Safety Debugging of Tree-Ensemble Action Policies in AI Planning:
From Fault Detection to Fault Fixing

Lorenzo Cascioli*', Chaahat Jain*2, Marcel Steinmetz®, Jesse Davis', Jorg Hoffmann>*

'Department of Computer Science, KU Leuven, Leuven, Belgium
2Saarland University, Saarland Informatics Campus, Germany
3LAAS-CNRS, Toulouse, France
*German Research Center for Artificial Intelligence (DFKI), Saarbriicken, Germany
{jain, hoffmann} @cs.uni-saarland.de, {lorenzo.cascioli, jesse.davis} @kuleuven.be, marcel.steinmetz @laas.fr

Abstract

We address learned action policies 7 in discrete planning un-
der initial-state and action-outcome non-determinism, with
the objective to reach the goal while avoiding unsafe states.
Recent work has shown how to detect faults in such 7: action
decisions (s,7(s)) one of whose possible outcomes leads
from the safe region, where it is possible to be safe with cer-
tainty, to the unsafe region where that is not possible. Here
we introduce methods to actually fix such faults. We address
policies 7 represented as tree ensembles. Given a set of faults
{(si,7(si))}, we revise 7 into a minimally different 7’ that
guarantees to take different decisions on the states s;. Iterat-
ing fault-detection with fault-fixing steps, we obtain a policy
debugging loop that removes unsafe decisions while modi-
fying the original learned policy as little as possible. In our
experiments, consistently across a range of benchmarks, this
debugging loop makes the policy safer without paying a price
in goal-reaching performance. In some cases, an off-the-shelf
method is able to verify the final policy to be safe.

1 Introduction

Learned action policies are gaining traction in Al (e.g., Mnih
et al. 2015; Silver et al. 2016, 2018), including in AI Plan-
ning (e.g., Issakkimuthu, Fern, and Tadepalli 2018; Groshev
et al. 2018; Garg, Bajpai et al. 2019; Toyer et al. 2020; Karia
and Srivastava 2021; Stahlberg, Bonet, and Geffner 2022a,b;
Rossetti et al. 2024). However, such policies come without
any built-in guarantees. In particular, safety is a major con-
cern. Much work is being done on assessing policy safety
in a post-hoc manner: a verification algorithm is applied to
a previously learned policy in order to ascertain safety with
respect to a symbolic environment model (e.g., Dutta, Chen,
and Sankaranarayanan 2019; Akintunde et al. 2019; Ivanov
et al. 2021; Bacci and Parker 2022; Vinzent, Sharma, and
Hoffmann 2023; Amir et al. 2023; Wang et al. 2024). But
this leaves the question: What if the outcome of verification
is that the policy is unsafe?

A sizable body of work has addressed this question
through ML model repair, in the simpler setting of single-
step safety where the undesired behavior pertains to individ-

“These authors contributed equally.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ual input/output pairs (Goldberger et al. 2020; Dong et al.
2021; Tan, Zhu, and Guo 2021; Sotoudeh and Thakur 2021;
Bauer-Marquart et al. 2022; Boetius, Leue, and Sutter 2023;
Zavatteri, Bresolin, and Navarin 2024). ML model repair
and verification then together form a debugging loop. Here
we establish the first such debugging loop for multi-step
safety of ML models representing action policies. Figure 1
gives an overview of our loop.

(A) Fuzzing

(D) Safety
Verification

Y
unsafe runs '—>

unsafe

Figure 1: Overview of our safety debugging loop. OOR: Out
of resources (timeout/out of memory).

We design and implement this loop in the context of
planning for large state spaces with initial-state and action-
outcome non-determinism. We address both discrete and
continuous state spaces, with finite action choice. We con-
sider policies m whose objective is to reach a state that sat-
isfies a goal condition ¢.., subject to the hard constraint of
never entering a state that satisfies a failure condition ¢ .

The major components of our debugging loop are: (A)
fuzzing, which identifies unsafe policy runs, i.e., runs that
end in a state satisfying ¢ ; (B) fault analysis, which pin-
points the action decisions — so-called faults, see below —
causing unsafety on such runs; (C) fault fixing, our repair
step, which modifies the policy in a way that guarantees to
fix a given set of faults; and (D) safety verification, which
checks whether or not there exists an unsafe policy run.

With respect to prior work on ML model repair, compo-
nents (A) and (B) are new. (A) is a much more practical way
to find unsafe behavior, as opposed to running a full verifi-

cation mechanism. (B) is necessary to determine the actual
undesired input/output pairs on an unsafe policy run, where
many action decisions may be perfectly safe (e.g. the policy
may stop at a red light 17 times before deciding to drive too
fast). Following Jain et al. (2025), we identify the action de-
cisions (s, 7(s)) causing unsafety on a policy run as faults:
s itself is safe but one of the possible outcome states s’ of
applying the action 7(s) is unsafe (e.g. 7(s) may decide to
drive too fast). Methods for both (A) and (B) in our con-
text were recently established (Jain et al. 2025), and we use
these off-the-shelf here. We also use (D) off-the-shelf, ex-
perimenting with two recent safety verification methods for
tree-ensemble policies (Jain et al. 2024; Anonymous 2025).

Our key contributions are new methods for (C), as well as
realizing and evaluating the overall debugging loop. While
prior work on ML model repair exclusively addresses neural
networks, here we address policies represented as tree en-
sembles instead. There are two motivations for this. First,
recent work has shown that, in our planning context, tree
ensembles can learn polices on par with neural ones (Jain
et al. 2024). Second, as we show, tree ensembles offer com-
pelling ways to fix undesired input/output pairs. Given a
tree-ensemble policy 7 and a set of faults {(s;, w(s;))}, we
repair 7 by finding new leaf values that differ minimally
from the previous ones, subject to the constraint that dif-
ferent decisions are taken on the states s;. This repair step
guarantees to fix the undesired input/output pairs. It is feasi-
ble because we merely need to touch the leaves activated by
si,1.e., one leaf per tree. Note the contrast to neural networks
where any weight may influence the prediction for a given
w;. Our repair step affects other states that activate some of
the same leaves. By virtue of that, it may generalize to other
similar faults, which indeed our experiments confirm.

We run experiments on the benchmarks established for
fault detection by (Jain et al. 2025), which contains in-
stances of 13 domains; 10 of these domains have discrete
state spaces, the other 3 have continuous state spaces. Across
all these benchmarks, with very few exceptions, we observe:

* Our debugging loop substantially reduces the fraction of
initial states in which the policy is unsafe.

* We keep or even increase the fraction of initial states
from which the policy reaches the goal.

* Our method outclasses a baseline that does not generalize
over the given sets of faults.

The verification methods often time out, but in some cases
are able to verify the final policy to be safe.

2 Preliminaries

We consider fully-observable non-deterministic planning
(e.g., Cimatti et al. 2003), over discrete or continuous state
variables with finite action choice. Specifically, a state space
isatuple © = (S, A, T,So, S«). Here, S is a (possibly in-
finite) set of states. We assume that states are value assign-
ments to a given finite set of state variables), which may
be Boolean, integer, or real-valued. A is a finite set of action
labels. 7 : S x A — 25\ {0} is the transition function,
that maps a given state s and action a to the set of possible
successor states s’. Sy C S is the non-empty set of initial

states and S, C S is the set of goal states. We denote by
app(s) C A the set of actions applicable in state s, i.e.,
those for which 7 (s, a) is non-empty. We assume w.l.o.g.
that app(s) # @ forall s € S. If s € T (s, a) is a possible
successor of s under action a, we write s —, s’

The fault fixing methods we present here do not require
a declarative model of ©. We merely assume that we have
access to V, and that Sy and S, are specified in terms of
given formulas over ¢g and ¢. over V. That said, in safety
debugging as per Figure 1, a declarative model is required
for (D) safety verification. Our implementation builds on the
prior work by (Jain et al. 2024, 2025), which uses the JANI
language (Budde et al. 2017) to model state spaces.

We assume a given failure condition ¢ in the form of
a formula over V. By Sp C S we denote the set of failed
states where ¢ is true.

