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Abstract. In Verification and in (optimal) AI Planning, a successful method is to for-
mulate the application as boolean satisfiability (SAT), and solve it with state-of-the-art
DPLL-based procedures. There is a lack of understanding of why this works so well. Fo-
cussing on the Planning context, we identify a form of problem structure concerned with the
symmetrical or asymmetrical nature of the cost of achieving the individual planning goals.
We quantify this sort of structure with a simple numeric parameter called AsymRatio,
ranging between 0 and 1. We run experiments in 10 benchmark domains from the Inter-
national Planning Competitions since 2000; we show that AsymRatio is a good indicator
of SAT solver performance in 8 of these domains. We then examine carefully crafted syn-

thetic planning domains that allow control of the amount of structure, and that are clean
enough for a rigorous analysis of the combinatorial search space. The domains are param-
eterized by size, and by the amount of structure. The CNFs we examine are unsatisfiable,
encoding one planning step less than the length of the optimal plan. We prove upper and
lower bounds on the size of the best possible DPLL refutations, under different settings
of the amount of structure, as a function of size. We also identify the best possible sets
of branching variables (backdoors). With minimum AsymRatio, we prove exponential
lower bounds, and identify minimal backdoors of size linear in the number of variables.
With maximum AsymRatio, we identify logarithmic DPLL refutations (and backdoors),
showing a doubly exponential gap between the two structural extreme cases. The reasons
for this behavior – the proof arguments – illuminate the prototypical patterns of structure
causing the empirical behavior observed in the competition benchmarks.
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1. Introduction

There has been a long interest in a better understanding of what makes combinatorial
problems from SAT and CSP hard or easy. The most successful work in this area in-
volves random instance distributions with phase transition characterizations (e.g., [10, 35]).
However, the link of these results to more structured instances is less direct. A random un-
satisfiable 3-SAT instance from the phase transition region with 1,000 variables is beyond
the reach of any current solver. On the other hand, many unsatisfiable formulas from Verifi-
cation and AI Planning contain well over 100,000 variables and can be proved unsatisfiable
within a few minutes (e.g., with Chaff [46]). This raises the question as to whether one
can obtain general measures of structure in SAT encodings, and use them to characterize
typical case complexity. Herein, we address this question in the context of AI Planning.
We view this as an entry point to similar studies in other areas.

In Planning, methods are developed to automatically solve the reachability problem
in declaratively specified transition systems. That is, given some formalism to describe
system states and transitions (“actions”), the task is to find a solution (“plan”): a sequence
of transitions leading from some given start (“initial”) state to a state that satisfies some
given non-temporal formula (the “goal”). Herein, we consider the wide-spread formalism
known as “STRIPS Planning” [21]. This is a very simple formal framework making use of
only Boolean state variables (“facts”), conjunctions of positive atoms, and atomic transition
effects; details and notations are given later (Section 3).

We focus on showing infeasibility, or, in terms of Planning, on proving optimality of
plans. We consider the difficulty of showing the non-existence of a plan with one step
less than the shortest possible – optimal – plan. SAT-based search for a plan [39, 40, 41]
works by iteratively incrementing a plan length bound b, and testing in each iteration a
formula that is satisfiable iff there exists a plan with b steps. So, our focus is on the
last unsuccessful iteration in a SAT-based plan search, where the optimality of the plan
(found later) is proved. This focus is relevant since proving optimality is precisely what
SAT solvers are best for, at the time of writing, in the area of Planning. On the one
hand, SAT-based planning won the 1st prize for optimal planners in the 2004 International
Planning Competition [28] as well as the 2006 International Planning Competition. On the
other hand, finding potentially sub-optimal plans is currently done much faster based on
heuristic search (with non-admissible heuristics), e.g. [6, 32, 24, 27, 57].

In our work, we first formulate an intuition about what makes DPLL [15, 14] search
hard or easy in Planning. We design a numeric measure of that sort of problem structure,
and we show empirically that the measure is a good indicator of search performance in
many domains. We also perform a case study: We design synthetic domains that capture
the problem structure in a clean form, and we analyze DPLL behavior in detail, within
these domains.

1.1. Goal Asymmetry. In STRIPS Planning, the goal formula is a conjunction of goal
facts, where each fact requires a Boolean variable to be true. The goal facts are commonly
referred to as goals, and their conjunction is referred to as a set of goals. In most if not
all benchmark domains that appear in the literature, the individual goal facts correspond
quite naturally to individual “sub-problems” of the problem instance (task) to be solved.
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The sub-problems typically interact with each other – and this is the starting point of our
investigation.

Given tasks with the same optimal plan length, our intuitions are these. (1) Proving
plan optimality is hard if the optimal plan length arises from complex interactions between
many sub-problems. (2) Proving plan optimality is easy if the optimal plan length arises
mostly from a single sub-problem. To formalize these intuitions, we take a view based on
sub-problem “cost”, serving to express both intuitions with the same notion, and offering
the possibility to interpolate between (1) and (2). By “cost”, here, we mean the number
of steps needed to solve a (sub-)problem. We distinguish a symmetrical case – where the
individual sub-problems are all (symmetrically) “cheap” – and an asymmetrical case – where
a single sub-problem (asymmetrically) “dominates the overall cost”.1

The asymmetrical case obviously corresponds to intuition (2) above. The symmetrical
case corresponds to intuition (1) because of the assumption that the number of steps needed
to solve the overall task is the same in both cases. If each single sub-problem is cheap, but
their conjunction is costly, then that cost must be the result of some sort of “competition
for a resource” – an interaction between the sub-problems. One can interpolate between the
symmetrical and asymmetrical cases by measuring to what extent any single sub-problem
dominates the overall cost.

It remains to define what “dominating the overall cost” means. Herein, we choose
a simple maximization and normalization operation. We select the most costly goal and
divide that by the cost of achieving the conjunction of all goals. For a conjunction C
of facts let cost(C) be the length of a shortest plan achieving C. Then, for a task with
goal set G, AsymRatio is defined as maxg∈Gcost(g)/cost(

∧
g∈G g). AsymRatio ranges

between 0 and 1. Values close to 0 correspond to the symmetrical case, values close to
1 correspond to the asymmetrical case. With the intuitions explained above, AsymRatio
should be thought of as an indirect measure of the degree of sub-problem interactions. That
is, we interpret the value of AsymRatio as an effect of those interactions. An important
open question is whether more direct measures – syntactic definitions of the causes of sub-
problem interactions – can be found. Starting points for investigations in this direction may
be existing investigations of “sub-goals” and their dependencies [1, 33, 34]; we outline these
investigations, and their possible relevance, in Section 8.

Note that AsymRatio is a rather simplistic parameter. Particularly, the use of max-
imization over individual costs, disregarding any interactions between the facts, can be
harmful. The maximally costly goal may be independent of the other goals. In such a case,
while taking many steps to achieve, the goal is not the main reason for the length of the
optimal plan. An example for this is given in Section 7; we henceforth refer to this as the
“red herring”.

To make the above concrete, Figure 1 provides a sketch of one of our synthetic domains,
called MAP. One moves in an undirected graph and must visit a subset of the nodes. The
domain has two parameters: the size, n, and the amount of structure, k. The number of
nodes in the graph is 3n − 3. The value of k changes the set of goal nodes. One always

1Please note that this use of the word “symmetrical” has nothing to do with the wide-spread notion of
“problem symmetries” in the sense of problem permutations; the cost of the goals has no implications on
whether or not parts of the problem can be permuted.
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Figure 1: The MAP domain. Goal nodes indicated in bold face.

starts in the bottom node, L0. If k is 1, then all goal nodes have distance 1 from the start
node. For every increase of k by 2, a single one of the goal nodes wanders two steps (edges)
further away, and one of the other goal nodes is skipped. As a result, the overall plan length
is 2n−1 independently of k. Our formulas encode the unsolvable task of finding a plan with
at most 2n − 2 steps; they have Θ(n2) variables (Θ(n) graph nodes at Θ(n) time steps).
We have AsymRatio = k/(2n − 1). In particular, for increasing n, AsymRatio converges
to 0 for k = 1 – symmetrical case – and it converges to 1 for k = 2n − 3 – asymmetrical
case.2 Note how all the goal nodes interact in the symmetrical case, competing for the
time steps. Note also that the outlier goal node is not independent of the other goals, but
interacts with them in the same competition for the time steps. In our red herring example,
Section 7, the main idea is to make the outlier goal node independent by placing it on a
separate map, and allowing to move in parallel on both maps. Note finally that, in Figure 8
(a), the graph nodes L1

2, . . . , L
1
n can be permuted. This is an artefact of the abstract nature

of MAP. In some experiments in competition examples, we did not find a low AsymRatio
to be connected with a high amount of problem symmetries (see also Sections 5.1).

Beside MAP, we constructed two domains called SBW and SPH. SBW is a block stack-
ing domain. There are n blocks, and k controls the amount of stacking restrictions. In the
symmetrical case, there are no restrictions. In the asymmetrical case, one particular stack
of blocks takes many steps to build. SPH is a non-planning domain, namely a structured
version of the pigeon hole problem. There are n+ 1 pigeons and n holes. The parameter k
controls how many holes one particular “bad” pigeon needs, and how many “good” pigeons
there are, which can share a hole with the “bad” one. The total number of holes needed
remains n + 1, independently of k. The symmetrical case is the standard pigeon hole. In
the asymmetrical case, the bad pigeon needs n− 1 holes.

1.2. Results Overview. In our research, the analysis of synthetic domains served to find
and explore intuitions about how structure influences search performance. The final results
of the analysis are studies of a set of prototypical behaviors. These prototypical behaviors
are inherent also to more realistic examples; in particular, we will outline some examples
from the competition benchmarks.

2When setting k = 2n − 1, the formula contains an empty clause.
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We prove upper and lower bounds on the size of the best-case DPLL proof trees. We
also investigate the best possible sets of branching variables. Such variable sets were recently
coined “backdoors” [61]. In our context, a backdoor is a subset of the variables so that, for
every value assignment to these variables, unit propagation (UP) yields an empty clause.3

That is, a smallest possible backdoor encapsulates the best possible branching variables
for DPLL, a question of huge practical interest. Identifying backdoors is also a technical
device: we obtain our upper bounds as a side effect of the proofs of backdoor properties.
In all formula classes we consider, we determine a backdoor subset of variables. We prove
that the backdoors are minimal: no variable can be removed without losing the backdoor
property. In small enough instances, we prove empirically that the backdoors are in fact
optimal - of minimal size. We conjecture that the latter is true in general.

In the symmetrical case, for MAP and SPH there are exponential (in n) lower bounds
on the size of resolution refutations, and thus on DPLL refutations [7, 4]. For SPH, the
lower bound is just the known result [8] for the standard Pigeon Hole problem. For MAP,
we construct a polynomial reduction of resolution proofs for MAP to resolution proofs for a
variant of the Pigeon Hole problem [48]. The reduction is via an intriguing temporal version
of the pigeon hole problem, where the holes correspond to the time steps in the planning
encoding, in a natural way. This illustrates quite nicely the competition of tasks for time
steps that underlies also more realistic examples.

For SBW, it is an open question whether there exists an exponential lower bound on
DPLL proof size in the symmetrical case; we conjecture that there is. In all the domains,
the backdoor sets in the symmetrical case are linear in the total number of variables: Θ(n2)
for MAP and SPH, Θ(n3) for SBW.

In the asymmetrical case, the DPLL proofs and backdoors become much smaller. In
SPH, the minimal backdoors have size O(n). What surprised us most is that in MAP and
SBW the backdoors even become logarithmic in n. Considering Figure 1 (b), one would
suspect to obtain an O(n) backdoor reasoning along the path to the outlier goal node.
However, it turns out that one can pick the branching variables in a way exploiting the need
to go back and forth on that path. Going back and forth introduces a factor 2, and so one
can double the number of time steps between each pair of variables. The resulting backdoor
has size O(logn). This very nicely complements recent work [61], where several benchmark
planning tasks were identified that contain exorbitantly small backdoors in the order of
10 out of 10000 variables. Our scalable examples with provably logarithmic backdoors
illustrate the reasons for this phenomenon. Notably, the DPLL proof trees induced by our
backdoors in the asymmetrical case degenerate to lines. Thus we get an exponential gap in
DPLL proof size for SPH, and a doubly exponential gap for MAP.

To confirm that AsymRatio is an indicator of SAT solver performance in more practical
domains, we run large-scale experiments in 10 domains from the biennial International
Planning Competitions since 2000. The main criterion for domain selection is the availability
of an instance generator. These are necessary for our experiments, where we generate and
examine thousands of instances in each domain, in order to obtain large enough samples

3In general, a backdoor is defined relative to an arbitrary polynomial time “subsolver” procedure. The
subsolver can solve some class of formulas that does not necessarily have a syntactic characterization. Our
definition here instantiates the subsolver with the widely used unit propagation procedure.
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with identical plan length and AsymRatio (see below). We use the most successful SAT
encoding for Planning: the “Graphplan-based” encoding [40, 41], which has been used in all
planning competitions since 1998. We examine the performance of a state-of-the-art SAT
solver, namely, ZChaff [46]. We compare the distributions of search tree size for pairs Px

and Py of sets of planning tasks. All the tasks share the same domain, the same instance
size parameters (taken from the original competition instances), and the same optimal plan
length. The only difference is that AsymRatio = x for the tasks in Px, and AsymRatio = y
for the tasks in Py, where x < y. Very consistently, the mean search tree size is significantly
higher in Px

m than in Py
m. The T test yields confidence level 95% (99.9%, most of the time)

in the vast majority of the cases in 8 of the 10 domains. In one domain (Logistics), the T
test fails for almost all pairs Px

m and Py
m; in another domain (Satellite), AsymRatio does

not show any variance so there is nothing to measure.
Some remarks are in order. Note that AsymRatio characterizes a kind of hidden

structure. It cannot be computed efficiently even based on the original planning task rep-
resentation – much less based on the SAT representation. This nicely reflects practical
situations, where it is usually impossible to tell a priori how difficult a formula will be to
handle. In fact, one interesting feature of our MAP formulas is that their syntax hardly
changes between the two structural extreme cases. The content of a single clause makes all
the difference between exponential and logarithmic DPLL proofs.

Note further that AsymRatio is not a completely impractical parameter. There exists a
wealth of well-researched techniques approximating plan length, e.g. [5, 6, 32, 18, 24, 27, 26].
Such techniques can be used to approximate AsymRatio. We leave this as a topic for future
work.

