77 1646 0.33 23 1.71 55751 13.98 161342 1.27 119688 1.36
07-3 22 46867 1.08 93117 0.92 75424 1.69 1861 0.33 23 1.74 53121 13.27 155176 1.23 114649 1.30
07-4 25 84250 1.70 126595 1.22 111984 2.36 23159 0.52 26 1.71 96327 24.76 168219 1.33 140128 1.58
08-0 27 272580 7.05 485051 5.51 408114 10.53 41629 0.91 28 4.18 290649 104.18 755255 7.16 594032 7.95
08-1 27 284415 7.56 527216 6.01 446837 11.58 42679 0.90 28 4.25 339177 123.10 794365 7.56 636587 8.66
08-2 26 207931 5.60 414294 4.79 330993 8.90 37744 0.86 27 4.25 204614 73.39 731622 6.92 534711 7.37
08-3 28 369479 9.25 598031 6.74 527216 13.30 140453 1.94 29 4.21 435617 160.49 833421 7.97 690267 9.29
08-4 27 297516 7.74 507910 5.79 431432 11.04 62933 1.16 28 4.12 315339 111.84 771608 7.33 613253 8.43
09-0 31 1461729 43.82 2491975 32.672138656 63.58 684737 9.07 126918 8.89 1555286 794.93 3685552 41.04 3006991 49.12
09-1 30 1207894 37.47 2335166 30.761952916 59.39 406041 5.61 100937 8.73 1344815 683.05 3649801 40.32 2893803 47.54
09-2 30 1294691 40.03 2340411 30.971972234 59.25 442547 6.06 82946 8.63 1357681 692.11 3576134 39.61 2895182 47.26
09-3 32 1840936 52.68 2889342 38.122571844 74.47 765455 10.00 277302 11.14 20831681051.95 3796035 42.13 3304570 53.29
09-4 28 1252484 40.34 2352633 31.351944297 59.37 317692 4.65 29 7.03 1231554 605.01 3589382 39.29 2956995 48.84
10-0 33 5716041202.3710316603 153.808774563300.08 2436164 35.24 863244 23.76 15804498200.9013267920250.58
10-1 32 5601282201.4310789013 162.699144153315.23 2340169 34.09 335745 15.68 16472633208.3913720664256.89
10-2 32 4153191155.86 9148616 138.697466572265.86 1735477 25.29 486286 17.72 15867374201.0112497087236.89
10-3 34 6108094214.6810960203 167.109400386320.13 3952148 55.86 940556 24.24 16309701208.4213801989262.53
10-4 33 5920127211.4011075136 170.829448049322.74 2715866 39.44 625559 19.91 16472551209.1313925654262.57
11-0 37 11473359183.604724980 93.56
11-1 34 15349953668.77 7535468124.801934943 47.91
11-2 38 14645785233.686330198120.71
11-3 38 5809711110.10
11-4 35 5853546 95.561082086 32.22

mystery-ipc1
01 5 7 0.00 6 0.00 6 0.00 6 0.20 6 1.79 10 5.38 30 0.00 8 0.00
02 7 2404 0.50 8012 11.19 722 1.01 1672 82.70 770852 21.85 2368 4.47
03 4 73 0.08 7 0.04 11 0.10 5 16.46 5193.75 65 811.87 507 0.02 5 0.03
04 ∞ 0 0.00 0 0.00
07 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
09 8 3049 0.37 10764 5.66 1215 1.01 3165 29.34 3868 670.08 138289 2.18 1458 1.44
11 7 9 0.01 33 0.01 8 0.01 8 1.51 8 16.59 34 41.20 426 0.00 19 0.00
12 ∞ 2102777 33.84 2093419 55.582093419 76.80 2102777 14.612102729 27.84 2102777 15.09 1177842 21.87
15 6 28271 20.21 21572 41.22 5079 44.42 279973 13.21 135 2.62
16 ∞ 0 0.15 0 0.27
17 4 354 1.32 85 2.74 83 3.59 198445.85 5400 0.41 5 0.35
18 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
19 6 21717 4.87 4968 5.26 16276 29.28 12478 96.38 133871 3.65 1516 5.44
20 7 89887 46.32 84572 153.53 53114173.34 285069 59.22 547246578.39 686125 23.28 718 3.76
24 ∞ 0 0.13 0 0.30
25 4 9 0.00 10 0.00 9 0.01 5 0.10 5 0.10 14 1.22 31 0.00 6 0.00
26 6 1807 0.27 1835 0.30 1344 0.69 2526 5.94 346 70.78 3107 291.36 8455 0.10 37 0.05
27 5 14 0.05 159 0.09 6 0.07 6 4.80 6 80.48 7 243.78 2174 0.03 73 0.04
28 7 8 0.00 47 0.00 15 0.00 8 0.63 8 6.77 31 16.67 843 0.00 32 0.00
29 4 31 0.04 14 0.03 10 0.06 5 8.94 5107.10 27 536.30 153 0.01 7 0.02
30 9 23175 5.16 76480 169.86 7232 13.30 42112 28.07 44893357.07 1977063 38.26 26686 28.27

Table B.9: Similar to Table B.7 for the Miconic and Mystery domains.

185

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

openstacks-ipc5
01 23 2264 0.02 3895 0.03 3070 0.05 24 0.05 24 0.06 2000 1.02 4822 0.01 4016 0.03
02 23 2617 0.03 4485 0.04 3561 0.05 24 0.06 24 0.06 2378 1.07 5501 0.02 4594 0.04
03 23 2264 0.02 3895 0.03 3070 0.05 24 0.06 24 0.06 2000 1.02 4822 0.01 4016 0.03
04 23 2264 0.02 3895 0.03 3070 0.05 24 0.06 24 0.06 2000 1.02 4822 0.02 4016 0.03
05 23 2264 0.02 3895 0.03 3070 0.05 24 0.06 24 0.05 2000 1.02 4822 0.01 4016 0.03
06 45 366768 7.52 779710 18.93 587482 22.20 621008 4.85 279614 7.86 379735 217.37 882874 4.91 822514 18.71
07 46 410728 8.23 760668 18.33 606782 22.53 594758 4.69 264535 7.34 405564 226.32 836647 4.62 787163 17.81

pathways-ipc5
01 6 1624 0.00 1299 0.00 1299 0.00 7 1.14 7 0.79 1405 0.28 1624 0.00 36 0.00
02 12 2755 0.02 2307 0.01 2437 0.02 1946 2.56 13 42.11 990 0.29 2984 0.02 348 0.01
03 18 44928 0.62 20416 0.25 29106 0.43 21671 6.43 14901129.23 14772 6.99 87189 1.06 4346 0.16
04 17 126950 2.66 33788 0.59 58738 1.31 98484288.39 34206 27.00 456143 8.22 104068 2.61

pipesworld-notankage-ipc4
01 5 121 0.02 109 0.01 121 0.02 6 0.04 6 0.04 6 2.79 121 0.00 13 0.00
02 12 1413 0.06 1542 0.02 1413 0.08 169 0.30 13 0.17 435 3.07 1808 0.01 792 0.02
03 8 1742 0.14 3001 0.07 1742 0.18 9 1.15 9 0.69 128 3.84 3293 0.02 262 0.02
04 11 7007 0.45 8911 0.22 7007 0.59 651 1.95 12 7.05 812 8.84 16088 0.11 2925 0.13
05 8 4093 0.49 6805 0.26 4093 0.65 77 5.63 9 21.15 155 16.53 11128 0.12 1121 0.15
06 10 12401 1.44 27377 1.34 12401 2.03 1299 5.26 61 39.31 1151 23.41 49905 0.48 7102 0.72
07 8 4370 0.97 9168 0.77 4370 1.34 233 19.78 9 59.70 185 29.88 46502 0.57 2631 0.48
08 10 18851 3.84 56189 6.21 20584 6.42 561 12.42 497 94.69 1673 48.84 273585 3.39 22874 3.58
09 13 1092472 160.712419903 151.991092472 219.75 104875 25.48 10478 74.265513309 80.62 321861 68.99
10 18 2982520 66.89 6898321439.64 111212451579.77
11 20 313952 27.68 472950 29.55 313952 43.90 90598 9.20 52159 43.24 108503 625.52 710123 3.86 107061 14.51
12 24 684234 75.721319980 133.58 686186 145.41 594661 12.41 416184109.43 4332961117.572467804 13.83 464982 56.82
13 16 39998 6.02 117475 18.08 40226 12.69 12835 34.28 242241019.65 481045 3.14 33417 6.38
14 30 13255718119.54
15 26 1594863 254.432588849 192.901594863 353.40 648132 65.43 4921698 34.90 555619 105.49
17 22 54373931588.68 3200672 90.07
19 24 8767431150.88
21 14 23833 4.02 49035 7.76 23833 7.87 3992 18.13 948159.63 157782 1.31 8966 2.42
23 18 2285790 568.937047138 871.032282678 843.28 296506 49.11 104750256.13 481859 229.00
24 24 7315150142.82
41 12 502308 370.68 5023081092.50 114257 250.18

pipesworld-tankage-ipc4
01 5 77 0.02 126 0.01 105 0.02 6 3.54 6 0.13 6 3.88 128 0.00 13 0.01
02 12 960 0.05 1005 0.02 960 0.06 110 3.04 13 0.20 179 6.04 1012 0.01 659 0.02
03 8 20803 1.89 52139 2.46 20803 2.82 244 22.64 9 36.89 818 24.47 52983 0.77 1802 1.33
04 11 110284 8.06 157722 9.60 110284 14.05 3892 16.68 12155.03 8116 64.68 221429 3.06 41540 14.49
05 8 6531 0.86 13148 1.03 6531 1.32 376 15.46 9120.06 313 59.99 12764 0.21 2834 1.61
06 10 20171 2.41 43583 4.32 20171 4.41 1794328.18 11201.44 3102 97.31 58487 0.87 15746 6.61
07 8 202706 73.832643752 1379.11 202706 208.81 2695 339.765404036198.08 104531 420.47
08 11 96043191.77
11 22 2345399 296.872629204 662.942365735 838.85 660104 28.60 660102162.93 4116344 30.67 752867 334.42
13 16 188517122.11
15 30 96520911721.67 2546587141.12
17 44 12850247352.46
21 14 839847 250.39 13241 69.80 4423951 65.44 126845 222.23
31 39 1501847 240.381568963 661.881504072 850.16 1357801124.64 1726598 13.56 919764 381.66

rovers-ipc5
01 10 147 0.00 147 0.00 147 0.00 11 0.03 11 0.03 48 0.07 1104 0.00 283 0.00
02 8 44 0.00 44 0.00 44 0.00 9 0.00 9 0.00 16 0.03 254 0.00 129 0.00
03 11 672 0.01 419 0.00 448 0.01 12 0.11 12 0.12 804 0.16 3543 0.02 757 0.00
04 8 47 0.00 20 0.00 24 0.00 9 0.04 9 0.04 58 0.08 897 0.00 223 0.00
05 22 808084 22.61 410712 9.23 522937 18.29 617267 11.48 375808 18.46 298400 101.658559690126.19 4318309 81.53
07 18 4546797 191.34 741649 21.011682245 102.77 3280884 51.022212903 59.20 1459792 866.93 9618062 199.91
12 19 1529551 76.46 5187273166.77

satellite-ipc4
01 9 24 0.00 32 0.00 29 0.00 10 0.00 10 0.00 46 0.06 89 0.00 59 0.00
02 13 86 0.00 337 0.00 241 0.01 14 0.01 14 0.01 646 0.21 1728 0.01 940 0.00
03 11 2249 0.08 656 0.01 728 0.04 12 0.56 12 0.64 1945 0.93 15185 0.17 6822 0.11
04 17 9817 0.57 14860 0.38 11250 0.76 4152 0.99 18 4.43 15890 9.50 345663 4.70 180815 3.37
05 15 279569 49.47 46453 4.92 61692 18.85 81972 7.26 148667 69.28 267513 565.18
06 20 1496577 92.221572327 51.681518261 105.65 2769229 74.73 307962 32.52 10751017 371.43

Table B.10: Similar to Table B.7 for the Openstacks, Pathways, Pipesworld-NoTankage,
Pipesworld-Tankage, Rovers, and Satellite domains.

186

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

psr-small-ipc4
01 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
02 11 52 0.00 55 0.00 52 0.00 12 0.00 12 0.00 20 0.08 71 0.00 47 0.00
03 11 31 0.00 31 0.00 31 0.00 12 0.00 12 0.00 20 0.04 33 0.00 28 0.00
04 10 66 0.00 91 0.00 73 0.00 11 0.00 11 0.00 12 0.34 332 0.00 102 0.00
05 11 75 0.00 79 0.00 75 0.00 12 0.00 12 0.00 23 0.11 154 0.00 69 0.00
06 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
07 11 61 0.00 61 0.00 61 0.00 12 0.00 12 0.00 26 0.09 122 0.00 62 0.00
08 8 24 0.00 29 0.00 25 0.00 9 0.00 9 0.00 9 0.12 128 0.00 52 0.00
09 8 18 0.00 19 0.00 18 0.00 9 0.00 9 0.00 9 0.06 49 0.00 20 0.00
10 7 131 0.01 183 0.00 155 0.01 8 0.04 8 0.04 18 1.04 1358 0.00 376 0.01
11 19 149 0.00 149 0.00 149 0.00 20 0.00 20 0.00 96 0.19 153 0.00 142 0.00
12 16 120 0.00 123 0.00 120 0.00 17 0.00 17 0.00 40 0.17 153 0.00 113 0.00
13 15 90 0.00 90 0.00 90 0.00 16 0.00 16 0.00 59 0.16 95 0.00 86 0.00
14 9 19 0.00 19 0.00 19 0.00 10 0.00 10 0.00 13 0.06 27 0.00 18 0.00
15 10 1200 0.08 708 0.03 769 0.09 11 0.46 11 2.58 356 18.99 3562 0.02 324 0.02
16 25 2328 0.02 2158 0.01 2176 0.03 975 0.11 26 0.12 2287 1.34 2742 0.01 1876 0.01
17 9 15 0.00 15 0.00 15 0.00 10 0.00 10 0.00 13 0.03 16 0.00 14 0.00
18 12 85 0.00 90 0.00 85 0.00 13 0.00 13 0.00 29 0.21 158 0.00 91 0.00
19 25 8025 0.11 7856 0.05 7876 0.12 2910 0.27 26 0.77 6338 4.46 9009 0.04 6925 0.08
20 17 80 0.00 80 0.00 80 0.00 18 0.00 18 0.00 52 0.18 84 0.00 75 0.00
21 10 28 0.00 28 0.00 28 0.00 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
22 33 163299 4.17 176058 1.56 168685 5.01 34 0.28 34 0.87 22315 8.16 189516 0.67 177138 1.43
23 12 77 0.00 93 0.00 77 0.00 13 0.00 13 0.01 30 0.43 200 0.00 116 0.00
24 10 28 0.00 28 0.00 28 0.00 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
25 9 485 3.06 463 0.58 482 3.28 10 5.42 10 37.93 28 780.38 8913 0.12 854 0.18
26 17 144 0.00 150 0.00 146 0.00 18 0.00 18 0.00 52 0.28 182 0.00 142 0.00
27 21 616 0.01 675 0.00 650 0.01 22 0.01 22 0.01 179 0.85 773 0.00 616 0.00
28 14 79 0.00 79 0.00 79 0.00 15 0.00 15 0.00 49 0.29 95 0.00 79 0.00
29 21 142772 4.55 187319 2.12 159325 5.80 22 0.39 22 1.43 3337 7.12 244499 1.27 192459 2.32
30 22 1791 0.03 1982 0.01 1883 0.04 23 0.01 23 0.02 393 1.35 2295 0.01 1834 0.01
31 19 11278 0.25 6810 0.08 8297 0.24 2647 0.89 723 6.55 7530 32.97 53911 0.25 16766 0.36
32 24 431 0.01 431 0.00 431 0.01 25 0.00 25 0.00 352 0.74 435 0.00 424 0.00
33 21 1480 0.02 1436 0.01 1391 0.03 446 0.26 22 0.63 947 2.29 2291 0.01 1073 0.01
34 21 223 0.00 223 0.00 223 0.00 22 0.00 22 0.00 158 0.50 227 0.00 216 0.00
35 22 65965 1.43 63186 0.46 68281 1.70 24021 0.83 11113 6.36 7448 8.27 165170 0.63 61548 1.06
36 22 571766 12.62 371834 3.41 458402 11.77 48350 2.98 2783 14.07 188564 111.99 1669788 9.44 717884 18.27
37 23 1307 0.03 1417 0.01 1363 0.03 24 0.02 24 0.01 277 2.10 1532 0.00 1342 0.01
38 13 301 0.01 372 0.00 326 0.01 14 0.01 14 0.01 33 0.74 562 0.00 357 0.00
39 23 2486 0.05 2942 0.02 2682 0.07 24 0.08 24 0.07 146 1.78 4103 0.01 2597 0.02
40 20 259683 8.59 182608 2.70 270195 11.73 38837 1.88 7767 12.86 23371 87.91 1036992 6.74 229210 9.51
41 10 31 0.00 34 0.00 31 0.00 11 0.00 11 0.00 21 0.16 54 0.00 35 0.00
42 30 1855 0.02 1747 0.01 1739 0.02 1117 0.18 31 0.18 1773 1.29 1908 0.01 1636 0.01
43 20 328 0.00 328 0.00 328 0.00 21 0.00 21 0.00 256 0.50 333 0.00 315 0.00
44 19 2990 0.07 3430 0.03 3121 0.08 20 0.05 20 0.05 407 2.18 4142 0.01 3235 0.02
45 20 347 0.00 376 0.00 359 0.01 21 0.01 21 0.00 121 0.74 434 0.00 358 0.00
46 34 60888 0.86 61842 0.31 61563 0.99 36941 0.67 32582 4.05 19865 6.91 80785 0.25 65984 0.63
47 27 4104 0.09 4522 0.03 4284 0.11 28 0.04 28 0.04 515 2.32 5075 0.01 4406 0.02
48 37 12080249604.4317435137 247.2013514084784.80 129627 2.37 2500 11.08 200559 101.21 19020089286.02
49 47 2048368 15.84 594399 23.32 27728751408.64
50 23 637 0.01 659 0.01 645 0.02 24 0.02 24 0.02 390 1.40 690 0.00 642 0.00

