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Abstract. Learned action policies are gaining traction in AI, but
come without safety guarantees. Recent work devised a method for
safety verification of neural policies via predicate abstraction. Here
we extend this approach to policies represented by tree ensembles,
through replacing the underlying SMT queries with queries that can
be dispatched by Veritas, a reasoning tool dedicated to tree ensem-
bles. The query language supported by Veritas is limited, and we
show how to encode richer constraints we need into additional trees
and decision variables. We run experiments on benchmarks previ-
ously used to evaluate neural policy verification, and we design new
benchmarks based on a logistics application at Airbus as well as on a
real-world robotics domain. We find that (1) verification with Ver-
itas vastly outperforms verification with Z3 and Gurobi; (2) tree-
ensemble policies are much faster to verify than neural policies,
while being competitive in policy quality; (3) our techniques are
highly complementary to, and often outperform, an encoding of tree-
ensemble policy verification into NUXMV.

1 Introduction

Learned action policies are gaining traction in AI [e.g., 30, 33, 34],
including in AI planning [25, 22, 19, 40, 28, 35, 36]. However, such
policies come without built-in safety guarantees. Given a policy π,
a start condition ϕ0, and an unsafety condition ϕu, how to verify
whether an unsafe state su |= ϕu is reachable from a given start
state s0 |= ϕ0 under π? Research on this question is still in its early
stages. In the formal methods community, prominent lines of works
address neural controllers of dynamical systems [38, 41, 24, 17] or
hybrid systems [26]. Here we follow up on recent work in the AI
planning community [44, 45, 43] (henceforth VEA), which tackles
neural policies taking discrete action choices in non-deterministic
state spaces, via policy predicate abstraction (PPA). PPA builds
an over-approximating abstraction not of the full state space Θ, but
of the state-space subgraph containing only those transitions taken
by π. While building that abstraction, for each possible abstract state
transition (sP , l, s

′
P), an SMT solver is queried to decide whether π

selects the necessary label l for at least one corresponding concrete
state transition (s, l, s′). This SMT query is dispatched to Marabou
[29], an SMT solver tailored to neural network analysis.
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Here we extend this approach to another family of learned ac-
tion policies, namely ones represented by tree ensembles [7, 18, 11]
which have proven to be powerful predictors in many ML prob-
lems [21]. Our key observation is that PPA is agnostic to the pol-
icy representation, provided there exists a reasoning mechanism to
which the abstract state transition queries can be dispatched. Given
this, we can leverage progress on reasoning methods tailored to ML
models other than neural networks. Here, we show how to do this
for the Veritas tool, that excels in analyzing tree-ensemble predic-
tions [15, 9]. We thus establish the first machinery dedicated to safety
verification of tree-ensemble policies.

A key challenge in using Veritas within PPA is the expressivity of
constraints needed. The query language supported by Veritas (in its
state-of-the-art implementation for multiclass classifiers) is limited
to box constraints. Yet we require support for general linear con-
straints, and for disjuntions thereof. We show how to encode these
richer constraints into additional trees that are added to the policy
ensemble.

In particular, we address applicability filtering, which selects the
best-predicted-value action among only the applicable actions in a
state (rather than among all actions), thus ensuring that the policy
never selects inapplicable actions. This adds complexity to PPA ver-
ification because the abstract transition queries now involve large
subformulas checking action applicability. Recent work has shown
how to tackle this for neural policies, through SMT formula trans-
formation and simplification [43]. Here we show how to perform ap-
plicability filtering for tree-ensemble policies by constructing trees
that penalize inapplicable actions. The applicability conditions in this
context are in disjunctive normal form (DNF). A naïve encoding of
a DNF as a decision tree explodes exponentially due to the replica-
tion problem [31]. Instead, we break the formula similar to Tseytin
Transformations [42] by introducing auxiliary variables.

As a side contribution of our work, we show that PPA – for both,
neural and tree-ensemble policies – can be successfully applied to
inifinite state spaces. Previously, PPA was applied only to problems
with bounded-integer state variables. Here we include a case study
(Turtlebot, see below) with real-valued state variables. We tackle
both kinds of state variables throughout. Continuous state variables
do not require any changes to PPA per se, but constitute an addtional
challenge in encoding linear constraints for Veritas.

We run experiments on VEA’s benchmarks, as well as on two new



benchmarks we contribute here, called Beluga and Turtlebot. Beluga
abstractly encodes a planning application at Airbus, namely a logis-
tics problem involving the transport of airplane parts between Beluga
transport planes and a factory, using a particular kind of racks for
intermediate storage. Turtlebot is a case study in a simple robotics
domain, adapted from prior work [1] on purely SMT/Marabou-
based verification in that domain. Specifically, we consider the neu-
ral Turtlebot-control policies trained by these authors. We extend the
very basic safety property they verified (will the robot ever decide to
move into a wall it stands directly in front of?) to a scalable prop-
erty (will the robot ever move into a wall it stands k steps in front
of?). In all benchmarks, we use neural policies as teachers for imita-
tion learning of tree-ensemble policies. We empirically compare our
approach to competing methods in three ways:

(1) To evaluate the benefit of using Veritas to dispatch the abstract
transition tests in PPA, we compare to a version of PPA using
instead Z3 [14], and a version using instead Gurobi [23] (with
straightforward SMT/MILP encodings respectively).

(2) To evaluate the merits of neural vs. tree-ensemble policy repre-
sentations, we compare policy quality and verifiability of our tree
ensembles vs. their neural teachers.

(3) While ours is the first work dedicated to verification of tree-
ensemble policies, one can encode such policies into standard ver-
ification languages, and thus apply standard verification methods
not tailored to ML models. To evaluate this alternative, we com-
pare PPA to a broad range of state-of-the-art verification methods
implemented in NUXMV [10].

Our findings are as follows. (1) PPA with Z3 or Gurobi is outper-
formed everywhere except our smallest benchmark instances, deci-
sively showing the benefit of using the tailored solver Veritas instead.
(2) Tree ensemble policies are typically orders of magnitude faster to
verify than neural policies, while (in our benchmarks) being able to
learn policies of similar quality as their neural teachers; this sug-
gests a better trade-off between policy quality vs. verifiability. (3)
PPA is highly complementary to NUXMV, and outperforms NUXMV

in many cases. In particular, PPA’s closest relative, predicate abstrac-
tion as implemented in NUXMV, is unable to tackle any of our bench-
mark instances, so is outclassed completely.

2 Background
2.1 Policy Safety Verification and PPA

We consider transition systems described by a tuple ⟨V,L,O⟩. V
is a finite set of state variables. For each v ∈ V the domain Dv is
a bounded integer or a bounded real-valued interval. L is a finite
set of action labels. O is a finite set of operators. Φ denotes the
set of linear constraints over V , i.e., of the form

∑
v∈V

dv · v ▷◁ c

with rational coefficients dv and c, ▷◁ ∈ {≤,=,≥}, and Boolean
combinations thereof. An operator o ∈ O is a tuple (g, l, u) with
label l ∈ L, guard g ∈ Φ and update u over V , where u(v) is either
a linear assignment

∑
v∈V

dv · v + c or a bounded interval [ulv, uuv ].