Note finally that, of course, AsymRatio can be fooled. (1) One can easily modify the
goal set in a way blinding AsymRatio, for example by replacing the goal set with a single
goal that has the same semantics. (2) One can also construct examples where a relevant
phenomenon is “hidden” behind an irrelevant phenomenon that controls AsymRatio, and
DPLL tree size grows, rather than decreases, with AsymRatio. For (1), we outline in
Section 8 how this could be circumvented. As for (2), we explain the construction of such
an example in Section 7. As a reply to both, it is normal that heuristics can be fooled.
What matters is that AsymRatio often is informative in the domains that people actually
try to solve.

The paper is organized as follows. Section 2 discusses related work. Section 3 provides
notation and some details on the SAT encodings we use. Section 4 contains our experiments
with AsymRatio in competition benchmarks. Section 5 describes our synthetic domains
and our analysis of DPLL proofs; Section 6 briefly demonstrates that state-of-the-art SAT
solvers – ZChaff [46] and MiniSat [20, 19] – indeed behave as expected, in these domains.
Section 7 describes our red herring example, where AsymRatio is not an indicator of DPLL
proof size. Section 8 concludes and discusses open topics.

Appendix A contains all proofs; the main text contains proof sketches. Appendix B
provides details about cutsets in our synthetic domains.
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2. Related Work

A huge body of work on structure focusses on phase transition phenomena, e.g., [10, 23,
35, 50]. There are at least two major differences to our work. First, as far as we are aware,
all work on phase transitions has to do with transitions between areas of under-constrained
instances and over-constrained instances, with the critically constrained area – the phase
transition – in the middle. In contrast, the Planning formulas we consider are all just one
step short of a solution. In that sense, they are all “critically constrained”. As one increases
the plan length bound, for a single planning task, from 0 to ∞, one naturally moves from
an over-constrained into an under-constrained area, where the bounds close to the first
satisfiable iteration constitute the most critically constrained region. Put differently, phase
transitions are to do with the balance of duties and resources; in our formulas, per definition,
the amount of resources is set to a level that is just not enough to fulfill the duties.

A second difference to phase transitions is that these are mostly concerned with random
instance distributions. In such distributions, the typical instance hardness is completely
governed by the parameter settings – e.g., the numbers of variables and clauses in a standard
k-CNF generation scheme. This is very much not so in more practical instance distributions.
If the contents of the clauses are extracted from some practical scenario, rather than from
a random number generator, then the numbers of variables and clauses alone are not a
good indicator of instance hardness: these numbers may not reflect the semantics of the
underlying application. A very good example for this are our MAP formulas. These are
syntactically almost identical at both ends of the structure scale; their DPLL proofs exhibit
a doubly exponential difference.

Another important strand of work on structure is concerned with the identification of
tractable classes, e.g., [9, 17, 11]. Our work obviously differs from this in that we do not
try to identify general provable connections between structure and hardness. We identify
empirical correlations, and we study particular cases.

Our analysis of synthetic examples is, in spirit, similar to the work in proof complexity,
e.g., [13, 25, 8, 38]. There, formula families such as pigeon hole problems have been the
key to a better understanding of resolution proofs. Generally speaking, the main difference
is that, in proof complexity, one investigates the behavior of different proof calculi in the
same example. In contrast, we consider the single proof calculus DPLL, and modify the
examples. Major technical differences arise also due to the kinds of formulas considered,
and the central goal of the research. Proof complexity considers any kind of synthetic
formula provoking a certain behavior, while we consider formulas from Planning. The
goal in proof complexity is mostly to obtain lower bounds, separating the power of proof
systems. However, to understand structure, and explain the good performance of SAT
solvers, interesting formula families with small DPLL trees are more revealing.

There is some work on problem structure in the Planning community. Some works
[3, 56] investigate structure in the context of causal links in partial-order planning. Howe
and Dahlman [36] analyze planner performance from a perspective of syntactic changes and
computational environments. Hoffmann [34] investigates topological properties of certain
wide-spread heuristic functions. Obviously, these works are quite different from ours. A
more closely related piece of work is the aforementioned investigation of backdoors recently
done by Williams et al [61]. In particular, this work showed empirically that CNF encodings
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of many standard Planning benchmarks contain exorbitantly small backdoors in the order of
10 out of 10000 variables. The existence of logarithmic backdoors in our synthetic domains
nicely reflects this. In contrast to the previous results, we also explain what these backdoor
variables are – what they correspond to in the original planning task – and how their
interplay works.

A lot of work on structure can also be found in the Scheduling community, e.g., [59,
58, 60, 55]. To a large extent, this work is to do with properties of the search space surface,
and its effect on the performance of local search. A closer relative to our work is the
notion of critical paths as used in Scheduling, e.g, [42, 62, 45]. Based on efficiently testable
inferences, a critical path identifies the (apparently) most critically constrained part of the
scheduling task. For example, a critical path may identify a long necessary sequence of job
executions implied by the task specification. This closely corresponds to our notion of a
high AsymRatio, where a single goal fact is almost as costly to solve as the entire planning
task. Indeed, such a goal fact tends to ease search by providing a sort of critical path on
which a lot of constraint propagation happens. In that sense, our work is an application of
critical paths to Planning. Note that Planning and Scheduling are different. In Planning,
there is much more freedom of problem design. Our main observation in here is that our
notions of problem structure capture interesting behavior across a range of domains.

There is also a large body of work on structure in the constraint reasoning community,
e.g., [16, 10, 23, 22, 51, 54, 12, 17, 47, 37, 11]. As far as we are aware, all these works differ
considerably from ours. In particular, all works we are aware of define “structure” on the
level of the CNF formula/the CSP problem instance; in contrast, we define structure on the
level of the modelled application. Further, empirical work on structure is mostly based on
random problem distributions, and theoretical analysis is mostly done in a proof complexity
sense, or in the context of identifying tractable classes.

One structural concept from the constraint reasoning community is particularly closely
related to the concept of a backdoor: cutsets [16, 51, 17]. Cutset are defined relative to
the constraint graph: the undirected graph where nodes are variables and edges indicate
common membership in at least one clause. A cutset is a set of variables so that, once these
variables are removed from the constraint graph, that graph has a bounded induced width;
if the bound is 1, then the graph is cycle-free, i.e., can be viewed as a tree. Backdoors
are a generalization of cutsets in the sense that any cutset is a backdoor relative to an
appropriate subsolver (that exploits properties of the constraint graph). The difference is
that cutsets have an “easy” syntactic characterization: one can check in polytime if or if
not a given set of variables is a cutset. One can, thus, use strategies looking for cutsets to
design search algorithms. Indeed, the cutset notion was originally developed with that aim.
Backdoors, in contrast, were proposed as a means to characterize phenomena relevant for
existing state-of-the-art solvers – which all make use of subsolvers whose capabilities (the
solved classes of formulas) have no easy-to-test syntactic characterization. In particular,
the effect of unit propagation depends heavily on what values are assigned to the backdoor
variables. We will see that, in the formula families considered herein, there are no small
cutsets.
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3. Preliminaries

We use the STRIPS formalism. States are described as sets of (the currently true)
propositional facts. A planning task is a tuple of initial state (a set of facts), goal (also a
set of facts), and a set of actions. Actions a are fact set triples: the precondition pre(a),
the add effect add(a), and the delete effect del(a). The semantics are that an action is
applicable to a state (only) if pre(a) is contained in the state. When executing the action,
the facts in add(a) are included into the state, and the facts in del(a) are removed from it.
The intersection between add(a) and del(a) is assumed empty; executing a non-applicable
action results in an undefined state. A plan for the task is a sequence of actions that, when
executed iteratively, maps the initial state into a state that contains the goal.

As a simple example, consider the task of finding a path from a start node n0 to a goal
node ng in a directed graph (N,E). The facts have the form at-n for n ∈ N . The initial state
is {at-n0}, the goal is {at-ng}, and the set of actions is {move-x-y = ({at-x}, {at-y}, {at-x}) |
(x, y) ∈ E} – precondition {at-x}, add effect {at-y}, delete effect {at-x}. Plans correspond
to the paths between n0 and ng.

CNF formulas are sets of clauses, where each clause is a set of literals. For a CNF
formula φ with variable set V , a variable subset B ⊆ V , and a truth value assignment a
to B, by φa we denote the CNF that results from inserting the values specified by a, and
removing satisfied clauses as well as unsatisfied literals. By UP (φ), we denote the result of
iterated application of unit propagation to φ, where again satisfied clauses and unsatisfied
literals are removed. For a CNF formula φ with variable set V , a variable subset B ⊆ V ,
and a value assignment a to B, we say that a is UP-consistent if UP (φa) does not contain
the empty clause. B is a backdoor if it has no UP-consistent assignment. We sometimes use
the abbreviation UP also in informal text.

By a resolution refutation, also called resolution proof, of a (unsatisfiable) formula φ,
we mean a sequence C1, . . . , Cm of clauses Ci so that Cm = ∅, and each Ci is either an
element of φ, or derivable by the resolution rule from two clauses Cj and Ck, j, k < i. The
size of the refutation is m. A DPLL refutation, also called DPLL proof or DPLL tree, for φ
is a tree of partial assignments generated by the DPLL procedure, where the inner nodes
are UP-consistent, and the leaf nodes are not. The size of a DPLL refutation is the total
number of (inner and leaf) tree nodes.

Planning can be mapped into a sequence of SAT problems, by incrementally increasing
a plan length bound b: start with b = 0; generate a CNF φ(b) that is satisfiable iff there is
a plan with b steps; if φ(b) is satisfiable, stop; else, increment b and iterate. This process
was first implemented in the Blackbox system [39, 40, 41]. There are, of course, different
ways to generate the formulas φ(b), i.e., there are different encoding methods. In our
empirical experiments, we use the original Graphplan-based encoding used in Blackbox.
Variants of this encoding have been used by Blackbox (more recently named SATPLAN)
in all international planning competitions since 1998. In our theoretical investigations, we
use a somewhat simplified version of the Graphplan-based encoding.4

The Graphplan-based encoding is a straightforward translation of a b-step planning
graph [5] into a CNF. The encoding has b time steps 1 ≤ t ≤ b. It features variables for

4One might wonder whether a different encoding would fundamentally change the results herein. We
don’t see a reason why that should be the case. Exploring this is a topic for future work.
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facts at time steps, and for actions at time steps. The former encode commitments of the
form “fact p is true/false at time t”, the latter encode commitments of the form “action a
is executed/not executed at time t”. There are artificial NOOP actions, i.e. for each fact p
there is an action NOOP -p whose only precondition is p, and whose only effect is p. The
NOOPs are treated just like normal actions in the encoding. Setting a NOOP variable
to true means a commitment to “keep fact p true at time t”. Amongst others, there are
clauses to ensure that all action preconditions are satisfied, that the goals are true in the
last time step, and that no “mutex” actions are executed in the same time step: actions
can be executed in the same time step – in parallel – if their effects and preconditions are
not contradictory. The set of fact and action variables at each time step, as well as pairs
of “mutex” facts and actions, are read off the planning graph (which is the result of a
propagation of binary constraints).

We do not describe the Graphplan-based encoding in detail since that is not neces-
sary to understand our experiments. For the simplified encoding used in our theoretical
investigations, some more details are in order. The encoding uses variables only for the
actions (including NOOPs), i.e., a(t) is 1 iff action a is to be executed at time t, 1 ≤ t ≤ b.
A variable a(t) is included in the CNF iff a is present at t. An action a is present at
t = 1 iff a’s precondition is true in the initial state; a is present at t > 1 iff, for every
p ∈ pre(a), at least one action a′ is present at t − 1 with p ∈ add(a′). For each action
a present at a time t > 1 and for each p ∈ pre(a), there is a precondition clause of the
form {¬a(t), a1(t − 1), . . . , al(t − 1)}, where a1, . . . , al are all actions present at t− 1 with
p ∈ add(ai). For each goal fact g ∈ G, there is a goal clause {a1(b), . . . , al(b)}, where
a1, . . . , al are all actions present at b that have g ∈ add(ai). Finally, for each incompatible
pair a and a′ of actions present at a time t, there is a mutex clause {¬a(t),¬a′(t)}. Here, a
pair a, a′ of actions is called incompatible iff either both are not NOOPs, or a is a NOOP
for fact p and p ∈ del(a′).

0

2

1

g

n

n

nn

Figure 2: An illustrative example: the planning task is to move from n0 to ng within 2
steps.

For example, reconsider the path-finding domain sketched above. Say (N,E) =
({n0, n1, n2, ng}, {(n0, n1), (n0, n2), (n1, ng), (n2, ng)}). There are two paths from n0 to ng,
one through n1, the other through n2. An illustration is in Figure 2. The simplified
Graphplan-based encoding of this task, for bound b = 2, is as follows. The variables for
actions present at t = 1 are move-n0-n1(1), move-n0-n2(1), NOOP -at-n0(1). The vari-
ables for actions present at t = 2 are move-n0-n1(2), move-n0-n2(2), NOOP -at-n0(2),
move-n1-ng(2), move-n2-ng(2), NOOP -at-n1(2), NOOP -at-n2(2). Note here that we can
choose to do useless things such as staying at a node, via a NOOP action. We have
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to insert precondition clauses for all actions at t = 2. For readability, we only show
the “relevant” clauses, i.e., those that suffice, in our particular example here, to get the
correct satisfying assignments. The relevant precondition clauses are those for the ac-
tions move-n1-ng(2) and move-n2-ng(2), which are {¬move-n1-ng(2),move-n0-n1(1)} and
{¬move-n2-ng(2),move-n0-n2(1)}, respectively; in order to move from n1 to ng (n2 to ng)
at time 2, we must move from n0 to n1 (n0 to n2) at time 1. We get similar clauses
for the other (useless) actions, for example {¬move-n0-n1(2), NOOP -at-n0(1)}. We get
the goal clause {move-n1-ng(2),move-n2-ng(2)}; to achieve our goal, we must move to
ng from either n1 or n2, at time 2.5 We finally get mutex clauses. The relevant one is
{¬move-n0-n1(1),¬move-n0-n2(1)}; we cannot move from n0 to n1 and n2 simultaneously.
We also get the clause {¬move-n1-ng(2),¬move-n2-ng(2)}, and various mutex clauses be-
tween move actions and NOOPs. Now, what the relevant clauses say is: 1. We must move
to ng at time 2, either from n1 or from n2 (goal). 2. If we move from n1 to ng at time 2,
then we must move from n0 to n1 at time 1 (precondition). 3. If we move from n2 to ng at
time 2, then we must move from n0 to n2 at time 1 (precondition). 4. We cannot move from
n0 to n1 and n2 simultaneously at time 1. Obviously, the satisfying assignments correspond
exactly to the solution paths. Please keep in mind that, in contrast to our example here, in
general all the clauses are necessary to obtain a correct encoding.

