
Policy Safety Testing in Non-Deterministic Planning: Fuzzing, Test
Oracles, Fault Analysis

Chaahat Jain1, Daniel Sherbakov1, Marcel Vinzent1, Marcel Steinmetz2, Jesse
Davis3, Jörg Hoffmann1, 4,

1Saarland University, Saarland Informatics Campus, Germany
2LAAS-CNRS, Toulouse, France

3Department of Computer Science, KU Leuven, Leuven, Belgium
4German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

{jain, vinzent, hoffmann}@cs.uni-saarland.de, {marcel.steinmetz}@lass.fr, {jesse.davis}@kuleuven.be

Abstract

Recent work has introduced methodology for testing
learned action policies in AI Planning, aiming to effec-
tively identify bug states where policy behavior is sub-
optimal. While this work focused on cost-optimality
in classical planning, here we apply the core ideas to
safety testing in planning with initial-state and action-
outcome non-determinism. We cover the entire test-
ing pipeline, introducing fuzzing algorithms to find un-
safe policy runs, as well as test oracles to identify bugs
where such unsafe behavior could be avoided. Going be-
yond the previous framework, we introduce a final step
to the pipeline, identifying faults which we define to be
specific policy decisions – state/action pairs – transi-
tioning from a safe state (where a safe policy exists)
to an unsafe state (where no such policy exists). We
adapt a range of known algorithms for these purposes,
including also approximate ones bounding the number
of times we are allowed to diverge from the learned pol-
icy. We run comprehensive experiments evaluating each
part of our pipeline. Key takeaways are that safety test-
ing can be quite cheap, in contrast to cost-optimality
testing; and that variants of Tarjan’s algorithm tend to
be highly effective for this purpose.

Code — https://zenodo.org/uploads/16847416

1 Introduction
Learned action policies, in particular neural ones, are
gaining traction in AI (e.g., Mnih et al. 2015; Sil-
ver et al. 2016, 2018), including in AI Planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al.
2018; Garg, Bajpai et al. 2019; Toyer et al. 2020; Karia
and Srivastava 2021; Ståhlberg, Bonet, and Geffner
2022a,b; Rossetti et al. 2024). However, such policies
come without any built-in guarantees, so methods for
quality assurance are important. One natural approach
is policy testing to identify deficiencies in policy behav-
ior.

Steinmetz et al. (Steinmetz et al. 2022) introduced
a framework for testing learned action policies π in AI

Copyright © 2025, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

Planning, defining a bug as a state s on which π be-
haves sub-optimally with respect to a testing objec-
tive. Their focus was on classical (deterministic) plan-
ning with cost-optimality as the testing objective, find-
ing bugs s where either π does not find a plan though
one exists, or π’s plan has sub-optimal costs. Follow-
up works introduced fuzzing methods (biased random
walks) to generate candidate states s (Eisenhut et al.
2024); as well as test oracles to prove that s is a bug
without having to run an optimal planner (Eisenhut
et al. 2023).

Here we apply the ideas of this framework to
safety testing in non-deterministic planning, specifically
planning with initial-state and action-outcome non-
determinism. A given policy π is safe in a given state
s if, for all possible runs of π from s (for all possible
action outcomes), we never enter a state that satisfies a
given unsafety condition ϕu. A state is safe if such
a policy exists. Under our testing objective, a state s is
a bug if π is unsafe on s although s is safe, i.e., if π’s
unsafe behavior on s could be avoided.1

We cover the entire testing pipeline. First, we intro-
duce a form of fuzzing algorithms that find unsafe policy
runs by biased sampling of action outcomes, leveraging
a heuristic unsafety-distance function on the outcome
states. Second, we devise test oracles which, given a
state s on which π is unsafe, run searches trying to
prove that s is safe (thereby proving that s is a bug).
Third, we extend Steinmetz et al.’s framework with a
final step in the testing pipeline. For any testing objec-
tive, if s is a bug, all we know is that somewhere below
s the policy is sub-optimal (in our case: is avoidably un-
safe). But what specific policy decisions are causing the
sub-optimal behavior? Here we address this question
in the safety-testing context. We define a fault to be a
state-action pair (s, π(s)) where s is safe but there exists
an outcome state s′ that is unsafe. We show how to find
such faults by running the search algorithms underlying

1Earlier work on policy testing outside the planning con-
text also addressed safety (e.g., Dreossi et al. 2015; Akazaki
et al. 2018; Koren et al. 2018; Ernst et al. 2019; Lee et al.
2020), but disregarding avoidability, identifying “bug” with
unsafe behavior.

our test oracles backwards on the states along a policy
run, caching information to avoid duplicate work.

Proving that a state is safe – finding a safe alter-
nate policy π′ – differs from standard non-deterministic
planning (e.g. (Cimatti et al. 2003; Muise, McIlraith,
and Beck 2012)) in that the only role of the goal is
as a terminal state beyond which we do not need to
search. Furthermore, as in general determining safety
or unsafety exactly is anticipated to be costly or infea-
sible, we are interested in approximate variants of the
problem as well. To this end, we adopt an idea recently
proposed in a completely different context (Eifler et al.
2024) (speeding up goal-conflict explanations in clas-
sical planning). We fix a radius r around the given
learned policy π, permitting any run of π′ to diverge
from π at most r times (i.e., to take at most r different
action decisions). We design exact algorithms solving
this under-approximation, thereby obtaining sound but
incomplete algorithms for deciding safety. These can be
used as sufficient criteria in test oracles. Beyond that
use, r-constrained safety is meaningful in its own right.
If, e.g., π is unsafe in s but a 1-constrained safe policy
π′ exists, then we can “fix” π in s by changing a single
decision – a strong statement about the bug s.

We formalize the r-constrained problem through a
value function counting the maximal number of diver-
gences from π along possible runs. We introduce a Bell-
man equation for this and show that its fixed points are
optimal. Based on this, we introduce adapted variants
of LRTDP (Bonet and Geffner 2003), LAO* (Hansen
and Zilberstein 2001), and value iteration (VI) (Bell-
man 1957). We furthermore show how to adapt Tar-
jan’s algorithm; we refer to this adaptation as Tar-
janSafe. Exact algorithms are part of this algorithm
family, through setting r = ∞. Figure 1 illustrates our
overall testing pipeline.