The state space of ⟨V,L,O⟩ is a transition system Θ =
⟨S,L, T ⟩. The set of states S is the set of complete variable as-
signments over V . The set of transitions T ⊆ S × L × S con-
tains (s, l, s′) iff there exists an operator o = (g, l, u) such that
g(s) evaluates to true, also written s |= g, and, for each v ∈ V ,
s′(v) = u(v)(s) for assignments and s′(v) ∈ [ulv, u

u
v ] for inter-

val udaptes, also abbreviated s′ |= u(s). Θ is finite if all variables

have integer domains, but infinite otherwise. For a state s, we denote
with L(s) = {l ∈ L | ∃s′ ∈ S : (s, l, s′) ∈ T } the set of actions
applicable in s. We assume, w.l.o.g., that L(s) ̸= ∅ for all states s.

An action policy π is a function S → L. We consider action
policies that are represented by a value function Q : S × L 7→ R,
defining πQ(s) := argmax l∈LQ(s, l), i.e., the policy selects the
highest ranked action in s. Alternatively, we consider applicability
filtering where πapp

Q (s) := argmax l∈L(s)Q(s, l), constraining the
selection to applicable actions. A policy π induces the policy graph
Θπ = (S,L, T π) over the same states and action labels as Θ, and
T π ⊆ T where (s, l, s′) ∈ T π iff π(s) = l.

A reach-avoid property is a tuple (ϕ0, ϕu,G), where ϕ0 ∈ Φ
identifies the start states, ϕu ∈ Φ identifies the unsafe states and
G ∈ Φ identifies the goal states. A policy π is unsafe with respect to
(ϕ0, ϕu,G) iff there exists a path ⟨s0, π(s0), s1, . . . , π(sn−1), sn⟩
in Θπ such that s0 |= ϕ0, sn |= ϕu, and si ̸|= G for all i ∈
{0, . . . , n−1}. π is safe if no such path exists. In words, the policy’s
task is to reach the goal G while avoiding unsafe states ϕu.

Policy predicate abstraction (PPA) [44] is a technique for ver-
ifying a policy’s safety by abstracting the the graph Θπ induced
by π (as opposed to abstracting the the full state space Θ as done
in classical predicate abstraction [20]). Given a set of predicates
P ⊆ Φ, an abstract state sP is a (complete) truth value assign-
ment P . [sP ] = {s ∈ S | ∀p ∈ P : s |= p iff sP(p) = ⊤} denotes
the set of all concrete states represented by sP . The policy predi-
cate abstraction of Θ over P and π is the labeled transition system
ΘπP = ⟨SP ,L, T π

P ⟩ where SP is the set of all abstract states over P
and (sP , l, s

′
P) ∈ T π

P iff there exist s ∈ [sP ] and s′ ∈ [s′P ] such that
(s, l, s′) ∈ T π .

Note that ΘπP is by definition guaranteed to be finite. ΘπP is un-
safe if there exists an abstract path ⟨s0P , l1, . . . , ln, snP⟩ in ΘπP such
that s0P |= ϕ0, snP |= ϕu, and siP |= ¬G for i ∈ {0, . . . , n − 1},
where sP |= ϕ iff ∃s ∈ [sP ] : s |= ϕ. Otherwise ΘπP is safe. If ΘπP
is safe, then π is safe as well. Vice versa, however, an unsafe path
in ΘπP may be spurious, i.e., there might be no corresponding path
in Θπ . PPA with counterexample-guided abstraction refinement
(CEGAR) [45] iteratively removes such spurious abstract paths by
refining P , until either ΘπP is proven safe, or a non-spurious abstract
path is found showing that π is unsafe.

Constructing ΘπP requires solving the abstract transition prob-
lem, i.e., the problem of, given an abstract-state-label triple
(sP , l, s

′
P), deciding whether (sP , l, s′P) ∈ T π

P . As per the defini-
tion of ΘπP , this is the case iff for some operator (g, l, u) there exist
concrete states s ∈ [sP ] and s′ ∈ [s′P ] such that s |= g, s′ |= u(s)
and π(s) = l. In classical predicate abstraction where no policy
is considered and, hence, the condition π(s) = l is dropped, such
abstract transition problems are routinely encoded into satisfiability
modulo theories (SMT) [4]. The key challenge for PPA is how to en-
code this policy selection condition. VEA [44] have addressed this
problem for action policies πQ where Q is given by a feed forward
neural network, making use of an SMT solver specialized to neural
networks [29]. VEA [43] recently extended this approach to handling
neural policies πapp

Q under applicability filtering.
In this work we extend the PPA framework to the verification of

tree-ensemble policies. The key issue is which solver to use to dis-
patch abstract transition problem queries.

2.2 Additive Tree Ensembles

Given an input space X ⊆ Rk , a binary decision tree T consists
of two types of nodes. Internal nodes store a reference to a left and



right sub-tree, and a branching condition vi < α, where vi is an
attribute of the input v⃗ ∈ X and α ∈ R is a constant split value.
Leaf nodes have no children and store a leaf value ν ∈ R. For
an input v⃗ ∈ X , T (v⃗) is the value of the unique leaf reached by
traversing the tree, following the left child of an inner node if the
branching condition is satisfied by v⃗ and the right child otherwise.
Each leaf l is associated to a box(l), which defines an hypercube of
the input space by conjoining all the split conditions of the internal
nodes encountered in the root-to-leaf path. All examples v⃗ ∈ box(l)
evaluate to the value of l. An additive tree ensemble (tree ensem-
ble for short) is a sum of binary trees T (v⃗) :=

∑n
i=1 T

i(v⃗). We
consider multi-class classifiers CT which associate each class C
with a tree ensemble TC and define the class predictions through
C(v⃗) := argmaxCTC(v⃗) [11, 7].

2.3 The Veritas Tool

Given a classifier C, an important problem is determining whether
an input exists such that C(v⃗) = Ct for a target class Ct. Typically,
the input must belong to a constrained region Γ of the input space.
Veritas1 is a state-of-the-art tool for tree-ensembles [15, 9], which
casts this decision problem as the optimization problem

max
v⃗

f∗(v⃗) subject to v⃗ |= Γ,

f∗(v⃗) :=

[
TCt(v⃗)− max

C ̸=Ct
TC(v⃗)

] (1)

Veritas requires Γ to be a conjunction of box constraints, i.e., con-
ditions lvi ≤ vi < uvi where lvi , uvi ∈ R ∪ {−∞,∞}. It solves
(1) by means of a heuristic search that incrementally refines the start-
ing box Γ to a solution that is still a box, but only overlaps with one
leaf of each tree in the ensemble. If a solution with positive objec-
tive value exists for (1), then class Ct will be selected over all other
possible classes for every input within the solution box.