By making every pair of non-NOOPs incompatible in our simplified Graphplan-based
encoding, we allow at most one (non-NOOP, i.e., “real”) action to execute per time step.
This is a restriction in domains where there exist actions that can be applied in parallel; in
our synthetic domains, no parallel actions are possible anyway, so the mutex clauses have an
effect only on the power of UP (unit propagation). We also investigated backdoor size, in our
synthetic domains, with a weaker definition of incompatible action pairs, allowing actions to
be applied in parallel unless their effects and preconditions directly contradict each other.
We omit the results for the sake of readability. In a nutshell, one obtains the same DPLL
lower bounds and backdoors in the symmetrical case, but larger (O(n)) backdoors and DPLL
trees in the asymmetrical case. Note that, thus, the restrictive definition of incompatible
action pairs we use in our simplified encoding gives us an exponential efficiency advantage.
This is in line with the use of the Graphplan-based encoding in our experiments: planning
graphs discover the linear nature of our synthetic domains, including all the mutex clauses
present in our simplified encoding.

4. Goal Asymmetry in Planning Benchmarks

In this section, we explore empirically how AsymRatio behaves in a range of Planning
benchmarks. We address two main questions:

(1) What is the distribution of AsymRatio?
(2) How does AsymRatio behave compared to search performance?

Section 4.1 gives details on the experiment setup. Sections 4.2 and 4.3 address questions
(1) and (2), respectively. Before we start, we reiterate how AsymRatio is defined.

5Note that, if b was 3, then we would also have the option to simply stay at ng , i.e., the goal clause would
be {move-n1-ng(3), move-n2-ng(3), NOOP -at-ng(3)}. At t = 2, this NOOP is not present.



12 JÖRG HOFFMANN, CARLA GOMES, AND BART SELMAN

Definition 4.1. Let P be a planning task with goal G. For a conjunction C of facts, let
cost(C) be the length of a shortest plan achieving C. The asymmetry ratio of P is:

AsymRatio(P ) :=
maxg∈Gcost(g)

cost(
∧

g∈G g)

Note that cost(
∧

g∈G g), in this definition, is the optimal plan length; to simplify notation, we
will henceforth denote this with m. Note also that such a simple definition can not be fool-
proof. Imagine replacing G with a single goal g, and an additional action with precondition
G and add effect {g}; the (new) goal is then no longer a set of “sub-problems”. However,
in the benchmark domains that are used by researchers to evaluate their algorithms, G
is almost always composed of several goal facts resembling sub-problems. A more stable
approach to define AsymRatio is a topic for future work, outlined in Section 8; for now, we
will see that AsymRatio often works quite well.

4.1. Experiment Setup. Denote by φ(P, b), for a planning task P and integer b, the
Graphplan-based CNF encoding of b action steps. Our general intuition is that φ(P,m− 1)
is easier to prove unsatisfiable for tasks P with higher AsymRatio, than for tasks with lower
AsymRatio, provided “all other circumstances are equal”. By this, we mean that the tasks
all share the same domain, the same size parameters, and the same optimal plan length. We
will not formalize the notions of “domain” and “size parameters”; doing so is cumbersome
and not necessary to understand our experiments. An informal explanation is as follows:

• Domain. A domain, or STRIPS domain, is a (typically infinite) set of related
planning tasks. More technically, a domain is defined through a finite set of logical
predicates (relations), a finite set of operators, and an infinite set of instances. Op-
erators are functions from object tuples into STRIPS actions;6 they are described
using predicates and variables. Applying an operator to an object tuple just means
to instantiate the variables, resulting in a propositional STRIPS action description.
Each instance defines a finite set of objects, an initial state, and a goal condition.
Both initial state and goal condition are sets of instantiated predicates, i.e., propo-
sitional facts.

An example is the MAP domain previewed in Section 1, Figure 1. The predicates
are “edge(x,y)”, “at(x)”, and “visited(x)” relations; the single operator has the form
“move(x,y)”; the instances define the graph topology and the initial/goal nodes. A
more general example would be a transportation domain with several vehicles and
transportable objects, and additional operators loading/unloading objects to/from
vehicles.
• Size parameters. An instance generator for a domain is usually parameterized in

several ways. In particular, one needs to specify how many objects of each type (e.g.,
vehicles, transportable objects) there will be. For example, n is the size parameter
in the MAP domain. If two instances of a transportation domain both contain the
same numbers of locations, vehicles, and transportable objects, then they share the
same size parameters.

6In the planning community, constants are commonly referred to as “objects”; we adopt this terminology.
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In our experiments, we always fix a domain D, and a setting S of the size parameters of
an instance generator for D. We then generate thousands of (randomized) instances, and
divide those into classes Pm with identical optimal plan length m. Within each Pm, we
then examine the distribution of AsymRatio, and its behavior compared to performance, in
the formulas {φ(P,m − 1) | P ∈ Pm}. Note here that the size parameters and the optimal
plan length determine the size of the formula. So the restriction we make by staying inside
the classes Pm basically comes down to fixing the domain, and fixing the formula size.

We run experiments in a range of 10 STRIPS domains taken from the biennial Inter-
national Planning Competition (IPC) since 2000. The main criterion for domain selection
is the availability of an instance generator:

• IPC 2000. From this IPC, we select the Blocksworld, Logistics, and Miconic-
ADL domains. Blocksworld is the classical block-stacking domain using a robot
arm to rearrange the positions of blocks on a table; we use the instance generator
by Slaney and Thiebaux [53]. Logistics is a basic transportation domain involving
cities, places, trucks, airplanes, and packages. Each city contains a certain number
of places; trucks move within cities, airplanes between them; packages must be
transported. Moves are instantaneous, i.e., a truck/airplane can move in one action
between any two locations. We implemented a straightforward instance generator
ourselves. Miconic-ADL is an elevator transport domain coming from a real-world
application [43]. It involves all sorts of interesting side constraints regarding, e.g.,
the prioritized transportation of VIPs, and constraints on which people have access
to which floors. The 2000 IPC instance generator, which we use, was written by one
of the authors. The domain makes use of first-order logic in action preconditions;
we used the “adl2strips” software [29] to translate this into STRIPS.
• IPC 2002. Here, instance generators are provided by the organizers [44], so we

select all the domains. They are named Depots, Driverlog, Freecell, Rovers, Satellite,
and Zenotravel. Depots is a mixture between Blocksworld and Logistics, where
blocks must be transported and arranged in stacks. Driverlog is a version of Logistics
where trucks need drivers; apart from this, the main difference to the classical
Logistics domain is that drivers and trucks move on directed graph road maps,
rather than having instant access from any location to any other location. Freecell
encodes the well-known solitaire card game where the task is to re-order a random
arrangement of cards, following certain stacking rules, using a number of “free cells”
for intermediate storage. Rovers and Satellite are simplistic encodings of NASA
space-applications. In Rovers, rovers move along individual road maps, and have
to gather data about rock or soil samples, take images, and transfer the data to a
lander. In Satellite, satellites must take images of objects, which involves calibrating
cameras, turning the right direction, etc. Zenotravel is a version of Logistics where
moving a vehicle consumes fuel that can be re-plenished using a “refuel” operator.
• IPC 2004. From these domains, the only one for which a random generator exists

is called PSR, where one must reconfigure a faulty power supply network. PSR
is formulated in a complex language involving first-order formulas and predicates
whose value is derived as an effect of the values of other predicates. (Namely, the
flow of power through the network is determined by the setting of the switches.) One
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can translate this to STRIPS, but only through the use of significant simplification
methods [29]. In the thus simplified domain, every goal can be achieved in a single
step, making AsymRatio devoid of information. We emphasize that this is not the
case for the more natural original domain formulation.
• IPC 2006. From these domains, the only one that we can use is called TPP; for

all others, instance generators were not available at the time of writing. TPP is
short for Travelling Purchase Problem. Given sets of products and markets, and a
demand for each product, one must select a subset of the markets so that routing cost
and purchasing cost are minimized. The STRIPS version of this problem involves
unit-cost products, and a road map graph for the markets.

We finally run experiments in a domain of purely random instances generated using Rin-
tanen’s [50] “Model A”. We consider this an interesting contrast to the IPC domains. We
will refer to this domain with the name “Random”.

To choose the size parameters for our experiments, we simply rely on the size param-
eters of the original IPC instances. This is justified since the IPC instances are the main
benchmark used in the field. Precisely, we use the following method. For each domain, we
consider the original IPC test suite, containing a set of instances scaling in size. For each
instance, we generate a few random instances with its size parameters, and test how fast we
can compute AsymRatio. (That computation is done by a combination of calls to Black-
box.) We select the largest instance for which each test run is completed within a minute.
For example, in Driverlog we select the instance indexed 10 out of 20, and, accordingly,
generate random instances with 6 road junctions, 2 drivers, 6 transportable objects, and
3 trucks. While the instances generated thus are not at the very limit of the performance
of SAT-based planners, they are reasonably close to that limit. The runtime curves of
Blackbox undergo a sharp exponential increase in all the considered domains. There is not
much room between the last instance solved in a minute, and the first instance not solved
at all. For example, in Driverlog we use instance number 10, while the performance limit of
Blackbox is reached around instance number 12.7 In the random domain, we use “40 state
variables” which is reasonable according to Rintanen’s [50] results. We also run a number
of experiments where we modify the size parameters in certain domains, with the aim to
obtain a picture of what happens as the parameters change. This will be detailed below.

In most cases, the distribution of optimal plan length m is rather broad, for given
domain D and size parameters S; see Figure 3.8 Thus we need many instances in order to
obtain reasonably large classes Pm. Further, we split each class Pm into subsets, bins, with
identical AsymRatio. To make the bins reasonably large, we need even more instances. In
initial experiments, we found that between 5000 and 20000 instances were usually sufficient

7In Logistics, we use IPC instance number 18 of 50, and the performance limit is around instance number
20. In Miconic-ADL, we use IPC instance 7 out of 30, and the performance limit is around instance 9. In
Depots, these numbers are 8, 20, and 10; in Rovers, they are 8, 20, and 10; in Satellite, they are 7, 20, and
9; in Zenotravel, they are 13, 20, and 15; in TPP, they are 15, 30, and 20. In Blocksworld, we use 11 blocks
and the performance limit is at around 13 blocks. In Freecell, Blackbox is very inefficient, reaching its limit
around IPC instance 2 (of 20), which is what we use.

8We see that the plan length is mostly normal distributed. The only notable exception is the Freecell
domain, Figure 3 (a), where the only plan lengths occurring are 6, 7, 8, and 9, and P6 is by far the most
populated class.
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Figure 3: Distribution of optimal plan length. Split across two graphs for readability.

to identify the overall behavior of the domain and size parameter setting (D and S). To be
conservative, we decided to fix the number of instances to 50000, per D and S. To avoid
noise, we skip bins with less than 100 elements; the remaining bins each contain around a
few 100 up to a few 1000 instances.

4.2. AsymRatio Distribution. What interests us most in examining the distribution of
AsymRatio is how “spread out” the distribution is, i.e., how many different values we obtain
within the Pm classes, and how far they are apart. The more values we obtain, the more
cases can we distinguish based on AsymRatio; the farther the values are apart, the more
clearly will those cases be distinct. Figure 4 shows some of the data; for all the settings
of D and S that we explored, it shows the AsymRatio distribution in the most populated
class Pm.

In Figure 4, the x axes show AsymRatio, and the y axes show percentage of instances
within Pm. Let us first consider Figure 4 (a) and (b), which show the plots for the IPC
settings S of the size parameters. In Figure 4 (a), we see vaguely normal distributions
for Blocksworld, Depots, and Driverlog. Freecell is unusual in its large weight at high
AsymRatio values, and also in having relatively few different AsymRatio values. This can
be attributed to the unusually small plan length in Freecell.9 For Logistics, we note that
there are only 2 different values of AsymRatio. This can be attributed to the trivial road
maps in this domain, where one can instantaneously move between any two locations. The
instance shown in Figure 4 has 6 cities and 2 airplanes, and thus there is not much variance
in the cost of achieving a single goal (transporting a single package). This will be explored
further below.

In Figure 4 (b), at first glance one sees that there are quite a few odd-looking distri-
butions. The distributions for Rovers and Random are fairly spread out. Miconic-ADL has
77% of its weight at AsymRatio = 0.20, 18% of its weight at AsymRatio = 0.30, and 2.4%
at AsymRatio = 0.4; a lot of other AsymRatio values have non-zero weights of less than
1%. This distribution can be attributed to the structure of the domain, where the elevator

9Remember that our optimal planner scales only to instance number 2 out of 20 in the IPC 2002 test
suite.
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cated. (a) and (b), for IPC settings of S. (c), for various settings of S in Logistics.
(d), for various settings of S in Driverlog. (e), for two variants of Miconic-ADL.
Explanations see text.
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can instantaneously move between any two floors; most of the time, each goal (serving a
passenger) thus takes 4 steps to achieve, corresponding to AsymRatio = 0.25 in our picture.
Due to the side constraints, however, sometimes serving a passenger involves more effort
(e.g., some passengers need to be attended in the lift) – hence the instances with higher
AsymRatio values. We will consider below a Miconic-ADL variant with non-instantaneous
lift moves.

Zenotravel has an extreme AsymRatio distribution, with 99% of the weight at
AsymRatio = 0.57. Again, this can be attributed to the lack of a road map graph, i.e., to
instantaneous vehicle moves. In TPP, 94% of the time there is a single goal that takes as
many steps to achieve as the entire goal set. It is unclear to us what the reason for that
is (the goal sets are large, containing 10 facts in all cases). The most extreme AsymRatio
distribution is exhibited by Satellite: in all classes Pm in our experiments, all instances have
the same AsymRatio value (AsymRatio = 0.67 in Figure 4 (b)). Partly, once again this is
because of instantaneous “moves” – here, changing the direction a satellite observes. Partly
it seems to be because of the way the 2002 IPC Satellite instance generator works, most of
the time including at least one goal with the same maximal cost.

To sum the above up, AsymRatio does show a considerable spread of values across
all our domains except Logistics, Satellite, TPP, and Zenotravel. For Logistics, Satellite,
and Zenotravel, this can be attributed to the lack of road map graphs in these domains.
This is a shortcoming of the domains, rather than a shortcoming of AsymRatio; in reality
one does not move instantaneously (though sometimes one would wish to . . . ). We ran
additional experiments in Logistics to explore this further. We generated instances with 8
instead of 6 cities, and with just a single airplane instead of 2 airplanes; we had to decrease
the number of packages from 18 to 8 to make this experiment feasible. We then repeated
the experiment, but with the number of airplanes set to 2 and 3, respectively. Figure 4 (c)
shows the results, including the IPC S setting for comparison. “Logistics-xa’ denotes our
respective new experiment with x airplanes. Considering these plots, we see clearly that
the AsymRatio distribution shifts to the right, and becomes more dense, as we increase
the number of airplanes; eventually (with more and more airplanes) all weight will be in a
single spot.