We run comprehensive experiments evaluating each
part of our extended policy testing pipeline: fuzzing,
test oracles, fault analysis. To this end, we adapt bench-
marks previously considered for policy verification in
planning contexts (Vinzent, Steinmetz, and Hoffmann
2022; Jain et al. 2024) as well as control contexts
(Bacci, Giacobbe, and Parker 2021; Bacci and Parker
2022), and we add new benchmarks varying a trans-
port problem with different forms of non-determinism.
Key lessons learned are as follows. Our sampling bias in
fuzzing finds many more unsafe policy runs than uni-
form sampling. Regarding oracles, ∞-TarjanSafe and
1-TarjanSafe can often find safe policies very fast and
thereby form powerful quick test oracles. Regarding
fault analysis, the main new challenge is that, to prove
(s, π(s)) is a fault, we need to prove that for some out-
come state s′ no safe policy exists. ∞-TarjanSafe is still
very competitive at doing so, but is outperformed by ∞-
LRTDP on the most challenging instances. Approxima-
tion via 1-constrained unsafety is, as one would expect,
less prone to long runtimes on unsafety proofs, making
1-constrained faults a reliable alternative.

2 Background
We consider fully-observable non-deterministic
(FOND) planning tasks (Cimatti et al. 2003)
in forms of non-deterministic transition systems
Θ = ⟨S, A, T , S0, S∗⟩, where S is a finite or infi-
nite set of states; A is a set of action labels;
T : S × A ⇀ (2S \ {∅}) is the non-deterministic
transition function; ∅ ⊂ S0 ⊆ S is a non-empty set
of initial states, and S∗ ⊆ S is a set of goal states.
Typically, the states are described only implicitly via
Boolean, integer, or real-valued state variables, and
actions are described via conditions and effects on
those variables. We ignore this detail in the following,
yet want to emphasize that Θ is usually too large to
build and explore exhaustively. In our experiments,
we consider different planning benchmarks provided in
the Jani specification language (Budde et al. 2017),
as considered in related works on policy verification
(Vinzent, Steinmetz, and Hoffmann 2022; Jain et al.
2024).

For each state s, app(s) ⊆ A denotes the set of ac-
tions applicable in s, i.e., the actions a where T (s, a)
is defined. We assume without loss of generality that
app(s) ̸= ∅ holds for all states s. If s′ ∈ T (s, a) is a pos-
sible successor of a in s, we also write s →a s′. A path
is a finite or infinite alternating sequence of states and
actions σ = s1, a1, s2, . . . such that ai ∈ app(si) and
si+1 ∈ T (si, ai) holds for all i ≥ 1. The length of σ
is denoted |σ|, where |σ| = ∞ if σ is infinite. If finite,
s|σ| is the final or ending state of σ. σ is maximal
if (1) s|σ| ∈ S∗ or σ is infinite, and (2) si /∈ S∗ for
all i < |σ|. We refer to the set of all paths by Paths
and the set of all maximal paths by MaxPaths. The
(maximal) paths starting from a state s are referred
to by Paths(s) (MaxPaths(s)). A policy is a function
π : S 7→ A so that π(s) ∈ app(s) for all states s. Π
is the set of all policies. π induces the policy graph
Θπ = ⟨S, A, T π, S0, S∗⟩ with the same components as
Θ except for T π, which is given by T π(s, a) := T (s, a)
if a = π(s) and undefined otherwise. The set of paths
Pathsπ (maximal paths MaxPathsπ) induced by π are
the (maximal) paths of Θπ.

An unsafety condition is a Boolean state predicate
ϕu : S 7→ B. A state s is unsafe if ϕu(s) is true, written
s |= ϕu.

3 Our Policy Safety Testing
Framework

We next introduce our policy safety testing framework,
formalizing its basic definitions and discussing its in-
tended use. As outlined in the introduction, we fol-
low Steinmetz et al.’s (Steinmetz et al. 2022) generic
policy testing framework, instantiating it for safety in
non-deterministic planning, and extending it with a fi-
nal fault analysis step. In a nutshell, Steinmetz et al.’s
framework suggests to fix a testing objective, for-
malized by a value function V π that maps states s to
their value V π under a given policy π. With V ∗ denot-

Input:
Policy π

Test-Case
Generation

Unsafe Path
s0∈

S0

, a1, . . . , sn|=

ϕu

Test
Oracle

Bug States
SB ⊆ {s0, . . . , sn}

Fault
Anal-
ysis

Faults
SF ⊆ SB

State-Safety
Deciding Algorithm

Fuzzing
Algorithm

Figure 1: An overview of our testing pipeline.

ing the best value under any policy, a state s is then
a bug if |V ∗(s) − V π(s)| > 0. For practical implemen-
tation of such policy testing, methods are required for
1. generating test cases s, and 2. proving a given s to
be a bug. Steinmetz et al. and follow-up works (Eisen-
hut et al. 2023, 2024) focused on classical planning with
cost-optimality as the testing objective. For 1., they de-
sign biased sampling (random walk) methods, geared
at finding states s with bad policy performance. For
2., they design test oracles, sufficient criteria that can
identify some but not all bugs without resorting to op-
timal planning. The latter is essential in their setting,
as the testing objective coincides with the learning ob-
jective – if cost-optimal planning was feasible in the
given domain, then there would be no need for learning
a policy in the first place.

Here we tackle safety testing in non-deterministic
planning. Our testing objective is:
Definition 1. (π-safety objective) For a policy π and
state s we define the value of π in s as

V π(s) =


1 if s |= ϕu

0 else if s ∈ S∗
maxs′:s→π(s)s′ V π(s′) else

The optimal value in s is given by V ∗(s) =
minπ∈Π V π(s).

With this, our bug definition directly follows Stein-
metz et al.’s framework:
Definition 2. (π-safety and bugs) For a policy π and
state s, we say that s is safe if V ∗(s) = 0, and that π
is safe in s if V π(s) = 0. We say that s is a bug if
|V ∗(s) − V π(s)| > 0.