3 Encoding PPA Queries as Box Constraints
Our key observation is that PPA is agnostic to the policy representa-
tion. To verify a policy represented by a tree ensemble, all we require
is a solver to which the abstract transition problem queries can be
dispatched. Provided the solver is correct in answering these queries,
the correctness of the overall PPA machinery is preserved.

General purpose constraint solvers like Z3 [14] or Gurobi [23] fit
this profile. Here we instead investigate how to use Veritas, which
is tailored to tree ensembles, in PPA. As our experiments show, this
yields much superior verification performance.

The key challenge here is the expressivity of constraints needed.
As discussed, Veritas requires the input constraint to be a conjunction
of box constraints. Yet PPA requires complex constraints built from
linear arithmetic. Our core technical contribution is how to encode
these constraints for effective use of Veritas in the PPA context.

Our discussion is organized as follows. In Section 4, we show that
the PPA abstract transition queries can take the form (*) ∃v⃗ : v⃗ |=
Γ ∧Ψ and CT (v⃗) = Ct where Γ is a conjunction of box constraints
and Ψ is a Boolean combination of linear constraints. Here, we show
that such queries can be encoded as ∃v⃗′ : v⃗′ |= Γ and CT ′(v⃗′) =
Ct where T ′ penalizes inputs violating Ψ. We proceed bottom up,
first considering the encoding of individual linear constraints, then
detailing how to efficiently deal with their Boolean combination.

1 https://github.com/laudv/veritas

3.1 Linear Constraints over Integer Variables

Let ϕ := d1v1 + . . . drvr ▷◁ c be a linear constraint. The key ob-
servation is that the query (*) for Ψ = ϕ can be reduced to pure
box constraints by manipulating the tree ensemble. More specifically,
ϕ can be converted into an additional tree ensemble Tϕ such that
∃v⃗ : v⃗ |= Γ∧ϕ and CT (v⃗) = Ct iff ∃v⃗′ : v⃗′ |= Γ and CT ′(x⃗′) = Ct

for the modified tree-ensemble classifier CT ′ in which the tree en-
semble for Ct, TCt , is replaced by the union with Tϕ (yielding the
sum TCt +Tϕ). The latter query can then be handled by Veritas. We
next show how to construct Tϕ for integer variables v1, . . . , vr .

Let νTmax denote the maximal leaf value in a binary tree T , νTmin

denote the minimal leaf value, and let νTmax := maxC
∑
T∈TC

νTmax

and similarly νTmin be upper and lower bounds on the maximal and
minimal possible value of all the tree ensembles. Finally, let

δ := νTmin − νTmax (2)

be the difference between the minimal and maximal tree-ensemble
values. To generate the desired tree ensemble Tϕ, we first enumerate
all assignments to v1, . . . , vr violating d1v1 + . . . drvr ▷◁ c. This
is possible as the domains of the integer variables is bounded (hence
finite). However, it is exponential in the number of variables r in the
constraint, which limits scalability in general, but works for small
r as is typically the case in the PPA setting, which is our primary
interest. For each violating assignment α, we then add to Tϕ a binary
tree Tα that evaluates to Tα(v⃗) = δ if v⃗ agrees with α, and Tα(v⃗) =
0 otherwise. An example for ϕ := y − x = 3 with the violating
assignment α : x = 1, y = 3 is shown in Fig. 1.

Given that every v⃗ can agree with at most one violating assignment
α, we have Tϕ(v⃗) ∈ {0, δ}, and Tϕ(v⃗) = 0 iff v⃗ |= ϕ holds by con-
struction. This means in particular that (TCt + Tϕ)(v⃗) = TCt(v⃗)
for all v⃗ s.t. v⃗ |= ϕ. In other words, it holds for every v⃗ where
CT (v⃗) = Ct and v⃗ |= ϕ that CT ′(v⃗) = Ct. Vice versa, for all
v⃗ ̸|= ϕ and all classes C ̸= Ct, the choice of δ ensures that

(TCt + Tϕ)(v⃗) = TCt(v⃗) + δ

= TCt(v⃗)− νTmax + νTmin

≤ νTmin ≤ TC(v⃗)

and therewith CT ′(v⃗) ̸= Ct. Combining both observations yields:

Theorem 1. It holds for every tree-ensemble classifier CT , every
conjunction of box constraints Γ, every linear constraint ϕ over in-
teger variables, and every target class Ct that ∃v⃗ |= Γ ∧ ϕ with
CT (v⃗) = Ct iff ∃v⃗′ |= Γ with CT ′(v⃗′) = Ct where CT ′ replaces
TCt with TCt + Tϕ.

The compilation can be extended to conjunctions ϕ1 ∧ · · · ∧ ϕn
of linear constraints, using the observation that

∑n
i=1 Tϕi(v⃗) ≤ δ

as soon as v⃗ ̸|= ϕi for any i ∈ {1, . . . , n}; while being 0 if all
constraints are satisfied. Hence, substituting the target tree ensemble
TCt by the union with the tree ensembles Tϕ1 , . . . ,Tϕn yields:

Corollary 2. It holds for every tree-ensemble classifier CT , every
conjunction of box constraints Γ, linear constraints ϕ1, . . . , ϕn over
integer variables, and every target class Ct that ∃v⃗ |= Γ ∧

∧n
i=1 ϕi

with CT (v⃗) = Ct iff ∃v⃗′ |= Γ with CT ′(v⃗′) = Ct where CT ′ re-
places TCt with TCt +

∑n
i=1 Tϕi .
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Figure 1. Depiction of a tree Tα, for linear constraint y − x = 3 and
violating assignment α : x = 1, y = 3.

3.2 Linear Constraints over Real-Valued Variables

Let ϕ := d1v1 + . . . drvr ▷◁ c again be a linear constraint. The
construction of Tϕ just sketched works only if the domains of all
variables appearing in ϕ are finite. To handle (bounded) real-valued
variables, we exploit the structure of the tree ensembles themselves
to identify the values that need to be distinguished. To this end, for
an input variable v and a binary decision tree T , we denote with
Dv(T ) the set of values α over all branching conditions v < α in T .
For a tree ensemble T , Dv(T ) :=

⋃
T∈T Dv(T ) is the union of the

branching values for v in all the trees in T , and for the classifier CT ,
Dv(CT ) :=

⋃
C Dv(TC) gives the union over the tree ensembles of

all classes. Finally, for a variable v and set of values Dx, we denote
with B [Dx] = {l ≤ v < u | l, u ∈ Dx ∪ {−∞,∞} : l < u} the
set of box constraints on v induced by Dx.