A policy is a function 7 : S — A such that 7(s) €
app(s) for all states s € S. A run of 7 from a state
8() € &Sy is an alternating sequence of states and actions

= 80,7(80), 81, .. such that, for all ¢ > 0, s;01 €
Tfsl, (si)) and if s; € S, U Sp then the path terminates
at s; while otherwise the path continues. If the run ends in
sn € Sp, we say that it is unsafe. A policy 7 is unsafe if
there exists an unsafe run, and is safe otherwise.

A state s is safe if there exists a policy s.t. no run start-
ing from s is unsafe. We denote by St C S the set of all
safe states, called the safe region. All other states form the
unsafe region S| = S\ St. Failed states are unsafe, i.e.,
Sr € S, butin general S| Z Sp (e.g. in S, a car may
be too fast to break, while in S it has already crashed). We
say that the state space O is safe if all initial states are safe,
So C St. Note that this is the case iff a safe policy exists.

We consider learned action policies represented by tree
ensembles T' = {T1,T5,...Ty}. A decision tree T; :
R™ — R™ maps an input over m features to n values. In
our case, m = |V| and n = |A|. Each internal node of T;
stores a test of the form X < «, where X} is an input
attribute and o € R, and T contains branches for both pos-
sible outcomes of that test. Each leaf node [stores a vector
of values 7/ € R™. Every input z € R™ unambigously
identifies a path through 7;. The leaf node reached by this
path is denoted by 1V, The prediction of T; is T;(z) :=
1/7(3 . The tree ensemble additively combines the predic-
tions of the individual decision trees: T'(z) := Zf\il T;(x).
The output configuration (Devos et al. 2023) of x under
T is the tuple OC(x) := <l§;1),...,l§¢M)>. Note that the
output configuration precisely determines the tree ensem-
ble’s predictions. The tree-ensemble policy associated with
T chooses the applicable action with highest value, i.e.,
mr(s) 1= argmax,e 4 (s) T'(s)[al, where Vla] is the en-
try in the value vector corresponding to action a.

3 Faults

As previously outlined, faults are policy decisions one of
whose outcomes leads from the safe to the unsafe region:

Definition 1. (Jain et al. 2025) For a policy m and state s,
(s,m(s)) is a fault if 1. s is contained in a run of m, 2. s €

S, and 3. there exists a transition s — (s s’ s.t. 8' € S].

Intuitively, faults identify the causes of unsafe behavior in
the given policy 7. Every fault lies on an unsafe run, and pin-
points where that run enters the unsafe region. In particular,
the following is easy to see:

Proposition 1. A policy w is safe only if it does not have
Jaults. In safe ©, the “if” direction also holds.

The first claim holds simply because a safe policy never
enters the unsafe region. For the second claim, observe that,
in unsafe ©, an unsafe policy run may never touch the safe
region, and thus does not contain any faults. In safe ©, this
cannot happen, so every unsafe run contains a fault, and thus
if there are no faults then there are no unsafe runs.

All that said, in general, unsafe behavior may be needed to
reach the goal (e.g., crossing a road while risking to be hit by
a meteorite). It then does not necessarily make sense to “fix”
a fault. Hence a discussion is in order about the assumptions
we make on the application context of our work, motivating
the notion of faults and the need to fix them.

The canonical scenario we address is that where the user
wants to obtain a policy 7 for an MDP with initial state un-
certainty, a goal, and a failure condition. The user’s ideal
objective (O1) assumes that a safe policy exists and requires
finding a safe 7 that optimizes some objective like goal prob-
ability or cost-to-goal among the safe policies. The MDP is
too large to obtain an optimal policy w.r.t. (O1) using sym-
bolic methods, hence the user employs ML methods instead.
For example, the user may do RL on a proxy objective (02)
maximizing expected discounted reward where goal states
give positive rewards whereas failed states give negative re-
wards (e.g. (Garcia and Fernandez 2015; Zhao et al. 2023)).
Our safety debugging loop then aims to make the learned
« safe. This can be understood as addressing the safety ob-
Jjectve (0O3) which merely requires 7 to be safe. For this pur-
pose, we can drop the probabilities, resulting in our non-
deterministic state space O as specified in Section 2. Since
(O1) poses safety as a hard constraint, every violation of
(O3) also is a violation of (O1). In other words, every fault
must be fixed: if (s, 7(s)) is a fault, then any policy optimal
w.r.t. (O1) chooses a different action a # 7 (s) in s.

The main limiting assumption in this scenario is that a
safe policy exists, i.e., that © is safe. Out of the 13 bench-
mark domains in our experiments, 12 fall into this class. The
remaining benchmark exemplifies a more general scenario,
where the user’s (O1) imposes safety within the safe region,
i.e., wherever possible. Then, still, every fault must be fixed.
For example, we cannot guarantee safe driving on icy roads,
but nevertheless we do not want to run red lights.

Another interesting generalization is that where (O1) en-
forces an upper bound B > 0 on failure probability. Then
a fault is an action decision that loses the ability to satisfy
B. While the fault fixing methods we introduce here apply
unchanged to this setting, extending fault analysis and veri-
fication is challenging and remains a topic for future work.

4 The Policy Safety Debugging Loop

Consider again the debugging loop sketched in Fig. 1. Given
an input policy g, the loop starts by generating unsafe pol-

icy runs, using fuzzing methods (A). Then fault analysis (B)
locates a set of faults Fj on these unsafe runs. If faults were
found, Fy # (), fault fixing (C) produces a fix for Fy:

Definition 2 (Fix). Let F be a set of faults in a policy 7. A
policy 7' is a fix for F if, for all (s;,a;) € F, ©'(s;) # a;.

The fault fixing methods we introduce here (Section 5)
aim for the fixed policy 7’ to be as close as possible to 7, so
as to not deteriorate goal-reaching performance.

After the fault fixing step, the debugging loop continues
with the repaired policy, denoted ;. Across iterations, we
accumulate the faults, F := UZ F;, thus ensuring mono-
tonicity, with every intermediate policy 7; guaranteeing to
fix all faults found so far. Naturally, in each iteration we fix
only the new faults not already contained in F. If no new
faults are found, F; \ F = (), then this does not imply that 7;
is safe, as both fuzzing and fault analysis are subject to time
and memory limits. We can then choose to stop the debug-
ging loop; or we can continue, investing the effort for formal
safety verification (D). If the outcome is that 7; is safe, we
can stop. Otherwise, the debugging continues by feeding the
identified unsafe policy run back into fault analysis.

Let us briefly analyze the properties of this loop. In what
follows, we assume that (a) every policy run has a non-0
probability to be generated by fuzzing; (b) on finite state
spaces, fault analysis finds all faults on a given policy run;
(c) bug fixing provides a fix for any given pair of policy and
fault set; (d) on finite state spaces, safety verification is com-
plete. The off-the-shelf methods we use satisfy (a), (b), and
(d) (Jain et al. 2024, 2025; Anonymous 2025); our fault fix-
ing method satisfies (c). Given this, in principle, on finite
state spaces our loop will eventually fix every fault:

Theorem 2. Given assumptions (a) — (c) and unlimited time
and memory, if © is finite then iterating (A) fuzzing, (B) fault
analysis, and (C) fault fixing fixes every fault in the input
policy T in finite time.

Proof. Thanks to (a) and (b), and as every fault lies on some
policy run, every fault will eventually be found; thanks to
(c), the fault will then be fixed. O

Verification cannot be included here as, on unsafe O, it
may lead to endless loops: the unsafe policy run ¢” found
by verification may never touch the safe region and thus not
contain any faults. Fault fixing then does not do anything,
verification is called again on the same policy, and may again
find the same unsafe run ¢™.! For safe ©, however, our de-
bugging loop is guaranteed to turn 7 into a safe policy:

Theorem 3. Given assumptions (a) — (d) and unlimited time
and memory, if © is finite and safe then our debugging loop
terminates in finite time with the outcome “safe 7.

Proof. Verification cannot lead to endless loops on safe O:
every unsafe policy run o™ starts in the safe region and hence
contains at least one fault; thanks to (b) and (c) that fault will

'Tn our implementation, we stop the loop when this occurs. One
could in theory fix the issue by going back into fuzzing instead. In
our experiments this did not help though (fuzzing did not find new
unsafe runs), so we omit this possibility here to keep things simple.

be found and fixed, so that ¢™ is not a run of the new policy.
Hence, with (a) — (¢) as in Theorem 2, all faults will eventu-
ally be fixed. At this point, with Proposition 1 the policy is
safe. With (d), the claim follows. O

For infinite state spaces, no theorems of this kind hold
as fault analysis and verification may not terminate. In any
case, the practical limits are time and memory. (B), (C),
and (D) each are worst-case exponential in the number of
state variables and/or policy representation size. Hence any
of these steps may exhaust resources as indicated in Fig. 1.