tpp-ipc5
01 5 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.01 7 0.00 6 0.00
02 8 9 0.00 11 0.00 9 0.00 9 0.00 9 0.00 9 0.01 26 0.00 16 0.00
03 11 12 0.00 27 0.00 16 0.00 12 0.00 12 0.00 12 0.03 116 0.00 83 0.00
04 14 15 0.00 78 0.00 47 0.00 15 0.01 15 0.00 15 0.07 494 0.00 430 0.00
05 19 623 0.02 5110 0.08 1455 0.05 20 0.36 20 0.77 624 0.48 24698 0.12 17398 0.15
06 25 5843306179.03 6916518 95.86 6153923222.35 947059 14.22 74798 23.97 9267024216.69

trucks-ipc5
01 13 1691 0.03 1027 0.01 1039 0.03 14 0.03 14 0.02 285 0.56 5774 0.02 402 0.01
02 17 9624 0.23 2898 0.04 2957 0.11 4192 0.22 18 0.17 1413 1.04 28348 0.14 939 0.03
03 20 80693 2.99 20752 0.44 22236 1.14 199405 2.89 173790 6.88 4049 4.43 379582 2.97 9465 0.40
04 23 1753866 48.55 1205793 23.48 1315672 50.35 2591561 29.172568634 56.96 8817 7.75 2990366 26.65 209140 9.43
05 25 12472562515.50 8007189 242.98 9483222512.55 23444940392.99 14744 23.12 1248571 90.78
06 30 308920 343.47
07 23 2134728 96.15 719751 16.91 755608 50.72 7575415 88.918080496117.13 43270 27.6212410588117.92 223011 19.34
08 25 5199440 221.76 6630689687.95 49663 47.61 3106944403.36
09 28 233577 248.21

zenotravel-ipc3
01 1 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.45 2 0.00 2 0.00
02 6 17 0.00 18 0.00 17 0.00 7 0.00 7 0.00 9 0.46 58 0.00 22 0.00
03 6 28 0.01 18 0.01 12 0.01 7 0.21 7 0.90 40 3.42 5160 0.04 492 0.02
04 8 99 0.01 88 0.01 81 0.01 9 0.20 9 0.89 215 3.44 5256 0.03 665 0.01
05 11 177 0.01 220 0.01 136 0.02 12 0.25 12 1.90 422 7.70 82289 0.63 12466 0.33
06 11 2287 0.10 1144 0.05 504 0.05 12 0.38 12 3.54 1957 11.81 596531 5.90 85931 2.47
07 15 5088 0.16 4234 0.09 4199 0.19 16 0.38 16 3.48 34890 30.36 405626 3.56 115348 2.60
08 11 3268 0.35 1026 0.12 1655 0.32 14354 2.00 12 14.48 83533 292.05 687846 50.76
09 21 2844771177.70 2842546 176.05 2433822262.84 2517035 51.18 611457 30.47
10 22 2283679295.65 1921903 196.38 1832871383.99 1322871 34.84 137872 25.44
11 14 139687 18.63 76904 8.20 93782 19.51 310030 11.28 110726 26.65

Table B.11: Similar to Table B.7 for the PSR, TPP, Trucks, and Zenotravel domains.

187

Forks Inverted Forks Both FA-104 FA-105 hspf blind hmax
task h∗ nodes timenodes time nodes time nodes timenodes time nodes time nodes time nodes time

schedule-strips
02-0 3 5 0.07 5 0.04 5 0.08 4 511.10 41743.32 5 577.39 76 0.02 5 0.09
02-1 2 3 0.08 4 0.05 3 0.10 3 104.98 3 754.26 6 0.02 3 0.07
02-2 2 3 0.17 3 0.06 3 0.19 3 231.99 3 495.56 5 0.02 3 0.07
02-3 3 26 0.17 37 0.06 26 0.18 4 56.51 4 658.90 529 0.03 95 0.45
02-4 3 68 0.17 188 0.07 220 0.26 4 484.62 543 0.03 108 0.44
02-5 2 3 0.17 3 0.05 3 0.19 3 363.11 3 667.32 3 0.03 3 0.07
02-6 2 3 0.07 5 0.04 3 0.09 3 121.84 3 697.42 6 0.02 3 0.06
02-7 2 3 0.15 3 0.05 3 0.17 3 323.77 3 604.06 13 0.02 3 0.07
02-8 2 3 0.17 3 0.05 3 0.19 3 316.53 3 668.79 8 0.02 3 0.07
02-9 3 5 0.07 5 0.04 5 0.08 4 251.46 5 577.16 76 0.03 5 0.09
03-0 4 40 0.31 407 0.16 140 0.45 11915 0.60 1127 8.98
03-1 2 3 0.22 3 0.08 3 0.25 31 0.04 25 0.37
03-2 4 27 0.21 50 0.09 33 0.25 5 191.03 3617 0.23 1228 9.56
03-3 4 15 0.13 91 0.09 15 0.15 5 259.13 3379 0.23 170 1.85
03-4 3 4 0.39 16 0.10 4 0.44 41223.90 301 0.06 22 0.27
03-5 4 73 0.38 471 0.14 74 0.43 5 682.30 12217 0.64 1175 12.43
03-6 4 72 0.12 75 0.08 69 0.13 5 121.58 2663 0.19 1542 11.73
03-7 4 28 0.23 50 0.09 28 0.25 5 195.72 12859 0.68 1323 13.47
03-8 4 273 0.43 266 0.14 273 0.48 12616 0.65 1590 11.13
03-9 4 8 0.23 31 0.09 14 0.27 5 235.48 4339 0.27 913 7.69
04-0 5 373 0.45 1498 0.50 167 0.54 31219326.88 22993 273.38
04-1 6 1755915.4510707 3.48 17686 17.58 71115.76 55206949.79
04-2 5 209 0.40 406 0.19 66 0.34 47696 4.97 9703 131.69
04-3 5 142 0.40 674 0.25 251 0.58 6 267.29 89272 8.74 12941 163.84
04-4 5 921 1.14 450 0.31 574 1.39 62013 6.03 13614 168.07
04-5 6 483 0.95 4544 1.11 850 2.11 7 837.68 1079781399.99
04-6 6 779 0.5611610 2.44 1834 1.43 7 459.19 1071151001.40
04-7 5 99 0.58 424 0.31 163 0.78 6 936.68 61327 5.97 8683 103.50
04-8 5 102 0.52 573 0.24 111 0.60 6 711.65 34046729.56 15122 181.98
04-9 4 1043 1.27 996 0.67 1050 1.66 5 316.22 41673 4.27 5480 83.69
05-0 5 163 0.86 483 0.51 167 1.05 14335022.71 43336 751.35
05-1 6 2701 2.9518878 11.36 1257 3.10
05-2 7 11885586.65 158640178.66
05-3 7 2715924.8841447 13.08 13622 16.72
05-4 6 989 1.63 3433 1.29 582 1.36
05-5 6 198 0.61 9550 4.61 347 1.05 120602 989.42
05-6 7 603311.1649873 16.17 10325 16.63
05-7 6 944 1.9217562 9.03 2107 4.10
05-8 7 1190 2.4361539 20.22 2709 7.24
05-9 6 1537 2.2415829 6.85 2717 5.45
06-2 6 888 3.2926986 22.47 1709 6.91
06-4 8 1153520.81 56273131.69
06-6 8 1558946.68 41764133.76
07-0 7 2489 9.10 6995 25.49
07-7 8 1072641.01 38251154.49
07-9 8 682919.20 30148109.49

Table B.12: Similar to Table B.7 for the (non-IPC) Schedule-STRIPS domain.

188

hF hI hFI HSP∗F blind
task h∗ nodes time nodes time nodes time nodes time nodes time

elevators-strips-ipc6
01 42 7483 0.39 10507 0.84 8333 1.03 12935 30.55 26670 0.40
02 26 2898 0.45 5184 1.12 4044 1.46 4810 42.63 16162 0.49
03 55 61649 4.00 219439 13.43 139760 15.62 276441 469.96 650316 11.32
04 40 60039 10.59 294029 74.29 146396 62.26 278087 885.94 1025329 29.51
05 55 909822 68.19 3269854 290.07 2113017 317.53 9567169 174.38
06 53 716238 125.83 3869775 1167.78 1965371 965.39
11 56 18313 1.34 50734 4.64 31545 5.00 72109 190.25 145170 2.53
12 54 21812 3.39 78362 23.84 46386 21.36 74663 325.43 152021 4.47
13 59 186526 18.43 432280 66.00 297147 68.80 1426461 32.06
14 63 248709 43.80 1325517 337.57 687420 290.86 6238743 199.63
15 66 201777 31.37 2823019 570.43 1255479 425.27
18 61 1057327 327.82
21 48 71003 5.99 79574 9.93 66582 13.62 123510 443.99 194669 4.28
22 54 890048 112.11 859710 349.90 757718 395.63 1633295 57.19
23 69 4089071 335.39 10935187 1208.05 7542146 1319.93
24 56 1430559 291.88
25 63 1384406 203.57 4430537 1578.04
26 48 699757 249.28

openstacks-strips-ipc6
01 2 209 0.00 209 0.00 209 0.00 49 0.37 193 0.00
02 2 769 0.02 769 0.00 769 0.02 144 0.73 769 0.00
03 2 1729 0.04 1729 0.01 1729 0.04 317 1.32 1665 0.01
04 3 8209 0.17 8209 0.07 8209 0.20 2208 2.63 8113 0.06
05 4 16705 0.41 16705 0.18 16705 0.48 4220 4.87 17151 0.16
06 2 3658 0.11 3658 0.04 3658 0.13 998 5.66 3288 0.02
07 5 195109 5.85 195109 2.45 195109 6.85 61253 40.74 201137 2.31
08 5 228847 7.77 228847 3.23 228847 9.06 70808 57.12 234328 2.92
09 3 116425 5.03 116425 1.61 116425 5.77 4920 18.26 114281 1.32
10 3 77681 3.57 77681 1.10 77681 4.14 5261 23.40 72673 0.76
11 4 575677 28.75 575677 9.11 575677 32.97 98783 105.44 563261 7.17
12 3 354913 19.85 354913 5.63 354913 22.85 10580 43.05 341169 4.11
13 4 2596593 150.86 2596593 46.30 2596593 172.13 398023 443.57 2547985 35.07
14 4 1260363 81.43 1260363 23.36 1260363 93.01 157304 222.14 1233115 17.19
15 4 11995225 867.27 11995225 245.32 11995225 987.24 711526 1034.92 11926297 184.57
16 4 5064737 379.45 5064737 104.37 5064737 432.44 411732 671.53 4928793 75.73
17 4 8193065 673.91 8193065 179.00 8193065 765.15 421646 745.34 8065113 128.80
18 3 1020905 88.15 1020905 22.24 1020905 99.67 34754 186.40 953049 14.32
19 4 812451 1731.49
21 3 473553 1018.62
22 4 1805050 204.83 1805050 48.73 1805050 233.98 173929 651.93 1536764 27.62

parcprinter-strips-ipc6
01 169009 19 0.01 15 0.00 15 0.00 12 0.20 20 0.00
02 438047 240 0.02 183 0.01 179 0.02 19 1.44 1375 0.01
03 807114 880 0.04 821 0.01 668 0.03 334 0.72 4903 0.03
04 876094 142314 13.85 77520 2.28 68116 7.56 993 11.21 12302518 126.46
05 1145132 1780073 219.49 892002 31.78 822442 115.96 6922 35.00
06 1514200 4113487 613.02 3529327 148.95 3443221 557.75 19613 115.36
11 182808 25 0.01 24 0.00 24 0.01 10 0.55 23 0.00
12 510256 1183 0.07 1243 0.04 1135 0.08 153 3.39 5138 0.05
13 693064 74201 5.83 144084 4.27 97683 9.25 8348 18.14 1130810 12.72
14 1020512 4491265 463.93 422571 792.78
21 143411 13 0.00 13 0.00 13 0.00 9 0.09 16 0.00
22 375821 225 0.01 303 0.01 282 0.02 22 0.51 2485 0.02
23 519232 4376 0.28 15825 0.47 8778 0.63 260 2.03 285823 3.32
24 751642 96748 8.49 694503 24.62 316839 31.37 2281 6.38
25 1215840 68293 145.47
26 1216460 121897 404.98

scanalyzer-strips-ipc6
01 18 19788 1.68 22012 5.20 19809 6.39 21259 13.69 44047 0.68
02 22 37182 1.88 37569 4.36 37524 6.07 29253 13.92 45529 0.54
03 26 43115 1.90 43298 4.02 43298 5.71 37754 14.05 45882 0.49
04 24 3947796 687.38 10175657 314.87
05 30 9193480 870.50 10310817 242.27
06 36 10140909 869.52 10321465 222.66
22 13 46 0.14 51 0.08 46 0.20 6 0.05 54 0.01
23 13 46 0.15 51 0.08 46 0.19 6 0.05 54 0.01
24 13 46 0.14 51 0.08 46 0.19 6 0.05 54 0.01
25 26 8974317 834.36 10170980 113.29
26 30 9936832 720.23 10254740 95.91
27 34 10202674 643.41 10294023 88.03

Table B.13: Runtimes of cost-optimal heuristic-search planners on the Elevators, Openstacks-
strips-08, Parcprinter, and Scanalyzer domains. The description of the planners is given
in Section 4.4.2; here the fork-decomposition heuristics are via databased implicit abstractions.
Column task denotes problem instance, column h∗ denotes optimal solution length. Other columns
capture the run time and number of expanded nodes.