In Driverlog, we run experiments to explore what happens as we change the relative
numbers of vehicles and transportable objects. Figure 4 (d) shows the results. The IPC in-
stance has 6 road junctions, 2 drivers, 6 transportable objects, and 3 trucks. For “Driverlog-
1t-10p” in Figure 4 (d), we set this to 6 road junctions, 1 driver, 10 transportable objects,
and 1 truck. For “Driverlog-1t-20p” and “Driverlog-1t-30p”, we increased the number of
transportable objects to 20 and 30, respectively. “Driverlog-5t-5p”, on the other hand, has
6 road junctions, 5 drivers, 5 transportable objects, and 5 trucks. The intuition is that
the position of the AsymRatio distribution depends on the ratio between the number of
transportable objects and the number of means for transport. The higher that ratio is, the
lower do we expect AsymRatio to be – if there are many objects for a single vehicle then it
is unlikely that a single object will take all the time. Also, for very low and very high values
of the ratio we expect the distribution of AsymRatio to be dense – if every object takes
almost all the time/no object takes a significant part of the time, then there should not be
much variance. Figure 4 (d) clearly shows this tendency for “Driverlog-5t” (ratio = 5/5),
“Driverlog-IPC” (ratio = 6/3), “Driverlog-10p” (ratio = 10/1), and “Driverlog-20p” (ratio
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= 20/1). Interestingly, the step from “Driverlog-20p” to “Driverlog-30p” does not make as
much of a difference. Still, if we keep increasing the number of transportable objects then
eventually the distribution will trivialize. Note here that 30 objects in a road map with
only 6 nodes already constitute a rather dense transportation problem. Further, transport
problems with 30 objects really push the limits of the capabilities of current SAT solvers.

Let us finally consider Figure 4 (e). “Miconic-ADL Modified” denotes a version of
Miconic-ADL where the elevator is constrained to take one move action for every move
between adjacent floors, rather than moving between any two floors instantaneously. As
one would expect, this changes the distribution of AsymRatio considerably. We get a
distribution spreading out from AsymRatio = 0.34 to AsymRatio = 0.75, and further –
with very low percentages – to AsymRatio = 0.97.

4.3. AsymRatio and Search Performance. Herein, we examine whether AsymRatio is
indeed an indicator for search performance. Let us first state our hypothesis more precisely.
Fixing a domain D, a size parameter setting S, and a number δ ∈ [0; 1], our hypothesis is:

Hypothesis 1 (D,S, δ). Let m be an integer, and let x, y ∈ [0; 1], where y−x > δ. Let Pm

be the set of instances in D with size S and optimal plan length m. Let Px
m = {P ∈ Pm |

AsymRatio(P ) = x} and Py
m = {P ∈ Pm | AsymRatio(P ) = y}.

If both Px
m and Py

m are non-empty, then the mean DPLL search tree size is significantly
higher for {φ(P,m− 1) | P ∈ Px

m} than for {φ(P,m− 1) | P ∈ Py
m}.

The hypothesis is parameterized by D, S, and by an AsymRatio difference threshold
δ. Regarding D, we do not mean to claim that the stated correlation will be true for every
domain; we construct a counter example in Section 7, and we will see that Hypothesis 1 is
not well supported by two of the domains in our experiments. Regarding S, we have already
seen that the size parameter setting influences the distribution of AsymRatio; we will see
that this is also true for the behavior of AsymRatio compared to performance. Regarding
the AsymRatio difference threshold δ, this serves to trade-off the strength of the claim vs
its applicability. In other words, one can make Hypothesis 1 weaker by increasing δ, at the
cost of discriminating between less classes of instances. We will explore different settings of
δ below.

For every planning task P generated in our experiments, with optimal plan length m,
we run ZChaff[46] on the formula φ(P,m − 1). We measure the search tree size (number
of backtracks) as our indication of how hard it is to prove a formula unsatisfiable. We
compare the distributions of search tree size between pairs of AsymRatio bins within a
class Pm. Some quantitative results will be discussed below. First, we show qualitative
results summarizing how often the distributions differ significantly. For every D and S, we
distinguish between three different values of δ; these will be explained below. For every
class Pm, and for every pair Px

m, Py
m of AsymRatio bins with y − x > δ, we run a T-test

to determine whether or not the mean search tree sizes differ significantly. Namely, we run
the Student’s T-test for unequal sample sizes, and check whether the means differ with a
confidence of 95% and/or a confidence of 99.9%. Table 1 summarizes the results.

The three different values of δ distinguished for every D and S are δ = 0, and two
values called δ95(D,S) and δ100(D,S). δ = 0 serves to show the situation for all pairs;
δ95(D,S) and δ100(D,S) show how far one has to increase δ in order to obtain 95% and
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δ = 0 δ95(D,S) δ100(D,S)
Experiment 95 99.9 δ # 95 99.9 δ # 95 99.9

Blocksworld 94 87 0.07 84 95 90 0.15 55 100 97
Depots 84 78 0.08 70 95 90 0.16 39 100 98
Driverlog-IPC 97 94 0.00 100 97 94 0.06 92 100 98
Freecell 100 100 0.00 100 100 100 0.00 100 100 100
Logistics-IPC 16 16 0.28 0 0.28 0
Miconic-ADL Org 85 70 0.15 29 100 87 0.15 29 100 87
Rovers 96 96 0.00 100 96 96 0.06 96 100 100
TPP 100 100 0.00 100 100 100 0.00 100 100 100
Zenotravel 100 50 0.00 100 100 50 0.00 100 100 50

Miconic-ADL Mod 86 74 0.04 77 97 91 0.09 49 100 100

Random 40 27 0.24 5 100 71 0.24 5 100 71

Logistics-1a 91 83 0.08 62 100 100 0.08 62 100 100
Logistics-2a 77 77 0.12 55 100 100 0.12 55 100 100
Logistics-3a 66 66 0.12 33 100 100 0.12 33 100 100

Driverlog-5t-5p 90 90 0.15 50 100 100 0.15 50 100 100
Driverlog-1t-10p 93 86 0.06 72 96 94 0.11 53 100 98
Driverlog-1t-20p 88 84 0.10 49 96 96 0.13 33 100 100
Driverlog-1t-30p 80 75 0.11 37 95 90 0.13 28 100 94

Table 1: Summary of T-test results comparing the distributions of ZChaff’s search tree size
for every pair Px

m, Py
m of AsymRatio bins within every class Pm, for every D and

S, and different settings of δ; explanation see text. The “δ” columns give the
value of δ; the “#” columns give the percentage of pairs with y − x > δ; the “95”
and “99.9” columns give the percentage of pairs whose distribution means differ
significantly as hypothesized, at the respective level of confidence.

100% accuracy of Hypothesis 1, respectively. Precisely, δ95(D,S) is the smallest number
δ ∈ {0, 0.01, 0.02, . . . , 1.0} so that the T-test succeeds for at least 95% of the pairs with
y − x > δ, with confidence level 95%. Similarly, δ100(D,S) is the smallest number δ ∈
{0, 0.01, 0.02, . . . , 1.0} so that the T-test succeeds for all the pairs with y − x > δ, with
confidence level 95%. Note that, for some D and S, δ95(D,S) = δ100(D,S), or 0 = δ95(D,S),
or even 0 = δ95(D,S) = δ100(D,S).

The upper most part of Table 1 is for the IPC domains and the respective settings of S.
Satellite is left out because not a single class Pm in this domain contained more than one
AsymRatio bin. Then there are separate parts for the modified version of Miconic-ADL,
for the Random domain, and for our exploration of different S settings in Logistics and
Driverlog.

One quick way to look at the data is to just examine the leftmost columns, where δ = 0.
We see that there is good support for Hypothesis 1, with the T-test giving a 95% confidence
level in the vast majority of cases (pairs of AsymRatio bins). Note that most of the T-tests
succeed with a confidence level of 99.9%. Logistics-IPC and Random, and to some extent
Logistics-3a, are the only experiments (rows of Table 1) that behave very differently. In
Freecell, TPP, and Zenotravel, there are only few AsymRatio pairs, c.f. Figure 4; precisely,
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we got 9 pairs in Freecell, 4 pairs in TPP, and only 2 pairs in Zenotravel. For all of these
pairs, the T-test succeeds, with 99.9% confidence in all cases except one of the pairs in
Zenotravel.

Another way to look at the data is to consider the values of δ95(D,S) and δ100(D,S),
for each experiment. The smaller these values are, the more support do we have for Hy-
pothesis 1. In particular, at δ100(D,S), every pair of AsymRatio bins encountered within
50000 random instances behaves as hypothesized. Except in Logistics-IPC and Random,
the maximum δ100(D,S) we get in any of our experiments is the δ = 0.16 needed for De-
pots. For some of the other experiments, δ100(D,S) is considerably lower; the mean over
the IPC experiments is 9.55, the mean over all experiments is 11.27. The mean value of
δ95(D,S) over the IPC experiments is 6.44 (3.75 without Logistics-IPC), the mean over all
experiments is 8.88.

When considering δ95(D,S) and δ100(D,S), we must also consider the relative numbers
of AsymRatio pairs that actually remain given these δ values. This information is provided
in the “#” columns in Table 1. We can nicely observe how increasing δ trades off the
accuracy of Hypothesis 1 vs its applicability. In particular, we see that no pairs remain in
Logistics-IPC, and that hardly any pairs remain in Random; for these settings of D and
S, the only way to make Hypothesis 1 “accurate” is by raising δ so high that it excludes
almost all pairs. So here AsymRatio is useless. The mean percentage of pairs remaining
at δ95(D,S) is 75.88 for the IPC experiments (85.37 without Logistics-IPC), and 60.16 for
all experiments. The mean percentage of pairs remaining at δ100(D,S) is 67.88 for the IPC
experiments (76.37 without Logistics-IPC), and 54.38 for all experiments.

As expected, in comparison to the original version of Miconic-ADL, AsymRatio is more
reliable in our modified version, where lift moves are not instantaneous between any pair
of floors. It is unclear to us what the reason for the unusally bad results in Logistics and
Random is. A general speculation is that, in these domains, even if there is a goal that
takes relatively many steps to achieve, this does not imply tight constraints on the solution.
More concretely, regarding Logistics, consider a transportation domain, and a goal that
takes many steps to achieve because it involves travelling a long way on a road map. Then
the number of options to achieve the goal corresponds to the number of optimal paths on the
map. Unless the map is densely connected, this will constrain the search considerably. In
Logistics, however, the map is actually fully connected. So, (A), there is not much variance
in how many steps a goal needs; and, (B), it is not a tight constraint to force one of the
airplanes to move from one location to another at a certain time step, particularly if there
are many airplanes. Given (A), it is surprising that in Logistics-1a AsymRatio is as good
an indicator of performance as in most other experiments. Given (B), it is understandable
why this phenomenon gets weaker for Logistics-2a and Logistics-3a. Logistics-IPC is even
tougher than Logistics-3a, presumably due to the larger ratio between number of packages
and road map size.

In comparison to Logistics, the results for Driverlog-5t-5p show the effect of a non-
trivial road map. Even with 5 trucks for just 5 transportable objects, AsymRatio is a
good performance indicator. Increasing the number of transportable objects over Driverlog-
1t-10p, Driverlog-1t-20p, and Driverlog-1t-30p, AsymRatio becomes less reliable. Note,
however, that stepping from Driverlog-1t-10p to Driverlog-1t-20p affects the behavior more
than stepping from Driverlog-1t-20p to Driverlog-1t-30p. In the former step, δ95(D,S) and
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δ100(D,S) increase by 0.04 and 0.02, respectively; in the latter step, δ95(D,S) increases by
0.01 and δ100(D,S) remains the same. Also, we reiterate that 30 objects on a map with
6 nodes – Driverlog-1t-30p – already constitute a very dense transportation problem, and
that optimal planners do not scale beyond 30 objects anyway.10

To sum our observations up, on the negative side there are domains like Random where
Hypothesis 1 is mostly wrong, and there are domains like Logistics where it holds only for
very restricted settings of S; in other domains, AsymRatio is probably devoid in extreme S
settings. On the positive side, Hypothesis 1 holds in almost all cases – all pairs of AsymRatio
bins – we encountered in the IPC domains (other than Logistics) and IPC parameter size
settings. With increasing δ, the bad cases quickly disappear; in our experiments, all bad
cases are filtered out at δ = 0.28, and all bad cases except those in Logistics and Random
are filtered out at δ = 0.16.

It would be interesting to explore how the behavior of AsymRatio changes as a func-
tion of all the parameters of the domains, i.e., to extend our above observations regarding
Logistics and Driverlog, and to perform similar studies for all the other domains. Given the
number of parameters the domains have, such an investigation is beyond the scope of this
paper, and we leave it as a topic for future work.

Figures 5 and 6 provide some quantitative results. In Figure 5, we take the mean
value of each AsymRatio bin, and plot that over AsymRatio. We do so for a selection of
domains, with IPC size parameter settings, and for a selection of classes Pm. We select
Blocksworld, Depots, Driverlog, Miconic-ADL, Rovers, and TPP; we show data for the
3 most populated Pm classes. The decrease of mean search tree size over AsymRatio is
very consistent, with some minor perturbations primarily in Blocksworld and Depots. The
most remarkable behavior is obtained in Rovers, where the mean search tree size decrases
exponentially over AsymRatio; note the logarithmic scale of the y axis in Figure 5 (e).11

From the relative positions of the different curves, one can also nicely see the influence of
optimal plan length/formula size – the longer the optimal plan, the larger the search tree.

Figure 6 provides some concrete examples of the search tree size distributions. They
are plotted in terms of their survivor functions. In these plots, search tree size increases
on the x axis, and the y axis shows the percentage of instances that require more than x
search nodes. Figure 6 shows data for the same domains and size settings as Figure 5. For
each domain, the maximum m of the 3 most populated Pm classes is selected – in other
words, we select the maximum m classes from Figure 5. Each graph contains a separate
survivor function for every distinct value of AsymRatio, within the respective domain and
Pm. The graphs thus show how the survivor function changes with AsymRatio. The y
axes are log-scaled to improve readability; without the log-scale, the outliers, i.e., the few
instances with a very large search tree size, cannot be seen.