We remark that, while in theory verification does not im-
prove the ability to find unsafe policy runs (rather the oppo-
site as it may lead to endless loops), in practice it is a useful
complement to fuzzing. It may discover new unsafe policy
runs not found by fuzzing, thus further advancing the debug-
ging process. This happens in one of our benchmarks.

Finally, note that verification is needed to certify that all
faults have been fixed. This works only on safe ©, as on
unsafe © all policies are unsafe. It remains an open question
how to effectively prove the absence of faults in this case.

5 Repairing Tree-Ensemble Policies

We introduce fault fixing methods for tree ensemble poli-
cies. Given a set of faults 7 = {(s;,a;)} and a policy 7,
our methods alter 7 into 77~ minimally while guarantee-
ing that w'(s;) # a; for all (s;,a;) € F (cf. Def. 2).

A simple idea is to re-train T” using a loss penalizing
faulty decisions. Yet this 1. does not give the desired guaran-
tee, nor 2. necessarily encourage minimal changes. Next, we
first introduce a straightforward method that fixes 1. We then
introduce more fine-grained methods that fix both 1. and 2.

5.1 A Simple Method: Penalty Trees

We can satisfy Def. 2 by adding, for every fault (s;,a;) €
F, an additional decision tree Ps, ,, that heavily penalizes
the choice of a; in s;. Specifically, a suitable P, ,, is given
by the tree that consecutively checks, for each state variable
Xk € V, whether (a) X, < s;[X}] and on the false-branch
checks whether (b) X, < s;[Xj]+e€. Here, e = 1if X}, is an
integer, and € > 0 chosen arbitrarily but small if X}, is real-
valued. Let [p be the leaf node reached by false-branches
on (a) and true-branches on (b). We set all leaf values to 0,
except the value in [p associated with a,;. Namely, the latter
is set to some value smaller than A = v,,;, — Vjpax Where vy,ux
is the maximal and v,,;, is the minimal possible sum of leaf
values in T'. Repeating this construction for all faults in F
provides the desired guarantee:

Theorem 4. Let wr be a tree-ensemble policy, and F be a
set of faults. Let T' := T U {Ps, 4, | (si,a;) € F} be the
tree ensemble T extended by the penalty trees for all faults.
Then mr is a fix for F.

Proof. Thanks to our construction, each penalty tree P, ,,
is designed such that P;, ,,(s)[a] = A for s = s;,a = q;
and 0 everywhere else. Given the choice of), the augmented
tree ensemble satisfies T"(s;)[a;] = T(si)[a:] + A < Vmin <
T(s;)[a] = T'(s;)[a] forall a € app(s;)\{a;}. Since every

state s; is a fault, and hence in the safe region S, there ex-
ists an applicable action a such that, (s;,a) & F. Therewith,
i (s;) # wr(s;), as desired.

Note that this construction, while giving the desired guar-
antee, suffers from two major weaknesses. First, its size
grows linearly in the number of faults, which is ineffective.
Second, the penalty terms apply only to these specific faults,
so the fixes do not generalize to other faults. We fix both
issues with the methods we present next.

5.2 Modifying Leaf Values using MILP

Inspired by results from prior work (Ren et al. 2015; De-
vos et al. 2025), instead of changing the structure of the tree
ensemble, our fault-fixing method minimally alters the leaf
values of the existing trees. We cast the problem of finding
suitable leaf values to fix a set of faults as a mixed integer
linear program (MILP; this sub-section). In case the MILP is
unsolvable, the given faults cannot be repaired by changing
leaf values only; we then add suitable additional trees to the
ensemble (next sub-section).

Let L denote the total number of leaf nodes in the ensem-
ble T'. For a leaf node [and action a, we refer by v; , to the
value of a in the leaf’s value vector 7; With some abuse
of notation, we denote with 7 € RLIAI the concatenation
of the value vectors of all leaves in the ensemble T'. Eq. (1)
shows the general optimization-problem formulation, which
contains one variable v , for each leaf node and action:

min H7’ — 7||1
?/
st Y Y.<

PR Z Vl/,a (1)
1€OC (s5) acapp(si)\{ai}

1eOC(s;)
forall (s;,a;) € F

where ||#]|; denotes the L!-norm of .
Let T be the tree ensemble constructed from a solution
to Eq. (1). Observe that the sum Zleoc(s) v] , represents

exactly the tree ensemble’s output T”(s)[a] for state s and
action a, as per definition of the output configuration OC'(s).
In this manner, the constraints in Eq. (1) enforce that the
tree ensemble T does not chose a; on s;, fixing the faults.
The optimization objective in Eq. (1) requires the leaf-value
changes to be minimal.

The maximization in Eq. (1) can be represented in a MILP
via the big-M method (Vielma 2015): we introduce binary
integer variables by, 4, o, for every fault (s;,a;) € F and
applicable action a € app(s;) \ {a;}. The constraints in
Eq. (1) are then represented by the MILP constraints

Z Vll,ai < Z Vl/,a +M(1 = bs;a;,0)

1€0C (s4) 1EOC(s:)
for all a € app(s;) \ {a;}, where M is a suf-
ficiently large constant, combined with the constraint
acapp(si)\{a;} Dsiaia 2 1.

Theorem 5. Let mp be a tree-ensemble policy, and F be
a set of faults. Let T' be the tree ensemble with the same
trees as T', but with leaf values replaced according to some

solution to Eq. (1). Then, mp is a fix for F. If Eq. (1) is
infeasible, then there is no T' over the same trees as T such
that v fixes F.

Proof. The constraints in Eq. (1) ensure that at least
one applicable action will have a higher predicted
value than a;. Thus, Eq. (1) enforces that T" satisfies
ArgMax e o (s;) L' (i)[a] # ai, for all faults (s;, a;) €
F, hence mps is guaranteed to be a fix for F. We can
prove the second claim by contradiction. If there is an
ensemble T that fixes F, then there is a leaf assign-
ment to Eq. (1) which guarantees Zleoc(si)ul”ai <

MAXqe app(s;)\ {a:} Zleoc(&) ul”a for every fault (s;,a;) €
F. Hence Eq. (1) must be feasible. O

In our implementation, we leverage the following obser-
vation to reduce the size of the MILP. The only leaf values
that may need to be changed are those that belong to the OC
of at least one fault. Any other leaf cannot affect the predic-
tion for the fault states, so can be dropped from the MILP
while preserving the optimal solutions.

5.3 Adding New Trees to Resolve Infeasibility

As an example where Eq. (1) is infeasible, say that F =
{(s1,a1), (s2,a2)}, both states share the same applicable
actions app(s1) = app(s2) = {a1, a2}, and the same out-
put configurations OC(s;) = OC(s2). Clearly, it is im-
possible to alter the leaf values in a way that 7g(s1) #
7 (82), as the trees do not distinguish between s; and ss.

This kind of problem can be fixed by adding additional
trees that allow for more distinctions between the faulty
states. We do this in a manner that guarantees making the
MILP feasible eventually. To generate the trees, we make
use of irreducible infeasible subsystems (I1S) (Gleeson and
Ryan 1990). An IIS @ is a set-minimal subset of constraints
that are unsatisfiable in conjunction. Common MILP solvers
allow to extract such @ if infeasibility is detected.

Given an IIS ®, we identify the faults 3 C F respon-
sible for the constraints, and learn a single decision tree T
that maps every state in Fg to a different leaf via a standard
learning method (Pedregosa et al. 2011). The leaf values in
Ts are initialized to 0 universally. We set TV := T' U {7 },
and re-try solving the MILP for T". This process is repeated
until the MILP becomes feasible:

Theorem 6. Let F be a set of faults and T be a tree ensem-
ble for which Eq. (1) is infeasible. The tree-generation pro-
cess described above will terminate eventually with a tree
ensemble T’ for which Eq. (1) becomes solvable.