189

hF hI hFI HSP∗F blind
task h∗ nodes time nodes time nodes time nodes time nodes time

pegsol-strips-ipc6
01 2 12 0.02 10 0.02 10 0.03 6 0.16 11 0.00
02 5 84 0.07 83 0.12 83 0.18 20 5.17 66 0.01
03 4 208 0.07 209 0.12 209 0.19 50 6.91 174 0.00
04 4 193 0.07 181 0.12 181 0.19 15 1.82 192 0.01
05 4 266 0.03 251 0.02 251 0.04 43 5.62 242 0.01
06 4 1343 0.16 901 0.14 901 0.27 247 25.68 1265 0.01
07 3 217 0.08 110 0.12 110 0.18 26 11.67 215 0.01
08 6 31681 2.56 25253 0.71 25253 2.89 7898 28.50 30776 0.15
09 5 3743 0.36 3951 0.20 3951 0.53 757 23.02 3538 0.03
10 6 29756 2.45 28241 0.77 28241 3.21 7522 28.25 29658 0.14
11 7 13832 1.08 12881 0.38 12881 1.36 5979 20.60 13430 0.06
12 8 39340 2.98 37358 0.86 37358 3.63 21133 32.73 38561 0.18
13 9 33379 2.51 33374 0.76 33374 3.09 25897 33.29 32370 0.15
14 7 63096 4.82 55127 1.29 55127 5.63 17144 32.20 62047 0.29
15 8 77932 5.84 73733 1.67 73733 7.09 37810 38.72 76150 0.35
16 8 10491 0.83 10598 0.33 10598 1.10 7939 27.70 10090 0.05
17 10 299676 22.38 300972 6.38 300972 27.00 282810 124.39 294396 1.44
18 7 63247 4.93 50222 1.37 50222 5.55 10358 29.81 62726 0.29
19 8 279822 20.71 257988 5.62 257988 24.49 90950 61.77 275969 1.29
20 7 329570 27.36 293860 8.56 293860 36.43 83693 63.99 328583 1.63
21 8 548254 41.78 494477 11.49 494477 50.51 141906 87.89 545896 2.64
22 6 69922 5.66 48190 1.43 48190 5.95 13123 30.94 69465 0.33
23 8 1262645 97.46 954593 25.16 954593 108.53 181830 114.89 1258767 6.17
24 8 1326517 106.00 1219589 31.83 1219589 136.27 271157 157.50 1324907 6.69
25 8 830637 68.95 899323 25.33 899323 107.61 201932 122.27 830182 4.33
26 9 7196836 553.11 6943124 177.06 6943124 719.81 2031156 1024.04 7178802 37.78
27 7 6092258 523.12 2121936 82.61 2121936 339.83 132701 118.20 6091864 34.53

sokoban-strips-ipc6
01 11 372 0.03 287 0.01 269 0.02 1079 6.17 1762 0.01
02 9 551 0.02 497 0.01 509 0.02 700 4.57 1348 0.00
03 10 394 0.01 177 0.00 173 0.01 621 2.63 1165 0.00
04 29 130524 5.57 45048 0.28 44198 2.07 282895 177.07 320446 1.43
05 8 50 0.32 203202 7.28 3073 0.96 9607487 81.84
06 9 526 0.04 534 0.01 526 0.04 6815 6.83 10526 0.04
07 15 47522 2.81 42195 0.38 28163 1.84 75669 174.92 315405 1.49
08 31 2114443 135.12 1204212 11.27 1080337 74.55 13329538 77.70
09 19 23083 1.47 26189 0.26 16013 1.12 459188 400.45 818693 4.09
10 30 69797 3.17 21291 0.18 20741 1.07 620685 315.43 852150 4.07
11 35 271598 15.63 282061 2.09 271598 16.87 440869 586.91 531305 2.71
12 32 155166 10.98 60655 0.70 46865 3.69 4705742 25.21
13 20 169436 8.93 294710 3.63 169436 10.26 1631677 994.61 2363177 12.60
14 29 20737 1.05 6984 0.07 6952 0.41 178574 121.96 255203 1.17
15 76 7943562 602.99 7742698 84.75 7456505 622.89 21598353 120.25
16 50 335238 20.20 242778 1.66 240912 15.14 852948 859.44 935561 4.74
17 37 80459 4.17 40425 0.29 36889 2.05 239522 220.86 317984 1.43
18 49 2109516 156.88 119938 0.97 119784 9.18 7219504 39.20
19 47 5238957 354.84 3558809 33.60 3459314 251.38 23255133 130.46
20 2 648 0.14 648 0.69 648 0.79 649 0.01
21 10 337852 74.21 450027 14.64 76647 16.85
22 44 5866700 473.77 4053413 45.18 3868663 335.31
23 31 3565151 222.48 3613835 50.31 2563159 181.66
24 50 14504610 1151.55 2244156 30.10 1759660 154.33
25 39 23044275 275.91 17832156 1612.04
26 33 12138101 152.95 10473204 996.25
27 23 8738457 1131.26
30 14 2074534 679.61

transport-strips-ipc6
01 54 60 0.01 12 0.00 16 0.01 60 0.48 64 0.00
02 131 1558 0.06 874 0.10 998 0.15 1567 6.36 2093 0.01
03 250 380375 10.47 225310 48.69 257608 59.28 380982 274.86 408643 3.69
04 318 3526204 164.35 1462063 714.49 1660874 856.87 4204372 50.69
11 456 135 0.02 111 0.01 103 0.02 135 0.94 164 0.00
12 594 14873 0.37 9976 1.41 11130 1.70 14874 19.85 14796 0.12
13 550 372845 15.07 224986 74.09 246069 89.04 373133 454.55 408449 4.36
21 478 62 0.01 67 0.00 62 0.01 62 0.50 112 0.00
22 632 7544 0.18 4455 0.37 5408 0.54 7544 7.71 7610 0.06
23 630 100269 3.65 56897 13.82 70579 19.32 100347 92.93 106548 1.07
24 614 1587821 77.96 292004 120.98 382588 196.82 1663856 19.29

woodworking-strips-ipc6
01 170 4313 0.23 3716 0.10 4157 0.28 119 0.85 9086 0.09
02 185 5550 0.34 5054 0.14 5408 0.41 409 3.03 21076 0.30
03 275 80794 136.95
11 130 860 0.10 987 0.05 897 0.13 50 0.93 3487 0.05
12 225 328229 41.44 328728 16.57 328930 52.03 11665 18.49 1862476 37.91
13 215 4413726 954.34 4125788 455.35 4404104 1297.06 113386 273.76
21 95 54 0.02 54 0.02 53 0.03 16 0.91 227 0.00
22 185 31189 4.66 67528 3.26 38912 6.83 1931 5.96 177942 3.97
23 195 44641 8.39 155426 9.71 64840 14.42 4673 9.05 962698 23.76

Table B.14: Similar to Table B.13 for the Pegsol, Sokoban, Transport, and Woodworking
domains.

190

B.3 Optimal Cost Partition

Forks Inverted Forks Both
Uniform Optimal Uniform Optimal Uniform Optimal

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

airport-ipc4
01 8 2 10 0.01 3 9 0.08 5 9 0.00 8 9 0.07 3 9 0.00 8 9 0.14
02 9 9 12 0.03 9 11 5.52 4 15 0.01 9 11 0.10 7 15 0.03 9 11 5.82
03 17 10 86 0.25 13 72 43.04 5 133 0.07 17 28 0.53 9 93 0.31 17 28 29.55
04 20 2 22 0.02 3 21 0.50 19 21 0.02 20 21 0.44 7 21 0.02 20 21 1.03
05 21 21 23 1.29 21 22 274.77 8 30 0.06 21 22 0.68 19 27 1.43 21 22 257.34
06 41 22 513 36.72 11 639 1.54 41 43 6.28 22 567 45.25
07 41 22 514 37.00 11 632 1.53 41 88 9.86 22 550 44.15
08 62 13 21544 166.51 62 818 176.39
10 18 2 19 0.02 3 19 1.06 17 19 0.02 18 19 0.54 7 19 0.03 18 19 1.72
11 21 21 23 1.90 21 22 725.11 8 30 0.08 21 22 1.05 19 27 2.13 21 22 765.71
12 39 22 475 54.18 11 728 2.76 39 59 5.91 22 568 71.23
13 37 20 434 47.48 10 663 2.60 37 64 10.59 20 479 59.82
14 60 12 25110 334.72 60 81 40.48
15 58 12 23317 307.60 58 443 97.77
16 79 79 1038 616.62

blocks-ipc2
04-0 6 6 15 0.01 6 15 0.88 3 46 0.01 6 15 0.10 4 17 0.01 6 15 0.97
04-1 10 4 14 0.01 4 11 0.51 2 31 0.00 4 11 0.06 3 15 0.00 4 11 0.56
04-2 6 6 7 0.01 6 7 0.38 3 26 0.00 6 7 0.05 4 10 0.00 6 7 0.42
05-0 12 6 32 0.03 6 20 2.22 2 302 0.06 6 20 0.21 4 113 0.08 6 20 2.46
05-1 10 6 37 0.03 6 34 4.26 2 280 0.06 6 34 0.39 4 98 0.07 6 34 4.70
05-2 16 7 152 0.09 8 101 12.69 2 596 0.10 8 101 1.24 4 348 0.18 8 101 13.94
06-0 12 9 33 0.04 10 29 20.27 3 766 0.27 10 29 0.56 5 207 0.25 10 29 8.16
06-1 10 9 41 0.07 10 39 45.12 3 2395 0.74 10 39 1.08 5 578 0.78 10 39 17.09
06-2 20 9 855 0.80 10 667 481.26 3 5444 1.23 10 667 12.99 5 3352 2.88 10 667 187.29
07-0 20 10 278 0.56 12 208 916.87 3 20183 8.26 12 208 7.73 5 4022 8.18 12 208 1736.20
07-1 22 9 6910 11.22 2 59207 17.37 10 2269 84.64 5 38539 49.71
07-2 20 9 1458 2.85 2 46009 15.05 10 376 15.59 5 18854 29.61
08-0 18 11 1533 4.79 2 344157 179.42 12 389 24.36 5 69830 208.07
08-1 20 9 10040 27.97 2 517514 236.64 10 3625 189.30 5 191352 475.33
08-2 16 13 479 1.79 3 237140 136.18 14 221 12.38 6 32567 110.76
09-1 28 12 3435 18.17 14 635 1101.84 14 635 63.65 14 635 1184.42
09-2 26 14 6379 35.22 16 3022 283.57

depots-ipc3
01 10 4 114 0.24 4 118 109.83 2 279 0.11 6 81 1.44 3 161 0.32 6 81 88.92
02 15 6 1134 10.82 1 9344 12.40 9 527 42.24 4 2638 22.68

driverlog-ipc3
01 7 3 49 0.05 4 32 6.95 3 37 0.01 4 26 0.46 3 37 0.04 4 26 6.58
02 19 12 15713 18.27 11 18452 10.29 13 3930 161.75 12 15794 23.80 15 2464 1644.95
03 12 8 164 0.25 11 17 9.73 8 190 0.13 11 21 0.91 8 163 0.31 11 17 10.59
04 16 11 6161 19.15 14 533 812.63 10 10778 17.14 13 542 65.05 10 7665 29.88 14 382 679.14
05 18 12 13640 45.02 15 273 361.33 12 11400 18.91 14 503 74.02 12 10984 46.16 16 165 294.71
06 11 8 608 5.21 9 156 625.88 7 795 3.60 9 87 28.51 8 492 6.05 10 50 270.77
07 13 11 864 9.56 13 26 143.26 10 1730 7.71 12 36 10.37 11 1006 13.80 13 26 153.80
09 22 12 198651 849.04 15 4123 1690.45
10 17 12 4304 199.81 12 16099 85.74 16 143 66.78 13 4037 200.52
11 19 11 43395 1421.90 12 41445 186.53 16 363 285.09 11 39069 1395.51

freecell-ipc3
01 8 5 234 1.54 7 17 82.26 3 974 4.88 8 9 9.32 5 274 3.25 8 9 45.77
02 14 5 30960 107.07 3 75150 230.54 5 37131 224.62
03 18 6 197647 877.16

grid-ipc1
01 14 4 571 60.28 6 1117 9.49 6 520 979.48 5 472 55.87

gripper-ipc1
01 11 5 214 0.04 5 214 6.33 3 240 0.02 5 214 0.89 4 214 0.05 5 214 7.15
02 17 7 1768 0.54 7 1768 98.40 3 1832 0.36 7 1768 18.19 6 1803 0.75 7 1768 120.37
03 23 9 11626 5.38 9 11626 1077.57 3 11736 4.05 9 11626 250.42 7 11689 8.11 9 11626 1412.66
04 29 11 68380 43.58 3 68558 35.24 8 68479 70.72
05 35 13 376510 328.10 3 376784 296.59 10 376653 560.93

Table B.15: Runtimes of cost-optimal heuristic-search planners on the Airport, Blocksworld,
Depots, Driverlog, Freecell, Grid, and Gripper domains. The description of the planners
is given in Section 5.5; here the fork-decomposition heuristics are computed fully online. The
task column denotes problem instance, the h∗ column denotes the optimal solution length. Other
columns capture the initial evaluation I, number of expanded (nodes), and run (time).