We encode ϕ as the following tree ensemble TB
ϕ . For each combi-

nation of box constraints β⃗ = ⟨β1, . . . , βr⟩ ∈ B [Dv1(CT )]× · · · ×
B [Dvr (CT )] such that ϕ ∧ Γ ∧

∧r
i=1 βi is unsatisfiable (which can

be checked via SMT), we add to TB
ϕ the tree Tβ⃗ that evaluates to

Tβ⃗(v⃗) = δ (cf. Eq. (2)) if v⃗ |=
∧r
i=1 βi and Tβ⃗(v⃗) = 0 otherwise.

Example 1. Consider the linear constraint ϕ := y−x = 1, and sup-
pose that Dx(CT ) = {1.3},Dy(CT ) = {2.4}. Here, B [Dx(CT )] =
{−∞ ≤ x < 1.3, 1.3 ≤ x < ∞} and B [Dy(CT )] = {−∞ ≤ y <

2.4, 2.4 ≤ y < ∞}. Consider β⃗ = ⟨βx, βy⟩ with βx := −∞ ≤
x < 1.3 and βy := 2.4 ≤ y < ∞. Obviously, ϕ ∧ βx ∧ βy is
unsatisfiable. The tree Tβ⃗ is shown in Fig. 2.

This construction guarantees for all v⃗ where Tβ⃗(v⃗) = δ that v⃗ ̸|=
ϕ. In other words, if Tϕ(v⃗) ≤ δ then v⃗ ̸|= ϕ. Conversely, however,
Tϕ(v⃗) = 0 does not imply in general that v⃗ |= ϕ as opposed to our
prior linear-constraint tree encoding. Nevertheless, TB

ϕ suffices for
our purposes.

Namely, let CT ′ again be the tree ensemble classifier where we
substitute TCt by TCt + TB

ϕ . We want to show that ∃v⃗ : v⃗ |= Γ ∧ ϕ
such that CT (v⃗) = Ct iff ∃v⃗′ : v⃗′ |= Γ and CT ′(v⃗′) = Ct. The
only if case follows directly from our previous observation. Specif-
ically, with v⃗ |= ϕ, we have TB

ϕ (v⃗) = 0, which implies CT ′(v⃗) =
CT (v⃗) = Ct. Consider the opposite case. Suppose for contradiction
that there were no v⃗ satisfying v⃗ |= Γ ∧ ϕ so that CT (v⃗) = Ct.
Consider the box-constraint combination β = ⟨β1, . . . , βr⟩ derived
from v⃗′ as follows. For each index i ∈ {1, . . . , r}, let βi be the box
constraint li ≤ vi < ui where li := sup{d ∈ Dvi(CT ) | d ≤ v′i}
is the largest branch value lower bounding the corresponding value
in v⃗′, and, similarly, ui := inf{d ∈ Dvi(CT ) | d > v′i}. The se-
lection of β⃗ ensures that every v⃗′′ so that li ≤ v′′i < ui, for all
i ∈ {1, . . . , r}, and which agrees with v⃗′ on the values at the re-
maining indices, falls into the same leaf box box (l) for every tree
in the ensemble. Therefore, CT ′(x⃗′′) = CT ′(x⃗′) = Ct. Since
TCt(v⃗′′) ≥ (TCt + TB

ϕ )(v⃗′′) as per the definition of TB
ϕ , it fol-

lows that CT (v⃗
′′) = Ct, which, by assumption, means that every

such v⃗′′ must violate ϕ ∧ Γ. Hence, Tβ⃗(v⃗
′′) = δ. It follows that

(TCt + TB
ϕ )(v⃗′′) ≤ TCt(v⃗′′) + δ ≤ TC(v⃗

′′) for all classes C,
so, in particular, (TCt + TB

ϕ )(v⃗′) ≤ TC(v⃗
′), in contradiction to

CT ′(v⃗′) = Ct. The encoding can be extended to conjunctions of
linear constraints in the same manner as described above. We get:

Theorem 3. It holds for every tree-ensemble classifier CT , ev-
ery conjunction of box constraints Γ, arbitrary linear constraints
ϕ1, . . . , ϕn, and every target class Ct that ∃v⃗ |= Γ ∧

∧n
i=1 ϕi with

CT (v⃗) = Ct iff ∃v⃗′ |= Γ with CT ′(v⃗′) = Ct where CT ′ replaces
TCt with TCt +

∑n
i=1 T

B
ϕi

.

y < 2.4

0

x < 1.3

δ

0

Figure 2. Encoding T
β⃗

for linear constraint ϕ : y = x+ 1, for

β⃗ = ⟨−∞ ≤ x ≤ 1.3, 2.4 ≤ y ≤ ∞⟩. Here, x ≤ 1.3 ∧ y ≥ 2.4 ∧ ϕ is
unsatisfiable. Here ϵ accounts for floating point precision.

Note that the construction of TB
ϕ is not limited to real-valued vari-

ables, but works for integer variables as well. However, the construc-
tion TB

ϕ is in general more complex than that of Tϕ for integer vari-
ables; the former scaling exponentially in r and quadratically in the
variable domain size, while the latter also scales exponentially in r
but only linearly in the domain size.

3.3 Disjunctive Constraints

The query (*) for a constraint Γ∧Ψ where Ψ is a disjunction of linear
constraints

∨n
i=1 ϕi can be cast as the separate queries of n box-

constraint tasks, using the previously introduced technique to deal
with the linear constraints. However, this approach does not scale
to conjunctions Ψ =

∧m
i=1 ψm of disjunctions (or symmetrically,

disjunctions of conjunctions), which would decompose into nm prue
box-constraint queries. Here we show how to encode such constraints
efficiently, breaking such Ψ down into simpler formulae following
ideas similar to the Tseytin transformation [42].

We modify the tree ensemble classifier, introducing auxiliary in-
teger input variables vϕ, for each linear constraint ϕ in Ψ, meant to
represent the satisfaction of ϕ. Similar to before, we enforce their
semantic meaning by including additional decision trees in the en-
sembles. These helper variables will be only used in the trees we
add to the ensemble; the original ones are left untouched. For sim-
plicity, we assume here that all linear constraints are over integer
variables, allowing us to use the Tϕ encoding from Section 3.1. The
overall construction can however be straightforwardly generalized
to any combination of linear constraints, including combinations of
integer-only and real-valued-variable linear constraints.