10In fact, we were surprised that Driverlog instances with 30 objects can be solved. If one increases the
number of trucks (state space branching factor) or the number of map nodes (branching factor and plan
length) only slightly, the instances become extremely challenging; even with 20 packages and 10 map nodes,
ZChaff often takes hours.

11We can only speculate what the reason for this extraordinarily strong behavior in Rovers is. High
AsymRatio values arise mainly due to long paths to be travelled on the road map. Perhaps there is less
need to go back and forth in Rovers than in domains like Driverlog; one can transmit data from many
locations. This might have an effect on how tightly the search gets constrained.
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Figure 5: Mean search tree size of ZChaff, plotted against AsymRatio (log-plotted in (e)).
Shown for the 3 most populated Pm classes of the respective IPC settings of S.
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Figure 6: Search tree size distributions for different settings of AsymRatio, in terms of the
survivor functions over search tree size; log-scaled in y. Shown for the maximum
m class Pm for each of the domains from Figure 5, with the IPC settings of S.
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Figure 7: Size/depth ratio of ZChaff’s search trees in Rovers. Left hand side: mean values
plotted against AsymRatio. Right hand side: survivor functions for m = 10.

The behavior we expect to see, according to Hypothesis 1, is that the survivor functions
shift to the left – to lower search tree sizes – as AsymRatio increases. Indeed, with only
few exceptions, this is what happens. Consider the upper halfs of the graphs, containing
99% of the instances in each domain. Almost without exception, the survivor functions
are parallel curves shifting to the left over increasing AsymRatio. In the lower halfs of
the graphs, the picture is a little more varied; the curves sometimes cross in Blocksworld,
Depots, and Driverlog. In Driverlog, for example, with AsymRatio = 0.37, the maximum
costly instance takes 353953 nodes; with AsymRatio = 0.46, 0.1% of the instances require
more search nodes than that. So it seems that, sometimes, AsymRatio is not as good an
indicator on outliers. Still, the bulk of the distributions behaves according to Hypothesis 1.

Beside the search tree size of ZChaff, we also measured the (maximum) search tree
depth, the size of the identified backdoors (the sets of variables branched upon), and the
ratio between size and depth of the search tree. The latter gives an indication of how
“broad” or “thin” the shape of the search tree is. Denoting depth with d, if the tree is
full binary then the ratio is (2d+1 − 1)/d; if the tree is degenerated to a line then the ratio
is (2d + 1)/d. Plotting these parameters over AsymRatio, in most domains we obtained
behavior very similar to what is shown in Figures 5 and 6. As an example, Figure 7 shows
the size/depth ratio data for the Rovers domain. We find the results regarding size/depth
ratio particularly interesting. They nicely reflect the intuition that, as problem structure
increases, UP can prune many branches early on and so makes the search tree grow thinner.

5. Analyzing Goal Asymmetry in Synthetic Domains

In this section, we perform a number of case studies. We analyze synthetic domains
constructed explicitly to provoke interesting behavior regarding AsymRatio. The aim of
the analysis is to obtain a better understanding of how this sort of problem structure affects
the behavior of SAT solvers; in fact, the definition of AsymRatio was motivated in the first
place by observations we made in synthetic examples.
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The analytical results we obtain in our case studies are, of course, specific to the studied
domains. We do, however, identify a set of prototypical patterns of structure that also
appear in the planning competition examples; we will point this out in the text.

We analyze three classes of synthetic domains/CNF formulas, called MAP, SBW, and
SPH. MAP is a simple transportation kind of domain, SBW is a block stacking domain.
SPH is a structured version of the pigeon hole problem. Each of the domains/CNF classes
is parameterized by size n and structure k. In the planning domains, we use the simplified
Graphplan-based encoding described in Section 3, and consider CNFs that are one step
short of a solution. We denote the CNFs with MAP k

n , SBW k
n , and SPHk

n, respectively.
We choose the MAP and SBW domains because they are related to Logistics and

Blocksworld, two of the most classical Planning benchmarks. We chose SPH for its close
relation to the formulas considered in proof complexity. The reader will notice that the
synthetic domains are very simple. The reasons for this are threefold. First, we wanted
to capture the intended intuitive problem structure in as clean a form as possible, without
“noise”. Second, even though the Planning tasks are quite simple, the resulting CNF
formulas are complicated – e.g., much more complicated than the pigeon hole formulas
often considered in proof complexity. Third, we identify provably minimal backdoors. To
do so, one has to take account of every tiny detail of the effects of unit propagation. The
respective proofs are already quite involved for our simple domains – for MAP, e.g., they
occupy 9 pages, featuring myriads of interleaved case distinctions. To analyze more complex
domains, one probably has to sacrifice precision. For the sake of readability, the proofs are
moved to Appendix A, and only briefly sketched here.

5.1. MAP. In this domain, one moves on the undirected graph shown in Figure 8 (a) and
(b). The available actions take the form move-x-y, where x is connected to y with an edge
in the graph. The precondition is {at-x}, the add effect is {at-y, visited-y}, and the delete
effect is {at-x}.

The number of nodes in the graph is 3n − 3. Initially one is located at L0. The goal
is to visit a number of locations. Which locations must be visited depends on the value
of k ∈ {1, 3, . . . , 2n − 3}. If k = 1 then the goal is to visit each of {L1

1, . . . , L
1
n}. For each

increase of k by 2, the goal on the L1-branch goes up by two steps, and one of the other
goals is skipped. For k = 2n− 3 the goal is {L2n−3

1 , L1
2}. (For k = 2n− 1, MAP k

n contains
an empty clause: no supporting action for the goal is present at the last time step.) We
refer to k = 1 as the symmetrical case, and to k = 2n − 3 as the asymmetrical case, see
Figure 8 (a) and Figure 8 (b), respectively.12

The length of a shortest plan is 2n − 1 independently of k: one first visits all goal
locations on the right branches (i.e., the branches except the L1-branch), going forth and
back from L0; then one descends into the L1-branch. Our CNFs encode 2n − 2 steps.
AsymRatio is k/(2n − 1) because achieving the goal on the L1-branch takes k steps. In

12In Figure 8 (a), the graph nodes L1
2, . . . , L

1
n can be permuted. Running SymChaff [52], a version of

ZChaff extended to exploit symmetries, we could solve the MAP formulas relatively easily. This is an artefact
of the simplified structure of the MAP domain. In some experiments we ran on low AsymRatio examples
from Driverlog and Rovers, exploiting symmetries did not make a discernible difference. Intuitively, like in
MAP, all goals are cheap to achieve; unlike in MAP, they are not completely symmetric – this is a side-effect
of MAP’s overly abstract nature. Exploring this in more depth is a topic for future work.
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(a) goals symmetrical case (b) goals asymmetrical case

(c) constraint graph symmetrical case (d) constraint graph asymmetrical case

Figure 8: Goals and constraint graphs in MAP. In (a) and (b), goal locations are indicated
in bold face. In (c) and (d), n = 4; the variables at growing time steps lie on
circles with growing radius, edges indicate common membership in at least one
clause.

the symmetrical case, AsymRatio = 1/(2n − 1) which converges to 0; in the asymmetrical
case, AsymRatio = (2n − 3)/(2n − 1) which converges to 1.

Figure 8 (c) and (d) illustrate that the setting of k has only very little impact on the
size and shape of the constraint graph. As mentioned in Section 2, the constraint graph
is the undirected graph where the nodes are the variables, and the edges indicate common
membership in at least one clause. Constraint graphs form the basis for many notions of
structure that have been investigated in the area of constraint reasoning, e.g., [16, 51, 17].

Clearly, the constraint graphs do not capture the difference between the symmetrical
and asymmetrical cases in MAP. When stepping from Figure 8 (c) to Figure 8 (d), one new
edge within the outmost circle is added, and three edges within the outmost circle disappear
(one of these is visible on the left side of the pictures, just below the middle). More generally,

between formulas MAP k
n and MAP k′

n , k′ > k, there is no difference except that k′− k goal
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clauses are skipped, and that the content of the goal clause for the L1-branch changes.
Thus, the problem structure here cannot be detected based on simple examinations of CNF
syntax. In particular, it is easy to see that there are no small cutsets in the MAP formulas,
irrespectively of the setting of k. The reason are large cliques of variables present in the
constraint graphs for all these formulas. Details on this are in Appendix B.

The structure in our formulas does not affect the formula syntax much, but it does affect
the size of DPLL refutations, and backdoors. First, we proved that, in the symmetrical case,
the DPLL trees are large.

Theorem 5.1 (MAP symmetrical case, Resolution LB). Every resolution refutation of
MAP 1

n must have size exponential in n.

Corollary 5.2 (MAP symmetrical case, DPLL LB). Every DPLL refutation of MAP 1
n

must have size exponential in n.

The proof of Theorem 5.1 proceeds by a “reduction” of MAP 1
n to a variant of the

pigeon hole problem. A reduction here is a function that transforms a resolution refutation
of MAP 1

n into a resolution refutation of the pigeon hole. Given a reduction function from
formula class A into formula class B, a lower bound on the size of resolution refutations of
B is also valid for A, modulo the maximal size increase induced by the reduction.

We define a reduction function fromMAP 1
n into the onto functional pigeon hole problem,

ofPHPn. This is the standard pigeon hole – where n pigeons must be assigned to n − 1
holes – plus “onto” clauses saying that at least one pigeon is assigned to each hole, and
“functional” clauses saying that every pigeon is assigned to at most one hole. Razborov [48]
proved that every resolution refutation of ofPHPn must have size exp(Ω(n/(log(n+1))2)).

Our reduction proceeds by first setting many variables in MAP 1
n to 0 or 1, and identi-

fying other variables (renaming x and y to a new variable z).13 By some rather technical
(but essentially simple) arguments, we prove that such operations do not increase the size
of a resolution refutation. The reduced formula is a “temporal” version of the onto pigeon
hole problem; we call it oTPHPn. We will discuss this in detail below. We prove that, from
a resolution refutation of oTPHPn, one can construct a resolution refutation of ofPHPn

by replacing each resolution step with at most n2 + n new resolution steps. This proves
Theorem 5.1. Corollary 5.2 follows immediately since DPLL corresponds to a restricted
form of resolution. The same is true for DPLL with clause learning [4], as done in the
ZChaff solver we use in our experiments.

The temporal pigeon hole problem is similar to the standard pigeon hole problem except
that now the “holes” are time steps. This nicely reflects what typically goes on in Planning
encodings, where the available time steps are the main resource. So it is worth having a
closer look at this formula. We skip the “onto” clauses since these are identical in both the
standard and the temporal version. We denote the standard pigeon hole with PHPn, and
the temporal version with TPHPn. Both make use of variables x y, meaning that pigeon x
goes into hole y. Both have clauses of the form {¬x y,¬x′ y}, saying that no pair of pigeons
can go into the same hole. PHPn has clauses of the form {x 1, . . . , x (n− 1)}, saying that

13For example, we set all NOOP -at variables to 0. Such a variable will never be set to 1 in an optimal
plan, since that would mean a commitment to not move at all in a time step. Similar (more complicated)
intuitions are behind all the operations performed.
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each pigeon needs to go into at least one hole. In TPHPn, these clauses are replaced with
the following constructions of clauses:

(1) {¬px 2, x 1}
(2) {¬px 3, x 2, px 2} . . . {¬px (n− 1), x (n− 2), px (n − 2)}
(3) {x (n− 1), px (n− 1)}

Here, the px y are new variables whose intended meaning is that px y is set to 1 iff x is
assigned to some hole y′ < y – some earlier time step than y. The px y variables correspond
to the NOOP actions in Graphplan-based encodings. Clause (1) says that if we decide to put
x into a time step earlier than 2, we must put it into step 1. This is an action precondition
clause. Clauses (2) say that if we decide to put x into a step earlier than some y, then we
must put x into either y−1 or earlier than y−1. These also are action precondition clauses.
Clause (3) is a goal clause; it says that we must have put x somewhere by step n− 1 at the
latest.14

We believe that the temporal pigeon hole problem is quite typical for planning situ-
ations; at least, it is clearly contained in some Planning benchmarks more involved than
MAP. A simple example is the Gripper domain, where the task is to move n balls from one
room into another, two at a time. With similar reduction steps as we use for MAP, this
problem can be transformed into the TPHP . The same is true for various transportation
domains with trivial road maps, e.g., the so-called Ferry and Miconic-STRIPS domains.
Likewise, Logistics can be transformed into TPHP if there is only one road map (i.e., only
one city, or only airports); in the general case, one obtains a kind of sequenced TPHP
formula, where each pigeon must be assigned a sequence of holes (corresponding to truck,
airplane, truck). In a similar fashion, assigning samples to time steps in the Rovers domain
is a temporal pigeon hole problem. Formulated very generally, situations similar to the
TPHP arise when there is not enough time to perform a number of duties. If each duty
takes only few steps, then there are many possible distributions of the duties over the time
steps. In its most extreme version, this situation is the TPHP as defined above.

The proof of Theorem 5.1 by reduction to the pigeon hole is intriguing, but not particu-
larly concrete about what is actually going on inside a DPLL procedure run on MAP 1

n . To
shed more light on this, we now investigate the best choices of branching variables for such
a procedure. The backdoor we identify in the symmetrical case, called MAP 1

nB, is shown
in Figure 9 for n = 5. MAP 1

nB contains, at every time step with an odd index, move-L0-L1
i

and NOOP -visited-L1
i variables for all branches i on the MAP, with some exceptions. A

few additional variables are needed, including NOOP -at-L0 at the first time step of the
encoding. Full details are in Appendix A. The size of MAP 1

nB is Θ(n2): Θ(n) time steps
with Θ(n) variables each. Remember that the total number of variables is also Θ(n2), so
the backdoor is a linear-size variable subset.

Theorem 5.3 (MAP symmetrical case, BD). MAP 1
nB is a backdoor for MAP 1

n .