Proof. By the construction of T3, the conjunction of con-
straints ¢ is solvable for the augmented tree ensemble.
Hence the same ® can never re-occur. There are only finitely
many constraint subsets, showing the claim. O

By initializing the new leaf values to 0, adding the trees a
priori does not change any prediction of the ensemble. The
solution to the MILP diverges from this initialization only as
much as necessary, thus minimally changing the predictions.

To avoid infeasible MILP calls as much as possible, we
conduct a simple pre-check. We check for sets of states .S in
F that have the same output configuration and where every
commonly applicable action is ruled out by F for some s €
S. In that case, we learn a decision tree distinguishing the
states in S, and add it to T prior to calling the MILP solver.

6 Experiments

We evaluate our two contributions, the debugging loop and
our MILP-based fault fixing methods. We address the fol-
lowing main questions:

Q1. To which extent does our debugging loop improve pol-
icy safety?

Q2. Do improvements in safety come at a price in goal-
reaching performance?

Q3. Do our fault fixes generalize to other, unseen, faults?

We furthermore analyze the ensemble-size increase caused
by our fault fixes (number of added trees), the runtime effort
for debugging, the utility of verification in finding unsafe
policy runs, as well as policy quality and MILP runtime as a
function of the number of faults.

We next describe our benchmark set, our implementation,
our methods to measure policy safety and goal-reaching per-
formance, and our results. All our code and data will be
made public if accepted.

6.1 Benchmarks

We use Jain et al. (2025)’s benchmarks. These consist
of non-deterministic variants of the planning benchmarks
Blocksworld and Transport; the Beluga domain which is an
abstract version of a logistics-type problem at Airbus; con-
trol benchmarks with real-valued state variables (Bouncing
Ball, Inverted Pendulum, and Follow Car); as well as 6 vari-
ants of a transportation domain called / way line and 2 way
line, where a truck moves along a line of locations (uni-
directionally or bi-directionally), with non-determinism due
to icy roads. All these benchmarks have a safe state space
O, except I way line Icy where the only way to be safe is
to reach the goal, but one may slip past the packages on icy
roads. The control benchmarks have infinite state spaces; in
all the benchmarks, the reachable state space is too large to
be explicitly enumerated, even when fixing a policy, due to
initial-state and/or action-outcome non-determinism.

Jain et al. (2025) considered neural policies for these
benchmarks. Here we use these as teachers for imitation
learning of tree-ensemble policies. The training data is gen-
erated by collecting the states and teacher predictions from
1000 teacher policy runs on random initial states. The tree
ensembles are trained using XGBoost (Chen and Guestrin
2016) with fixed hyperparameter settings of max depth =5,
number of trees = 20, and learning rate = 0.4.

6.2 Implementation and Setup

We use steps (A), (B), and (D) of the debugging loop off-the-
shelf from prior work as previously outlined. As the MILP
solver for fixing faults, we use Gurobi 11.0 (Gurobi Opti-
mization, LLC 2024), which offers the computation of IIS

Table 1: Result summary. %Unsafe: fraction of unsafe evaluation states S&’. %Goal: fraction of sampled policy runs (100 on
each sy € S¥) reaching the goal. Input: input policy my. MILP (NoVer.): output of debugging loop not using verification. MILP:
output of default debugging loop, with our fault fixing method. Penalty: output of debugging loop with penalty tree fault fixing.
The remaining columns pertain to the default loop. #Faults: | 7| at end of loop. #Added Trees: number of trees added to policy.
#It. Verif.: number of iterations where verification was invoked. Outcome: of default loop, specific explanations in Section 6.4.
[SOD = S({E] at benchmark name: < 20000 initial states, debugging states same as evaluation states (see Sections 6.2 and 6.3).

‘ ‘ 9%Unsafe ‘ %Goal ‘ ‘ Runtime ‘ ‘

Benchmark Input MILP MILP Penalty | Input MILP MILP Penalty | # Faults # Added | #It. #It. Fault Outcome
(NoVer.) (NoVer.) Trees | Loop Verif. Ana. Gurobi Verif.

Discrete state space
8Blocks CI [SP = S(’)EI 1.1 0.0 0.0 00| 92.0 717 717 92.8 1 0 2 1 6m <lIs 8m | Safe (IC3)
8Blocks CA [SP = Sf] 1.3 0.0 0.0 09| 91.8 374 373 92.7 15 0 13 6 47m <ls TO | Improved
Transport 23 0.0 0.0 23 0.0 0.0 0.0 0.0 26 0 16 8 1lm <lIs TO | Improved
Beluga (4 Jigs) [SOD = Séz] 100.0 0.0 0.0 79.1 | 85.0 100.0 100.0 94.3 203 3 10 I 10m 25s 4m | Safe (IC3)
Beluga (5 Jigs) [SP = Sf] 100.0 0.0 0.0 100.0 | 69.4 100.0 100.0 88.3 2574 19 22 1 49m 45h 5h | Safe (IC3)
Beluga (6 Jigs) [S” = S&1 | 98.7 - - -| 86.1 - - - 6196 4 3 0 22m TO - | Gurobi TO
1 way line (17, 10) 1.1 0.0 0.0 1.0 | 98.9 100.0 100.0 99.0 30 0 2 1 35s <ls TO | Improved
1 way line (30, 20) 100.0 1.2 1.2 953 | 0.0 98.8 98.8 47| 11349 0 4 1 1h 3s TO | Improved
1 way line (15, 10) Icy + Park | 99.6 0.0 0.0 28.7 | 91.6 91.6 91.6 91.6 27 0 2 1 49s <lIs 2m | Safe (PPA)
1 way line (30, 20) Icy + Park 99.9 21.1 21.1 99.7 | 46.2 46.2 462 46.2 2431 0 3 1 59m Is TO | Improved
1 way line (15, 10) Icy 100.0 100.0 100.0 100.0 | 83.2 90.9 90.9 90.4 23 0 2 1 4m <lIs 3m | Stopped
1 way line (30, 20) Icy 100.0 - - - | 497 - - - 0 0 1 0 OOM - - | FA OOM
2 way line (17, 10) 1.1 0.0 0.0 0.5 98.9 989 989 98.9 13 0 2 1 S54s <ls TO | Improved
2 way line (30, 20) 80.9 0.3 0.3 809 | 0.0 0.0 0.0 0.0| 14185 0 4 1 Im 2s TO | Improved
2 way line (15, 10) Icy + Park | 100.0 0.0 0.0 99.0 | 17.9 229 229 17.8 1259 0 3 1 2m 1s 1h | Safe (PPA)
2 way line (30, 20) Icy + Park | 70.4 123 123 704 | 0.0 0.0 0.0 0.0 5250 0 6 1 2m 1s TO | Improved
2 way line (15, 10) Icy 100.0 29.3 0.0 99.2 | 17.2 204 13.8 17.2 989 0 6 2 3m <ls 6h | Safe (PPA)
2 way line (30, 20) Icy 11.3 0.0 0.0 60| 45 4.5 45 45 3 0 2 1 2m <ls TO | Improved
Continuous state space (control benchmarks)
Bouncing Ball (7 = 0.01) 49 0.0 0.0 491 95.1 100.0 100.0 95.1 531 0 2 1 Im <l1s OOM | Improved
Inverted Pendulum (7 = 0.1) 2.9 0.0 0.0 291 97.1 100.0 100.0 97.1 357 0 1 54m <1ls OOM | Improved
Follow Car (7 = 0.4) 22.4 0.0 0.0 224 | 77.6 100.0 100.0 77.6 2224 0 2 1 2m <l1s OOM | Improved

out of the box. Our default verifier is policy predicate ab-
straction (PPA) (Jain et al. 2024). We run the alternate veri-
fier IC3 (Anonymous 2025) after loop termination to check
whether we can get additional safety results.

All experiments were run on an Intel 17-12700 CPU with
64GB of memory. We impose a global timeout of 72 hours
on the debugging loop. We use the following limits in each
iteration: 12 hours for fault identification (A)+(B); 3 hours
for fixing the faults (C); 12 hours for safety verification (D).

We set the MILP-based fault fixing (Sections 5.2 and 5.3)
as our default method. We compare to penalty trees (Sec-
tion 5.1) only for the purpose of assessing the capacity of
MILP-based fault fixing to generalize beyond the set F of
faults (penalty trees do by construction not have that capac-
ity). To make that comparison precise, we use the exact same
set F for both fixing methods. Namely, we collect the faults
F when running the debugging loop with MILP-based fault
fixing. Upon termination, we compare the outcome policy to
the input policy mg augmented with penalty trees for F.