191

Forks Inverted Forks Both
Uniform Optimal Uniform Optimal Uniform Optimal

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

logistics-ipc1
01 26 25 89 73.87
05 22 19 3293 945.35 22 24 12.20
17 42 42 43 1444.74
31 13 11 436 9.67 13 14 237.37 10 1981 2.53 13 14 0.98 10 1284 21.84 13 14 243.33
32 20 17 392 2.57 20 21 78.83 15 2704 2.24 19 29 1.26 16 962 5.53 20 21 81.49
33 27 27 28 1171.86 26 1623 308.75 27 28 1229.77

logistics-ipc2
04-0 20 20 21 0.02 20 21 4.16 19 193 0.06 20 21 0.22 19 65 0.06 20 21 4.34
04-1 19 19 20 0.03 19 20 3.88 16 570 0.13 19 20 0.22 17 293 0.16 19 20 3.85
04-2 15 15 16 0.02 15 16 2.22 12 117 0.03 15 16 0.11 12 79 0.05 15 16 2.35
05-0 27 27 28 0.05 27 28 8.24 25 2550 0.98 27 28 0.49 25 1171 1.09 27 28 8.69
05-1 17 17 18 0.03 17 18 4.22 14 675 0.19 17 18 0.18 14 427 0.31 17 18 4.39
05-2 8 8 9 0.02 8 9 1.64 7 24 0.01 8 9 0.08 7 13 0.02 8 9 1.78
06-0 25 25 26 0.06 25 26 9.78 22 4249 1.85 25 26 0.51 23 2461 2.54 25 26 10.28
06-1 14 14 15 0.03 14 15 4.39 11 181 0.09 14 15 0.15 12 99 0.13 14 15 4.54
06-2 25 25 26 0.05 25 26 9.52 22 2752 1.22 25 26 0.50 23 1394 1.51 25 26 9.95
06-9 24 24 25 0.04 24 25 7.72 20 2395 0.94 24 25 0.33 21 1428 1.34 24 25 8.04
07-0 36 36 37 0.42 36 37 116.92 31 251287 203.64 36 37 2.09 32 98053 386.80 36 37 126.58
07-1 44 43 1689 10.08 44 45 2.94 44 45 167.13
08-0 31 31 32 0.42 31 32 111.87 26 82476 78.73 31 32 1.57 27 35805 161.33 31 32 121.26
08-1 44 44 45 0.66 44 45 188.02 39 1183608 1306.92 44 45 3.07 44 45 199.99
09-0 36 36 37 0.54 36 37 158.16 30 351538 407.06 36 37 1.90 31 167038 883.68 36 37 157.30
09-1 30 30 31 0.50 30 31 134.35 26 59336 80.88 30 31 1.71 27 25359 168.73 30 31 137.33
10-0 45 45 46 2.26 45 46 746.43 45 46 5.60 45 46 812.66
10-1 42 42 43 2.10 42 43 719.74 42 43 6.41 42 43 756.90
11-0 48 48 697 26.78 48 49 8.06 48 49 1051.09
11-1 60 59 21959 696.23 60 61 13.55 60 61 1557.49
12-0 42 42 43 2.78 42 43 920.83 42 43 7.05 42 43 989.07
12-1 68 68 69 17.24

miconic-strips-ipc2
01-0 4 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01
01-1 3 2 5 0.00 2 5 0.01 2 5 0.00 2 5 0.01 2 5 0.00 2 5 0.01
01-2 4 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01
01-3 4 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01
01-4 4 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01
02-0 7 4 19 0.00 4 19 0.06 3 22 0.00 4 19 0.03 3 19 0.00 4 19 0.08
02-1 7 3 21 0.00 3 21 0.07 2 23 0.00 3 21 0.03 3 21 0.00 3 21 0.09
02-2 7 3 21 0.00 3 21 0.07 2 23 0.00 3 21 0.03 3 21 0.00 3 21 0.09
02-3 7 3 24 0.01 3 24 0.07 3 24 0.00 3 24 0.03 3 24 0.00 3 24 0.09
02-4 7 3 19 0.00 3 19 0.06 2 22 0.00 3 19 0.03 3 19 0.00 3 19 0.08
03-0 10 5 86 0.01 5 86 0.59 3 129 0.01 5 86 0.48 4 98 0.01 5 86 1.05
03-1 11 5 120 0.01 6 113 0.71 3 168 0.01 6 113 0.56 4 147 0.01 6 113 1.26
03-2 10 3 137 0.01 3 137 0.66 2 143 0.01 3 137 0.55 3 137 0.01 3 137 1.18
03-3 10 5 96 0.01 5 90 0.57 3 153 0.01 5 90 0.47 4 117 0.01 5 90 1.04
03-4 10 4 103 0.01 4 103 0.61 3 149 0.01 4 103 0.49 4 115 0.01 4 103 1.09
04-0 14 7 524 0.06 8 449 4.30 4 843 0.08 8 449 6.41 5 686 0.12 8 449 11.42
04-1 13 7 505 0.06 8 419 4.11 4 817 0.08 8 419 6.46 5 663 0.12 8 419 10.48
04-2 15 6 685 0.08 7 608 5.12 4 942 0.09 7 608 7.39 5 802 0.13 7 608 12.79
04-3 15 6 681 0.07 7 604 5.05 4 942 0.09 7 604 7.39 5 798 0.13 7 604 12.74
04-4 15 7 685 0.07 8 608 5.13 4 942 0.09 8 608 7.53 5 802 0.13 8 608 12.76
05-0 17 8 2468 0.37 9 2003 29.33 5 4009 0.66 9 2003 72.60 6 3307 0.93 9 2003 105.21
05-1 17 7 2807 0.42 8 2329 34.37 4 4345 0.71 8 2329 83.43 6 3677 1.01 8 2329 121.00
05-2 15 7 1596 0.29 7 1327 24.89 4 2981 0.55 7 1327 61.96 6 2275 0.73 7 1327 88.97
05-3 17 8 2256 0.36 9 1843 28.93 5 3799 0.62 9 1843 72.71 6 3104 0.87 9 1843 103.45
05-4 18 8 3210 0.46 9 2541 33.72 5 4732 0.78 9 2541 83.01 6 4267 1.11 9 2541 121.00
06-0 19 8 9379 1.98 9 7155 167.35 5 17665 4.74 9 7155 620.45 7 13531 5.90 9 7155 806.61
06-1 19 9 9106 1.93 11 6092 148.43 5 18134 4.75 11 6092 557.51 7 14052 5.94 11 6092 731.35
06-2 20 8 10900 2.19 9 8528 200.04 5 19084 4.90 9 8528 696.50 7 15111 6.28 9 8528 905.40
06-3 20 9 12127 2.43 10 8626 214.68 5 21708 5.69 10 8626 738.41 7 17807 7.19 10 8626 956.47
06-4 21 9 13784 2.62 11 9517 197.24 5 23255 5.93 11 9517 722.80 7 19536 7.66 11 9517 948.46
07-0 23 10 53662 13.29 12 37883 1132.60 6 96092 37.56 8 79449 46.76
07-1 24 11 56328 13.86 13 38056 1140.83 6 99109 38.56 8 83677 47.49
07-2 22 11 48141 12.52 13 28170 915.04 6 96139 38.02 8 78471 46.17
07-3 22 11 46867 12.11 13 28553 925.43 6 93117 36.63 8 75424 44.43
07-4 25 11 84250 18.24 13 63230 1541.14 6 126595 46.11 8 111984 61.34
08-0 27 12 272580 81.51 7 485051 267.27 9 408114 317.78
08-1 27 13 284415 86.93 7 527216 288.07 9 446837 347.43
08-2 26 11 207931 66.37 7 414294 235.89 9 330993 271.03
08-3 28 12 369479 104.29 7 598031 320.33 9 527216 392.87
08-4 27 11 297516 87.65 7 507910 278.64 9 431432 333.91
09-0 31 13 1461729 497.72
09-1 30 13 1207894 438.69 7 2335166 1787.13
09-2 30 13 1294691 460.11 7 2340411 1791.16
09-3 32 13 1840936 589.09
09-4 28 13 1252484 467.94

Table B.16: Similar to Table B.15 for the Logistics-ipc1, Logistics-ipc2, and Miconic domains.

192

Forks Inverted Forks Both
Uniform Optimal Uniform Optimal Uniform Optimal

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

openstacks-ipc5
01 23 14 2264 0.49 15 1834 54.33 9 3895 1.19 15 1834 38.50 12 3070 1.36 15 1834 246.77
02 23 14 2617 0.56 15 2140 62.86 9 4485 1.32 15 2140 43.51 12 3561 1.57 15 2140 263.72
03 23 14 2264 0.49 15 1834 54.38 9 3895 1.15 15 1834 38.49 12 3070 1.36 15 1834 259.27
04 23 14 2264 0.49 15 1834 54.37 9 3895 1.15 15 1834 38.58 12 3070 1.36 15 1834 258.62
05 23 14 2264 0.48 15 1834 54.32 9 3895 1.15 15 1834 38.50 12 3070 1.35 15 1834 264.92
06 45 28 366768 255.00 15 779710 1599.86 22 587482 1498.20
07 46 28 410728 277.99 15 760668 1546.44 22 606782 1515.46

pathways-ipc5
01 6 1 1624 0.03 2 1299 1.34 2 1299 0.02 2 1299 0.66 2 1299 0.03 2 1299 1.59
02 12 2 2755 0.08 4 2307 3.62 4 2307 0.06 4 2307 1.46 3 2437 0.09 4 2307 4.35
03 18 3 44928 2.59 6 20416 53.50 6 20416 1.06 6 20416 20.52 5 29106 2.14 6 20416 67.43
04 17 4 126950 11.45 8 33788 141.43 8 33788 2.97 8 33788 54.82 6 58738 7.07 8 33788 181.58

mprime-ipc1
01 5 3 196 0.19 4 24 11.19 5 10 0.03 5 6 0.64 4 24 0.07 5 6 7.08
02 7 4 11604 422.83 3 44045 1620.68 7 13 160.93 5 2565 242.83
03 4 2 427 35.09 4 7 0.50 4 5 15.39 3 11 3.15 4 5 1267.83
04 8 4 3836 6.62 5 549 230.97 5 1775 1.17 6 144 16.83 5 1093 3.44 7 16 35.21
07 5 2 3314 14.91 4 17 230.86 4 47 0.15 4 17 9.69 3 346 3.07 4 17 249.35
09 8 4 19838 454.91 3 100188 1798.69 7 79 184.28 5 5227 284.13
11 7 6 9 0.16 7 8 161.42 6 219 0.54 7 8 5.58 6 8 0.16 7 8 159.69
12 6 2 16320 192.10 3 8118 46.69 4 844 275.00 3 5243 95.01 5 22 1322.44
16 6 4 252 171.97 5 35 982.79 4 448 447.49
17 4 3 453 671.03 4 5 655.98
25 4 2 75 0.10 4 5 4.77 3 30 0.04 4 5 0.33 3 29 0.08 4 5 5.17
27 5 4 54 2.28 5 6 477.91 3 1772 33.82 5 6 26.54 5 9 1.31 5 6 512.64
28 7 7 8 0.03 7 8 5.88 4 403 0.23 7 8 1.17 6 37 0.08 7 8 7.97
29 4 2 182 4.53 4 5 228.36 3 56 1.11 4 5 7.07 3 32 1.79 4 5 243.11
31 4 2 248 52.86 3 46 7.83 4 6 33.24 3 19 11.79
32 7 2 31759 133.33 3 12436 34.94 4 3116 870.55 3 11839 95.52 6 67 1200.73
34 4 2 234 11.65 3 46 2.13 4 6 22.85 3 23 3.08 4 5 757.85
35 5 2 392 3.09 3 44 706.09 3 290 2.54 4 25 5.93 3 84 1.89 4 7 159.69

psr-small-ipc4
01 8 1 10 0.00 2 9 0.04 1 10 0.00 2 9 0.01 1 10 0.00 2 9 0.04
02 11 1 52 0.01 2 36 0.67 1 55 0.00 2 36 0.13 1 52 0.01 2 36 0.79
03 11 1 31 0.01 2 27 0.25 1 31 0.00 2 27 0.06 1 31 0.00 2 27 0.30
04 10 1 66 0.04 2 28 2.28 1 91 0.03 2 28 0.43 1 73 0.06 2 28 2.74
05 11 1 75 0.01 2 47 1.17 1 79 0.01 2 47 0.26 1 75 0.02 2 47 1.42
06 8 1 10 0.00 2 9 0.04 1 10 0.00 2 9 0.02 1 10 0.00 2 9 0.04
07 11 1 61 0.01 2 48 0.72 1 61 0.00 2 48 0.17 1 61 0.01 2 48 0.86
08 8 1 24 0.01 2 11 0.36 1 29 0.00 2 11 0.08 1 25 0.01 2 11 0.43
09 8 1 18 0.01 2 9 0.17 1 19 0.00 2 9 0.04 1 18 0.00 2 9 0.19
10 7 2 131 0.20 3 44 8.13 2 183 0.18 3 44 1.64 2 155 0.32 3 44 10.28
11 19 2 149 0.03 4 141 3.72 2 149 0.02 4 141 0.71 2 149 0.04 4 141 4.42
12 16 2 120 0.03 4 83 2.59 2 123 0.02 4 83 0.56 2 120 0.04 4 83 3.15
13 15 3 90 0.02 5 82 1.64 3 90 0.01 5 82 0.34 3 90 0.02 5 82 1.96
14 9 2 19 0.00 3 13 0.17 2 19 0.00 3 13 0.04 2 19 0.00 3 13 0.19
15 10 2 1200 6.55 2 62 71.41 2 708 6.25 2 62 5.02 2 769 9.91 2 62 79.57
16 25 2 2328 0.65 3 1961 97.64 2 2158 0.34 3 1961 9.57 2 2176 0.85 3 1961 111.58
17 9 2 15 0.00 3 13 0.09 2 15 0.00 3 13 0.02 2 15 0.00 3 13 0.10
18 12 2 85 0.03 3 56 1.73 2 90 0.01 3 56 0.36 2 85 0.03 3 56 2.05
19 25 3 8025 4.31 5 6934 735.96 3 7856 2.19 5 6934 52.31 2 7876 5.80 5 6934 823.43
20 17 3 80 0.02 5 74 1.62 3 80 0.01 5 74 0.35 3 80 0.02 5 74 1.95
21 10 3 28 0.01 4 21 0.34 3 28 0.00 4 21 0.08 3 28 0.01 4 21 0.41
22 33 3 163299 405.65 3 176058 245.42 3 168685 617.45
23 12 3 77 0.04 4 46 3.01 3 93 0.03 4 46 0.57 3 77 0.06 4 46 3.61
24 10 3 28 0.01 4 21 0.34 3 28 0.00 4 21 0.08 3 28 0.01 4 21 0.40
25 9 2 485 84.24 2 463 145.38 2 74 107.79 2 482 213.42
26 17 3 144 0.05 5 101 4.09 3 150 0.03 5 101 0.85 3 146 0.06 5 101 4.98
27 21 3 616 0.33 5 380 37.99 3 675 0.21 5 380 6.35 3 650 0.49 5 380 45.39
28 14 3 79 0.02 4 71 2.01 3 79 0.01 4 71 0.37 3 79 0.02 4 71 2.37
29 21 4 142772 436.34 3 187319 307.77 9 11733 1778.17 4 159325 709.89
30 22 3 1791 1.25 5 976 135.40 3 1982 0.80 5 976 22.84 3 1883 1.90 5 976 164.19
31 19 3 11278 25.93 4 3027 1303.42 3 6810 38.66 4 3027 134.35 3 8297 53.43 4 3027 1515.10
32 24 4 431 0.17 6 421 24.01 4 431 0.10 6 421 4.25 4 431 0.25 6 421 31.65
33 21 3 1480 0.84 4 894 99.28 2 1436 0.30 4 894 6.95 2 1391 1.00 4 894 112.08
34 21 4 223 0.07 6 213 8.77 4 223 0.04 6 213 1.65 4 223 0.09 6 213 10.50
35 22 3 65965 160.36 2 63186 39.55 4 15841 407.66 2 68281 199.30
36 22 4 571766 392.49 5 371834 786.06 5 458402 1094.61
37 23 5 1307 1.29 9 749 155.51 5 1417 0.95 9 749 28.46 5 1363 2.10 9 749 191.64
38 13 3 301 0.20 5 84 11.05 3 372 0.15 5 84 2.07 3 326 0.32 5 84 13.42
39 23 3 2486 2.49 5 1113 241.32 3 2942 1.64 5 1113 35.91 3 2682 3.91 5 1113 281.20
40 20 2 182608 1384.90 3 17410 1634.22
41 10 3 31 0.01 4 22 0.47 3 34 0.00 4 22 0.11 3 31 0.01 4 22 0.56
42 30 3 1855 0.50 4 1701 80.79 2 1747 0.17 4 1701 7.07 2 1739 0.59 4 1701 92.19
43 20 4 328 0.09 6 312 11.63 4 328 0.05 6 312 2.06 4 328 0.12 6 312 13.81
44 19 4 2990 3.25 8 1103 271.15 4 3430 2.30 8 1103 46.50 4 3121 5.24 8 1103 327.14
45 20 4 347 0.16 6 232 18.72 4 376 0.11 6 232 3.29 4 359 0.25 6 232 21.50
46 34 2 60888 51.77 2 61842 21.14 5 46436 498.90 2 61563 68.33
47 27 3 4104 5.27 7 1803 530.37 3 4522 3.93 7 1803 96.45 3 4284 8.70 7 1803 647.01
50 23 6 637 0.39 8 552 53.58 6 659 0.26 8 552 9.89 6 645 0.60 8 552 65.78

Table B.17: Similar to Table B.15 for the Openstacks, Pathways, Mprime, and PSR domains.