For the proof, first note that, in the encoding, any pair of move actions is incompatible.
So if one move action is set to 1 at a time step, then all other move actions at that step

14Note that PHPn can be obtained from TPHPn within few resolution steps resolving on the px y

variables. So it is easy to turn a refutation of PHPn into a refutation of TPHPn. The inverse direction, which
we need for our proof, is less trivial; one replaces each variable px y with its meaning {x 1, . . . , x (y − 1)},
and then reasons about how to repair the resolution steps.
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Figure 9: The MAP 1
nB variables for n = 5. The vertical axis corresponds to time steps t,

the horizontal axis corresponds to branches on the map. “NOOP-at” is abbrevi-
ated as “Nat”, “NOOP-visited” is abbreviated as “Nv”, “move” is abbreviated
as “mv”.

are forced out by UP over the mutex clauses – the time step is “occupied” (this is relevant
also in the asymmetrical case below). Now, to see the basic proof argument, assume for
the moment that MAP 1

nB contains all move-L0-L1
i and NOOP -visited-L1

i variables, at
each odd time step. Assigning values to all these variables results, by UP, in a sort of
goal regression. In the last time step of the encoding, t = 2n − 2, the goal clauses form
n constraints requiring to either visit a location L1

i , or to have visited it earlier already
(i.e., to achieve it via a NOOP). Examining the interactions between moves and NOOP s
at t = 2n − 3, one sees that, if all these are set, then at least n − 1 goal constraints will
be transported down to t = 2n − 4. Iterating the argument over the n− 2 odd time steps,
one gets two goal constraints at t = 2: two nodes L1

i must be visited within the first two
time steps. It is easy to see, then, that branching over NOOP -at-L0 at time 1 yields an
empty clause in either case. What makes identifying a non-redundant (minimal) backdoor
difficult is that UP is slightly more powerful than just performing the outlined “regression”.
MAP 1

nB contains hardly any variables for branch i = 1. So at t = 2 one gets only a single
goal constraint, achieving which isn’t a problem. We perform an intricate case distinction
about the precise pattern of time steps that are occupied after the regression, taking account
of, e.g., such subtleties as the possibility to achieve visited-L1

1 by moving in from L2
1 above.

In the end, one can show that UP enforces commitments to accommodate also the two
move-L0-L1

i actions that weren’t accommodated in the regression. For this, there is not
enough room left.
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We conjecture that the backdoor identified in Theorem 5.3 is also a minimum size (i.e.,
an optimal) backdoor; for n ≤ 4 we verified this empirically, by enumerating all smaller
variable sets. (Enumerating variable sets in small enough examples was also our method to
find the backdoors in the first place.) We proved that the backdoor is minimal.

Theorem 5.4 (MAP symmetrical case, BD minimality). Let B′ be a subset of MAP 1
nB

obtained by removing one variable. Then the number of UP-consistent assignments to the
variables in B′ is always greater than 0, and at least (n− 3)! for n ≥ 3.

To prove this theorem, one figures out how wrong things can go when a variable is
missing in the proof of Theorem 5.3.

0−L1
1mv−Lt=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

−L3mv−L1
2

1

−L7mv−L1
6

1

Figure 10: The MAP 2n−3
n B variables for n = 5. The vertical axis corresponds to time steps

t, the horizontal axis corresponds to branches on the map (of which only one,
the L1-branch, is relevant for the backdoor). The variables stay the same for
n = 6, 7, 8. Compare to Figure 9.

When starting to investigate the backdoors in the asymmetrical case, our expectation
was to obtain Θ(n) backdoors involving only the map branch to the outlier goal node. We
were surprised to find that one can actually do much better. The backdoor we identify,
called MAP 2n−3

n , is shown in Figure 9 for n = 5. The general form is:

• move-L0-L1
1 at step 1

• move-L2
1-L

3
1 at step 3

• move-L6
1-L

7
1 at step 7

• move-L14
1 -L15

1 at step 15
• . . .

That is, starting with t = 2 one has move-Lt−2
1 -Lt−1

1 (t− 1) variables where the value of t is
doubled between each two variables. The size of MAP 2n−3

n B is ⌈log2n⌉.

Theorem 5.5 (MAP asymmetrical case, BD). MAP 2n−3
n B is a backdoor for MAP 2n−3

n .
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We again conjecture that this is also a minimum size backdoor. For n ≤ 8 we verified
this empirically. Note that, while the size of the backdoor is O(logn), n itself is asymptotic
to the square root of the number of variables in the formula. We can show that the backdoor
is minimal. Precisely, we have:

Theorem 5.6 (MAP asymmetrical case, BD minimality). Let B′ be a subset of MAP 2n−3
n B

obtained by removing one variable. Then there is exactly one UP-consistent assignment to
the variables in B′.

The proof of Theorem 5.5 is explained with an example below. Proving Theorem 5.6
is a matter of figuring out what can go wrong in the proof to Theorem 5.5, after removing
one variable.

We consider it particularly interesting that the MAP 2n−3
n formulas have logarithmic

backdoors. This shows, on the one hand, that these formulas are (potentially) easy for Davis
Putnam procedures, having polynomial-size refutations.15 On the other hand, the formulas
are non-trivial, in two important respects. First, they do have non-constant backdoors and
are not just solved by unit propagation. Second, finding the logarithmic backdoors involves,
at least, a non-trivial branching heuristic – the worst-case DPLL refutations of MAP 2n−3

n

are still exponential in n. For example, UP will not cause any propagation if the choice of
branching variables is {NOOP -visited-L1

i (t) | 2 ≤ i ≤ n} for one time step 3 ≤ t ≤ 2n− 3.
More generally, our identification of O(logn) backdoors rather than O(n) backdoors is

interesting since it may serve to explain recent findings in more practical examples. Williams
et al [61] have empirically found backdoors in the order of 10 out of 10000 variables in CNF
encodings of many standard Planning benchmarks (as well as Verification benchmarks). In
this context, it is instructive to have a closer look at how the logarithmic backdoors in the
MAP formulas arise. We do so in detail below. A high-level intuition is that one can pick
the branching variables in a way exploiting the need to go back and forth on the path to
the outlier goal node. Going back and forth introduces a factor 2, and so one can double
the number of time steps between each pair of variables. Similar phenomena arise in other
domains, in the presence of “outlier goal nodes”, i.e., goals that necessitate a long sequence
of steps. Good examples for this are transportation of a package to a far-away destination,
or the taking of a far-away sample in Rovers. Note that this corresponds to a distorted
version of the TPHP , where one pigeon must be assigned to an entire sequence of time
steps, and hence the number of different distributions of pigeons over time steps is small.

We now examine an example formula, MAP 2n−3
n for n = 8, in detail. The proof of

Theorem 5.5 uses the following two properties of UP, in MAP 2n−3
n :

(1) If one sets a variable move-Li−1
1 -Li

1(i) to 1, then at all time steps j < i a move
variable is set to 1 by UP.

(2) If one sets a variable move-Li−1
1 -Li

1(i) to 0, then at all time steps j > i a move
variable is set to 1 by UP.

Both properties are caused by the “tightness” of branch 1, i.e., by UP over the precon-
dition clauses of the actions moving along that branch. Other than what one may think at

15We will see below that the DPLL refutations in fact degenerate to lines, having the same size as the
backdoors themselves.
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first sight, the two properties by themselves are not enough to determine the log-sized back-
door. The properties just form the foundation of a subtle interplay between the different
settings of the backdoor variables, exploiting exponentially growing UP implication chains
on branch 1. For n = 8, the backdoor is {move-L0-L1

1(1), move-L
2
1-L

3
1(3), move-L

6
1-L

7
1(7)}.

Figure 11 contains an illustration.
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Figure 11: The workings of the optimal backdoor for MAP 13
8 . Arrows indicate moves on

the L1-branch forced to 1 by UP. Direction → means towards L13
1 , ← means

towards L0. When only a single open step is left, move-L0-L1
2 is forced to 1 at

that step by UP, yielding an empty clause.

Consider the first (lowest) variable in the backdoor, move-L0-L1
1(1). If one sets this to

0, then property (2) applies: only 13 of the 14 available steps are left to move towards the
goal location L13

1 ; UP recognizes this, and forces moves towards L13
1 at all steps 2 ≤ t ≤ 14.

Since t = 1 is the only remaining time step not occupied by a move action, UP over the L1
2

goal clause sets move-L0-L1
2(1) to 1, yielding a contradiction to the precondition clause of

the move set to 1 at time 2. So move-L0-L1
1(1) must be set to 1.

Consider the second variable in the backdoor, move-L2
1-L

3
1(3). Say one sets this to 0.

By property (2) this forces moves at all steps 4 ≤ t ≤ 14. So the goal for L1
2 must be

achieved by an action at step 3. But we have committed to move-L0-L1
1 at step 1. This

forces us to move back to L0 at step 2 and to move to L1
2 at step 3. But then the move

forced in earlier at 4 becomes impossible. It follows that we must assign move-L2
1-L

3
1(3) to

1. With property (1), this implies that, by UP, all time steps below 3 get occupied with
move actions. (Precisely, in our case here, move-L1

1-L
2
1(2) is also set to 1.)

Consider the third variable in the backdoor, move-L6
1-L

7
1(7). If we set this to 0, then

by property (2) moves are forced in by UP at the time steps 8 ≤ t ≤ 14. So, to achieve the
L1

2 goal at step 7, we have to take three steps to move back from L3
1 to L0: steps 4,

5, and 6. A move to L1
2 is forced in at step 7, in contradiction to the move at 8 forced in

earlier. Finally, if we assign move-L6
1-L

7
1(7) to 1, then by property (1) moves are forced in

by UP at all steps below 7. We need seven steps to move back from L7
1 to L0, and an

eighth step to get to L1
2. But we have only the 7 steps 8, . . . , 14 available, so the goal for

L1
2 is unachievable.
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The key to the logarithmic backdoor size is that, to achieve the L1
2 goal, we have to

move back from Lt
1 locations we committed to earlier (as indicated in bold face above for

t = 3 and t = 7). We committed to move to Lt
1, and the UP propagations force us to move

back, thereby occupying 2 ∗ t steps in the encoding. This yields the possibility to double
the value of t between variables.

The DPLL tree for MAP 2n−3
n degenerates to a line:

Corollary 5.7 (MAP asymmetrical case, DPLL UB). For MAP 2n−3
n , there is a DPLL

refutation of size 2 ∗ ⌈log2n⌉+ 1.

Proof. Follows directly from the proof to Theorem 5.5: If one processes the MAP 2n−3
n B

variables from t = 1 upwards, then, for every variable, assigning the value 0 yields a
contradiction by UP. There are ⌈log2n⌉ non-failed search nodes. Adding the failed search
nodes, this shows the claim.

This is an interesting result since it reflects the intuition that, in practical examples,
constraint propagation can cut out many search branches early on, yielding a nearly degen-
erated search tree. This phenomenon is also visible in our empirical data regarding search
tree size/depth ratio, c.f. Section 4, Figure 7.

Note that we have now shown a doubly exponential gap between the sizes of the best-
case DPLL refutations in the symmetrical case and the asymmetrical case. It would be
interesting to determine what the optimal backdoors are in general, i.e., in MAP k

n , particu-
larly at what point the backdoors become logarithmic. Such an investigation turns out to be
extremely difficult. For interesting combinations of n and k, it is practically impossible to
find the optimal backdoors empirically, and so get a start into the theoretical investigation.
We developed an enumeration program that exploits symmetries in the planning task to cut
down on the number of variable sets to be enumerated. Even with that, the enumeration
didn’t scale up far enough. We leave this topic for future work.

5.2. SBW. We also constructed and examined a structured version of the Blocksworld
planning domain, with “stacking restrictions” on what blocks can be stacked onto what
other blocks. The parameter n is the number of blocks. They are initially all located side-
by-side on a table t1. The goal is to bring all blocks onto another table t2, that has only
space for a single block. That is, the n blocks must be arranged in a single large stack on
top of t2. The parameter k defines the amount of stacking restrictions. There are 0 ≤ k ≤ n
“bad” blocks b1, . . . , bk and n− k “good” blocks g1, . . . , gn−k. For 1 < i ≤ k, bi can only be
stacked onto bi−1; b1 can be stacked onto t2 and any gi. The gi can be stacked onto each
other, and onto t2. See an illustration in Figure 12.

The operators are the usual Blocksworld operators of the domain version that does not
make use of an explicit robot arm, i.e. the predicates dealt with are “on”, “on-table”, and
“clear” (as well as some supplementary stuff to implement the stacking restrictions and the
goal). More precisely, there are two kinds of moving actions: those that move a block x from
the table to a block y that is above t2 (a la Move-x-from-t-to-t2, short “movetot2-x-y”),
and that move a block x from a block y above t2, or from t2 itself, to t1 (a la Move-x-
from-t2-to-t, short “movefromt2-x-y”). The former action adds a fact stating that now x is
“above” t2, the latter action deletes that fact. Initially only t2 is “above” itself. The goal
condition is the conjunction of “above” for all blocks. As in MAP, a very basic feature in
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gn−kb1 bk g1

Figure 12: An (incomplete) illustration of the SBW domain.

our proofs is that every pair of move actions is incompatible, and so setting a move at time
t to 1 excludes, by UP, all other move actions at t. We use the convention that g0 denotes
t2, i.e. t2 is the “lower most good block” – this is useful to simplify the notation.

The optimal plan length in SBW is n, independently of k: one has to first move the
good blocks above t2 in any order, and then the bad blocks in increasing order (of index).
AsymRatio is 1

n
if k = 0, and k

n
otherwise – in order to get bk above t2, all of b1, . . . , bk−1

must be moved there first. As before, we consider the unsatisfiable CNFs that are just a
single step short of a solution: we have n− 1 time steps 1, . . . , n − 1.

With n = 1, optimal plan length is 1 so our CNF encoding would have 0 steps and
be empty. It is easy to see that, with n = 2, even with k = 0 SBWn,k is solved by UP –
there is just a single time step, into which two moving actions must be fit. It is also easy to
see that the CNF contains an empty clause – no goal achievers are present – for SBWn,n,
since only n− 1 steps are available to stack the n blocks bi in sequence. Also, SBWn,n−1 is
solved by UP because there is only just enough time to stack the sequence of bad blocks;
each time step is assigned such a stacking action, and there is no time to stack the single
good block. Altogether, in what follows we thus assume that n ≥ 3, and 0 ≤ k ≤ n − 2.
Since, with high k, there are less options of stacking one block onto another, the number of
variables in the CNF differs considerably for different values of k. Precisely, that number
is 3n3 − 5n2 − 1 for k = 0, and 4n2 + 13n − 44 for k = n− 2. At both ends of the k scale,
for any constant b, the b-cutset size is lower bounded by a linear function in the respective
number of variables; details on this are in Appendix B.