Let ϕ be some linear constraint in Ψ. Let Tϕ be the tree ensemble
representing the dissatisfaction of ϕ, i.e., the ensemble guaranteeing
Tϕ(v⃗) = δ iff v⃗ ̸|= ϕ, and Tϕ(v⃗) = 0 otherwise. To link the auxiliary
variable vϕ with the satisfaction of ϕ, we modify Tϕ, adding to all
decision trees the additional branching condition vϕ < 1. As a result,
the tree ensemble evaluates to δ for the extended input [v⃗ vϕ] only if
ϕ is violated by v⃗ while vϕ < 1. Vice versa, if the tree evaluates
to 0 and vϕ < 1, then v⃗ must necessarily satisfy ϕ. In other words,
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Figure 3. Extension of the tree Tα from Fig. 1 by the variable vϕ.

vϕ < 1 acts as an indicator of the satisfaction of ϕ. Fig. 3 shows
the extension of the example from Fig. 1. Let TΨ be the union over
the so-obtained tree ensembles for all constraints in Ψ. Finally, we
represent each disjunction ψi in Ψ as a single decision tree, Tψi ,
which evaluates to 0 iff vϕ < 1 holds for any linear constraint in ψi,
and to δ otherwise. Fig. 4 shows an example.

vϕ1 < 1

0

vϕ2 < 1

0

δ

Figure 4. Encoding Tψ for a formula ψ = ϕ1 ∨ ϕ2. Here vϕ is an
indicator variable to represent the dissatisfaction of linear constraint ϕ.

Let v⃗∗ denote a feature vector for the extended tree ensemble input
space. Suppose that both TΨ(v⃗

∗) = 0 and
∑n
i=1 Tψi(v⃗

∗) = 0. The
latter implies that every disjunction ψi contains a linear constraint ϕ
such that vϕ < 1. The former then implies, as noted before, that v⃗∗

satisfies ϕ. In combination, v⃗∗ therefore satisfies all the disjunctions
ψi. This allows to cast the query over the constraint Γ ∧ Ψ, where
Ψ =

∧n
i=1 ψi, as the query ∃v⃗∗ : v⃗∗ |= Γ and CT ′(v⃗∗) = Ct for the

modified classifier CT ′ where the tree ensemble TCt is replaced by
TCt +TΨ+

∑n
i=1 Tψi . This is true because, if the original query has

a solution v⃗, one obtains a solution v⃗∗ to the compiled query simply
by assigning the auxiliary variables values according to the satisfac-
tion of the linear constraints. On the other hand, if v⃗∗ is a solution
to the compiled query, it immediately follows that TΨ(v⃗

∗) = 0 and∑n
i=1 Tψi(v⃗

∗) = 0, which as just shown implies that v⃗∗ satisfies
Γ ∧ Ψ, and therefore gives rise to a solution to the original query
where one simply drops the auxiliary variables.

Theorem 4. It holds for every tree-ensemble classifier CT , every
conjunction of box constraints Γ, arbitrary disjunctions over linear
constraints ψ1, . . . , ψn, and every target class Ct that ∃v⃗ |= Γ ∧∧n
i=1 ψi with CT (v⃗) = Ct iff ∃v⃗∗ |= Γ with CT ′(v⃗∗) = Ct where

CT ′ replaces TCt with TCt + TΨ +
∑n
i=1 Tψi .

Note that this construction can be extended to arbitrarily nested
Boolean combinations of linear constraints, by introducing also aux-
iliary variables vψ representing sub-formulas ψ, and linking them to
the satisfaction of ψ via additional decision trees similar to those for
disjunctions described above.

4 Policy Predicate Abstraction for Tree Ensembles
Given the tools from Section 3, we are finally ready to detail how to
verify the safety of tree-ensemble action policies. We consider poli-
cies represented by tree-ensemble classifiers C that predict an ac-
tion label from L (the classes), taking the state variables as input.

More specifically, as noted before, we consider two kinds of policies,
πC(s) = C(s) = argmax l∈LTl(s), using directly the predictions
of the classifier, respectively πapp

C (s) = argmax l∈L(s)Tl(s), where
we restrict classification to the applicable actions only. To verify the
safety of these policies, we observe that PPA in principle applies to
arbitrary policy representations, provided that a method solving the
abstract policy-transition problem is available. Here we show how to
realize this potential for tree-ensemble policies.

Let P ⊆ Φ be a set of predicates, and let (sP , l, s′P) be an abstract
transition candidate. The conditions under which (sP , l, s

′
P) ∈ T π

P
can in principle be encoded into SMT or MILP. However, as our
empirical results show (Section 5), using such generic encodings
and solvers severely limits scalability. Instead, here we show how
to leverage Veritas which is specialized to tree ensemles.

4.1 Transition Test Without Applicability Filter

We start with the policy πC . Representing the test (sP , l, s′P) ∈ T πC
P

as a query on C similar to Section 3 poses the challenge to deal
with the dynamics of the transition system, involving two distinct
abstract states (start and target) instead of a single input region as
in the static settings for which Veritas was developed. We formulate
the constraints on the target state over a primed copy of the state
variables, as is commonly done in many settings. We handle these
primed variables in Veritas queries by (temporarily) adding them as
additional input variables to the tree ensembles.

Specifically, to determine whether (sP , l, s
′
P) ∈ T πC

P , we pro-
cess each l-labeled operator (g, l, u) in turn, creating an individual
query ∃s, s′ : s, s′ |= Γ ∧ g ∧ u ∧ sP ∧ s′P so that C(s) = l (thus,
πC(s) = l), using the original or primed state variables within these
constraints as appropriate. The box constraints Γ represent the state
variable bounds and are the same in all queries. The g constraint
forces s to satisfy the operator’s guard. u ties the variable values
in s and s′ according to the operator’s update. Finally, sP and s′P
enforce that s and s′ satisfy the same predicates as the respective
abstract state. Note that all these constraints are either linear con-
straints themselves, or Boolean combinations thereof. To solve this
query with Veritas, we follow the steps detailed in Section 3 to trans-
late it into an equivalent query that uses only box constraints. The
transition (sP , l, s

′
P) exists iff Veritas finds a solution to that query.

4.2 Transition Test With Applicability Filter

Casting the transition test (sP , l, s′P) ∈ T π
app
C

P as a tree-ensemble
query raises the additional complication that the applicable actions
are dependent on the concrete state s ∈ [sP ], not known at query
generation time. In order to take into account the actions’ guards,
we follow the principles from Section 3, augmenting the tree en-
sembles Tl′ for every label l′ by trees T app

l′ penalizing l′ if not ap-
plicable for the given input s. Specifically, let l′ ∈ L be any ac-
tion label. l′ is applicable in a state s iff s satisfies the disjunction
Ψl′ :=

∨
(g,l′,u)∈O g of guards of all l-labeled operators. Let TΨl′

be the tree ensemble compilation of Ψl′ , as described in Section 3,
i.e., the tree ensemble that evaluates to Ψl′(s) ≤ δ if s ̸|= Ψl′ , for δ
defined in Eq. (2), and to 0 otherwise.

We make two modifications to C: (1) we replace Tl′ by Tl′ +TΨl′

for every action label l′ ∈ L, l′ ̸= l (l is handled separately); and (2)
we add to C an auxiliary “noop” label class lnoop, which we assume to
be applicable in all states and whose execution does not change the
state, and we associate it with the tree ensemble Tlnoop(s) = νTmin (cf.