193

Forks Inverted Forks Both
Uniform Optimal Uniform Optimal Uniform Optimal

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

mystery-ipc1
01 5 3 7 0.01 4 6 0.87 5 6 0.00 5 6 0.07 4 6 0.01 5 6 1.62
02 7 4 2404 64.94 3 8012 234.10 7 13 67.70 5 722 47.50 7 8 1209.10
03 4 2 73 1.92 3 10 498.22 4 7 0.12 4 5 2.59 3 11 0.59 4 5 246.47
09 8 4 3049 47.68 3 10764 137.61 7 47 57.63 5 1215 40.75 8 9 1042.00
11 7 6 9 0.02 7 8 14.24 6 33 0.03 7 8 0.49 6 8 0.02 7 8 20.46
17 4 2 354 200.98 3 85 26.31 4 5 80.60 3 83 90.17
19 6 2 4968 183.24 3 518 1163.55
25 4 2 9 0.02 4 5 2.00 3 10 0.01 4 5 0.12 3 9 0.02 4 5 2.14
26 6 2 1807 50.40 2 1835 25.34 3 413 186.77 2 1344 60.20
27 5 4 14 0.27 5 6 109.09 3 159 1.61 5 6 4.94 5 6 0.22 5 6 116.82
28 7 7 8 0.01 7 8 1.77 4 47 0.02 7 8 0.28 6 15 0.02 7 8 2.96
29 4 2 31 0.26 4 5 39.31 3 14 0.10 4 5 1.17 3 10 0.17 4 5 42.15

pipesworld-notankage-ipc4
01 5 1 121 0.15 2 42 59.70 1 109 0.05 2 42 2.90 1 121 0.18 2 42 105.74
02 12 2 1413 2.05 2 1542 0.86 4 945 72.54 2 1413 2.42
03 8 2 1742 5.26 1 3001 3.31 3 567 149.52 2 1742 6.43
04 11 3 7007 24.71 2 8911 12.43 5 2487 885.06 3 7007 30.79
05 8 2 4093 27.45 2 6805 19.74 4 647 696.11 2 4093 35.40
06 10 3 12401 105.37 2 27377 103.75 3 12401 140.53
07 8 3 4370 71.75 2 9168 68.10 5 338 1311.81 3 4370 105.53
08 10 4 18851 406.67 3 56189 483.28 4 20584 600.94
11 20 3 472950 1577.22
13 16 4 117475 899.72
21 14 4 23833 1663.46 3 49035 495.53

pipesworld-tankage-ipc4
01 5 1 77 0.13 2 43 102.62 1 126 0.07 2 43 2.55 1 105 0.20 2 43 132.92
02 12 2 960 1.20 2 1005 0.60 4 770 45.09 2 960 1.55
03 8 2 20803 155.53 1 52139 158.91 2 20803 207.57
04 11 3 110284 1004.10 2 157722 668.67 3 110284 1408.50
05 8 2 6531 73.63 1 13148 79.04 4 857 1787.43 2 6531 112.61
06 10 3 20171 329.40 2 43583 310.24 3 20171 460.45

rovers-ipc5
01 10 6 147 0.01 6 147 1.07 6 147 0.01 6 147 0.37 6 147 0.02 6 147 1.35
02 8 6 44 0.01 6 44 0.53 6 44 0.01 6 44 0.17 6 44 0.01 6 44 0.70
03 11 5 672 0.11 6 419 5.02 6 419 0.05 6 419 1.37 6 448 0.10 6 419 6.15
04 8 6 47 0.02 7 20 0.41 7 20 0.00 7 20 0.13 6 24 0.01 7 20 0.50
05 22 11 808084 237.13 14 410712 123.64 13 522937 231.28
07 18 10 741649 517.18 8 1682245 1780.27

satellite-ipc4
01 9 6 24 0.00 7 16 0.21 6 32 0.00 7 16 0.23 6 29 0.00 7 16 0.44
02 13 10 86 0.02 11 24 0.82 8 337 0.10 11 24 1.03 8 241 0.13 11 24 1.87
03 11 5 2249 1.24 9 77 9.45 7 656 0.53 9 66 15.18 7 728 0.82 9 66 23.56
04 17 10 9817 10.65 16 204 26.39 11 14860 24.90 16 157 81.88 11 11250 26.18 16 157 96.47
05 15 7 279569 1251.83 10 46453 515.80 13 345 1232.42 9 61692 877.26 13 345 1775.28
06 20 10 1496577 968.24 10 1572327 1721.87

tpp-ipc5
01 5 5 6 0.00 5 6 0.03 4 6 0.00 5 6 0.01 5 6 0.00 5 6 0.03
02 8 8 9 0.00 8 9 0.08 7 11 0.00 8 9 0.02 8 9 0.00 8 9 0.08
03 11 11 12 0.00 11 12 0.20 9 27 0.00 11 12 0.04 10 16 0.00 11 12 0.20
04 14 14 15 0.01 14 15 0.40 11 78 0.01 14 15 0.06 13 47 0.01 14 15 0.42
05 19 15 623 0.52 19 20 4.80 13 5110 1.36 17 21 0.38 15 1455 1.21 19 20 5.31

trucks-ipc5
01 13 5 1691 0.41 7 1043 31.71 6 1027 0.22 7 1013 18.87 6 1039 0.40 7 1013 55.89
02 17 7 9624 2.68 9 4309 185.92 9 2898 0.57 10 2898 91.12 8 2957 1.35 10 2898 260.71
03 20 8 80693 71.37 11 20752 19.93 12 19568 1771.56 10 22236 31.25
04 23 8 1753866 1237.60 11 1205793 850.34 9 1315672 1394.88
07 23 10 2134728 1313.60 13 719751 408.75 11 755608 820.55

zenotravel-ipc3
01 1 1 2 0.01 1 2 0.11 1 2 0.00 1 2 0.07 1 2 0.01 1 2 0.18
02 6 4 17 0.02 5 9 0.34 3 18 0.02 5 9 0.21 4 17 0.02 5 9 0.55
03 6 4 28 0.08 6 7 5.05 5 18 0.12 6 7 1.01 5 12 0.11 6 7 6.23
04 8 5 99 0.15 8 9 4.54 5 88 0.26 7 13 1.64 5 81 0.30 8 9 6.57
05 11 8 177 0.32 11 12 13.20 9 220 0.22 11 12 3.06 9 136 0.36 11 12 17.48
06 11 8 2287 5.51 11 12 30.95 9 1144 2.00 11 12 6.02 9 504 2.40 11 12 39.07
07 15 8 5088 9.63 12 608 452.82 9 4234 5.56 12 782 164.96 9 4199 10.58 12 608 648.39
08 11 7 3268 43.96 8 1026 8.92 10 82 203.39 8 1655 30.06 11 61 974.44
10 22 21 24 912.61 21 66 765.08 22 23 1455.83
11 14 10 76904 1090.67 13 82 762.36

Table B.18: Similar to Table B.15 for the Mystery, Pipesworld-NoTankage, Pipesworld-
Tankage, Rovers, Satellite, TPP, Trucks, and Zenotravel domains.

194

Forks Inverted Forks Both
Uniform Optimal Uniform Optimal Uniform Optimal

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

schedule-strips
02-0 3 2 5 0.15 2 5 10.42 2 5 0.14 2 5 20.51 2 5 0.22 2 5 33.48
02-1 2 2 3 0.16 2 3 17.62 2 4 0.11 2 3 5.25 2 3 0.18 2 3 23.88
02-2 2 2 3 0.32 2 3 54.18 2 3 0.17 2 3 7.53 2 3 0.40
02-3 3 2 26 0.50 2 37 0.76 2 27 69.04 2 26 0.61
02-4 3 2 68 1.34 2 188 2.24 2 27 73.48 1 220 7.20
02-5 2 2 3 0.33 2 3 45.69 2 3 0.14 2 3 6.30 2 3 0.38
02-6 2 2 3 0.14 2 3 16.20 2 5 0.12 2 3 4.67 2 3 0.17 2 3 22.04
02-7 2 2 3 0.30 2 3 41.00 2 3 0.13 2 3 5.81 2 3 0.34
02-8 2 2 3 0.32 2 3 56.07 2 3 0.14 2 3 6.63 2 3 0.38
02-9 3 2 5 0.15 2 5 10.42 2 5 0.14 2 5 20.49 2 5 0.22 2 5 33.44
03-0 4 3 40 2.72 3 28 566.96 2 407 12.16 3 28 87.94 2 140 14.55
03-1 2 2 3 0.51 2 3 108.90 2 3 0.35 2 3 20.83 2 3 0.72 2 3 1324.64
03-2 4 3 27 1.16 3 26 511.15 3 50 1.83 3 26 77.77 3 33 2.33
03-3 4 3 15 0.79 3 15 138.40 2 91 2.39 3 15 38.58 3 15 0.96 3 15 185.64
03-4 3 3 4 1.11 3 4 251.00 2 16 2.08 3 4 25.80 3 4 1.52 3 4 314.01
03-5 4 3 73 6.13 2 471 16.71 3 32 130.28 3 74 8.32
03-6 4 3 72 1.27 4 5 46.61 2 75 1.80 3 26 103.58 3 69 1.33 4 5 82.13
03-7 4 3 28 1.05 3 50 1.83 3 28 98.93 3 28 1.43
03-8 4 3 273 11.53 2 266 11.46 3 54 257.27 3 273 17.48
03-9 4 3 8 0.96 3 6 199.91 3 31 1.77 3 6 30.46 3 14 2.13
04-0 5 4 373 13.91 5 6 287.85 3 1498 74.46 4 65 377.48 3 167 24.60
04-1 6 3 17559 1373.80 3 10707 626.54 4 89 1563.71
04-2 5 4 209 9.88 5 6 145.78 3 406 20.85 4 36 259.88 4 66 5.30
04-3 5 3 142 10.47 5 6 287.67 3 674 33.29 4 11 123.53 3 251 29.28
04-4 5 4 921 64.48 3 450 46.95 4 211 1529.21 3 574 116.65
04-5 6 4 483 47.25 3 4544 268.77 4 125 1675.86 3 850 187.46
04-6 6 4 779 27.09 5 44 502.80 3 11610 361.74 4 237 1759.53 3 1834 102.68 5 44 783.34
04-7 5 3 99 18.48 4 7 494.08 3 424 38.04 4 7 84.60 3 163 40.04
04-8 5 3 102 16.01 5 6 289.10 3 573 31.87 4 29 125.14 3 111 23.35
04-9 4 2 1043 80.06 4 6 335.74 2 996 76.64 3 78 1116.60 2 1050 143.48
05-0 5 3 163 41.61 5 6 664.67 3 483 63.23 4 9 198.49 3 167 62.53
05-1 6 5 2701 213.92 6 7 726.57 4 1257 286.28
05-3 7 6 16 1148.62 4 13622 1693.68
05-4 6 4 989 100.02 4 3433 229.05 5 114 715.41 4 582 100.05
05-5 6 5 198 21.67 3 9550 767.94 5 198 1179.47 4 347 68.64
05-6 7 4 6033 743.61 6 35 1314.44 4 10325 1508.56
05-7 6 4 944 131.19 3 17562 1446.20 5 99 517.72 4 2107 379.70
05-8 7 5 1190 172.59 4 2709 730.54
05-9 6 4 1537 140.49 5 34 1725.99 3 15829 1248.19 3 2717 547.56
06-2 6 4 888 243.14 4 1709 730.36
06-4 8 6 11535 1776.87
07-0 7 5 2489 786.76 6 149 1703.36
07-9 8 6 6829 1559.86

Table B.19: Similar to Table B.15 for the non-IPC Schedule-STRIPS domain.

195

B.4 Beyond Optimal Cost Partition
Forks Inverted Forks Both

Optimal for I Uniform Optimal for I Uniform Optimal for I Uniform
task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

airport-ipc4
01 8 3 10 0.01 2 10 0.01 8 9 0.01 5 9 0.00 8 9 0.02 3 9 0.00
02 9 9 12 0.41 9 12 0.01 9 12 0.02 4 15 0.00 9 12 0.53 7 15 0.01
03 17 13 84 0.67 10 86 0.02 17 34 0.04 5 133 0.01 17 34 0.69 9 93 0.02
04 20 3 22 0.04 2 22 0.01 20 21 0.04 19 21 0.00 20 21 0.06 7 21 0.01
05 21 21 23 0.08 21 23 0.08 21 23 0.08 8 30 0.02 19 27 0.09 19 27 0.09
06 41 22 513 0.16 22 513 0.16 41 46 0.13 11 639 0.06 22 567 0.19 22 567 0.19
07 41 22 514 0.15 22 514 0.15 41 114 0.13 11 632 0.05 22 550 0.19 22 550 0.19
08 62 42 12733 1.89 42 12733 1.89 62 1610 0.35 13 21544 1.36 39 14398 4.02 39 14398 4.02
09 71 44 88670 16.58 44 88670 16.58 71 21933 1.76 14 136717 9.60 41 90412 38.78 41 90412 38.78
10 18 3 19 0.07 2 19 0.01 18 19 0.05 17 19 0.01 18 19 0.10 7 19 0.01
11 21 21 23 0.10 21 23 0.10 21 23 0.11 8 30 0.03 19 27 0.12 19 27 0.12
12 39 22 475 0.20 22 475 0.20 39 116 0.17 11 728 0.07 22 568 0.25 22 568 0.25
13 37 20 434 0.20 20 434 0.20 37 81 0.17 10 663 0.07 20 479 0.24 20 479 0.24
14 60 42 12040 2.90 42 12040 2.90 60 1128 0.43 12 25110 1.86 39 15948 4.64 39 15948 4.64
15 58 40 11477 2.74 40 11477 2.74 58 1790 0.45 12 23317 1.71 37 14557 4.25 37 14557 4.25
16 79 61 267277 77.39 61 267277 77.39 79 27067 3.74 13 824491 97.12 55 353592 114.58 55 353592 114.58
17 88 62 2460667 708.82 62 2460667 708.82 88 63766 9.39 57 2678689 1235.79 57 2678689 1235.79
18 107 107 1077502 215.00
19 90 62 1354353 592.53 62 1354353 592.53 90 112721 18.32 14 3400142 492.06 57 1462739 660.17 57 1462739 660.17
21 101 54 5156 48.29 54 5156 48.29 17 11259 3.72 17 11259 3.72 55 4773 51.13 55 4773 51.13
22 148 55 606648 1110.09 55 606648 1110.09 24 1063668 318.90 24 1063668 318.90 60 477836 1082.91 60 477836 1082.91
36 109 61 9504 129.73 61 9504 129.73 17 34986 14.41 17 34986 14.41 61 9436 140.75 61 9436 140.75
37 142 140 37873 820.33 140 37873 820.33