We were not able to prove an exponential lower bound on DPLL refutation size for the
symmetrical case (bottom end of the k scale) of SBW. We conjecture that there is such
a bound, and pose this question as an open problem. Here, we identify SBW backdoors.
Similar as in the MAP family of formulas, in the symmetrical case the smallest backdoors
we could identify have a size linear in the total number of variables. Precisely, the backdoor
we identified, called SBW 0

nB, is defined as follows:

SBW 0

nB := {movetot2-gi-gj(t) | 1 ≤ i ≤ n− 2, 0 ≤ j ≤ n, j 6= i, 2 ≤ t ≤ n− 1} \
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{movetot2-gi-gj(i+ 1) | max(2, n− 4) ≤ i ≤ n− 2, 0 ≤ j ≤ n− 2}

In words, to construct SBW 0
nB we first include, for all blocks gi, i ∈ {1, . . . , n − 2}, all

possibilities of getting gi above t2, at all time steps except the first one. Thereafter, for all
blocks gi, i ∈ {max(2, n−4), . . . , n−2}, that is, for the last 3 blocks in the set {2, . . . , n−2}
(or less if |{2, . . . , n− 2}| < 3), we subtract all possible moves except those to gn−1 and gn.
We refer to these move variables as cut-fields. Figure 13 illustrates the backdoor for n = 7.
The size of SBW 0

nB is Θ(n3): at Θ(n) time steps, we talk about Θ(n) blocks, each possibly
being stacked onto Θ(n) other blocks.16 Since the total number of variables in the formula
is also Θ(n3), we have a linear size variable subset.

t=1

t=2 0,2,3,4,5,6,7

t=3

0,1,3,4,5,6,7 0,1,2,4,5,6,7 0,1,2,3,4,6,7

g=1 g=2 g=3 g=4 g=5

t=4

t=5

t=6

g=6 g=7

0,1,2,3,5,6,7

0,2,3,4,5,6,7

0,2,3,4,5,6,7
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0,1,2,3,5,6,7
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                6,7

                6,7

                6,7

Figure 13: An illustration of SBW 0
nB for n = 7. The vertical axis corre-

sponds to time steps t, the horizontal axis corresponds to blocks g.
For block g = 1, i.e. g1, the notations 0, 2, 3, 4, 5, 6, 7 are short-
hand for movetot2-g1-t2, movetot2-g1-g2, movetot2-g1-g3, movetot2-g1-g4,
movetot2-g1-g5, movetot2-g1-g6, movetot2-g1-g7. Likewise for the other blocks.

Theorem 5.8 (SBW symmetrical case, BD). SBW 0
nB is a backdoor for SBW 0

n .

We remark that it is very easy to prove that SBW 0
nB is a backdoor if one does not

remove any variables from the upper set in the above definition, i.e., if one considers the
set {movetot2-gi-gj(t) | 1 ≤ i ≤ n − 2, 0 ≤ j ≤ n, j 6= i, 2 ≤ t ≤ n − 1}. The difficult bit
is to prove that the cut-fields can be removed without losing the backdoor property. We
proved empirically that SBW 0

nB is optimal for n = 3, and that it is minimal for n ≤ 6. It
is not minimal for n = 7 (and, presumably, for larger values of n). There are apparently
certain subtleties that appear only in the larger instances, and due to that a few more
variables can be skipped from SBW 0

nB. For n = 7, 3 out of 160 variables can be removed
from SBW 0

nB until the backdoor set is minimal. Since the proof to Theorem 5.8 is already
rather complicated, and the number of additional variables that can be removed appears
to be very small, we did not investigate this in detail. The important message is that the
backdoor in the symmetrical case is in the order of n3, talking about a linear number of
blocks being put onto a linear number of other blocks at a linear number of time steps, and
that a few variables can be spared due to some more subtle phenomena (e.g., see below).

To prove Theorem 5.8, one has to reason about how the goal constraints for the single
blocks are transported backwards over the time steps in the CNF, starting from the last

16Precisely, the size is n3 − 5n2 + 9n − 6 for n ≤ 6, and n3 − 4n2 + n + 6 for n > 6.



36 JÖRG HOFFMANN, CARLA GOMES, AND BART SELMAN

(goal) time step. In that sense, the style of the proof is reminiscent of the proof for the
MAP symmetrical case, Theorem 5.3. However, in SBW with k = 0, we have n possibilities
to achieve each goal (rather than the single possibility we have in MAP). We can stack any
block g onto any other block g′, or onto t2, to achieve the goal for g. Still, when not removing
the cut-fields, the proof is relatively simple and comes down to a reasoning that says: “After
UP, at least n − 2 time steps will be occupied with moves towards t2; the remaining two
blocks are forced into the single remaining time step, which causes a contradiction.” If we do
remove the cut-fields, however, then one has to take account of quite a number of subtleties
caused by the structure of the domain, and how UP recognizes the restrictions imposed
by them. Just to give one example, under certain circumstances, if a variable sequence
of the form movetot2-g1-g0(1), movetot2-g2-g1(2), . . . , movetot2-gk-gk−1(k) (or any other
permutation of a k-subset) are set to 1, then at the time steps above k + 1 only moves
onto gk, or blocks not in the committed sequence, are possible – that is, all other moves
are forced to 0 by UP. The overall proof structure is to perform case distinctions over the
possible situations after assigning the variables regarding those blocks that have no cut-field.

In the asymmetrical case (top end of the k scale, k = n − 2), as before a logarithmic
number of decision variables suffices. The backdoor we identified, called SBW n−2

n B, is the
following:

SBWn−2
n B := {movetot2-g1-t2(1),movetot2-g2-t2(1)} ∪

{movetot2-b3∗2i−1
−1-b3∗2i−1

−2(3 ∗ 2i−1 − 1) | 1 ≤ i ≤ ⌈log2(n/3)⌉}

Table 2 illustrates this for up to n = 48.

n i (additional) backdoor variable(s)

3 = 3 ∗ 2i 0 movetot2-g1-t2(1)
movetot2-g2-t2(1)

4 1 movetot2-b2-b1(2)
5
6 = 3 ∗ 2i

7 2 movetot2-b5, b4(5)
.
.
12 = 3 ∗ 2i

13 3 movetot2-b11-b10(11)
.
.
24 = 3 ∗ 2i

25 4 movetot2-b23-b22(23)
.
.
48 = 3 ∗ 2i

Table 2: An illustration of SBW n−2
n B, for n ≤ 48. Index i indicates the number of variables

added on top of movetot2-g1-t2(1) and movetot2-g1-t2(1). This is basically the
index of the exponentially growing “equivalence classes” of subsequent formulas
with the same backdoor set.
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Theorem 5.9 (SBW asymmetrical case, BD). SBW n−2
n B is a backdoor for SBW n−2

n .

The size of SBWnn−2B is 2 + ⌈log2(n/3)⌉. We verified this as a lower bound for up to
n = 8, and we conjecture that it is a lower bound in general. We proved that SBW n−2

n B,
is minimal.

Theorem 5.10 (SBW asymmetrical case, BD minimality). Let n > 2. Let B′ be a subset
of SBW n−2

n B obtained by removing one variable. Then there is exactly one UP-consistent
assignment to the variables in B′.

The reason for the existence of the logarithmic size backdoors is, similarly to before,
that UP can exploit long implication chains between variables at time steps whose distance
doubles between each pair of variables. The variables (except those regarding the two
good blocks) encode commitments regarding moves of bad blocks at appropriate time steps.
The interplay of the variables, and our proof of their backdoor property, i.e., the proof of
Theorem 5.9, is quite reminiscent of the MAP asymmetrical case (i.e. Theorem 5.5). By
induction over i, each variable movetot2-b3∗2i−1−1-b3∗2i−1−2(3 ∗ 2i−1 − 1) must be set to 1
or else UP enforces moves “towards the goal” at 1, . . . , 3 ∗ 2i−2 − 1, moves “away from the
goal” at 3 ∗ 2i−2, . . . , 3 ∗ 2i−1− 2, and moves “towards the goal” at 3 ∗ 2i, . . . , n− 1. Setting
the topmost (at the highest time step) variable in the backdoor to 1 yields a contradiction
because UP enforces moves “away from the goal” at all higher time steps. In difference to
the MAP asymmetrical case, the time-step distance between the backdoor variables contains
a factor 3. This is due to one step needed for scheduling the two good blocks (similar to
MAP), plus two steps needed to move (remove) b2 and b1 to (from) t2 (dissimilar to MAP).

As before, proving Theorem 5.10 is a matter of figuring out what can go wrong in the
proof to Theorem 5.9, after removing one variable. Also as before, we get a logarithmic-size
best-case DPLL refutation.

Corollary 5.11 (SBW asymmetrical case, DPLL UB). For SBW n−2
n , there is a DPLL

refutation of size 2 ∗ (2 + ⌈log2(n/3)⌉) + 1.

Proof. From the proof to Theorem 5.9, it follows directly that there is a DPLL refutation,
in the shape of a line, with 2+⌈log2(n/3)⌉ non-failed search nodes. Adding the failed search
nodes, this shows the claim.

As in MAP, we consider it interesting, but found it extremely difficult, to determine
what the optimal backdoors are in general, in particular at what point of the k scale they
become logarithmic. We leave this topic open for future work.

5.3. SPH. In SPHk
n, like in the classical pigeon hole problem the task is to assign n + 1

pigeons to n holes. The difference lies in that there is now one “bad” pigeon that requires k
holes, and k− 1 “good” pigeons that can share a hole with the bad pigeon. The remaining
n− k + 1 pigeons are normal, i.e., need one hole each. The range of k is between 1 and n.
Independently of k, n+ 1 holes are needed overall. In particular the CNF is unsatisfiable.

Precisely, the CNF is the following. The variables are x y where x is a pigeon and y
is a hole: x y set to 1 means that x is assigned to y. The bad pigeon is x = 0, the good
pigeons are x = 1, . . . , x = k − 1, the normal pigeons are x = k, . . . , x = n. The holes are
y = 1, . . . , n. The clauses are:
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• {x 1, . . . , x n} for all x 6= 0: all pigeons except the bad one need one hole.
• {¬x y,¬x′ y} for all x, x′ 6= 0, x < x′, and all y: no two normal or good pigeons can

share a hole.
• {¬0 y,¬x y} for all x ≥ k and all y: none of the normal pigeons can share a hole

with the bad pigeon.
• GEQ({0 1, . . . , 0 n}, k): a set of clauses that is satisfiable iff at least k variables out

of the set {0 1, . . . , 0 n} are set to 1. We consider two options for the definition of
GEQ({0 1, . . . , 0 n}, k), see below.

The most straightforward, naive, definition of GEQ({0 1, . . . , 0 n}, k) is the set of
clauses {0 y | y ∈ Y } for all Y ⊆ {1, . . . , n}, |Y | = n − k + 1. To explain this, observe
that the size of the sets Y0 is chosen so that, when removing the holes Y0 from Y , only k−1
holes are left. So if p0 occupies k holes then, out of each set Y0, p0 occupies at least one
hole. The other direction, if p0 occupies only (at most) k − 1 holes, then the complement
of these holes contains a set Y0 where the respective clause evaluates to 0.

The drawback of the naive definition of GEQ({0 1, . . . , 0 n}, k) is that it can require an
exponential number of clauses, e.g. if one sets k to n/2 and lets n range. If one fixes k, or the
difference between n and k, to some value, however (as e.g. at the bottom/top ends of the k
scale where k is fixed to 1/n− k is fixed to 0), then the number of clauses is polynomial (in
n). One can obtain a definition of GEQ({0 1, . . . , 0 n}, k) that is polynomial in both n and
k by introducing additional auxiliary variables, and connect them via appropriate clauses
to implement a counter of the holes the bad pigeon is assigned to. We discuss such an
encoding further below. For the moment, i.e. for the following formal discussion, we assume
the naive definition of GEQ({0 1, . . . , 0 n}, k) in the SPH formulas. Beside being more
clear and easier to understand, these formulas have the desirable property that they are a
generalization of the standard pigeon hole formula. If we set k = 1 then we obtain exactly
the standard formula using the single clause GEQ({0 1, . . . , 0 n}, 1) = {{0 1, . . . , 0 n}} to
ensure that the bad pigeon is assigned to at least one hole.

For k = n, we obtain a formula that is inconsistent under UP: |Y | = n−k+1 = 1 so we
get the n clauses {0 1} . . . {0 n}. In words, the bad pigeon occupies all holes. By UP, the
clause {n 1, . . . , n n} becomes empty, i.e. there is no space for the last remaining normal
pigeon. For k = n − 1, the CNF formula is consistent under UP. Independently of k, the
number of variables in SPHk

n is (n+ 1) ∗ n. The constraint graph changes over k (only) in
that, for all holes 1 ≤ y ≤ n and good pigeons 1 ≤ g ≤ k−1, there are no edges between 0 y
and g y, since the good and bad pigeons can share holes (there are no exclusion clauses).
Independently of k, for any constant b, the b-cutset size is a square function in n – linear
in the total number of variables. This is detailed in Appendix B.

Since the SPHk
n formulas are much simpler than MAP k

n and SBW k
n , we were able

to identify minimal backdoors across the entire range of k. Precisely, the backdoor we
identified, called SPHk

n, is the following:

SPHk
nB := {0 y | 1 ≤ y ≤ n− 1} ∪

{x y | k + 2 ≤ x ≤ n, 1 ≤ y ≤ n− 1}
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In words, one selects n− 1 of the holes (all but hole n) and n− k− 1 of the normal pigeons
(all but numbers k and k + 1). The variables talking about these holes and pigeons, plus
the bad pigeon, form the backdoor. Figure 14 illustrates this.17

n

n−1

1

X

Y n 1 k+1k+20

Figure 14: An illustration of SPHk
nB. The x axis stands for the pigeons, the y axis stands

for the holes, and the filled-in area indicates the set of backdoor variables (the
cross-product of the n − 1 selected holes, and the n − k − 1 selected normal
pigeons plus the bad one).

Theorem 5.12 (SPH, BD). SPHk
nB is a backdoor in SPHk

n.

The size of SPHk
n is (n− k) ∗ (n− 1). We conjecture that this is also a lower bound on

backdoor size; for n ≤ 5, we verified this empirically. The backdoor is minimal.

Theorem 5.13 (SPH, BD minimality). Let B′ be a subset of SPHk
nB obtained by removing

one variable x y. Then, if x 6= 0, to the variables in B′ there are exactly (n−2)∗· · ·∗(k+1)
UP-consistent assignments; if x = 0 then there are exactly (n − 2) ∗ · · · ∗ k UP-consistent
assignments.