We run the debugging loop on a fixed set Séj of 10000 de-
bugging states, sampled uniformly from Sy. Fuzzing then
samples policy runs from S’ (biasing action outcomes to-
wards ¢r), and hence all faults identified and fixed by the
loop pertain to runs from S. In 5 of our benchmark in-
stances, |Sp| < 10000. We set S = Sy in these cases,

using all initial states for debugging.

6.3 Safety and Goal-Reaching Performance
Measurements

To ensure that the effects of debugging do not only pertain to
policy runs starting from SP, we evaluate policy safety and
goal-reaching performance on a separate set SF¥ of 10000
evaluation states. These are also sampled uniformly from
So, but with a duplicate check ensuring that S N S = 0.
The exception are benchmarks where |Sp| < 20000. These
are the same 5 benchmarks where |Sy| < 10000, so we set
SF = SP = Sy in these cases (the 5 benchmarks are indi-
cated in Table 1). Note here that, when S is small enough
to be enumerated, it does not matter in practice whether or
not the debugging effects transfer across initial states.

We measure policy goal-reaching performance, denoted
% Goal, by sampling 100 policy runs from every evaluation
state s9 € S¥ and showing the fraction of these runs that
reached the goal. We measure policy safety, denoted % Un-
safe, by the fraction of sy € SI° on which the policy is
unsafe. We check safety from each individual sy € SE by
exhaustive enumeration of the states reachable from sy un-
der the given policy. If that enumeration is not feasible, we
resort to sampling 100 policy runs from sg.

Note that it is possible for a policy to be unsafe and still

have %Unsafe = 0, as the evaluation is based on S(J)E , while
Sy is exponentially large in general.

6.4 Results

Table 1 summarizes our results. For space reasons, we
omit some benchmark instances; the conclusions remain the
same. The complete table is in the supplementary material.

Policy safety improvement (Q1) Consider the %Unsafe
part of the table. First, observe that, consistently across all
benchmarks, this measure decreases from the input policy
mo (“Input”) to the output policy of our debugging loop
“MILP”). The single exception is I way line Icy where
such a decrease is impossible, as the state space is unsafe
and hence %Unsafe = 100 for every policy. For bench-
marks where 7y already is fairly safe (low %Unsafe, e.g.
Blocksworld), the measure decreases further; for the other
benchmarks, the decreases are drastic, > 70% in 8 cases.

In 6 of our benchmarks, the outcome policy is verified to
be safe (see the “Outcome” column at the right-hand side of
Table 1). In the “Improved” outcomes, verification ran out of
time or memory, but %Unsafe decreased. Gurobi TO means
Gurobi ran out of time, FA OOM means fault analysis ran
out of memory. The “Stopped” outcome pertains to I way
line Icy, the only benchmark where no safe policy exists.
Here, verification found an unsafe run without faults, and
as previously mentioned we stop the debugging process to
avoid running into an endless loop.

The “NoVer” column shows data for debugging not using
verification, iterating fuzzing, fault analysis, and fault fixing
until either no more faults are found or time/memory limits
are reached. This variant has the same %Unsafe except in a
single case (2 way line (15, 10) Icy), so fuzzing is typically
enough to detect unsafety. This is of high practical relevance
as fuzzing is much cheaper than formal verification; prior
works on model repair did not include fuzzing methods.

Goal-reaching performance (Q2) The safety improve-
ments come at no price in goal-reaching performance.
Rather the opposite, in many cases %Goal increases thanks
to fault fixing. This makes sense as unsafety is one reason for
not reaching the goal. The single exception to this pattern is
Blocksworld, where fault fixing led to cyclic behavior.

Generalization to unseen faults (Q3) Comparing the
“MILP” and “Penalty” columns, observe that %Unsafe is
consistently smaller — often much smaller — for MILP. This
is true in all benchmarks except 8Blocks CI (and I way line
Icy where %Unsafe = 100 by definition). This data im-
pressively attests to the generalization capacity of our fault-
fixing method, reducing unsafe behavior much beyond the
specific faults F used for debugging.

Tree-Ensemble size increase The safety improvements
are achieved with hardly any increase in tree-ensemble size.
In fact, in all but Beluga, no additional trees need to be
added at all! The entire fault fixing is accomplished by mod-
ifying the leaf values. In Beluga, the size increase is partly
substantial (remember that 7 has 20 trees); but in return, in
2 of the 3 instances we go from a 100%Unsafe input policy
to a verified-safe output policy.

Computational effort for debugging The most signifi-
cant portion of debugging runtime is spent on verification,
with many instances timing out after 12h. Fault analysis can
take substantial time, but much less than verification. Fault
fixing takes negligible time except in Beluga. Without veri-
fication, the overall debugging loop runtime never exceeds 1
hour in our experiments.

Policy Quality & Gurobi Runtime vs. Fault Fraction (Average)

100 5]
—e— % Unsafe
q
504 —0— % Goal N
2
3
2
60 234
2
= Py
£
40 21
&
20 1
0 I I I I I I 04 1 I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction

(a) Policy Quality (b) Gurobi Runtime
Policy Quality vs. Fault Fraction (Selected)

100 100

80
60 60
404 40

204 20 4

n n n L n n L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction

(c) 1 way line (30,20) (d) 1 way line (30, 20) Icy+Park

Figure 2: Policy quality (%Unsafe, %Goal) and Gurobi run-
time vs. fraction of F used.

Policy quality and MILP runtime as a function of the
number of faults Consider Figure 2. In (a) we show aver-
age %Unsafe and %Goal as a function of fractions of . The
clear tendency is for %Unsafe to decrease. So, as one would
expect, fixing more faults is better. The average trend for
%Goal is not as clear, as the behavior differs across bench-
marks. Fig. 2c and Fig. 2d show representative examples.
Regarding runtime (Fig. 2b) we also get the expected in-
crease as a function of the number of faults, though the larger
runtimes here are dominated by Beluga as discussed above.

7 Conclusion

We introduce the first safety debugging loop for learned
action policies. Focusing on tree ensembles, we introduce
repair methods that guarantee to fix a given set of unde-
sired input/output pairs. Combining this with methods from
prior work into our debugging loop, we obtain reliable and
substantial safety improvements, mostly at no cost in goal-
reaching performance, across a range of benchmarks.
These results are highly encouraging for further research
on action policy debugging. There is a universe of possibil-

ities, spanned by the dimensions of which kind of environ-
ment model, which kind of ML model, and which debugging
objectives are considered. As a direct extension of our spe-
cific setting here, a scenario of interest is that where the user
wishes to impose an upper bound B > 0 on failure probabil-
ity. To this end, faults should be defined relative to a larger
“safe region” where that bound B is satisfied.

Acknowledgements

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) — GRK 2853/1
“Neuroexplicit Models of Language, Vision, and Action” -
project number 471607914, the Research Foundation Flan-
ders (FWO, LC: 1118125N), and the Flemish Government
under the “Onderzoeksprogramma Artifciéle Intelligentie
(AI) Vlaanderen” program (JD).

References

Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and
Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In 33rd AAAI Conference on
Artificial Intelligence (AAAI’19), 6006—-6013.

Amir, G.; Corsi, D.; Yerushalmi, R.; Marzari, L.; Harel, D.;
Farinelli, A.; and Katz, G. 2023. Verifying Learning-Based
Robotic Navigation Systems. In Tools and Algorithms for
the Construction and Analysis of Systems - 29th Interna-
tional Conference, TACAS 2023, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings,
Part I, volume 13993 of Lecture Notes in Computer Science,
607-627. Springer.

Anonymous. 2025. IC3 for Safety Verification of Tree-
ensemble Policies. Manuscript in preparation for submis-
sion.

Bacci, E.; Giacobbe, M.; and Parker, D. 2021. Verifying Re-
inforcement Learning up to Infinity. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, 2154-2160.

Bacci, E.; and Parker, D. 2022. Verified Probabilistic Poli-
cies for Deep Reinforcement Learning. In NASA For-
mal Methods - 14th International Symposium, NFM 2022,
Pasadena, CA, USA, May 24-27, 2022, Proceedings, volume
13260 of LNCS, 193-212. Springer.