In other words, a bug here is a state s on which π is
unsafe – an unsafe state can be reached under π – even
though a safe policy for s exists. In this situation, π’s
unsafe behavior on s is avoidable. For example, in a
driving domain, π may be unsafe on s because in one of
the non-deterministic outcomes an object crashes into
the car (unavoidable unsafety, not a bug), or π may be
unsafe on s because it chooses to accelerate towards a
wall (avoidable unsafety, bug). Observe that, in Stein-
metz et al.’s framework, and hence in the definitions we
just gave, even if s is a bug state, π’s choice on s it-
self may be optimal: all we know is that something goes
wrong in the policy run beneath s. Considering again
the driving example, if π chooses to accelerate towards a
wall in state s, then all states preceding s in that policy
run (e.g. when the car turned a corner 27 steps ago) are
bugs as well. So how to define and find the “bad” policy

decisions, that cause the undesired behavior? Steinmetz
et al. call this fault localization, and leave it open for
future work. Here we provide an instantiation for policy
safety testing:

Definition 3. (π-safety fault) For a policy π and state
s, (s, π(s)) is a fault if s is safe but there exists a tran-
sition s →π(s) s′ where s′ is unsafe.

We deem a policy decision to be a fault if it takes
the agent from the safe region, where unsafety can be
avoided with certainty, into the unsafe region where
that is not the case. Some words are in order on the in-
tended use of our framework, and some important com-
putational implications. In contrast to classical plan-
ning and cost-optimality testing as in prior work, in
our setting the testing objective does not coincide with
the learning objective. To be safe, it suffices to avoid
the unsafety condition; in contrast, policies will also be
trained to reach the goal. Concretely, a canonical ap-
plication setting for our form of policy testing is that
where π was trained using RL to maximize expected
discounted reward in an MDP where goal states give
positive rewards while unsafe states give (high) nega-
tive rewards. This is a commonly used proxy objective
for RL when goal reachability must be traded against
safety (García and Fernández 2015; Zhao et al. 2023).
Our testing machinery then considers worst-case (non-
deterministic) behavior in this MDP, and focuses en-
tirely on safety, disregarding the goal except for safe
termination of policy runs. From the conceptual side,
this makes sense as a focused test on an important
aspect of system performance; faults identified by our
testing pipeline can inform human policy inspection, or
further policy training. From the computational side,
solving a state s “optimally” w.r.t. our testing objective
means to prove whether or not s is safe. This is a hard
problem in general, but may be more feasible in prac-
tice than maximizing rewards in the MDP where π was
learned. Indeed, our experiments suggest that deciding
safety can be quite easy in our setting. In the remain-
der of the paper, we operationalize our policy safety
testing framework as illustrated in Figure 1. Section 5
discusses fuzzing methods that generate test cases seed-
ing the bug and fault analyses; Section 6 discusses the
design of test oracles and fault detection methods based
on state-safety deciding algorithms. Prior to these dis-
cussions, we introduce r-constrained safety as well as
policy bugs/faults variants based on that (Section 4).
These variants are of interest in their own right as ar-
gued; r-constrained safety furthermore serves for the
design of approximate methods in Section 6.

4 r-Constrained Safety
Following prior work on approximate policy explana-
tions (Eifler et al. 2024), we consider approximate vari-
ants of Definitions 1 and 2 that base the sate-safety
assessment on policies within proximity of the policy to
be analyzed.
Definition 4 (r-Policy Space). Let π and π′ be two
policies, and s be a state. We consider the distance mea-
sure

δs(π, π′) = max
σ=s1,a1,···∈MaxPathsπ′ (s)

|σ|∑
i=1

Jπ(si) ̸= aiK

where J·K denotes the Iverson bracket. The policies
within a radius r ∈ Z+

0 ∪ {∞} from π in state s are
denoted Πs

π,r = {π′ ∈ Π | δs(π, π′) ≤ r}.
In words, δs(π, π′) measures the maximal number of

policy-choice differences between π and π′ along any
maximal s-path induced by π′; and Πs

π,r contains all
the policies differing from π no more than r times. We
generalize Definitions 1 and 2 by adapting the optimal
value function accordingly:
Definition 5 (r-Bug). For a policy π and a radius
r ∈ Z+

0 ∪ {∞}, the r-constrained optimal safety value
function is given by V ∗

π,r(s) = minπ′∈Πs
π,r

V π′(s). We
say that s is r-safe on π if V ∗

π,r(s) = 0, and that s is
an r-bug if |V ∗

π,r(s) − V π(s)| > 0.
Clearly, the notions of ∞-bugs and bugs are equiva-

lent. For r < ∞, each r-bug is also a bug, but not neces-
sarily vice versa. There can be bugs that are not r-bugs
for any value of r < ∞. This is a direct consequence
of the definition of δs, which entails δs(π, π′) = ∞ in
case policy-choice differences are enclosed in some cy-
cle. For r < ∞, r-bugs yield a sufficient bug-condition
test. At the same time, verifying r-safety can be po-
tentially easier by considering alternative options only
in the very confined perimeter around the given pol-
icy as controlled by the radius parameter r. Besides
being potentially computationally easier, Definition 5
also provides a novel way to classify bugs. As resolving
r-bugs could be considered less expensive than r′-bugs
for r′ > r, this information might help domain experts
in assessing the severity of different bugs.

On top of Definition 4, we also considered two alter-
native distance (and hence r-bug) definitions. First, in
place of maximizing over paths, one could consider sum-
mation. This however introduces a dependency to the
non-determinism present in a planning task, harming
comparability and interpretability of the results, while
also suffering from the same drawbacks as maximiza-
tion. Another alternative is to count differences in the
policy graph at global instead of path-individual level.
In preliminary experiments, this turned out to be com-
putationally very expensive. So, we focus on the dis-
tance measure and r-bug conditions as per Definitions 4
and 5.

Algorithm 1: Fuzzing algorithm
Data: Policy π, lookahead limit Dlimit ∈ Z+ ∪ {∞},

hu : S 7→ Z+
0 distance-to-unsafety estimation

Result: Path s1, π(s1), s2, π(s2), . . . , sn such that
sn |= ϕu or “failed”

1 s1 ← sample from S0 uniformly at random;
2 σ ← s1;
3 while s|σ| ̸|= ϕu do
4 σ′ ← FindContinuation(s|σ|);
5 if σ′ is “failed”’ then
6 return “failed”
7 σ ← concatenate σ and σ′;
8 return σ
9 Function FindContinuation(s):

10 for d = 1, . . . , Dlimit do
11 Sd ← states d steps away from s in Θπ;
12 if Sd = ∅ then
13 return “failed” // exhausted

successors

14 if ∃s′ ∈ Sd: s′ |= ϕu then
15 return policy path from s to s′

16 if argmins′∈Sd
hu(s′) is unique then

17 break;

18 s′ ← argmins′∈Sd
hu(s′) or sample from

⋃
d

Sd;
19 return policy path from s to s′

5 Fuzzing: Test-Case Generation
through Lookahead Search

In order to identify policy bugs effectively, it is crucial
to have test-generation methods that can quickly find
policy runs leading to unsafe states. Given a policy that
is believed to have reasonable quality, i.e., one being
worthwhile to analyze in the first place, it is unlikely to
find such runs by sampling policy executions uniformly
at random. Instead, we follow the heuristic approach
sketched in Algorithm 1, which leverages functions hu

estimating the distance from states towards the satis-
faction of the unsafety condition, to guide the policy
run generation. We discuss our choice of hu below.