Section 3.1). Condition (1) makes sure that the output of the modi-
fied classifier for a state s, i.e., ls := argmax l′∈L(Tl′ +TΨl′ )(s), is
guaranteed to be applicable in s, i.e., s |= Ψls , therewith obtaining
πapp
C (s) = argmax l′∈L(s)Tl′(s) = argmax l′∈L(Tl′ + TΨl′ )(s) =

C′(s). The additional label class (2) is needed to handle the special
case (sP , l, s

′
P), where (a) sP has some l-labeled transition, but no

l-labeled transition to s′P , while (b) sP does not have an l′-labeled
transition for any l′ ̸= l. Without lnoop, the penalties would can-
cel each other out, possibly creating a solution to the tree-ensemble

query although (sP , l, s
′
P) /∈ T π

app
C

P . Here, lnoop acts as the fallback,
given that Tlnoop always returns a value higher than the penalty. Note
that lnoop can actually only influence the result in that particular case
given the choice of the value νTmin.

To test whether (sP , l, s′P) ∈ T π
app
C

P , we proceed as described in
Section 4.1: we iterate over each l-labeled operator (g, l, u), using
Veritas to solve the query ∃s, s′ : s, s′ |= Γ ∧ g ∧ u ∧ sP ∧ s′P so
that C′(s) = l for the modified classifier C′ given above.

5 Experiments
We ran experiments on a substantial extension of VEA’s bench-
marks, comparing (1) Veritas vs. Z3 and Gurobi in PPA, (2) policy
quality and verifiability of tree-ensembles vs. their neural teachers,
and (3) PPA vs. NUXMV. In what follows, we explain these compar-
isons, describe our benchmarks, and discuss our results.

Our implementation of PPA for tree-ensemble policies extends
VEA’s C++ code for neural policies.1 All experiments were run on
Intel Xeon E5-2650v3 CPUs, using time and memory cutoffs of 12h
and 4GB. Throughout, we consider policy verification with and with-
out applicablility filtering.

5.1 Comparison to Competing Methods

Comparison (1): Our key contribution are methods allowing to use
the dedicated solver Veritas within PPA for tree-ensemble policies.
Yet the necessary transition tests can also be encoded into generic
constraint languages, and dispatched with generic solvers. To eval-
uate this alternative, we compared to SMT encodings solved with
Z3 [14], as well as to mixed-integer linear program encodings [27],
solved with Gurobi [23]. The results are decisive: PPA verification
with Gurobi is competitive in our smallest Blocksworld benchmarks;
in all other comparisons, Veritas dominates by at least an order
of magnitude. This goes to show the advantage of using a model-
specific solver rather than generic ones (consistently with prior re-
sults for Veritas on classifier robustness verification [15]). In what
follows, we show data only for PPA with Veritas.

Comparison (2): Our tree-ensemble policies are learned from
neural teachers as detailed below. So what are the merits of either
policy representation, in terms of policy quality vs. policy verifia-
bility? To answer this question, we compare these measures across
policy representations.

Comparison (3): Finally, while ours is the first work dedicated
to verification of tree-ensemble policies, one can encode such poli-
cies into standard verification languages, and thus apply standard
verification methods. To evaluate how our proposed PPA machin-
ery fares against such methods, we compare to a broad range of
state-of-the-art verification methods implemented in NUXMV [10].
Specifically, we experiment with the following NUXMV configura-
tions: bounded model checking (BMC) [5] and simple bounded

1 https://zenodo.org/records/12807957

model checking (SBMC) [6], each using SMT instead of SAT; ex-
plicit predicate abstraction (EPA) within a CEGAR loop, the clos-
est relative of the PPA approach we propose here; implicit predi-
cate abstraction (IPA) [39], which runs BMC with k-induction [32]
within a CEGAR loop; an SMT-based cone of influence (COI) al-
gorithm [13]; and NUXMV’s IC3 implementation [12].

5.2 Benchmarks: Models

A benchmark for policy verification is a pair of a transition system,
modeled in the JANI language [8], and a policy. We discuss the for-
mer here, and the latter in the next subsection. We consider two types
of JANI models:

BInt: Bounded-Integer State Variables. We use the JANI mod-
els Blocksworld and Transport introduced by VEA [44]. We do not
consider their 8-puzzle benchmark, where VEA’s neural policies per-
form very poorly (never reach the goal), and we too failed to obtain
any reasonable-performing neural or tree-ensemble policy.

Blocksworld comes in two versions, “cost-aware (CA)” and “cost-
ignore (CI)” that distinguish whether or not the policy receives as
input a subset of state variables encoding action cost. For Transport,
we introduce a new domain version which includes an additional fea-
ture, namely a state variable that tracks the number of packages to the
left of the truck’s position. This feature is beneficial for training safe
policies, for both types of policy representations. We also introduce
a new BInt benchmark, Beluga, based on a logistics application at
Airbus. Recent work [37] introduced Beluga as a PDDL benchmark;
here we adapt it to the JANI and policy verification context. Beluga
is a factory logistics problem where product parts arriving on a Bel-
uga transport plane must be sent to a factory in a particular order,
potentially different from the order in which they are arriving. To
compensate for a possible mismatch, there is a number of racks in
which arriving parts can be stored temporarily. The start condition
permits arbitrary orderings of the arriving parts. The goal requires
having sent all parts to the factory, under non-determinism which
part will be requested next at each step. A state is unsafe if all racks
are occupied (modelling the practical guideline to keep at least one
rack in store for any parts arriving out of schedule).

BReal: Real-Valued State Variables. Policy verification in Jani
models with real-valued state variables has so far not been con-
sidered. We contribute a new benchmark following previous work
by Amir et al. [1] on Robotics Turtlebot 3, a robot widely used in
robotics research [2, 1]. The robot navigates in a continuous space,
trying to reach a target position while avoiding obstacles. The sensing
consists of multiple continuous (limited-range) lidar sensors estimat-
ing the distance to obstacles. The robot can perform three actions:
rotate left, rotate right and move forward. Amir et al. train neural
policies to control the robot. They perform a limited form of safety
verification by encoding single-step collision avoidance into SMT,
deciding whether there exist states where the robot is directly in front
of an obstacle yet the policy decides to move forward.

Here, we extend this to general collision avoidance, deciding
whether the robot ever moves into an obstacle. We scale this veri-
fication benchmark by a start condition fixing a distance of K steps
to the nearest obstacle.

We model the Turtlebot transition semantics in JANI. The phys-
ical environment of Turtlebot however involves non-linear sen-
sor updates. Our JANI model over-approximates these via non-
deterministic action outcomes. Safety in this over-approximation im-
plies safety in the actual environment; while unsafe paths might be



Table 1. Results on BInt benchmarks for neural-network (NN; Xh hidden layer size X) and tree-ensemble (GB, RF) policies with and without applicable
actions filtering. Fid: fidelity, GFrac: fraction of goal-reaching simulations, Rew: Simulation runs’ average reward, Safe: Verfication outcome. PPA, BMC,

SBMC, COI, IPA, IC3: total verification runtime (sec). EPA runs out of memory everywhere and is hence omitted.