Bauer-Marquart, F.; Boetius, D.; Leue, S.; and Schilling, C.
2022. SpecRepair: Counter-Example Guided Safety Repair
of Deep Neural Networks. In Model Checking Software:
28th International Symposium, SPIN 2022, Virtual Event,
May 21, 2022, Proceedings, 79-96.

Boetius, D.; Leue, S.; and Sutter, T. 2023. A Robust Opti-
misation Perspective on Counterexample-Guided Repair of
Neural Networks. In Proceedings of the 40th International
Conference on Machine Learning: ICML 2023.

Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns, A.;
Junges, S.; and Turrini, A. 2017. JANI: Quantitative Model

and Tool Interaction. In Proceedings of the 23rd Interna-
tional Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’17), 151-168.

Chen, T.; and Guestrin, C. 2016. XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 785-794.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking. 147(1-2): 35-84.

Devos, L.; Martens, T.; Oruc, D. C.; Meert, W.; Blockeel,
H.; and Davis, J. 2025. Compressing tree ensembles through
Level-wise Optimization and Pruning. In Forty-second In-
ternational Conference on Machine Learning.

Devos, L.; Perini, L.; Meert, W.; and Davis, J. 2023. De-
tecting Evasion Attacks in Deployed Tree Ensembles. In
Proceeding of the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 120-136.

Dong, G.; Sun, J.; Wang, X.; Wang, X.; and Dai, T. 2021. To-
wards Repairing Neural Networks Correctly. In 2021 IEEE
21st International Conference on Software Quality, Reliabil-
ity and Security (QRS), 714-725.

Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In Proceedings of the 22nd Inter-
national Conference on Hybrid Systems: Computation and
Control (HSCC’19), 157-168.

Garcia, J.; and Fernandez, F. 2015. A comprehensive survey
on safe reinforcement learning. Journal of Machine Learn-
ing Research, 16: 1437-1480.

Garg, S.; Bajpai, A.; et al. 2019. Size Independent Neural
Transfer for RDDL Planning. In ICAPS, 631-636.

Gleeson, J.; and Ryan, J. 1990. Identifying Minimally In-
feasible Subsystems of Inequalities. INFORMS J. Comput.,
2(1): 61-63.

Goldberger, B.; Katz, G.; Adi, Y.; and Keshet, J. 2020. Min-
imal Modifications of Deep Neural Networks using Verifica-
tion. In LPAR23. LPAR-23: 23rd International Conference
on Logic for Programming, Artificial Intelligence and Rea-
soning, 260-278.

Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies us-
ing Deep Neural Networks. In Proceedings of the 29th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’18), 408-416.

Gurobi Optimization, LLC. 2024. Gurobi Optimizer Refer-
ence Manual.

Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In Proceedings of the 29th International Conference on Au-
tomated Planning and Scheduling (ICAPS’18), 422-430.

Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G.J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Transac-
tions on Embedded Computing Systems, 20(1): 7:1-7:26.

Jain, C.; Cascioli, L.; Devos, L.; Vinzent, M.; Steinmetz,
M.; Davis, J.; and Hoffmann, J. 2024. Safety Verification of
Tree-Ensemble Policies via Predicate Abstraction. In Pro-
ceedings of the 27th European Conference on Artificial In-
telligence (ECAI’24).

Jain, C.; Sherbakov, D.; Vinzent, M.; Steinmetz, M.; Davis,
J.; and Hoffmann, J. 2025. Policy Safety Testing in Non-
Deterministic Planning: Fuzzing, Test Oracles, Fault Analy-
sis. In Proceedings of the 28th European Conference on Ar-
tificial Intelligence (ECAI’25). Available at http://fai.cs.uni-
saarland.de/jain/papers/ecai25.pdf.

Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In AAAI 8064-8073.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, S18(7540): 529-533.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V,;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825-2830.

Ren, S.; Cao, X.; Wei, Y.; and Sun, J. 2015. Global refine-
ment of random forest. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 723-730.

Rossetti, N.; Tummolo, M.; Gerevini, A. E.; Putelli, L.; Se-
rina, I.; Chiari, M.; and Olivato, M. 2024. Learning General
Policies for Planning through GPT Models. Proceedings of
the International Conference on Automated Planning and

Scheduling, 34(1): 500-508.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, L.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529: 484-503.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018.
A general reinforcement learning algorithm that masters
Chess, Shogi, and Go through self-play. Science, 362(6419):
1140-1144.

Sotoudeh, M.; and Thakur, A. V. 2021. Provable repair of
deep neural networks. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language
Design and Implementation, 588—603.

Stahlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Proceedings of

the 29th International Conference on Automated Planning
and Scheduling (ICAPS’22), 629-637.

Stahlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
Generalized Policies without Supervision Using GNNs. In
Proceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’22).

Tan, C.; Zhu, Y.; and Guo, C. 2021. Building verified neural
networks with specifications for systems. In Proceedings of
the 12th ACM SIGOPS Asia-Pacific Workshop on Systems,
APSys ’21, 42-47.

Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. Journal
of Artificial Intelligence Research, 68: 1-68.

Vielma, J. P. 2015. Mixed Integer Linear Programming For-
mulation Techniques. SIAM Review.

Vinzent, M.; Sharma, S.; and Hoffmann, J. 2023. Neural
Policy Safety Verification via Predicate Abstraction: CE-
GAR. In AAAI 15188-15196.

Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neural
Network Action Policy Verification via Predicate Abstrac-
tion. In Proceedings of the 29th International Conference
on Automated Planning and Scheduling (ICAPS 22).

Wang, Y.; Zhou, W.; Fan, J.; Wang, Z.; Li, J.; Chen, X.;
Huang, C.; Li, W.; and Zhu, Q. 2024. POLAR-Express: Ef-
ficient and Precise Formal Reachability Analysis of Neural-
Network Controlled Systems. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 43(3): 994-1007.

Zavatteri, M.; Bresolin, D.; and Navarin, N. 2024. Auto-
mated Synthesis of Certified Neural Networks. In Proceed-
ings of the 27th European Conference on Artificial Intelli-
gence.

Zhao, W.; He, T.; Chen, R.; Wei, T.; and Liu, C. 2023. State-
wise Safe Reinforcement Learning: A Survey. In Elkind,
E., ed., Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI-23, 6814-6822.
International Joint Conferences on Artificial Intelligence Or-
ganization. Survey Track.

A. Benchmark description

A benchmark instance is a pair of non-deterministic plan-
ning task described in the JANT language (Budde et al. 2017)
and a tree ensemble policy solving that problem. Our bench-
mark set is taken from prior work on fault analysis for action
policies (Jain et al. 2025). It is composed of two parts:

Discrete state space benchmarks These are benchmarks
(Beluga, two variants of Blockworld and Transport) from
prior work on action-policy safety verification (Vinzent,
Steinmetz, and Hoffmann 2022; Jain et al. 2024) as well as
1 way line and 2 way line.

In Beluga, inspired from a logistics application at Airbus,
product parts arriving on a Beluga transport plane must be
sent to a factory in a particular order, potentially different
from the order in which they are arriving. There is a number
of racks in which arriving parts can be stored temporarily.
The start condition permits arbitrary orderings of the arriv-
ing parts. The goal requires having sent all parts to the fac-
tory, under non-determinism which part will be requested
next at each step. A state is unsafe if parts are loaded and
unloaded on racks too often (modelling the practical guide-
line to only deliver parts when requested).

In Blocksworld, actions moving a block b may non-
deterministically fail, and when this happens the cost of
moving block b is incremented. The start condition imposes
a partial order on the blocks in the initial stacks. A state is
unsafe if the number of blocks on the table exceeds a fixed
limit. We consider instances with 8 blocks.

In Transport, a truck must deliver packages on a straight
line road to the other side of a bridge, and an unsafe state
occurs if the truck has too many packages while crossing
the bridge. The start condition distributes the packages on
all locations on the “non-goal” side of the bridge.

In I way line and 2 way line, a truck moves along a
discrete line in one respectively both directions. The truck
can accelerate and decelerate by one speed unit at a time,
and pick up and drop packages if its velocity is 0. Non-
determinism might cause the truck to drop packages while
moving. Acceleration and deceleration might fail. We addi-
tionally consider variants with an additional parking action
and one disabling non-determinism. The safety constraint
requires the policy to not drive past either end of the line.