blocks-ipc2
04-0 6 6 15 0.04 6 15 0.00 6 15 0.02 3 46 0.00 6 15 0.04 4 17 0.00
04-1 10 4 32 0.04 4 14 0.00 4 19 0.02 2 31 0.00 4 19 0.04 3 15 0.00
04-2 6 6 7 0.04 6 7 0.00 6 7 0.02 3 26 0.00 6 7 0.05 4 10 0.00
05-0 12 6 71 0.08 6 32 0.00 6 49 0.03 2 302 0.01 6 49 0.10 4 113 0.00
05-1 10 6 110 0.09 6 37 0.00 6 78 0.02 2 280 0.00 6 78 0.09 4 98 0.00
05-2 16 8 126 0.09 7 152 0.00 8 101 0.02 2 596 0.00 8 101 0.10 4 348 0.01
06-0 12 10 29 0.84 9 33 0.00 10 29 0.04 3 766 0.01 10 33 0.19 5 207 0.01
06-1 10 10 43 0.81 9 41 0.00 10 39 0.04 3 2395 0.03 10 39 0.20 5 578 0.02
06-2 20 10 667 0.44 9 855 0.01 10 667 0.05 3 5444 0.05 10 723 0.22 5 3352 0.06
07-0 20 12 267 2.42 10 278 0.01 12 283 0.05 3 20183 0.28 12 208 5.51 5 4022 0.12
07-1 22 10 4504 1.21 9 6910 0.10 10 17174 0.18 2 59207 0.60 10 4201 2.20 5 38539 0.67
07-2 20 10 860 1.78 9 1458 0.02 10 6920 0.11 2 46009 0.52 10 376 3.92 5 18854 0.39
08-0 18 12 1009 9.34 11 1533 0.03 12 2588 0.10 2 344157 5.46 12 389 26.55 5 69830 2.09
08-1 20 10 10436 6.74 9 10040 0.17 10 56998 0.59 2 517514 7.22 10 3625 21.84 5 191352 4.91
08-2 16 14 237 15.03 13 479 0.02 14 156 0.07 3 237140 4.08 14 221 26.08 6 32567 1.09
09-0 30 14 1658811 31.68 13 134185 3.10 14 402738 5.56 2 7405904 117.14 14 1118398 28.56 6 4346535 118.23
09-1 28 14 172891 4.88 12 3435 0.09 14 28366 0.48 2 4145371 77.54 14 33507 2.05 6 917197 33.32
09-2 26 16 33366 1.81 14 6379 0.17 16 3499 0.14 3 4145278 78.21 16 13957 1.48 7 923365 33.79
10-0 34 18 5340501 126.98 16 1524599 36.52 18 1649448 27.53 18 3755808 122.10
10-1 32 18 3385326 88.33 16 610206 15.79 18 411390 7.22 18 3577561 123.10
10-2 34 18 6112602 146.38 16 1516087 37.71 18 2803577 44.86 18 1975227 69.93

depots-ipc3
01 10 4 167 0.53 4 114 0.01 6 167 0.03 2 279 0.01 6 181 0.62 3 161 0.02
02 15 6 2851 3.08 6 1134 0.08 9 2062 0.15 1 9344 0.31 9 2056 3.58 4 2638 0.22
03 27 12 266167 36.70 12 134428 8.59 16 161249 8.56 2 2520703 159.84 16 231645 46.32 7 581726 66.43
04 30 12 1254545 101.18 12 1254545 101.18 13 1402766 35.15 8 5835295 923.87 8 5835295 923.87
07 21 10 198055 29.80 10 109765 9.17 13 99051 7.68 2 4271196 336.59 13 159363 43.92 7 487961 76.02
10 24 8 2964635 283.55 8 2964635 283.55 12 9191303 561.88 6 6081478 1187.66 6 6081478 1187.66
13 25 12 1003709 152.30 12 1003709 152.30 16 1570265 85.59 8 8161872 1559.21 8 8161872 1559.21

driverlog-ipc3
01 7 4 64 0.08 3 49 0.00 4 64 0.02 3 37 0.00 4 64 0.10 3 37 0.00
02 19 15 10546 0.66 12 15713 0.42 13 18682 0.26 11 18452 0.27 15 12178 0.82 12 15794 0.55
03 12 11 25 0.14 8 164 0.00 11 21 0.03 8 190 0.00 11 25 0.14 8 163 0.01
04 16 14 5204 0.75 11 6161 0.42 13 9080 0.29 10 10778 0.30 14 5109 0.91 10 7665 0.62
05 18 15 2724 0.53 12 13640 1.01 14 15883 0.53 12 11400 0.36 16 881 0.48 12 10984 1.07
06 11 9 701 0.56 8 608 0.09 9 973 0.11 7 795 0.06 10 339 0.75 8 492 0.11
07 13 13 78 0.65 11 864 0.14 12 980 0.11 10 1730 0.11 13 96 0.73 11 1006 0.21
08 22 15 4842469 469.23 12 669994 75.74 15 955110 45.31 13 1181268 61.32 17 1362122 194.45 13 694996 104.59
09 22 16 137555 21.70 12 150255 14.72 15 133658 6.83 12 198651 11.44 16 71722 15.74 12 164109 23.06
10 17 16 417 6.65 12 4304 0.44 16 1242 0.24 12 16099 1.21 16 957 6.15 13 4037 0.69
11 19 15 16993 8.48 11 43395 4.99 16 7054 0.77 12 41445 2.22 16 4002 10.55 11 39069 5.90
13 26 15 1303099 325.71 15 1303099 325.71 21 76356 15.72 15 1014865 144.64 15 1098694 422.20 15 1098694 422.20
14 28 23 542561 98.36

Table B.20: Runtimes of cost-optimal heuristic-search planners on the Airport, Blocksworld,
Depots, and Driverlog domains. The description of the planners is given in Section 5.5; here
the fork-decomposition heuristics are via implicit abstraction databases. The task column denotes
the problem instance, the h∗ column denotes the optimal solution length. Other columns capture
the initial evaluation (I), number of expanded (nodes), and run (time).

196

Forks Inverted Forks Both
Optimal for I Uniform Optimal for I Uniform Optimal for I Uniform

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

freecell-ipc3
01 8 7 705 1.93 5 234 0.10 8 541 0.34 3 974 0.15 8 303 1.35 5 274 0.17
02 14 5 30960 1.95 5 30960 1.95 9 42549 4.01 3 75150 5.53 5 37131 4.79 5 37131 4.79
03 18 6 197647 14.41 6 197647 14.41 11 280303 37.57 3 533995 78.27 6 240161 51.24 6 240161 51.24
04 26 8 1427669 97.22 6 997836 60.67 8 1894652 130.01 3 1921470 232.95 6 1218329 213.02 6 1218329 213.02
05 30 8 7369373 557.79 5 6510089 448.22 8 8712420 987.04

logistics-ipc2
04-0 20 20 21 0.05 20 21 0.00 20 21 0.02 19 193 0.00 20 21 0.05 19 65 0.00
04-1 19 19 20 0.04 19 20 0.00 19 20 0.01 16 570 0.01 19 20 0.04 17 293 0.00
04-2 15 15 16 0.04 15 16 0.00 15 16 0.01 12 117 0.00 15 16 0.04 12 79 0.00
05-0 27 27 28 0.06 27 28 0.00 27 28 0.02 25 2550 0.05 27 28 0.06 25 1171 0.03
05-1 17 17 18 0.05 17 18 0.00 17 18 0.01 14 675 0.01 17 18 0.05 14 427 0.01
05-2 8 8 9 0.04 8 9 0.00 8 9 0.01 7 24 0.00 8 9 0.04 7 13 0.00
06-0 25 25 26 0.06 25 26 0.00 25 26 0.02 22 4249 0.09 25 26 0.07 23 2461 0.07
06-1 14 14 15 0.05 14 15 0.00 14 15 0.02 11 181 0.00 14 15 0.06 12 99 0.00
06-2 25 25 26 0.06 25 26 0.00 25 169 0.02 22 2752 0.06 25 187 0.08 23 1394 0.04
06-9 24 24 25 0.06 24 25 0.00 24 25 0.02 20 2395 0.04 24 25 0.06 21 1428 0.04
07-0 36 36 37 0.38 36 37 0.00 36 8726 0.39 31 251287 7.52 36 1480 0.55 32 98053 4.59
07-1 44 43 1689 0.46 43 1689 0.07 44 291 0.05 37 3532213 99.33 44 291 0.54 38 1705009 72.35
08-0 31 31 32 0.41 31 32 0.00 31 347 0.04 26 82476 2.69 31 32 0.43 27 35805 1.78
08-1 44 44 45 0.46 44 45 0.01 44 17554 0.98 39 1183608 45.72 44 45 0.52 40 462244 25.36
09-0 36 36 37 0.47 36 37 0.00 36 1296 0.08 30 351538 13.75 36 1206 0.59 31 167038 9.76
09-1 30 30 31 0.43 30 31 0.00 30 211 0.03 26 59336 2.48 30 31 0.44 27 25359 1.73
10-0 45 45 3421 1.72 45 46 0.01 45 7547 0.55 45 3621 2.11
10-1 42 42 253 1.52 42 43 0.01 42 8723 0.63 42 43 1.81
11-0 48 48 4279 2.17 48 697 0.09 48 11082 0.93 48 20667 5.30
11-1 60 59 20523 3.77 59 21959 2.22 60 630873 62.97 60 54749 12.98
12-0 42 42 2041 1.92 42 43 0.02 42 14795 1.12 42 7137 3.01
12-1 68 67 106534 13.46 67 106534 11.64
13-1 64 63 214096 105.22
14-0 58 57 1720905 534.37

miconic-strips-ipc2
01-0 4 1 5 0.00 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00
01-1 3 2 5 0.00 2 5 0.00 2 5 0.01 2 5 0.00 2 5 0.01 2 5 0.00
01-2 4 1 5 0.00 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00
01-3 4 1 5 0.00 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00
01-4 4 1 5 0.01 1 5 0.00 1 5 0.01 1 5 0.00 1 5 0.00 1 5 0.00
02-0 7 4 19 0.01 4 19 0.00 4 19 0.01 3 22 0.00 4 19 0.01 3 19 0.00
02-1 7 3 28 0.01 3 21 0.00 3 21 0.01 2 23 0.00 3 21 0.01 3 21 0.00
02-2 7 3 28 0.01 3 21 0.00 3 25 0.01 2 23 0.00 3 28 0.01 3 21 0.00
02-3 7 3 29 0.01 3 24 0.00 3 26 0.01 3 24 0.00 3 24 0.01 3 24 0.00
02-4 7 3 26 0.01 3 19 0.00 3 19 0.02 2 22 0.00 3 23 0.01 3 19 0.00
03-0 10 5 86 0.01 5 86 0.00 5 96 0.01 3 129 0.00 5 86 0.02 4 98 0.00
03-1 11 6 113 0.01 5 120 0.00 6 113 0.02 3 168 0.00 6 113 0.02 4 147 0.00
03-2 10 3 167 0.01 3 137 0.00 3 167 0.01 2 143 0.00 3 167 0.02 3 137 0.00
03-3 10 5 116 0.01 5 96 0.00 5 116 0.02 3 153 0.00 5 116 0.02 4 117 0.00
03-4 10 4 152 0.01 4 103 0.00 4 152 0.01 3 149 0.00 4 176 0.02 4 115 0.00
04-0 14 8 449 0.02 7 524 0.00 8 449 0.03 4 843 0.00 8 449 0.03 5 686 0.01
04-1 13 8 419 0.02 7 505 0.00 8 419 0.02 4 817 0.00 8 419 0.03 5 663 0.01
04-2 15 7 746 0.02 6 685 0.00 7 746 0.04 4 942 0.00 7 746 0.04 5 802 0.01
04-3 15 7 756 0.02 6 681 0.00 7 756 0.03 4 942 0.00 7 756 0.03 5 798 0.01
04-4 15 8 608 0.02 7 685 0.00 8 608 0.04 4 942 0.00 8 608 0.04 5 802 0.01
05-0 17 9 2003 0.05 8 2468 0.03 9 2255 0.07 5 4009 0.03 9 2003 0.09 6 3307 0.05
05-1 17 8 3221 0.07 7 2807 0.04 8 3221 0.08 4 4345 0.03 8 3221 0.11 6 3677 0.06
05-2 15 7 2055 0.06 7 1596 0.02 7 2401 0.07 4 2981 0.02 7 2055 0.09 6 2275 0.04
05-3 17 9 1843 0.05 8 2256 0.03 9 2059 0.07 5 3799 0.03 9 1843 0.09 6 3104 0.05
05-4 18 9 3164 0.07 8 3210 0.04 9 3164 0.08 5 4732 0.03 9 3164 0.12 6 4267 0.06
06-0 19 9 9637 0.24 8 9379 0.18 9 11061 0.22 5 17665 0.15 9 9637 0.35 7 13531 0.26
06-1 19 11 6092 0.17 9 9106 0.17 11 6871 0.17 5 18134 0.15 11 6092 0.27 7 14052 0.27
06-2 20 9 10805 0.26 8 10900 0.20 9 12948 0.25 5 19084 0.16 9 10805 0.38 7 15111 0.28
06-3 20 10 12534 0.30 9 12127 0.23 10 12534 0.24 5 21708 0.18 10 12534 0.42 7 17807 0.33
06-4 21 11 12269 0.28 9 13784 0.24 11 12269 0.24 5 23255 0.19 11 12269 0.40 7 19536 0.35
07-0 23 12 37883 1.08 10 53662 1.19 12 46181 0.77 6 96092 0.97 12 37883 1.37 8 79449 1.76
07-1 24 13 38056 1.08 11 56328 1.24 13 41531 0.72 6 99109 0.96 13 38056 1.37 8 83677 1.83
07-2 22 13 28170 0.86 11 48141 1.10 13 32174 0.60 6 96139 0.94 13 28170 1.14 8 78471 1.77
07-3 22 13 28553 0.85 11 46867 1.08 13 31944 0.61 6 93117 0.92 13 28553 1.12 8 75424 1.69
07-4 25 13 63230 1.54 11 84250 1.70 13 68778 1.02 6 126595 1.22 13 63230 1.91 8 111984 2.36
08-0 27 14 182583 5.87 12 272580 7.05 14 217443 3.53 7 485051 5.51 14 182583 6.68 9 408114 10.53
08-1 27 16 160709 5.53 13 284415 7.56 16 160709 2.79 7 527216 6.01 16 160709 6.30 9 446837 11.58
08-2 26 13 174001 5.82 11 207931 5.60 13 198548 3.34 7 414294 4.79 13 174001 6.64 9 330993 8.90
08-3 28 15 291195 8.87 12 369479 9.25 15 291195 4.66 7 598031 6.74 15 291195 9.90 9 527216 13.30
08-4 27 13 256333 7.91 11 297516 7.74 13 286425 4.59 7 507910 5.79 13 256333 8.90 9 431432 11.04
09-0 31 15 1178547 42.62 13 1461729 43.82 15 1318542 23.07 7 2491975 32.67 15 1178547 46.10 10 2138656 63.58
09-1 30 16 852612 33.17 13 1207894 37.47 16 930890 16.93 7 2335166 30.76 16 852612 36.20 10 1952916 59.39
09-2 30 15 1014390 37.85 13 1294691 40.03 15 1137842 20.42 7 2340411 30.97 15 1014390 41.37 10 1972234 59.25
09-3 32 16 1458281 49.88 13 1840936 52.68 16 1560206 26.36 7 2889342 38.12 16 1458281 53.85 10 2571844 74.47
09-4 28 15 808604 33.00 13 1252484 40.34 15 1016784 18.93 7 2352633 31.35 15 808604 36.35 10 1944297 59.37
10-0 33 17 3573644 156.43 14 5716041 202.37 17 4384570 86.73 8 10316603 153.80 17 3573644 168.99 11 8774563 300.08
10-1 32 18 3048758 140.35 15 5601282 201.43 18 3712295 75.10 8 10789013 162.69 18 3048758 151.53 11 9144153 315.23
10-2 32 17 2680052 127.22 14 4153191 155.86 17 3241896 67.08 8 9148616 138.69 17 2680052 138.35 11 7466572 265.86
10-3 34 18 3658921 161.91 15 6108094 214.68 18 4158162 82.59 8 10960203 167.10 18 3658921 173.25 11 9400386 320.13
10-4 33 17 4134141 181.00 14 5920127 211.40 17 4864687 97.61 8 11075136 170.82 17 4134141 195.68 11 9448049 322.74
11-0 37 20 15335602 777.41 20 16574717 402.63 20 15335602 832.55
11-1 34 19 7132395 406.69 16 15349953 668.77 19 9228364 217.74 19 7132395 439.05
11-4 35 18 11409090 615.93 18 14888659 345.88 18 11409090 662.75

Table B.21: Similar to Table B.20 for the Freecell, Logistics-ipc2, and Miconic domains.
197

Forks Inverted Forks Both
Optimal for I Uniform Optimal for I Uniform Optimal for I Uniform