Algorithm 1 iteratively composes a policy execu-
tion path, starting from an initial state that is cho-
sen uniformly at random. The path is incrementally
extended through calls to FindContinuation until ei-
ther an unsafe path has been constructed or an ex-
tension of the current path to an unsafe path is no
longer possible. FindContinuation performs policy sim-
ulations and uses hu to resolve successor choices left
under the non-deterministic transition function. To es-
cape plateaus of successor states indistinguishable by
the provided distance estimates, FindContinuation re-
sembles a variant of the hill climbing algorithm (Hoff-
mann and Nebel 2001), running a breadth-first looka-
head search in the policy graph Θπ until (a) a unique
descendant with minimal hu value is found, or (b) an
unsafe state is found, or (c) the policy sub-graph rooted

at the considered state has been exhausted. A looka-
head depth bound optionally allows to cap the com-
putational overhead. In case of (c), the current pol-
icy path cannot be extended to an unsafe path, and
FindContinuation as well as the main procedure return
a failure code. In case of (b), FindContinuation returns
the corresponding path suffix and the main procedure
terminates. In case of (a), or if the depth limit was
reached, FindContinuation extends the policy path to
some visited state. We experimented with two strategies
to select this state: greedy, we choose a state s′ ∈ Sd

from the last state layer that is deemed closest to satis-
fying the unsafety condition as per hu; or by weighted
distribution sampling, where we sample from all seen
states s′ ∈

⋃
d Sd according to the distance-weighted

probability p(s′) = e−hu(s′)/
∑

s′′∈
⋃

d
Sd

e−hu(s′′).
Suitable distance functions hu can for example be

found in the vast research on planning heuristics. How-
ever, due to their lack of support of Jani planning
task models, in our experiments, we instead fall back
on a simple function inspired from the Manhattan dis-
tance. In our case, states are vectors of real-valued
variable-value assignments, and the unsafety condition
ϕu is a Boolean combination of linear constraints. We
estimate the distance h(s, ϕu) from a state s to the
satisfaction of ϕu through h(s, ϕ) = 0 if s |= ϕ;
h(s, ϕ) = |

∑
i wis(xi) − b| for the linear constraint

ϕ :
∑

i wixi ≤ b; and decompose conjunctions and dis-
junctions by using summation and minimization over
the decompositions respectively.

6 State-Safety Deciding Algorithms for
Test Oracles and Fault Analysis

After having identified an unsafe policy path σ, we pro-
ceed in the testing pipeline (cf. Fig. 1) with the analysis
of the states visited on σ to determine which ones are
indeed policy bugs and which ones are faults. This anal-
ysis relies on methods that decide whether a given state
is safe, i.e., whether a different policy can guarantee to
avoid the unsafety condition when run from that state.
Such methods are discussed next. Note that, due to non-
determinism, σ can contain multiple faults. In order to
identify all faults efficiently, we share state-safety infor-
mation between the fault checks, avoiding redundant
computations, and process σ in reverse, which tends to
make use of this shared information effectively.

To decide state safety efficiently, we developed two or-
thogonal approaches: via well-known MDP algorithms,
respectively a search algorithm geared for this purpose.
Our methods decide r-safety in general, which as pre-
viously pointed out, subsumes safety for r = ∞.

MDP Algorithms
Non-deterministic transition systems can be seen as
MDPs with unspecified transition probabilities. We
next show how to use standard MDP algorithms for
computing a proxy to the optimal safety value function,
based on an MDP objective that characterizes r-safety

and is amenable to optimization via common dynamic
programming approaches.

The core idea is combining state and action costs,
where action costs reflect deviations from the policy
under testing and a termination cost penalizes unsafe
states. We are interested in the MDP policy solution
that minimizes the worst-case summed up cost over all
runs of that policy. Formally, this optimal solution is
characterized by the piecewise smallest function J∗

π,r

that satisfies J∗
π,r(s) = Bπ,rJ∗

π,r(s), for all states s, un-
der the Bellman operator Bπ,rJ(s) :=

Ur if s |= ϕu

0 else if s ∈ S∗
mina∈app(s)

(
Cπ,r(s, a) + maxs′∈T (s,a) J(s′)

)
else

where J : S 7→ R+
0 is any function, Ur = r + 1 if r < ∞

and Ur = 1 else, which gives the cost of reaching an
unsafe state; and Cπ,r(s, a) = 1 if r < ∞ and π(s) ̸= a,
Cπ,r(s, a) = 0 otherwise, which represents the policy
deviation cost. Goal states and unsafe states are con-
sidered to be terminating. It is straightforward to show
that r-safety on the policy π under testing is character-
ized exactly by the J∗

π,r values:
Theorem 1. For all policies π, states s, and radii r <
∞, s is r-safe on π iff J∗

π,r(s) ≤ r. s is ∞-safe iff
J∗

π,∞(s) = 0.
J∗

π,r can be computed via value iteration and MDP
heuristic search algorithms (e.g., LAO* (Hansen and
Zilberstein 2001) or LRTDP (Bonet and Geffner 2003)).
In a nutshell, those approaches start from some cost-
value initialization J (0) and repeatedly apply Bellman
updates J (i) := Bπ,rJ (i−1) until a fixed point J (k) =
J (k−1) is reached. The standard correctness argument
establishing J (k) = J∗

π,r upon termination requires (1)
the actual existence of a fixed point, and (2) that this
fixed point coincides with J∗

π,r. However, it is not imme-
diately evident why Bπ,r from above would satisfy either
of the properties. Namely, while the definition of Bπ,r

closely resembles the standard cost-minimization MDP
objective, there is the important difference that we do
not enforce any requirement on reaching goal states
eventually (cycling forever while avoiding unsafety is
a valid strategy). Additionally, as opposed to general
reward-maximization MDP objectives, we consider the
optimization over an infinite horizon without discount
factor. That there actually exists any fixed point, (1),
follows from the Knaster-Tarski theorem (Tarski 1955)
and the fact that J∗