Continuous state space benchmarks (control bench-
marks) These are JANI benchmarks modeling the deter-
ministic variants of control problems Bouncing Ball, Follow
Car and Inverted Pendulum often considered in reinforce-
ment learning (Bacci, Giacobbe, and Parker 2021; Bacci and
Parker 2022). All control benchmarks are parameterized by
a timestep 7, which determines how frequently the system
is updated. A smaller 7 enables more fine-grained control,
while a larger 7 results in less frequent but more substantial
updates to the system dynamics.

In Bouncing Ball, the agent controls a ball choosing to hit
it with a paddle or do nothing. The ball loses 10% of its en-
ergy upon hitting the ground and eventually stops bouncing.
Safety requires continuously bouncing.

In Follow Car, there are two vehicles lead and ego. The
lead vehicle is moving at a constant speed whilst the agent

controls the acceleration of the ego vehicle. The safety con-
straint is the two vehicles never crash.

In Inverted Pendulum (henceforth referred to as Inv Pen-
dulum), an agent applies left or right rotational force to a
pole pivoting around one of its ends, with the aim of bal-
ancing the pole in the upright position. Safety constitutes re-
maining in a range of positions and velocities such that the
upright position can be recovered.

B. Computing penalty values for Penalty Trees

In Section 5.1 we define the penalty value A\ used for the
penalty trees as A = Vi — Viax Where vy, 1s the maximal
and v, is the minimal possible sum of leaf values in T'. Ex-
actly computing this value is computationally challenging,
as one would only need to take into account combinations
of leaves in the ensemble belonging to a valid OC (e.g., an
OC where one leaf enforces X;; < 1 and another leaf im-
poses X > 2 is invalid and should not be taken into ac-
count). However in practice, any overestimation of \ is also
perfectly valid as a penalty. We compute one such overesti-
mation as follows. For each tree 7" in the tree ensemble, we
recursively traverse the tree and collect, for each action label
a;, the minimum and maximum values assigned to a; at any
of the leaves. This results in a set of per-action bounds:

min v q,, Max vy q,
leLT leLT a; €A
i

where L7 denotes the set of leaf nodes in tree T, and v 4, is
the value assigned to class a; at leaf [.
From this set of bounds, we extract the overall minimum
and maximum values across all actions for tree 7'
I

o . . T
min = Min min vy 4,,

= max maxv ..
a;€AlELT max o

a;, €CAIELT

The penalty component related to tree 7" is then defined
as:
T T

Ar = Vmin — Ymax

which is guaranteed to be non-positive.
Finally, the global penalty A is the sum of these values

across all trees:
A= Ar
TeT

This formulation ensures that the employed penalty value
is strictly smaller than any valid prediction produced by the
ensemble.

C. Extended Experimental Results

Table 2 reports the experiment from Table 1 on our entire set
of benchmarks.

Extended Ablation Study

Fig. 3 and Fig. 4 extend Fig. 2 by reporting specific quality
and runtime plots for each of the benchmarks we used to
generate the average performances shown in Fig. 2 (upper).

Table 2: Result summary on our entire set of benchmarks. %Unsafe: fraction of unsafe evaluation states SE. %Goal: fraction
of sampled policy runs (100 on each sy € S{°) reaching the goal. Input: input policy 7o. MILP (NoVer.): output of debugging
loop not using verification. MILP: output of default debugging loop, with our fault fixing method. Penalty: output of debugging
loop with penalty tree fault fixing. The remaining columns pertain to the default loop. #Faults: |F| at end of loop. #Added
Trees: number of trees added to policy. #It. Verif.: number of iterations where verification was invoked. Outcome: of default
loop, specific explanations in Section 6.4. [SP = S£] at benchmark name: < 20000 initial states, debugging states same as
evaluation states (see Sections 6.2 and 6.3).

‘ ‘ 9% Unsafe ‘ %Goal ‘ ‘ Runtime ‘

Benchmark Input MILP MILP Penalty | Input MILP MILP Penalty | # Faults # Added | #It. #It. Fault Outcome
(NoVer.) (NoVer.) Trees | Loop Verif. Ana. Gurobi Verif.

Discrete state space
8Blocks CI [Séj = S(I]E] 1.1 0.0 0.0 0.0| 92.0 717 717 92.8 1 0 2 1 6m <ls 8m | Safe (IC3)
8Blocks CA [SP = SF] 1.3 0.0 00 09| 918 374 313 927 15 0| 13 6 4Im <ls TO |Improved
Transport 23 0.0 0.0 23 0.0 0.0 0.0 0.0 26 0 16 8 1lm <lIs TO | Improved
Beluga (3 Jigs) [Sé:) = SOE] 100.0 0.0 0.0 83.6 | 82.3 100.0 100.0 833 33 0 6 1 4m <ls 19s | Safe (PPA)
Beluga (4 Jigs) [SéD = Sé;] 100.0 0.0 0.0 79.1 | 85.0 100.0 100.0 94.3 203 3 10 1 10m 25s 4m | Safe (IC3)
Beluga (5 Jigs) [Sé:) = SOE] 100.0 0.0 0.0 1000 | 69.4 100.0 100.0 88.3 2574 19 22 1 49m 45h Sh | Safe (IC3)
Beluga (6 Jigs) [S(])D = Séz] 98.7 - - -| 86.1 - - - 6196 4 3 0 22m TO - | Gurobi TO
Beluga (8 Jigs) [S& = SE1 | 100.0 - - -| 707 - - -| 20420 5 2 0 1h TO - | Gurobi TO
1 way line (15, 10) 100.0 0.1 0.1 98.6 | 0.0 999 99.9 1.4 8053 0 3 1 Im <ls TO | Improved
1 way line (17, 10) 1.1 0.0 0.0 1.0 989 100.0 100.0 99.0 30 0 2 1 35s <ls TO | Improved
1 way line (20, 10) 100.0 0.2 0.2 300 0.0 99.8 99.8 70.0 3797 0 3 1 Im <ls TO | Improved
1 way line (30, 20) 100.0 1.2 1.2 9531 0.0 98.8 98.8 47| 11349 0 4 1 1h 3s TO | Improved
1 way line (40, 25) - - - - 0.0 - - - 0 0 1 0 OOM - - | FA OOM
1 way line (15, 10) Icy + Park 99.6 0.0 0.0 28.7 | 91.6 91.6 91.6 91.6 27 0 2 1 49s <lIs 2m | Safe (PPA)
1 way line (17, 10) Icy + Park 99.5 0.0 0.0 29.9 | 90.2 90.2 902 90.2 46 0 2 1 52s <ls 1h | Safe (PPA)
1 way line (20, 10) Icy + Park 99.5 1.3 1.3 282 | 91.5 915 915 91.5 54 0 4 2 Im <ls TO | Improved
1 way line (30, 20) Icy + Park 99.9 21.1 211 99.7 | 46.2 46.2 462 46.2 2431 0 3 1 59m Is TO | Improved
1 way line (40, 25) Icy + Park 54.4 448 448 544 | 445 445 445 44.5 209 0 3 I 13m <ls TO | Improved
1 way line (15, 10) Icy 100.0 100.0 100.0 100.0 | 88.2 90.9 909 90.4 23 0 2 1 4m <ls 3m | Stopped
1 way line (17, 10) Icy 100.0 100.0 100.0 100.0 | 87.2 91.6 91.6 91.6 8 0 2 1 6m <ls TO | Stopped
1 way line (20, 10) Icy 100.0 100.0 100.0 100.0 | 90.8 91.6 91.6 91.3 19 0 2 1 10m <ls TO | Improved
1 way line (30, 20) Icy 100.0 - - - | 497 - - - 0 0 1 0 OOM - - | FA OOM
1 way line (40, 25) Icy 100.0 - - -| 54.0 - - - 0 0 1 0 OOM - - | FA OOM
2 way line (15, 10) 100.0 0.0 0.0 9931 0.0 0.0 0.0 0.0 9511 0 3 1 Im <ls TO | Improved
2 way line (17, 10) 1.1 0.0 0.0 05| 989 98.9 989 98.9 13 0 2 1 54s <ls TO | Improved
2 way line (20, 10) 100.0 0.1 0.1 3331 00 0.0 0.0 0.0 7304 0 7 1 2m 3s TO | Improved
2 way line (30, 20) 80.9 0.3 0.3 809 | 0.0 0.0 0.0 00| 14185 0 4 1 Im 2s TO | Improved
2 way line (40, 25) 100.0 0.1 0.1 9921 0.0 0.0 0.0 0.0 9967 0 6 1 3m Is TO | Improved
2 way line (15, 10) Icy + Park | 100.0 0.0 0.0 99.0 | 17.9 229 229 17.8 1259 0 3 1 2m Is 1h | Safe (PPA)
2 way line (17, 10) Icy + Park | 100.0 0.0 0.0 99.2 | 18.2 213 213 18.2 911 0 2 1 Im <ls TO | Improved
2 way line (20, 10) Icy + Park | 100.0 1.4 1.4 99.3 | 17.9 178 179 17.9 1483 0 4 2 2m <lIs TO | Improved
2 way line (30, 20) Icy + Park 70.4 123 123 7041 0.0 0.0 0.0 0.0 5250 0 6 1 2m Is TO | Improved
2 way line (40, 25) Icy + Park 65.6 113 113 65.0 0.7 0.8 0.8 0.7 573 0 2 1 27m <ls TO | Improved
2 way line (15, 10) Icy 100.0 29.3 0.0 99.2| 17.2 204 138 17.2 989 0 6 2 3m <ls 6h | Safe (PPA)
2 way line (17, 10) Icy 100.0 459 0.0 99.7 | 16.9 239 248 17.9 1884 0 8 2 5m 4s 35m | Safe (PPA)
2 way line (20, 10) Icy 100.0 2.7 0.1 99.7 1 17.7 26.1 26.1 17.7 2264 0 3 1 2m <ls TO | Improved
2 way line (30, 20) Icy 11.3 0.0 0.0 60| 45 45 4.5 4.5 3 0 2 1 2m <ls TO | Improved
2 way line (40, 25) Icy 100.0 1.6 1.6 99.8 0.8 1.2 1.2 0.8 8856 0 4 1 13h 24s TO | Improved
Continuous state space (control benchmarks)
Bouncing Ball (7 = 0.01) 4.9 0.0 0.0 49| 95.1 100.0 100.0 95.1 531 0 2 1 Im <ls OOM | Improved
Bouncing Ball (= 0.05) 2.8 0.0 0.0 281 972 100.0 100.0 97.2 292 0 2 1 Im <1s OOM | Improved
Bouncing Ball (7 = 0.5) 0.1 0.0 0.0 0.1] 999 100.0 100.0 99.9 5 0 2 1 Im <ls OOM | Improved
Inverted Pendulum (7 = 0.01) - - - - 0.0 - - - 0 0 1 0 OOM - - | FA OOM
Inverted Pendulum (7 = 0.05) 0.5 - - -1 995 - - - 0 0 1 0 OOM - - | FA OOM
Inverted Pendulum (7 = 0.1) 2.9 0.0 0.0 29| 97.1 100.0 100.0 97.1 357 0 4 1 54m <ls OOM | Improved
Follow Car (7 = 0.01) - - - - 00 - - - 0 0 1 0 OOM - - | FA OOM
Follow Car (7 = 0.05) - - - - 193 - - - 0 0 1 0 OOM - - | FA OOM
Follow Car (7 = 0.4) 224 0.0 0.0 2241 776 100.0 100.0 71.6 2224 0 2 1 2m <ls OOM | Improved