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

logistics-ipc1
01 26 25 214 9.90 22 77763 7.14 25 27570 2.71 20 1469610 95.49 26 2234 12.94 20 830292 98.59
05 22 22 23 11.16 19 3293 0.46 22 15645 1.27 15 850312 42.43 22 527 12.96 17 173477 18.19
31 13 13 35 1.50 11 436 0.03 13 239 0.02 10 1981 0.07 13 158 1.61 10 1284 0.09
32 20 20 21 0.51 17 392 0.01 19 1939 0.08 15 2704 0.07 20 603 0.55 16 962 0.05
33 27 27 28 3.07 23 312180 27.19 26 1609589 119.68 27 28 3.93 21 3617185 427.52
35 30 26 477883 183.08 26 477883 183.08

grid-ipc1
01 14 4 571 0.60 4 571 0.60 6 1117 1.21 6 1117 0.34 5 472 0.78 5 472 0.78
02 26 6 3330274 1078.55 6 3330274 1078.55 11 976834 158.19

gripper-ipc1
01 11 5 214 0.04 5 214 0.00 5 222 0.02 3 240 0.00 5 222 0.04 4 214 0.00
02 17 7 1768 0.10 7 1768 0.02 7 1792 0.04 3 1832 0.01 7 1792 0.13 6 1803 0.03
03 23 9 11626 0.33 9 11626 0.19 9 11674 0.14 3 11736 0.08 9 11674 0.40 7 11689 0.22
04 29 11 68380 1.75 11 68380 1.46 11 68460 0.64 3 68558 0.51 11 68460 2.00 8 68479 1.63
05 35 13 376510 10.76 13 376510 10.07 13 376630 3.53 3 376784 3.20 13 376630 12.02 10 376653 11.11
06 41 15 1982032 75.90 15 1982032 70.91 15 1982200 20.28 3 1982408 19.08 15 1982200 83.62 11 1982227 77.81
07 47 17 10091986 469.24 17 10091986 438.41 17 10092210 111.05 3 10092464 105.67 17 10092210 510.07 12 10092241 478.67

mprime-ipc1
01 5 4 28 0.07 3 196 0.02 5 11 0.04 5 10 0.01 5 6 0.08 4 24 0.01
02 7 6 855 11.89 4 11604 2.72 7 43 0.58 3 44045 80.68 7 33 27.48 5 2565 4.20
03 4 3 18 5.81 2 427 0.27 4 7 0.17 4 7 0.08 4 17 5.65 3 11 0.16
04 8 5 1553 0.20 4 3836 0.22 6 144 0.05 5 1775 0.10 7 18 0.11 5 1093 0.09
05 11 6 1076368 211.43 4 1745027 195.08 7 272745 190.03 5 604756 592.60 5 604756 592.60
07 5 4 133 0.59 2 3314 0.25 4 45 0.07 4 47 0.03 4 785 0.75 3 346 0.08
08 6 2 485381 491.53 2 485381 491.53 2 1376780 1426.21
09 8 6 16391 22.06 4 19838 2.92 7 393 0.88 3 100188 74.85 8 9 26.60 5 5227 6.31
11 7 7 9 0.18 6 9 0.02 7 8 0.07 6 219 0.03 7 9 0.22 6 8 0.03
12 6 3 2042 2.68 2 16320 1.89 4 3818 1.20 3 8118 0.73 5 1405 4.26 3 5243 1.13
16 6 4 252 0.76 4 252 0.76 5 115 3.58 2 51590 135.00 4 448 2.76 4 448 2.76
17 4 2 2746 10.47 2 2746 10.47 4 5 4.22 3 453 18.78 3 451 21.40 3 451 21.40
19 6 2 727401 521.78 2 727401 521.78 3 69185 704.84 2 95361 485.79
21 6 2 174221 55.09 2 174221 55.09 3 25650 29.57 2 34022 47.43 2 169400 392.30 2 169400 392.30
25 4 4 5 0.12 2 75 0.01 4 6 0.02 3 30 0.01 4 6 0.13 3 29 0.01
26 6 2 77622 24.69 2 77622 24.69 3 18430 46.22 2 147854 48.25 2 68239 106.35 2 68239 106.35
27 5 5 30 2.64 4 54 0.16 5 9 0.31 3 1772 1.50 5 60 2.85 5 9 0.18
28 7 7 8 0.07 7 8 0.01 7 11 0.04 4 403 0.02 7 8 0.08 6 37 0.02
29 4 4 7 1.33 2 182 0.12 4 13 0.15 3 56 0.08 4 15 1.43 3 32 0.11
30 9 7 69337 373.03
31 4 2 248 0.51 2 248 0.51 4 9 1.05 3 46 0.68 3 19 1.00 3 19 1.00
32 7 4 2499 1.43 2 31759 1.73 4 5337 0.75 3 12436 1.46 6 151 1.76 3 11839 1.93
34 4 3 29 8.37 2 234 0.26 4 29 0.48 3 46 0.16 4 6 6.53 3 23 0.28
35 5 3 269 1.83 2 392 0.07 4 178 0.14 3 290 0.06 4 74 2.01 3 84 0.08

mystery-ipc1
01 5 4 7 0.05 3 7 0.00 5 6 0.02 5 6 0.00 5 6 0.06 4 6 0.00
02 7 6 391 11.60 4 2404 0.50 7 27 0.55 3 8012 11.19 7 17 27.94 5 722 1.01
03 4 3 10 5.24 2 73 0.08 4 7 0.13 4 7 0.04 4 7 5.79 3 11 0.10
09 8 6 819 14.22 4 3049 0.37 7 242 0.53 3 10764 5.66 8 10 25.24 5 1215 1.01
11 7 7 8 0.16 6 9 0.01 7 8 0.05 6 33 0.01 7 8 0.20 6 8 0.01
15 6 2 28271 20.21 2 28271 20.21 4 18128 442.29 3 21572 41.22 3 5079 44.42 3 5079 44.42
17 4 2 354 1.32 2 354 1.32 4 5 2.46 3 85 2.74 3 83 3.59 3 83 3.59
19 6 2 21717 4.87 2 21717 4.87 3 4299 4.40 2 4968 5.26 2 16276 29.28 2 16276 29.28
20 7 2 89887 46.32 2 89887 46.32 4 65015 652.92 3 84572 153.53 3 53114 173.34 3 53114 173.34
25 4 4 5 0.12 2 9 0.00 4 5 0.02 3 10 0.00 4 5 0.12 3 9 0.01
26 6 3 2011 15.86 2 1807 0.27 3 590 0.57 2 1835 0.30 4 526 21.54 2 1344 0.69
27 5 5 6 2.65 4 14 0.05 5 6 0.18 3 159 0.09 5 6 3.73 5 6 0.07
28 7 7 8 0.05 7 8 0.00 7 8 0.03 4 47 0.00 7 8 0.07 6 15 0.00
29 4 4 11 1.25 2 31 0.04 4 13 0.09 3 14 0.03 4 27 1.43 3 10 0.06
30 9 4 23175 5.16 4 23175 5.16 7 3986 9.02 3 76480 169.86 5 7232 13.30 5 7232 13.30

openstacks-ipc5
01 23 15 1834 0.05 14 2264 0.02 15 1834 0.06 9 3895 0.03 15 1834 0.09 12 3070 0.05
02 23 15 2140 0.06 14 2617 0.03 15 2140 0.06 9 4485 0.04 15 2140 0.10 12 3561 0.05
03 23 15 1834 0.06 14 2264 0.02 15 1834 0.06 9 3895 0.03 15 1834 0.10 12 3070 0.05
04 23 15 1834 0.06 14 2264 0.02 15 1834 0.05 9 3895 0.03 15 1834 0.10 12 3070 0.05
05 23 15 1834 0.06 14 2264 0.02 15 1834 0.06 9 3895 0.03 15 1834 0.10 12 3070 0.05
06 45 30 303840 8.13 28 366768 7.52 30 303840 7.87 15 779710 18.93 30 303840 13.11 22 587482 22.20
07 46 30 350647 9.35 28 410728 8.23 30 350647 10.62 15 760668 18.33 30 350647 14.23 22 606782 22.53

pathways-ipc5
01 6 2 1299 0.01 1 1624 0.00 2 1299 0.02 2 1299 0.00 2 1299 0.02 2 1299 0.00
02 12 4 2307 0.03 2 2755 0.02 4 2307 0.03 4 2307 0.01 4 2307 0.03 3 2437 0.02
03 18 6 20566 0.34 3 44928 0.62 6 20416 0.31 6 20416 0.25 6 20566 0.36 5 29106 0.43
04 17 8 33806 0.80 4 126950 2.66 8 33788 0.70 8 33788 0.59 8 33788 0.85 6 58738 1.31

Table B.22: Similar to Table B.20 for the Logistics-ipc1, Grid, Gripper, Mprime, Mystery,
Openstacks, and Pathways domains.

198

Forks Inverted Forks Both
Optimal for I Uniform Optimal for I Uniform Optimal for I Uniform

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

pipesworld-notankage-ipc4
01 5 2 49 0.23 1 121 0.02 2 49 0.06 1 109 0.01 2 49 0.27 1 121 0.02
02 12 4 971 0.55 2 1413 0.06 4 971 0.09 2 1542 0.02 4 971 0.58 2 1413 0.08
03 8 3 597 44.69 2 1742 0.14 3 597 0.14 1 3001 0.07 2 1742 0.18 2 1742 0.18
04 11 3 7007 0.45 3 7007 0.45 5 2626 0.25 2 8911 0.22 3 7007 0.59 3 7007 0.59
05 8 2 4093 0.49 2 4093 0.49 4 659 0.36 2 6805 0.26 2 4093 0.65 2 4093 0.65
06 10 3 12401 1.44 3 12401 1.44 6 1620 0.56 2 27377 1.34 3 12401 2.03 3 12401 2.03
07 8 5 354 12.36 3 4370 0.97 5 354 0.84 2 9168 0.77 5 354 22.19 3 4370 1.34
08 10 7 655 50.39 4 18851 3.84 7 655 1.54 3 56189 6.21 4 20584 6.42 4 20584 6.42
09 13 6 141888 72.28 3 1092472 160.71 6 141888 5.61 2 2419903 151.99 6 141888 72.69 3 1092472 219.75
10 18 8 3038645 106.19
11 20 4 313952 27.68 4 313952 27.68 5 395194 7.26 3 472950 29.55 4 313952 43.90 4 313952 43.90
12 24 6 684234 75.72 6 684234 75.72 8 927951 56.67 3 1319980 133.58 6 686186 145.41 6 686186 145.41
13 16 6 39998 6.02 6 39998 6.02 9 24928 6.39 4 117475 18.08 6 40226 12.69 6 40226 12.69
15 26 4 1594863 254.43 4 1594863 254.43 8 806802 20.48 3 2588849 192.90 4 1594863 353.40 4 1594863 353.40
17 22 7 5437393 1588.68 7 5437393 1588.68 10 6777356 1278.16
21 14 4 23833 4.02 4 23833 4.02 7 9653 2.77 3 49035 7.76 4 23833 7.87 4 23833 7.87
23 18 5 2285790 568.93 5 2285790 568.93 9 543995 44.82 3 7047138 871.03 5 2282678 843.28 5 2282678 843.28
24 24 13 6329286 1706.86
41 12 3 502308 370.68 3 502308 370.68 3 502308 1092.50 3 502308 1092.50

pipesworld-tankage-ipc4
01 5 2 50 0.23 1 77 0.02 2 50 0.05 1 126 0.01 2 50 0.28 1 105 0.02
02 12 4 797 0.50 2 960 0.05 4 797 0.09 2 1005 0.02 4 797 0.61 2 960 0.06
03 8 3 4955 3.45 2 20803 1.89 3 4955 0.51 1 52139 2.46 3 4955 4.55 2 20803 2.82
04 11 5 32363 14.55 3 110284 8.06 5 32363 1.72 2 157722 9.60 5 32363 16.72 3 110284 14.05
05 8 4 918 5.48 2 6531 0.86 4 918 0.68 1 13148 1.03 4 918 10.21 2 6531 1.32
06 10 6 2592 17.43 3 20171 2.41 6 2592 1.09 2 43583 4.32 6 2592 35.27 3 20171 4.41
07 8 3 202706 73.83 3 202706 73.83 6 3913 4.43 2 2643752 1379.11 3 202706 208.81 3 202706 208.81
08 11 8 119303 33.16
11 22 2 2345399 296.87 2 2345399 296.87 6 1971143 180.59 2 2629204 662.94 2 2365735 838.85 2 2365735 838.85
15 30 4 9652091 1721.67 4 9652091 1721.67
21 14 3 839847 250.39 3 839847 250.39 7 166057 460.68
31 39 3 1501847 240.38 3 1501847 240.38 7 1411887 386.35 2 1568963 661.88 3 1504072 850.16 3 1504072 850.16