π,r is bounded from above by Ur

and that the cost-value functions Ĵ (0), Ĵ (1), . . . increase
monotonically, if one starts from Ĵ (0)(s) := 0, where
Ĵ (i) := Bπ,rĴ (i−1) for i ≥ 1. (2) is actually not satisfied
in general. In our case, there can be multiple solutions
to the Bellman equation J = Bπ,rJ due to 0-cost cy-
cles. However, by definition, J∗

π,r is the least of those
solutions. So, given that Ĵ (0) ≤ J∗

π,r and that J ≤ J∗
π,r

implies Bπ,rJ ≤ Bπ,rJ∗
π,r = J∗

π,r, the sequence of cost-
value functions starting from 0 must converge to J∗

π,r
necessarily:

Theorem 2. Let Ĵ (0)(s) := 0 and Ĵ (i)(s) :=
Bπ,rĴ (i−1)(s) for i ≥ 1 and all states s. Then
limi 7→∞ Ĵ (i)(s) = J∗

π,r(s).
Given this property, existing MDP algorithms like

value iteration and heuristic search can be applied as
is, as long as the cost-value function is initialized to 0.

r-Safety Search
On top of the general purpose MDP algorithms just
presented, we further designed a method that is specif-
ically tailored to proving r-safety quickly. Algorithm 2
shows the pseudocode, referred to by TarjanSafe in
the following. The core procedure FindSafePolicy(s, bs)
runs a backtracking search to check whether a safe pol-
icy for s exists within the “policy-divergence budget”
bs that is remaining for s according to the recursion
path started from the initial call arguments ⟨s0, r⟩. The
method greedily tries to construct a safe policy for s by
testing in turn each possible action that is applicable
in s and whose selection remains within the remaining
budget. For each such action a, FindSafePolicy deter-
mines safety by calling itself on all the non-deterministic
successor states s′ of applying a in s with the remaining
budget b′ updated from bs accordingly. When a safe ac-
tion is found within the budget, FindSafePolicy termi-
nates. Otherwise, FindSafePolicy continues until having
exhausted all possibilities.

If no safe action was found, the state is provably
not bs-safe on π. On the other hand, however, if an
action that is potentially safe is found, the actual bs-
safety status might depend on the result of some parent
call FindSafePolicy(s′, bs′), whose safety confirmation is
currently still in progress. This situation arises exactly
when the chosen action at s introduces a cycle to some
state-budget pair ⟨s′, b′⟩ still under expansion. We iden-
tify such cycles by incorporating Tarjan’s algorithm for
finding maximal SCCs (Tarjan 1972) (hence the name
TarjanSafe). If FindSafePolicy(s, bs) returns true while
the state-budget pair ⟨s, bs⟩ marks the entry point into
an SCC, there are no dependencies to the pending par-
ent FindSafePolicy calls. Hence, at this point (and only
at this point), we know that s is bs-safe on π. We want
to remark in particular that for the initial call on ⟨s0, r⟩,
FindSafePolicy always determines s0’s r-safety status,
as this call never has dependencies.

To speed up the process and to avoid redundant com-
putations, we cache intermediate b-safety respectively
non-b-safety results in forms of the minimal budget
yes[s] for each state s for which a yes[s]-safe policy
for s has been found, respectively the maximal bud-
get no[s] for which s was proven to be not no[s]-safe.
Both caches are updated accordingly when returning
from FindSafePolicy using the computed safety status
information as discussed in the previous paragraph.

Algorithm 2: TarjanSafe algorithm deciding r-
safety
Data: Policy π, safety radius r ∈ Z+

0 ∪ {∞}, state s0
Result: True if s0 is r-safe on π, and false otherwise

1 yes[s]←∞ for all states s; // cache pos. results
2 no[s]← −∞ for all states s; // cache neg. results
3 bs0 ← r; // initial “budget”
4 return FindSafePolicy(s0, bs0)
5 Function FindSafePolicy(s, bs):
6 if s |= ϕu or no[s] ≥ bs then return false ;
7 if s ∈ S∗ or yes[s] ≤ bs then return true ;
8 allUnsafe← true;
9 foreach a ∈ app(s) and while allUnsafe do

10 b′ ← bs − Jπ(s) ̸= aK;
11 if b′ < 0 then continue;
12 isSafe← true;
13 foreach s′ ∈ T (s, a) and while isSafe do
14 if s′ with budget b′ has not been expanded

or ⟨s′, b′⟩ is not in current call’s SCC
then

15 isSafe← FindSafePolicy(s′, b′);
16 allUnsafe← not isSafe;
17 if allUnsafe then no[s] = bs ;
18 else
19 if ⟨s, bs⟩ is the root of its SCC then
20 yes[s] = min{yes[s], bs};
21 return not allUnsafe

In summary, our method guarantees: For every policy
π, state s0, and radius r ∈ Z+

0 ∪ {∞}, Algorithm 2
returns true iff s0 is r-safe on π.

7 Experiments
Our implementation is in C++ and is available online.
We evaluate each component of the testing pipeline (cf.
Fig. 1) in isolation, proceeding in the order: 1. fuzzing
(test-case generation); 2. test-oracle performance of
the safety-deciding algorithms, considering individual
states, and 3. performance of fault analysis as a whole,
processing an entire unsafe policy path. For 2. and 3., we
use the test cases generated by our best fuzzing method.
We next describe our benchmarks, before diving into
the empirical results. All experiments were run on ma-
chines with Intel Xeon E5-2660 CPUs.