%

%

Policy Quality vs. Fault Fraction

8Blocks CA

Transport Beluga (4 Jigs) 1 way line (17,10)
100 100 100 To—w— 100 To—=
80 A 80 80 A 80
60 60 60 60
® 3 ®
40 40 A 40 40 A
20 20 20 20
(il o o o o o o o a o OH;A*AAAA 01 L L L L L (l—a—a o o o o o o o o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction Fault Fraction Fault Fraction
1 way line (30,20) 1 way line (15,10) Icy+Park 1 way line (30,20) Icy+Park 1 way line (15,10) Icy
100 100 100 100 To—wo—w—w—w—wv v v
—0—0—0—0—0 o O—0—0 .]
80 A 80 80 A 80
60 60 60 60
® ® ®
40 40 A 40 40 A
20 A 20 A 20 A 20 A
0 L L ! 04 A o o o o o o a o 0 L I 01 L L L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0. 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction Fault Fraction Fault Fraction
2 way line (17,10) 2 way line (30,20) 2 way line (15,10) Icy+Park 2 way line (30,20) Icy+Park
100 100 100 100
80 A 80 80 A 80
60 60 60 60
® ® ®
40 40 A 40 40 A
20 A 20 A 20 A r[20 A
(l—a o a a a a a a a o 0Le a a a a 2 04 A o o o0 o o a a 0Le a a a a a
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction Fault Fraction Fault Fraction
2 way line (15,10) Icy Bouncing Ball (t = 0.01) Follow Car (t =0.4) Inv. Pendulum (T = 0.1)
100 ~ad 100 100 Tg==—=
80 - 80 80 - / 80
60 60 60 60
® ® ®
40 A 40 40 A
20 1 20 1 \ 20 1
o L 0 [NP oL o o o0 o o0 o0 o o o 04
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction Fault Fraction Fault Fraction
% Goal —8— % Unsafe

Figure 3: Policy quality (%Goal, %Unsafe) vs. fraction of F used.

Gurobi Runtime vs. Fault Fraction

8Blocks CA Transport Beluga (4 Jigs)
80
0.0515 A
0.031 -
0.0510 A 60
0.030
2 0.0505 2 e
g 2 0.029 3
£ £ £ 401
E 0.0500 - g E
= 0.0495 = 00287 a
) 204
0.027 A
0.0490 A
0.026 A
004851, . ! 01 ! | | .
0.2 0. 0.6 0.8 1.0 0.2 0. 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction Fault Fraction
1 way line (30,20) 1 way line (15,10) Icy+Park 1 way line (30,20) Icy+Park
1.2 4
0.02625 -
0.5
1.0 0.02600 -
@ = 2 0.4 4
<081 £ 0.02575 1 z
£ £ £
£ 064 £ 0.02550 £ 034
& & &~
044 0.02525 A 024
0.02500 -
021e | \ A \ \ . \ . \ . 0149 \ \ . .
0.2 0. 0.6 0.8 1.0 0.2 0. 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction Fault Fraction
2 way line (17,10) 2 way line (30,20) 2 way line (15,10) Icy+Park
1.0
0.0238 - 0.5 A
0.8 1
_0.0237 1 _ 04
z <z)
@ 2 0.6 2
£ 00236 1 £ £
E g £ 0.3
= = &
0.0235 - 044
0.2 1
0.0234 A 0.2 1
. 0.1 4
0.2 0.4 0.6 0.8 1.0 0.2 0. 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fault Fraction Fault Fraction Fault Fraction
2 way line (15,10) Icy Bouncing Ball (t = 0.01) Follow Car (t = 0.4)
0.07 0.10 0.0200 A
0.0195
0.06 0.08 1
= > 5 0.0190 ~
5 g .5 0.0185
£ 0051
= & 0.047 = 0.0180 1
0.04 1 0.02 0.0175
1 1 1 1 1 1 00170 1 1 1 1 1
0.2 0. 0.6 0.8 1.0 0.2 0.4 0. 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Fault Fraction

Fault Fraction Fault Fraction

Figure 4: Gurobi runtime vs. fraction of JF used.

1 way line (17,10)

0.027 A
0.026 -
Py
£ 0.025 1
]
4
0.024
0.023 A
L L L L L
0.2 0.4 0.6 0.8 1.0
Fault Fraction
1 way line (15,10) Icy
0.0230
_0.0225 +
2
= 0.0220
S
o~
0.0215 4
0.2 0.4 0.6 0.8 1.0
Fault Fraction
2 way line (30,20) Icy+Park
0.30 1
0.25 4
2
E 0.20
]
=
% 0.15 1
0.10
0.2 0.4 0.6 0.8 1.0
Fault Fraction
Inv. Pendulum (t = 0.1)
0.045
0.040
g 0.035 1
]
=
0,030
0.025
0.2 0.4 0.6 0.8 1.0

Fault Fraction