psr-small-ipc4
01 8 2 11 0.01 1 10 0.00 2 10 0.01 1 10 0.00 2 10 0.01 1 10 0.00
02 11 2 68 0.01 1 52 0.00 2 70 0.01 1 55 0.00 2 60 0.02 1 52 0.00
03 11 2 31 0.01 1 31 0.00 2 33 0.02 1 31 0.00 2 29 0.01 1 31 0.00
04 10 2 373 0.03 1 66 0.00 2 373 0.03 1 91 0.00 2 293 0.04 1 73 0.00
05 11 2 149 0.02 1 75 0.00 2 149 0.02 1 79 0.00 2 112 0.02 1 75 0.00
06 8 2 11 0.01 1 10 0.00 2 10 0.02 1 10 0.00 2 10 0.01 1 10 0.00
07 11 2 97 0.01 1 61 0.00 2 112 0.01 1 61 0.00 2 81 0.02 1 61 0.00
08 8 2 126 0.01 1 24 0.00 2 131 0.02 1 29 0.00 2 52 0.02 1 25 0.00
09 8 2 43 0.01 1 18 0.00 2 44 0.01 1 19 0.00 2 25 0.02 1 18 0.00
10 7 3 404 0.05 2 131 0.01 3 404 0.04 2 183 0.00 3 286 0.08 2 155 0.01
11 19 4 150 0.02 2 149 0.00 4 153 0.02 2 149 0.00 4 150 0.02 2 149 0.00
12 16 4 146 0.02 2 120 0.00 4 150 0.02 2 123 0.00 4 146 0.03 2 120 0.00
13 15 5 91 0.02 3 90 0.00 5 91 0.01 3 90 0.00 5 89 0.02 3 90 0.00
14 9 3 28 0.02 2 19 0.00 3 19 0.01 2 19 0.00 3 27 0.02 2 19 0.00
15 10 2 3186 0.44 2 1200 0.08 2 748 0.07 2 708 0.03 2 3186 0.48 2 769 0.09
16 25 3 2538 0.05 2 2328 0.02 3 2113 0.03 2 2158 0.01 3 2625 0.06 2 2176 0.03
17 9 3 16 0.01 2 15 0.00 3 14 0.01 2 15 0.00 3 16 0.01 2 15 0.00
18 12 3 149 0.02 2 85 0.00 3 149 0.02 2 90 0.00 3 137 0.03 2 85 0.00
19 25 5 8423 0.16 3 8025 0.11 5 7756 0.08 3 7856 0.05 5 8817 0.18 2 7876 0.12
20 17 5 82 0.02 3 80 0.00 5 84 0.02 3 80 0.00 5 82 0.03 3 80 0.00
21 10 4 41 0.02 3 28 0.00 4 39 0.01 3 28 0.00 4 39 0.02 3 28 0.00
22 33 8 184124 4.11 3 163299 4.17 8 189114 1.70 3 176058 1.56 8 184124 5.08 3 168685 5.01
23 12 4 220 0.04 3 77 0.00 4 220 0.03 3 93 0.00 4 178 0.05 3 77 0.00
24 10 4 41 0.02 3 28 0.00 4 39 0.02 3 28 0.00 4 39 0.02 3 28 0.00
25 9 2 6026 9.21 2 485 3.06 2 740 1.03 2 463 0.58 2 946 9.91 2 482 3.28
26 17 5 173 0.03 3 144 0.00 5 179 0.02 3 150 0.00 5 173 0.04 3 146 0.00
27 21 5 705 0.05 3 616 0.01 5 821 0.02 3 675 0.00 5 705 0.07 3 650 0.01
28 14 4 93 0.02 3 79 0.00 4 93 0.01 3 79 0.00 4 88 0.03 3 79 0.00
29 21 9 139469 4.30 4 142772 4.55 9 188291 2.25 3 187319 2.12 9 139469 5.30 4 159325 5.80
30 22 5 2292 0.09 3 1791 0.03 5 2373 0.06 3 1982 0.01 5 2292 0.12 3 1883 0.04
31 19 4 20865 0.69 3 11278 0.25 4 16392 0.23 3 6810 0.08 4 22357 0.84 3 8297 0.24
32 24 6 431 0.05 4 431 0.01 6 435 0.03 4 431 0.00 6 431 0.06 4 431 0.01
33 21 4 2291 0.07 3 1480 0.02 4 1585 0.03 2 1436 0.01 4 2319 0.09 2 1391 0.03
34 21 6 224 0.03 4 223 0.00 6 227 0.02 4 223 0.00 6 224 0.05 4 223 0.00
35 22 4 146628 2.67 3 65965 1.43 4 87454 0.64 2 63186 0.46 4 128963 2.66 2 68281 1.70
36 22 6 807912 20.06 4 571766 12.62 6 563624 6.03 5 371834 3.41 6 563624 16.94 5 458402 11.77
37 23 9 1263 0.15 5 1307 0.03 9 1498 0.06 5 1417 0.01 9 1263 0.20 5 1363 0.03
38 13 5 307 0.05 3 301 0.01 5 493 0.02 3 372 0.00 5 307 0.07 3 326 0.01
39 23 5 3088 0.12 3 2486 0.05 5 3955 0.06 3 2942 0.02 5 3088 0.16 3 2682 0.07
40 20 3 821479 22.51 2 259683 8.59 3 209183 3.66 2 182608 2.70 3 419694 15.18 2 270195 11.73
41 10 4 61 0.02 3 31 0.00 4 61 0.01 3 34 0.00 4 51 0.03 3 31 0.00
42 30 4 1878 0.04 3 1855 0.02 4 1791 0.02 2 1747 0.01 4 1956 0.04 2 1739 0.02
43 20 6 329 0.03 4 328 0.00 6 329 0.02 4 328 0.00 6 326 0.04 4 328 0.00
44 19 8 2757 0.16 4 2990 0.07 8 3555 0.07 4 3430 0.03 8 2757 0.22 4 3121 0.08
45 20 6 398 0.05 4 347 0.00 6 436 0.03 4 376 0.00 6 398 0.07 4 359 0.01
46 34 5 73394 1.02 2 60888 0.86 5 61630 0.33 2 61842 0.31 5 76463 1.17 2 61563 0.99
47 27 7 4238 0.22 3 4104 0.09 7 5100 0.10 3 4522 0.03 7 4238 0.30 3 4284 0.11
48 37 9 16134714 673.78 4 12080249 604.43 3 17435137 247.20 9 16134714 822.99 4 13514084 784.80
50 23 8 681 0.08 6 637 0.01 8 687 0.04 6 659 0.01 8 681 0.11 6 645 0.02

Table B.23: Similar to Table B.20 for the Pipesworld-NoTankage, Pipesworld-Tankage,
and PSR domains.

199

Forks Inverted Forks Both
Optimal for I Uniform Optimal for I Uniform Optimal for I Uniform

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

rovers-ipc5
01 10 6 173 0.01 6 147 0.00 6 173 0.01 6 147 0.00 6 173 0.01 6 147 0.00
02 8 6 50 0.01 6 44 0.00 6 50 0.02 6 44 0.00 6 50 0.02 6 44 0.00
03 11 6 523 0.02 5 672 0.01 6 494 0.01 6 419 0.00 6 523 0.02 6 448 0.01
04 8 7 20 0.01 6 47 0.00 7 21 0.01 7 20 0.00 7 20 0.01 6 24 0.00
05 22 14 587122 18.75 11 808084 22.61 14 518811 12.12 14 410712 9.23 14 587122 20.90 13 522937 18.29
07 18 11 602274 37.95 6 4546797 191.34 12 396969 11.57 10 741649 21.01 12 401806 30.56 8 1682245 102.77
12 19 12 698692 72.13 12 679360 37.10 11 1529551 76.46 12 698692 79.13

satellite-ipc4
01 9 7 29 0.01 6 24 0.00 7 29 0.02 6 32 0.00 7 29 0.02 6 29 0.00
02 13 11 86 0.02 10 86 0.00 11 91 0.03 8 337 0.00 11 94 0.04 8 241 0.01
03 11 9 767 0.07 5 2249 0.08 9 981 0.07 7 656 0.01 9 1038 0.13 7 728 0.04
04 17 16 1457 0.23 10 9817 0.57 16 1380 0.28 11 14860 0.38 16 1085 0.41 11 11250 0.76
05 15 10 63761 9.98 7 279569 49.47 13 6906 0.98 10 46453 4.92 13 4169 1.67 9 61692 18.85
06 20 15 378078 38.13 10 1496577 92.22 16 228672 10.38 10 1572327 51.68 16 171620 21.08 10 1518261 105.65
07 21 18 2511377 265.04 18 2078741 686.02

tpp-ipc5
01 5 5 6 0.01 5 6 0.00 5 6 0.01 4 6 0.00 5 6 0.01 5 6 0.00
02 8 8 9 0.01 8 9 0.00 8 9 0.01 7 11 0.00 8 9 0.01 8 9 0.00
03 11 11 12 0.02 11 12 0.00 11 12 0.01 9 27 0.00 11 12 0.02 10 16 0.00
04 14 14 15 0.02 14 15 0.00 14 15 0.02 11 78 0.00 14 15 0.02 13 47 0.00
05 19 19 20 0.12 15 623 0.02 17 1306 0.05 13 5110 0.08 19 20 0.13 15 1455 0.05
06 25 7 5843306 201.49 7 5843306 179.03 7 5843306 81.32 5 6916518 95.86 7 5843306 215.08 6 6153923 222.35

trucks-ipc5
01 13 7 2043 0.07 5 1691 0.03 7 1013 0.05 6 1027 0.01 7 1117 0.08 6 1039 0.03
02 17 9 11681 0.33 7 9624 0.23 10 2898 0.07 9 2898 0.04 10 2942 0.18 8 2957 0.11
03 20 11 105292 4.45 8 80693 2.99 12 19568 0.59 11 20752 0.44 12 21443 1.42 10 22236 1.14
04 23 13 1699483 56.87 8 1753866 48.55 13 1036115 24.56 11 1205793 23.48 13 1363663 59.56 9 1315672 50.35
05 25 15 11461967 607.64 9 12472562 515.50 15 6172038 225.61 13 8007189 242.98 15 10107973 599.86 10 9483222 512.55
07 23 13 3237871 166.29 10 2134728 96.15 14 626947 17.47 13 719751 16.91 14 763790 61.29 11 755608 50.72
08 25 16 4012227 204.98 14 5199440 221.76 16 6341279 786.44 13 6630689 687.95

zenotravel-ipc3
01 1 1 2 0.03 1 2 0.00 1 2 0.03 1 2 0.00 1 2 0.05 1 2 0.00
02 6 5 9 0.03 4 17 0.00 5 9 0.03 3 18 0.00 5 9 0.05 4 17 0.00
03 6 6 83 0.07 4 28 0.01 6 53 0.03 5 18 0.01 6 25 0.09 5 12 0.01
04 8 8 12 0.10 5 99 0.01 7 44 0.06 5 88 0.01 8 10 0.15 5 81 0.01
05 11 11 20 0.14 8 177 0.01 11 105 0.07 9 220 0.01 11 88 0.21 9 136 0.02
06 11 11 634 0.21 8 2287 0.10 11 1830 0.13 9 1144 0.05 11 444 0.30 9 504 0.05
07 15 12 2979 0.27 8 5088 0.16 12 2806 0.13 9 4234 0.09 12 3240 0.45 9 4199 0.19
08 11 10 57 0.99 7 3268 0.35 10 632 0.42 8 1026 0.12 11 119 1.71 8 1655 0.32
09 21 19 84749 12.58 14 2844771 177.70 18 966627 68.56 15 2842546 176.05 20 73137 22.02 15 2433822 262.84
10 22 21 110557 34.92 17 2283679 295.65 21 527430 56.23 18 1921903 196.38 22 13316 13.23 18 1832871 383.99
11 14 13 621 2.35 9 139687 18.63 13 45924 5.47 10 76904 8.20 13 1046 4.45 9 93782 19.51
12 21 19 374833 127.85 20 111037 69.66
13 26 24 425408 229.06 24 984912 714.39

Table B.24: Similar to Table B.20 for the Rovers, Satellite, TPP, Trucks, and Zenotravel
domains.

200

Forks Inverted Forks Both
Optimal for I Uniform Optimal for I Uniform Optimal for I Uniform

task h∗ I nodes time I nodes time I nodes time I nodes time I nodes time I nodes time

schedule-strips
02-0 3 2 259 0.23 2 5 0.07 2 5 0.30 2 5 0.04 2 5 0.51 2 5 0.08
02-1 2 2 71 0.40 2 3 0.08 2 3 0.16 2 4 0.05 2 32 0.55 2 3 0.10
02-2 2 2 50 1.16 2 3 0.17 2 3 0.24 2 3 0.06 2 3 0.19 2 3 0.19
02-3 3 2 55 1.06 2 26 0.17 2 141 0.21 2 37 0.06 2 73 1.29 2 26 0.18
02-4 3 2 31 1.22 2 68 0.17 2 370 0.25 2 188 0.07 2 31 1.36 1 220 0.26
02-5 2 2 3 1.10 2 3 0.17 2 6 0.19 2 3 0.05 2 3 0.19 2 3 0.19
02-6 2 2 68 0.37 2 3 0.07 2 7 0.16 2 5 0.04 2 29 0.49 2 3 0.09
02-7 2 2 3 0.97 2 3 0.15 2 3 0.18 2 3 0.05 2 3 39.92 2 3 0.17
02-8 2 2 79 1.08 2 3 0.17 2 9 0.20 2 3 0.05 2 3 0.19 2 3 0.19
02-9 3 2 259 0.23 2 5 0.07 2 5 0.30 2 5 0.04 2 5 0.49 2 5 0.08
03-0 4 3 192 2.01 3 40 0.31 3 956 0.43 2 407 0.16 2 140 0.45 2 140 0.45
03-1 2 2 3 1.80 2 3 0.22 2 19 0.41 2 3 0.08 2 3 1.82 2 3 0.25
03-2 4 3 70 1.29 3 27 0.21 3 138 0.29 3 50 0.09 3 33 0.25 3 33 0.25
03-3 4 3 24169 3.30 3 15 0.13 3 91 0.26 2 91 0.09 3 2254 1.19 3 15 0.15
03-4 3 3 1408 3.59 3 4 0.39 3 4 0.38 2 16 0.10 3 110 4.22 3 4 0.44
03-5 4 4 15 2.19 3 73 0.38 3 233 0.37 2 471 0.14 4 15 2.52 3 74 0.43
03-6 4 4 31 0.48 3 72 0.12 3 30 0.34 2 75 0.08 4 31 0.79 3 69 0.13
03-7 4 3 323 1.31 3 28 0.23 3 204 0.40 3 50 0.09 3 28 0.25 3 28 0.25
03-8 4 3 273 0.43 3 273 0.43 3 318 0.44 2 266 0.14 3 273 0.48 3 273 0.48
03-9 4 3 12 1.33 3 8 0.23 3 77 0.30 3 31 0.09 3 14 0.27 3 14 0.27
04-0 5 5 1320 2.70 4 373 0.45 4 302 0.53 3 1498 0.50 5 970 2.93 3 167 0.54
04-1 6 5 99 2.94 3 17559 15.45 4 38863 6.93 3 10707 3.48 3 17686 17.58 3 17686 17.58
04-2 5 5 10 1.23 4 209 0.40 4 979 0.72 3 406 0.19 4 66 0.34 4 66 0.34
04-3 5 5 1017 2.57 3 142 0.40 4 161 0.48 3 674 0.25 5 681 2.68 3 251 0.58
04-4 5 4 595 2.73 4 921 1.14 4 965 0.88 3 450 0.31 4 211 3.09 3 574 1.39
04-5 6 4 483 0.95 4 483 0.95 4 259 0.66 3 4544 1.11 3 850 2.11 3 850 2.11
04-6 6 5 35757 10.46 4 779 0.56 4 1084 0.69 3 11610 2.44 5 4671 2.92 3 1834 1.43
04-7 5 4 40 2.41 3 99 0.58 4 826 0.68 3 424 0.31 3 163 0.78 3 163 0.78
04-8 5 5 35 2.17 3 102 0.52 4 140 0.42 3 573 0.24 3 111 0.60 3 111 0.60
04-9 4 4 154 2.10 2 1043 1.27 3 1942 1.26 2 996 0.67 4 35 2.21 2 1050 1.66
05-0 5 5 59 3.64 3 163 0.86 4 161 0.76 3 483 0.51 3 167 1.05 3 167 1.05
05-1 6 6 20713 28.03 5 2701 2.95 5 2976 1.45 3 18878 11.36 4 1257 3.10 4 1257 3.10
05-2 7 5 43913 47.30 4 118855 86.65 5 30518 6.14 3 158640 178.66 3 158640 178.66
05-3 7 6 1761 4.18 4 27159 24.88 5 3177 1.68 3 41447 13.08 6 513 3.09 4 13622 16.72
05-4 6 5 97355 60.37 4 989 1.63 5 3665 1.48 4 3433 1.29 5 13243 12.38 4 582 1.36
05-5 6 5 161716 88.15 5 198 0.61 5 1098 0.82 3 9550 4.61 4 347 1.05 4 347 1.05
05-6 7 6 106 1.68 4 6033 11.16 5 1827 1.23 3 49873 16.17 6 983 3.92 4 10325 16.63
05-7 6 5 184 2.67 4 944 1.92 5 13503 3.93 3 17562 9.03 4 2107 4.10 4 2107 4.10
05-8 7 6 867 4.07 5 1190 2.43 5 12285 3.82 3 61539 20.22 4 2709 7.24 4 2709 7.24
05-9 6 5 391 2.84 4 1537 2.24 4 7775 3.61 3 15829 6.85 3 2717 5.45 3 2717 5.45
06-2 6 4 143169 147.53 4 888 3.29 4 6206 5.21 3 26986 22.47 4 1709 6.91 4 1709 6.91
06-4 8 6 11535 20.81 6 30065 14.89 5 56273 131.69 5 56273 131.69
06-5 8 6 131030 233.14 6 23158 11.43
06-6 8 5 15589 46.68 6 15181 6.67 6 76091 169.55 5 41764 133.76
06-7 9 7 20661 46.98
06-8 8 7 203585 315.38 6 105570 33.94 7 120794 236.50
07-0 7 6 183 6.03 5 2489 9.10 6 65866 36.77 5 6995 25.49 5 6995 25.49
07-2 10 9 16870 49.42
07-3 10 9 9139 41.77 7 45740 37.56
07-7 8 6 174509 306.33 5 10726 41.01 6 14420 10.47 5 38251 154.49 5 38251 154.49
07-9 8 7 53334 114.40 6 6829 19.20 6 4421 5.62 5 30148 109.49 5 30148 109.49

Table B.25: Similar to Table B.20 for the non-IPC Schedule-STRIPS domain.

201