Benchmarks
A testing-benchmark instance is a pair of non-
deterministic planning task described in the Jani lan-
guage (Budde et al. 2017) and policy solving that prob-
lem. Our benchmark set is composed of three parts:
(B1) benchmarks (beluga, and two variants of block-
world and n-puzzle) from prior work on action-policy
safety assessment (Vinzent, Steinmetz, and Hoffmann
2022; Jain et al. 2024); (B2) we created new Jani bench-
marks, modeling the control problems Bouncing ball,
Follow Car, Cartpole and Inverted Pendulum often con-
sidered in reinforcement learning (Bacci, Giacobbe, and

0 500 1000 1500 2000 2500
Runtime (sec)

Blocksw. (CA)

Blocksw. (CI)

N-Puzzle (CA)

N-Puzzle (CI)

Beluga

1way (FailDec)

1way (Park)

2way (FailDec)

2way (Park)

Bouncing Ball

Follow Car

Cart Pole

Inv Pendulum

Outcome Sampling
1-uniform
1-greedy
1-sampling

-greedy
-sampling

0 200 400 600 800 1000
Number of unsafe paths (test cases) found

Blocksw. (CA)

Blocksw. (CI)

N-Puzzle (CA)

N-Puzzle (CI)

Beluga

1way (FailDec)

1way (Park)

2way (FailDec)

2way (Park)

Bouncing Ball

Follow Car

Cart Pole

Inv Pendulum

Outcome Sampling
1-uniform
1-greedy
1-sampling

-greedy
-sampling

Figure 2: Per-domain comparison of different fuzzing algorithm configurations. The left plot shows the total time to
run the algorithms for 1000 times. The right plot shows the number of unsafe policy paths found in these runs.

Statistics on ∞-safe states (bugs) Statistics on non-∞-safe states (non-bugs)

10 4 10 2 100 102

Runtime (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 st

ate
s p

ro
ve

n
r-s

af
e

Algorithms
-LRTDP
-TarjanSafe
-LAO

1-LRTDP
2-LRTDP
1-TarjanSafe
2-TarjanSafe

10 5 10 3 10 1 101 103

Runtime for -TarjanSafe

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ru
nt

im
e (

se
c)

 fo
r 1

-T
ar

jan
Sa

fe
 an

d
1-

LR
TD

P

Algorithms
1-TarjanSafe
1-LRTDP

Algorithm Answer
r-safe
not r-safe

10 4 10 2 100 102

Runtime (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 st

ate
s p

ro
ve

n
no

t r
-sa

fe

Algorithms
-LRTDP
-TarjanSafe
-LAO

1-LRTDP
2-LRTDP
1-TarjanSafe
2-TarjanSafe

10 5 10 3 10 1 101 103

Runtime for -TarjanSafe

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ru
nt

im
e (

se
c)

 fo
r 1

-T
ar

jan
Sa

fe
 an

d
1-

LR
TD

P

Algorithms
1-TarjanSafe
1-LRTDP

Algorithms
1-TarjanSafe
1-LRTDP

Figure 3: Test-oracle performance statistics for the bugs in the test-state collection respectively the non-bugs. Left
plot in each category shows coverage in forms of the fraction of (non-)bug states proven (not-)r-safe over time. Right
plot compares runtime (s) per test state between ∞-TarjanSafe (x-axis) and 1-LRTDP and 1-TarjanSafe (y-axis).

Parker 2021; Bacci and Parker 2022); and (B3) two
completely new benchmarks: one-way line and two-way
line. In the latter benchmarks, a truck moves along a
discrete line in one respectively both directions. The
truck can accelerate and decelerate by one speed unit
at a time, and pick up and drop packages if its ve-
locity is 0. Non-determinism might cause the truck to
drop packages while moving. Acceleration and deceler-
ation might fail. We additionally consider variants with
an additional parking action and one disabling non-
determinism. The safety constraint requires not driv-
ing past either ends of the line. The planning tasks
from (B2) are deterministic and contain bounded real-
valued state variables; all other benchmarks are non-
deterministic and use bounded integer state variables.
For each Jani benchmark instance, we train multi-
ple feed-forward neural-network policies via Q-learning,
similar to prior work (Vinzent, Steinmetz, and Hoff-
mann 2022). We use ReLU activation and experimented
with hidden layer sizes {16, 32, 64, 128, 256}, choosing
for each Jani benchmark instance the best-performing
policy which was not safe. For the benchmarks from
(B1), we did not train new policies, but used those pro-
vided by (Jain et al. 2024).

Fuzzing
We ran a total of 5 configurations of our fuzzing al-
gorithm (Algorithm 1), considering lookahead depths
of Dlimit ∈ {1, ∞} and three different successor se-

lection strategies: uniform, a baseline which samples
successors uniformly at random; greedy and weighted
distribution sampling, i.e., the two strategies intro-
duced in Section 5. For uniform sampling, we did not
run Dlimit = ∞, which does not make sense. For each
testing-benchmark instance, each configuration is exe-
cuted 1000 times. Fig. 2 reports the results.

The control benchmarks from (B2) are determinis-
tic, in which case, all the fuzzing algorithm configura-
tions behave identically. In blocksworld, no unsafe pol-
icy path was found by any configuration. In all other
domains, the unsafety distance estimates have a clear
positive effect on test-case generation. That advantage
is especially evident for the depth-unlimited variants,
which however also come with the by far most signifi-
cant overhead. Sampling versus greedily choosing suc-
cessor states makes a difference primarily if the looka-
head is bounded. This makes sense, intuitively, as dis-
tance estimates become more accurate the deeper the
lookahead, reducing the benefits of the additional ran-
domness introduced by sampling as the depth-bound is
increased. All remaining experiments are based on the
test cases generated by ∞-greedy.

Test Oracles
We evaluated the performance of 4 different safety-
deciding algorithms – value iteration, LRTDP (Bonet
and Geffner 2003), LAO* (Hansen and Zilberstein
2001), and TarjanSafe – for deciding (∞-)safety. We

additionally consider each of the algorithms to com-
pute the r-safety approximation, for r ∈ {1, 2}. We
compare their performance to prove whether an indi-
vidual state is a bug. To this end, we collect for each
benchmark instance all states from the generated test
cases. To balance state numbers between instances, we
pick for each benchmark instance the whole collection,
if that contains at most 1000 states, and pick from the
collection 1000 states at random otherwise. We run ev-
ery algorithm configuration on every state of the post-
processed collection of all the benchmark instances, en-
forcing memory and time limits for 12 GB and 30 min-
utes per run. Value iteration almost always exceeded
the memory budget during its state-space construction
process, and is omitted in the following.