App Filter Enabled No App Filter
NuXMV NuXMV

Jani Model Policy Fid GFrac Rew Safe? PPA BMC SMBC COI IPA IC3 GFrac Rew Safe? PPA BMC SBMC COI IPA IC3

4Blocks CI

NN (16h) 1.00 172 Yes 14 — — — — — 1.00 172 Yes 3 — — — — —
GB 1.00 1.00 172 Yes 4 — — — 134 1683 1.00 172 Yes 0 — — — 160 1020
RF 1.00 1.00 172 Yes 4 — — — 95 391 1.00 172 Yes 1 — — — 35 420
NN (32 h) 1.00 172 Yes 70 — — — — — 1.00 172 Yes 20 — — — — —
GB 1.00 1.00 172 Yes 4 — — 12 4 3 1.00 172 Yes 0 — — 11 4 6
RF 1.00 1.00 172 Yes 3 — — 15 0 42 1.00 172 Yes 0 — — 9 1 11
NN (64 h) 1.00 172 Yes 40768 — — — — — 1.00 173 Yes 2384 — — — — —
GB 1.00 1.00 172 Yes 8 — — — 2594 2041 1.00 172 Yes 2 — — — 77 1030
RF 1.00 1.00 172 Yes 4 — — — — 34749 1.00 172 Yes 1 — — — 1211 3757

6Blocks CI
NN (64 h) 0.97 156 Yes 6030 — — — — — 0.98 156 Yes 2154 — — — — —
GB 0.99 0.99 157 Yes 2595 — — — — — 0.99 156 Yes 30 — — — — —
RF 1.00 0.99 157 Yes 638 — — — — — 0.99 156 Yes 9 — — — — —

8Blocks CI
NN (64 h) 0.60 82 — — — — — — — 0.60 73 Yes 12717 — — — — —
GB 0.98 0.65 90 — — — — — — — 0.65 84 Yes 6393 — — — — —
RF 0.99 0.70 98 — — — — — — — 0.70 92 — — — — — — —

4Blocks CA

NN (32 h) 1.00 172 Yes 2251 — — — — — 1.00 172 Yes 197 — — — — —
GB 1.00 1.00 172 Yes 5 — — — — — 1.00 172 Yes 7 — — — — —
RF 0.99 0.00 2 Yes 5 — — 1332 237 551 0.00 -26 Yes 0 — — 1891 161 578
NN (64 h) 1.00 172 — — — — — — — 1.00 173 — — — — — — —
GB 1.00 1.00 172 Yes 6 — — — — — 1.00 172 Yes 2 — — — — —
RF 1.00 1.00 172 Yes 4 — — — — — 1.00 172 Yes 1 — — — — —

6Blocks CA
NN (64 h) 0.94 150 — — — — — — — 0.95 150 Yes 16853 — — — — —
GB 0.99 0.96 151 Yes 19965 — — — — — 0.96 151 Yes 1600 — — — — —
RF 0.99 0.97 153 Yes 9343 — — — — — 0.97 153 Yes 1135 — — — — —

8Blocks CA
NN (64 h) 0.00 -8 — — — — — — — 0.00 -37 — — — — — — —
GB 0.76 0.00 -12 — — — — — — — 0.00 -30 — — — — — — —
RF 0.35 0.00 -13 — — — — — — — 0.00 -50 — — — — — — —

Transport
NN (16h) 0.99 105 No 8927 774 1377 — 2623 — 0.98 102 No 17652 — — — 35 —
GB 0.99 0.91 93 No 887 14614 7089 — — — 0.77 67 No — 5116 2544 18185 — —
RF 0.99 0.91 99 No 97 — — — — — 0.77 71 Yes 188 — — — — —

Transport +

NN (16h) 0.98 149 Yes 2521 — — — — — 0.03 -83 Yes 373 — — — — —
GB 0.86 1.00 142 Yes 21 — — 5 0 2 0.01 -84 Yes 6 — 134 5 0 3
RF 0.79 1.00 119 Yes 86 — 5617 5 0 10 0.00 -85 Yes 66 — 288 2 0 19

Feature NN (64h) 0.97 148 — — — — — — — 0.01 -92 — — — — — — —
GB 0.94 1.00 151 Yes 35 — — 2517 138 263 0.00 -93 Yes 40 — 23955 2149 143 172
RF 0.97 1.00 153 Yes 22 — — 1658 67 327 0.01 -93 Yes 6 — — — 80 447

Beluga4Parts
NN (64h) 0.90 134 — — — — — — — 0.00 -100 Yes 4 — — — — —
GB 0.99 1.00 158 — — — 0 0 24 542 0.00 -100 Yes 1 — 0 0 23 157
RF 0.98 1.00 157 Yes 2 — 2 2 52 2047 0.00 -100 Yes 1 — 2 1 43 165

Beluga5Parts
NN (256h) 0.99 161 — — — — — — — 0.00 -100 — — — — — — —
GB 0.99 0.85 119 — — — 3 3 7 27 0.00 -100 Yes 0 — 3 3 5 15
RF 0.79 0.46 62 Yes 16 — 12 14 — — 0.00 -100 Yes 8 — 11 16 — —

Beluga6Parts
NN (64h) 0.84 114 — — — — — — — 0.00 -100 — — — — — — —
GB 0.89 0.60 73 — — — 2 2 — — 0.00 -100 Yes 11 — 1 2 — —
RF 0.92 0.01 -22 — — — — 10 — — 0.00 -100 Yes 14 — — 13 — —

spurious (only exist in the over-approximation).
We remark that, by extending VEA’s benchmark set in this man-

ner, as a side effect of our work we also obtain new results for PPA
verifcation of neural policies, in particular the first results for such
verification in an infinite state space (Turtlebot). We briefly discuss
these additional results below.

5.3 Benchmarks: Tree-Ensemble Policies

We train tree-ensemble policies through imitation learning, using
for each benchmark a neural-network policy as the teacher (teacher
selection is described below). For training the policies, we con-
sider gradient-boosted trees (short GB) [11] and random forests
(short RF) [7], with varying hyperparameter settings: tree depth in
{4, 6, 8, 10, 15}; number of trees in {5, 10, 20, 30}; and learning rate
in {0.4, 0.6, 0.8}. The training-set generation and policy selection
procedures differ between BInt and BReal.