Consider first the coverage plots in Fig. 3. Regardless
of the algorithm, bug confirmation tends to be cheap.
Almost all test states were processed within split sec-
onds. Comparing the algorithms, ∞-TarjanSafe turned
out to be most effective for both proving and disproving
whether a state is a bug. For the former cases, we ob-
served that the search often was lucky in quickly finding
alternative action choices that, e.g., via forming cycles,
guarantee maintaining safety. For the latter cases, ∞-
TarjanSafe’ caching feature turned out highly effective.
∞-LRTDP offers a similar performance profile, but has
a small but consistent runtime disadvantage. Not vis-
ible in the coverage plots, ∞-LRTDP however turned
out slightly more effective than ∞-TarjanSafe in the
very hard cases proving that a state is indeed not safe,
i.e., is not a bug. Maybe most surprisingly, the r-safety
variants for finite r seem to not offer any advantage in
terms of efficiency, yet overall, identify much fewer bug
states due to their under-approximation nature.

The runtime plots in Fig. 3 provide additional in-
formation. Consider the one for the bug states. ∞-
TarjanSafe proves most bug-states safe within split
seconds by quickly finding safety-guaranteeing cycles.
However, to prove 1-safety, policy deviations cannot be
included in cycles, which makes bug confirmation signif-
icantly harder despite allowing even just one policy de-
viation per policy execution run. Moreover, as indicated
by the X entries, 1-safety is insufficient for considerable
fraction of the bug states. On the other hand, proving
that states are not 1-safe is almost always significantly
cheaper than proving non-∞-safety. This is expected,
given that disproving ∞-safety requires the exploration
of all the policy alternatives whereas the option space
for 1-safety is much more constrained. One needs to
keep in mind, however, that non-1-safety is weaker than
non-∞-safety in that non-1-safety does not necessarily
imply that a state is not a bug.

Fault Analysis
Lastly, we evaluate the performance of the previously
considered safety-deciding algorithms to identify all
faults on an entire unsafe-path test case. The algo-
rithms maintain a single cache (value function), which
is continuously updated while processing each state on

the unsafe path. In contrast to the test-oracle perfor-
mance evaluation, we also evaluate how effectively each
algorithm uses this caching functionality across multi-
ple safety-decision calls.

10 5 10 3 10 1 101 103

Runtime (sec) for -TarjanSafe

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ru
nt

im
e (

se
c)

 fo
r

-L
RT

DP
 an

d
-L

AO

Algorithms
-LRTDP
-LAO

Algorithms
-LRTDP
-LAO

10 5 10 3 10 1 101 103

Runtime (sec) for -TarjanSafe

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Ru
nt

im
e (

se
c)

 fo
r 1

-T
ar

jan
Sa

fe
 an

d
2-

Ta
rja

nS
af

e

Algorithms
1-TarjanSafe
2-TarjanSafe

Algorithms
1-TarjanSafe
2-TarjanSafe

Figure 4: Fault analysis: runtime (s) of processing
an entire test case of ∞-TarjanSafe (x-axis) vs. ∞-
LRTDP/LAO* (left plot y-axis) and r-TarjanSafe
(right plot y-axis).

Fig. 4 provides a runtime comparison between the
different algorithms. Among the ∞-safety deciding al-
gorithms, TarjanSafe carries over its test-oracle per-
formance, having a consistent and considerable advan-
tage over LRTDP (and a significant one over LAO*).
Different from the previous results, fault-analysis per-
formance of the approximative r-TarjanSafe variants
turned out highly complementary to ∞-TarjanSafe.
In the vertical lines, ∞-TarjanSafe shows its strength
in proving ∞-safety quickly. In the cases below the
diagonal, the approximative r-TarjanSafe exploit the
stronger requirements of proving states not-r-safe. ∞-
TarjanSafe identified at least one fault in 86% of the
test cases. In almost all test cases, there was just a sin-
gle fault, but there are cases where more than one fault
was found. The latter can be observed to a much higher
degree for the approximative variants, indicating some
variability of the difficulty of resolving different bugs on
the same unsafe path.

8 Conclusion

Testing is a natural method for quality assurance of
learned action policies π. Here we transfer ideas from
prior work to safety testing in non-deterministic plan-
ning, extending the testing pipeline with an additional
fault-detection step, and covering approximate analyses
via constraining alternate policies to a radius around
π. Adapting a broad range of algorithms for these pur-
poses, our empirical results indicate that this form of
policy testing can be quite feasible. As one key outcome
of this research and our implemented machinery, we are
now able to identify specific faults in a given learned
policy. This opens the possibility, for future work, to
improve the policy leveraging this fault information.
There are manifold possibilities for this, ranging from
shielding over continued RL to neurosymbolic methods
facilitating a guarantee to avoid known faults.

Acknowledgements
This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) –
GRK 2853/1 “Neuroexplicit Models of Language, Vi-
sion, and Action” - project number 471607914 and the
European Union’s Horizon Europe Research and Inno-
vation program under the grant agreement TUPLES No
101070149. Jesse Davis received support from the Flem-
ish Government under the “Onderzoeksprogramma Ar-
tifciële Intelligentie (AI) Vlaanderen” program.

References
Akazaki, T.; Liu, S.; Yamagata, Y.; Duan, Y.; and Hao,
J. 2018. Falsification of Cyber-Physical Systems Using
Deep Reinforcement Learning. In 22nd International
Symposium on Formal Methods (FM’18), 456–465.
Bacci, E.; Giacobbe, M.; and Parker, D. 2021. Verifying
Reinforcement Learning up to Infinity. In Proceedings
of the Thirtieth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2021, Virtual Event / Mon-
treal, Canada, 19-27 August 2021, 2154–2160.
Bacci, E.; and Parker, D. 2022. Verified Probabilis-
tic Policies for Deep Reinforcement Learning. In NASA
Formal Methods - 14th International Symposium, NFM
2022, Pasadena, CA, USA, May 24-27, 2022, Proceed-
ings, volume 13260 of LNCS, 193–212. Springer.
Bellman, R. 1957. Dynamic Programming. Princeton
University Press.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Im-
proving the Convergence of Real-Time Dynamic Pro-
gramming. In Giunchiglia, E.; Muscettola, N.; and
Nau, D., eds., Proceedings of the 13th International
Conference on Automated Planning and Scheduling
(ICAPS’03), 12–21. Trento, Italy: Morgan Kaufmann.
Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns,
A.; Junges, S.; and Turrini, A. 2017. JANI: Quanti-
tative Model and Tool Interaction. In Proceedings of
the 23rd International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS’17), 151–168.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, Strong, and Strong Cyclic Planning via
Symbolic Model Checking. 147(1–2): 35–84.
Dreossi, T.; Dang, T.; Donzé, A.; Kapinski, J.; Jin, X.;
and Deshmukh, J. V. 2015. Efficient Guiding Strategies
for Testing of Temporal Properties of Hybrid Systems.
In 7th International Symposium NASA Formal Methods
(NFM’15), 127–142.
Eifler, R.; Fiser, D.; Siji, A.; and Hoffmann, J. 2024. It-
erative Oversubscription Planning with Goal-Conflict
Explanations: Scaling Up Through Policy-Guidance
Approximation. In Proceedings of the 27th European
Conference on Artificial Intelligence (ECAI’24), 4092–
4099. IOS Press.
Eisenhut, J.; Schuler, X.; Fišer, D.; Höller, D.; Chris-
takis, M.; and Hoffmann, J. 2024. New Fuzzing Biases

for Action Policy Testing. In Proceedings of the 34th
International Conference on Automated Planning and
Scheduling (ICAPS’24). AAAI Press.
Eisenhut, J.; Torralba, A.; Christakis, M.; and Hoff-
mann, J. 2023. Automatic Metamorphic Test Oracles
for Action-Policy Testing. In International Conference
on Automated Planning and Scheduling (ICAPS’23),
109–117.
Ernst, G.; Sedwards, S.; Zhang, Z.; and Hasuo, I. 2019.
Fast Falsification of Hybrid Systems Using Probabilisti-
cally Adaptive Input. In 16th International Conference
on Quantitative Evaluation of Systems (QEST’19),
165–181.
García, J.; and Fernández, F. 2015. A comprehensive
survey on safe reinforcement learning. Journal of Ma-
chine Learning Research, 16: 1437–1480.
Garg, S.; Bajpai, A.; et al. 2019. Size Independent
Neural Transfer for RDDL Planning. In Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS’19), 631–636.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.;
and Abbeel, P. 2018. Learning Generalized Reactive
Policies using Deep Neural Networks. In Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS’18), 408–416.

Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A
heuristic search algorithm that finds solutions with
loops. Artificial Intelligence, 129(1-2): 35–62.
Hoffmann, J.; and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
253–302.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018.
Training Deep Reactive Policies for Probabilistic Plan-
ning Problems. In International Conference on Auto-
mated Planning and Scheduling (ICAPS’18), 422–430.
Jain, C.; Cascioli, L.; Devos, L.; Vinzent, M.; Steinmetz,
M.; Davis, J.; and Hoffmann, J. 2024. Safety Verifica-
tion of Tree-Ensemble Policies via Predicate Abstrac-
tion. In Proceedings of the 27th European Conference
on Artificial Intelligence (ECAI’24).
Karia, R.; and Srivastava, S. 2021. Learning General-
ized Relational Heuristic Networks for Model-Agnostic
Planning. In Leyton-Brown, K.; and Mausam, eds.,
Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI’21), 8064–8073. AAAI Press.
Koren, M.; Alsaif, S.; Lee, R.; and Kochenderfer, M. J.
2018. Adaptive Stress Testing for Autonomous Vehicles.
In IEEE Intelligent Vehicles Symposium (IV’18), 1–7.
IEEE.
Lee, R.; Mengshoel, O. J.; Saksena, A.; Gardner, R. W.;
Genin, D.; Silbermann, J.; Owen, M. P.; and Kochen-
derfer, M. J. 2020. Adaptive Stress Testing: Find-
ing Likely Failure Events with Reinforcement Learning.
Journal of Artificial Intelligence Research, 69: 1165–
1201.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.;
Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller,
M. A.; Fidjeland, A.; Ostrovski, G.; Petersen, S.; Beat-
tie, C.; Sadik, A.; Antonoglou, I.; King, H.; Kumaran,
D.; Wierstra, D.; Legg, S.; and Hassabis, D. 2015.
Human-level control through deep reinforcement learn-
ing. Nature, 518(7540): 529–533.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved Non-Deterministic Planning by Exploiting State
Relevance. In Bonet, B.; McCluskey, L.; Silva, J. R.;
and Williams, B., eds., Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS’12). AAAI Press.
Rossetti, N.; Tummolo, M.; Gerevini, A. E.; Putelli, L.;
Serina, I.; Chiari, M.; and Olivato, M. 2024. Learn-
ing General Policies for Planning through GPT Mod-
els. Proceedings of the International Conference on Au-
tomated Planning and Scheduling, 34(1): 500–508.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.;
Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.;
Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.;
and Hassabis, D. 2016. Mastering the Game of Go with
Deep Neural Networks and Tree Search. Nature, 529:
484–503.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.;
Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.;
Graepel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis,
D. 2018. A general reinforcement learning algorithm
that masters Chess, Shogi, and Go through self-play.
Science, 362(6419): 1140–1144.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learn-
ing General Optimal Policies with Graph Neural Net-
works: Expressive Power, Transparency, and Limits. In
International Conference on Automated Planning and
Scheduling (ICAPS’22), 629–637.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learn-
ing Generalized Policies without Supervision Using
GNNs. In Proceedings of the 19th International Con-
ference on Principles of Knowledge Representation and
Reasoning (KR’22).
Steinmetz, M.; Fišer, D.; Enişer, H. F.; Ferber, P.; Gros,
T.; Heim, P.; Höller, D.; Schuler, X.; Wüstholz, V.;
Christakis, M.; and Hoffmann, J. 2022. Debugging a
Policy: Automatic Action-Policy Testing in AI Plan-
ning. In International Conference on Automated Plan-
ning and Scheduling (ICAPS’22).
Tarjan, R. E. 1972. Depth First Search and Linear
Graph Algorithms. SIAM Journal on Computing, 1(2):
146–160.
Tarski, A. 1955. A Lattice-theoretical Fixpoint Theo-
rem and its Applications. Pacific Journal of Mathemat-
ics, 5: 285–309.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L.
2020. ASNets: Deep Learning for Generalised Planning.
Journal of Artificial Intelligence Research, 68: 1–68.

Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022.
Neural Network Action Policy Verification via Predicate
Abstraction. In International Conference on Automated
Planning and Scheduling (ICAPS’22).
Zhao, W.; He, T.; Chen, R.; Wei, T.; and Liu, C. 2023.
State-wise Safe Reinforcement Learning: A Survey. In
Elkind, E., ed., Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-23, 6814–6822. International Joint Conferences
on Artificial Intelligence Organization. Survey Track.