BInt. The training set is generated by executing the teacher pol-
icy in the Jani model from 5000 randomly sampled start states, with
the applicability filter enabled, collecting all pairs of state and action
value predictions on these runs. We obtain different tree-ensemble
policies from this training set by fitting a multi-target regression
model [3] for each hyperparameter combination. To choose among
the trained policies, we evaluated them through simulation runs from
10,000 randomly chosen start states (the test set; same for all poli-
cies) with the applicability filter enabled, considering three metrics:
Reward, the reward function used for neural policy training; GFrac,
the fraction of simulation runs where the policy reached a goal state;
and Fidelity, the fraction of states for which the tree-ensemble pol-
icy selects the same action as its teacher. We select the GB and the
RF tree ensemble that achieve the highest reward, discarding policies
that were already found unsafe during simulation. If several policies
obtain the highest reward, we break ties by GFrac, depth, and then
number of trees, thus encouraging selecting smaller tree ensembles.



BReal. The overapproximating Turtlebot Jani model doesn’t sup-
port simulation runs. Instead, for the training set, we randomly gen-
erated 1,000,000 environment states. Also, we used a classification
loss here, which works well on the only 3 actions in this domain.
Otherwise, training proceeds as above. To choose among the trained
policies, we sampled 10,000 environment states (same for all poli-
cies), and selected the GB respectively RF policies achieving highest
fidelity on this test set. Similarly to before, we break ties by depth,
and then number of trees.

Teacher Policies. For each JANI model, like VEA we consider neu-
ral policies with different hidden layer sizes. To obtain high-quality
tree-ensemble policies, we chose as teachers only those neural poli-
cies whose average reward measured on the test set (cf. above) is
within 1% of the best-performing neural policy. Also, we discard
neural policies found unsafe during the test runs.

In Blocksworld, we use VEA’s neural policies. For Trans-
port+Feature and Beluga, we trained new policies ourselves using Q-
learning. In Transport as already used by VEA, VEA’s policies never
reach the goal, and we were not able to learn a useful neural policy
with Q-learning either. We instead designed a handmade domain-
specific policy, which we used as a teacher for the neural policy in
imitation learning. The neural policy was then used as teacher for the
tree-ensembles as elsewhere. For Turtlebot, we select two policies
from the ones trained by Amir et al. [1], one proved safe and one
proved unsafe for single-step collision avoidance.

5.4 Results

As previously discussed, the comparison (1) of Veritas against Z3
and Gurobu was decisive so data for Z3 and Gurobi is not included
here. In what follows, we discuss the comparison (2) between PPA
verification of neural vs. tree-ensemble policies, as well as the com-
parison (3) between PPA and state-of-the-art methods implemented
in NUXMV. We organize the discussion into one section for the BInt,
and one for the BReal benchmarks.

BInt. Table 1 shows our results for the BInt benchmarks. Let us
first discuss comparison (3). Explicit predicate abstraction (EPA) is
not in Table 1 as it runs out of memory everywhere. The same is
the case in Turtlebot discussed below. Hence our PPA approach out-
classes its closest relative in NUXMV.

With respect to the other NUXMV configurations, for tree-
ensemble policies PPA is highly complementary. It outperforms
NUXMV in the Blocksworld, and mostly also in Transport. In Trans-
port+Feature and Beluga, without applicability filtering PPA and
NUXMV are roughly on par, with PPA exhibiting consistently good
performance while the best NUXMV configuration depends on the
domain. With applicability filtering, there are NUXMV configurations
that outperform PPA.

For neural policies, the picture of PPA vs. NUXMV is consistent
with VEA’s findings [45]: NUXMV does not succeed in anything ex-
cept finding unsafe paths in Transport.

Consider now comparison (2). In terms of policy quality, our tree-
ensemble policies typically closely replicate their neural teachers. In
almost all cases, fidelity is close to 1.00, and goal fraction as well as
reward match that of the neural teacher. The only exception is Bel-
uga, where it is sometimes challenging to learn high-quality policies.
In all domains, to the extent we can verify it, the best tree-ensemble
policy is safe whenever the neural teacher policy is.

In terms of policy verifiability, the tree-ensemble policies are con-
sistently verified faster than their neural teachers, often by orders of

Table 2. Results for Turtlebot. Abbreviations as in Table 1. Neural policies
trained by Amir et al. [1], one safe (top), one unsafe (bottom).

Jani model Policy Fid Safe? PPA

1 step-Turtlebot
NN (16h) — Yes 3.9
GB 0.98 Yes 629.3
RF 0.99 Yes 2.9

8 step-Turtlebot
NN (16h) — Yes 3.8
GB 0.98 Yes 633.4
RF 0.99 Yes 2.9

14 step-Turtlebot
NN (16h) — Yes 3.9
GB 0.96 Yes 630.9
RF 0.99 Yes 2.9

1 step-Turtlebot
NN (16h) — No 0.9
GB 0.98 Yes 1236.5
RF 0.93 Yes 1.2

8 step-Turtlebot
NN (16h) — No 80.3
GB 0.98 Yes 69.3
RF 0.93 Yes 1.2

14 step-Turtlebot
NN (16h) — No 921.3
GB 0.98 Yes 597.2
RF 0.93 Yes 1.2

magnitude (the only exception is Transport 16h GB without appli-
cability filter). There are several instances where the tree-ensemble
policies are successfully verified to be safe, sometimes within sec-
onds, while the verification of their teachers times out after 12 hours.

BReal. Table 2 shows the results for Turtlebot. All actions are al-
ways applicable here so we do not distinguish with vs. without appli-
cability filtering. Instead, we distinguish two neural polices trained
by Amir et al. [1], a safe one (top) vs. an unsafe one (bottom).

Comparison (3) is quickly done in Turtlebot: all NUXMV config-
urations run out of time or memory everywhere and are thus not in-
cluded in the table.

Regarding comparison (2), for the safe neural policy the most re-
markable observation is the constant scaling in K. PPA always iden-
tifies the small reason for safety despite the growing obstacle dis-
tance. For the unsafe neural policy, verification difficulty scales with
K for the neural and GB policies, while the RF policies are verified
quickly. Oddly, the tree policies are safe here (in the last step, un-
like their neural teacher, they choose to rotate instead of driving into
the wall). This is a coincidence in the learning process, there is no
incentive to behave differently from the teacher.

6 Conclusion

We show how to use Veritas in PPA, establishing the first methodol-
ogy dedicated to verification of tree-ensemble policies. We find that
(1) using Veritas is vastly superior to using generic solvers; (2) our
tree ensembles typically have similar quality as their neural teachers,
while being much faster to verify; and (3) PPA is complementary to
state-of-the-art methods in NUXMV, outperforming them in half of
our benchmarks.

An obvious opportunity for future work is to tailor some of the
competitive algrithms in NUXMV to ML models, in particular to tree
ensembles. Regarding tree ensembles as a policy representation, an
important topic is automatic feature generation (e.g. [16]), and ex-
tending PPA verification to deal with such features. A very general
hypothesis is that, within the realm of problems where a full verifi-
cation can be hoped for, tree ensembles often offer a better trade-off
between policy quality vs. verifiability than neural networks. Much
more work is needed to explore this hypothesis in full.
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