Proving Theorem 5.12 involves a number of case distinctions, but is not overly
difficult. The basis is the following “efficiency property” of the naive encoding of
GEQ({0 1, . . . , 0 n}, k): For any subset Y ′, |Y ′| = n − k, of holes, if 0 y′ is set to 0
for all y′ ∈ Y ′, then 0 y is set to 1 by UP for all y 6∈ Y ′. With this, it is easy to see that,
after setting all variables in the backdoor, at least n − 1 holes are occupied by UP. Then
both remaining normal pigeons (those not selected for the backdoor, numbers k and k+ 1)
are forced into the single remaining hole, yielding an empty clause. Proving Theorem 5.13
is largely a matter of combinatorics. One first observes that a partial assignment is UP-
consistent iff it does not assign two pigeons (more precisely, two pigeons except the bad and
a good one) to the same hole, and leaves at least two holes open. The rest of the proof is a
counting matter.

As k increases, the backdoor size goes down from a linear function in the total number
of variables – n(n+1) – to a square root function. It is important to note that, between the
DPLL refutations induced by the backdoors (the DPLL refutations one gets when branching

17We remark that, as one would expect, one can actually select an arbitrary n−1 subset of the holes, and
an arbitrary n − k − 1 subset of the normal pigeons, to form the backdoor. We fixed one specific selection
for simplicity of presentation.
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over only the backdoor variables), there is an exponential difference in size. For k = 1, the
best-case refutation is exponential in n – this is a special case of results by Buss and Pitassi
[8]. For k = n− 1, we have the following.

Proposition 1 (SPH, DPLL UB). Any DPLL refutation of SPHn−1
n , induced by SPHn−1

n B,
has size 2n− 1.

Proof. For k = n − 1, SPHn−1
n B = {0 y | 1 ≤ y ≤ n − 1}. The bad pigeon needs n − 1

holes, so as soon as one sets one of the backdoor variables to 0, one gets a contradiction by
UP (the bad pigeon is forced into the remaining n − 1 holes, and the two normal pigeons
are both forced into the single hole left open). So the DPLL tree contains non-failed nodes
only for the search branches setting a (backdoor) variable to 1, and the tree degenerates to
a line, of length n − 1, i.e., with n − 1 non-failed search nodes. Adding the failed search
nodes, this shows the claim.

Observe that the asymmetry behavior is unrelated to the number of clauses: that num-
ber is low at the extreme ends (k = 1 and k = n−1), and increases/decreases (exponentially,
in n) in between.

As opposed to the naive encoding of GEQ({0 1, . . . , 0 n}, k) treated above, Bailleux and
Boufkhad [?] propose a polynomial-size encoding called Ψ({0 1, . . . , 0 n}, k, n) (in Ψ(V, l, u),
u is an upper bound on the variables set to 1). The encoding introduces Θ(nlogn) new
variables, and Θ(n2) clauses, to implement a tree-shaped counting procedure that creates
a vector of n output variables where all holes assigned to the bad pigeon are moved to one
side.18 One can then simply check, by looking at that side of the output variables, if the bad
pigeon occupies enough holes. Theorem 5.12 remains valid because, as proved by Bailleux
and Boufkhad, Ψ({0 1, . . . , 0 n}, k, n) has the same efficiency property as mentioned above
for the naive encoding. The question is whether the backdoors can become smaller. We
empirically found that this can indeed be the case. For the case n = 4, k = 1, our
enumeration procedure found backdoors of size 8, rather than the 9 variables necessary in
the naive encoding. The question is, exactly what shape do the new optimal backdoors
have? We performed a few tests and came up with some hypotheses, but didn’t get very
far because the interesting things happened only for values of n and k far beyond the reach
of complete enumeration. We leave this topic open for future work.

6. Empirical Behavior in Synthetic Domains

Regarding the analysis of synthetic domains, it remains to verify whether the theoretical
observations carry over to practice – i.e., to verify whether state-of-the-art SAT solvers do
indeed behave as expected. To confirm this, we ran ZChaff [46] and MiniSat [20, 19] on our
synthetic CNFs. The results are in Figure 15.

The axes labelled “X” in Figure 15 refer to AsymRatio. The axes labelled “Y” refer
to values of n. The range of AsymRatio is 0 to 1 in all pictures, growing on a linear scale
from left to right. For each value of n, the data points shown on the X axis correspond to
the AsymRatio values for all possible settings of k. The range of n depends on domain and
SAT solver; in all pictures, n grows on a linear scale from front to back. We started each
n range at the lowest value yielding non-zero runtimes, and scaled until the first time-out

18I.e. in any satisfying assignment to Ψ({0 1, . . . , 0 n}, k, n) the new variables behave in this way.
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(a) ZChaff in MAP (b) MiniSat in MAP
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(c) ZChaff in SBW (d) MiniSat in SBW
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(e) ZChaff in SPH (f) MiniSat in SPH

Figure 15: Runtime of ZChaff and MiniSat, log-plotted against AsymRatio (axes labelled
“X”) and n (axes labelled “Y”), in our synthetic CNFs. The range of n depends
on domain and SAT solver, see text; the value grows from front to back. The
range of AsymRatio is [0; 1] in all plots, growing from left to right. For each
value of n, the data points shown on the X axis correspond to the AsymRatio
values for all possible settings of k.



42 JÖRG HOFFMANN, CARLA GOMES, AND BART SELMAN

occurred, which we set to two hours (we used a PC running at 1.2GHz with 1GB main
memory and 1024KB cache running Linux). The plots in Figure 15 include all values of n
for which no time-out occurred. With this strategy, in MAP, for ZChaff we got data for
n = 5, . . . , n = 9, and for MiniSat we got data for n = 5, . . . , n = 10. In SBW, for ZChaff
we got data for n = 6, . . . , n = 10, and for MiniSat we got data for n = 6, . . . , n = 11.
In SPH, for ZChaff we got data for n = 7, . . . , n = 12, and for MiniSat we got data for
n = 7, . . . , n = 11. (Note that MiniSat outperforms ZChaff in MAP and SBW, while ZChaff
is better in SPH.)

All in all, the empirical results comply very well with our analytical results, meaning
that the solvers do succeed, at least to some extent, in exploiting the problem structure and
finding short proofs. When walking towards the back on a parallel to the Y axis – when
increasing n – as expected runtime grows exponentially in all but the most asymmetric
(rightmost) instances, for which we proved the existence of polynomial (logarithmic, in
MAP and SBW) proofs. Also, when walking to the left on a parallel to the X axis –
when decreasing AsymRatio – as expected runtime grows exponentially. There are a few
remarkable exceptions to the latter, particularly for ZChaff and MiniSat in MAP, and for
ZChaff in SPH: there, the most symmetric (leftmost) instances are solved faster than their
direct neighbors to the right. There actually also is such a phenomenon in SBW. This is
not visible in Figure 15 since k = 0 and k = 1 lead to the same AsymRatio value in SBW,
and Figure 15 uses k = 0; the k = 1 instances take about 20% − 30% more runtime than
the k = 0 instances. So, the SAT solvers often find the completely symmetric cases easier
than the only slightly asymmetric ones. We can only speculate what the reason for that is.
Maybe the phenomenon is to do with the way these SAT solvers perform clause learning;
maybe the branching heuristics become confused if there is only a very small amount of
asymmetry to focus on. It seems an interesting topic to explore this issue – in the “slightly
asymmetric” cases, significant runtime could be saved.

7. A Red Herring

Being defined as a simple cost ratio – even one that involves computing optimal plan
lengths – AsymRatio cannot be fool-proof. We mentioned in Section 4 already that one can
replace G with a single goal g, and an additional action with precondition G and add effect
{g}, thereby making AsymRatio devoid of information. Such “tricks” could be dealt with
by defining AsymRatio over “necessary sub-goals” instead, as explained in the next section.
More importantly perhaps, of course there are examples of (parameterized) planning tasks
where AsymRatio does not correlate with DPLL proof size. One way to construct such
examples is by “hiding” a relevant phenomenon behind an irrelevant phenomenon that
controls AsymRatio. Figure 16 provides the construction of such a case, based on the
MAP domain.

The actions in Figure 16 are the same as in MAP, moving along edges in the graph,
precondition {at-x}, add effect {at-y, visited-y}, delete effect {at-x}. The difference is that
we now have two maps (graphs), and we assume that we can move on both in parallel,
i.e., our CNFs allow parallel move actions on separate graphs (which, for example, the
Graphplan-based encoding indeed does). Initially one is located at L0 and R0. The goal is
to visit the locations shown in bold face in Figure 16: Lk

1 and all of R1
1, . . . , R

1
n, where k
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L1
1

L0

L1
k

L1
2n−2

R0

R1
1 R2

1 Rn
1

Figure 16: The red herring example, consisting of two parallel maps on which nodes must be
visited. Parallel moves on separate maps are allowed, thus plan length is 2n− 1
irrespectively of k. Plan length bound for the CNFs is 2n − 2, the left map is
solvable within 2n − 2 steps, the right map is not. AsymRatio is controlled by
the left map, but to prove unsatisfiability one has to deal with the right map,
which does not change over k and demands exponentially long resolution proofs.

ranges between 1 and 2n − 2. Independently of k, the optimal plan length is 2n − 1, and
our CNF encodes 2n−2 plan steps. The left map is solvable within this number of steps, so
unsatisfiability must be proved on the right map, which does not change over k and requires
exponentially long resolution proofs, c.f. Theorem 5.1. AsymRatio, however, is k/(2n− 1).

In the red herring example, AsymRatio scales as the ratio between k and n, as before,
but the best-case DPLL proof size remains constant. One can make the situation even
“worse” by making the right map more complicated. Say we introduce additional locations
R2

1, . . . , R
2
n, each R2

i being linked to R1
i . We further introduce the location R3

1 linked to R2
1.

The idea is to introduce a varying number of goal nodes that lie “further out”. The larger
the number of such further out goal nodes, the easier we expect it to be (from our experience
with the MAP domain) to prove the right map unsatisfiable. We can always “balance” the
goal nodes in a way keeping the optimal plan length constant at 2n − 1. We then invert
the correlation between AsymRatio and DPLL performance by introducing a lot of further
out goals when k is small, and less further out goals when k is large. Concretely, with
maximum k we take the goal to be the same as before, to visit R1

1, . . . , R
1
n. With minimum

k, for simplicity say n = 2m. Then our goal will be to visit R3
1, R

2
2, . . . , R

2
m. The optimal

plan here first visits all of R2
2, . . . , R

2
m, taking 4 ∗ (m − 1) = 4 ∗ (n/2 − 1) = 2n − 4 steps

(4 steps each since one needs to go forth and back). Then R3
1 is visited, taking another 3

steps. All in all, with this construction, AsymRatio is still dominated by the left map. But
the right map becomes harder to prove unsatisfiable as k increases.

The example contains completely separate sub-problems, the left and right maps. The
complete separation invalidates the connection between AsymRatio and our intuitions
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about the relevant “problem structure”. As explained in the introduction, the general
intuition is that (1) in the symmetrical case (low AsymRatio) there is a fierce competi-
tion of many sub-problems (goals) for the available resources, and (2) in the asymmetrical
case (high AsymRatio) a single sub-problem uses most of the resources on its own. In the
red herring example, (1) is still valid, but (2) is not since the asymmetric sub-problem in
question has access to its own resources – the parallel moves on the left map. So, in this
case, AsymRatio fails to characterize the intuitive “degree of sub-problem interactions”.
The mistake lies in the maximization over individual goal fact costs, which disregards to
what extent the respective sub-problems are actually interconnected. In this sense, the
red herring is a suggestion to research more direct measures of sub-problem interactions,
identifying their causes rather than their effects.

8. Conclusions and Further Directions

We defined a concrete notion of what problem structure is, in Planning, and we revealed
empirically that this structure often governs SAT solver performance. Our analytical results
provide a detailed case study of how this phenomenon arises. In particular, we show that the
phenomenon can make a doubly exponential difference, and we identify some prototypical
behaviors that appear also in planning competition benchmarks.

Our parameterized CNFs can be used as a set of benchmarks with a very “controlled”
nature. This is interesting since it allows very clean and detailed tests of how good a
SAT solver is at exploiting this particular kind of problem structure. For example, our
experiments from Section 6 suggest that ZChaff and MiniSat have difficulties with “slightly
asymmetric” instances.

There are some open topics to do with the definition of AsymRatio. First, one should
try to define a version of AsymRatio that is more stable with respect to the “sub-goal struc-
ture”. As mentioned, our current definition, AsymRatio = maxg∈Gcost(g)/cost(

∧
g∈G g),

can be fooled by replacing G with a single goal g, and introducing an additional action
with precondition G and add effect {g}. A more stable approach would be to identify a
hierarchy of layers of “necessary sub-goals” – facts that must be achieved along any so-
lution path. Such facts were termed “landmarks” in recent research [33]. In a nutshell,
one could proceed as follows. Build a sequence of landmark “layers” G0, . . . , Gm. Start
with G0 := G. Iteratively, set Gi+1 :=

⋃
g∈Gi

⋂
a:g∈add(a) pre(a), until Gi+1 is contained in

the previous layers. Set m := i, i.e., consider the layers up to the last one that brought
a new fact. It has been shown that such a process results in informative problem decom-
positions in many benchmark domains [33]. For an alternative definition of AsymRatio,
the idea would now be to select one layer Gi, and define AsymRatio based on that, for
example as maxg∈Gi

cost(g) + i divided by cost(
∧

g∈G g). A good heuristic may be to select
the layer Gi that contains the largest number of facts. This approach could not be fooled
by replacing G with a single goal. It remains an open question in what kinds of domains
the approach would deliver better (or worse) information than our current definition of
AsymRatio. We remark that the approach does not solve the red herring example. There,
G1 = {at-Lk−1

1 , at-R0}, and Gi = {at-Lk−i
1 } for 2 ≤ i ≤ k. So, for all i, maxg∈Gi

cost(g) + i
is the same as maxg∈Gcost(g). Motivated by this, one could try to come up with more
complex definitions of AsymRatio, taking into account to what extent the sub-problems
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corresponding to the individual goals are interconnected. Interconnection could, e.g., be
approximated using shared landmarks. A hard sub-problem that is tightly interconnected
would have more weight than one that is not.

A potentially more important topic is to explore whether it is possible to define more
direct measures of “the degree of sub-problem interactions”. A first option would be to
explore this in the context of the above landmarks. Previous work [33] has already defined
what “interactions” between landmarks could be taken to mean. A landmark L is said to
interact with a landmark L′ if it is known that L has to be true at some point after L′, and
that achieving L′ involves deleting L. This means that, if L is achieved before L′, then L
must be re-achieved after achieving L′ – hence, L should be achieved before L′. One can
thus define an order over the landmarks, based on their interactions. It is unclear, however,
how this sort of interactions could be turned into a number that stably correlates with
performance across a range of domains.

Alternative approaches to design more direct measures of sub-problem interaction could
be based on (1) the “fact generation trees” examined previously to draw conclusions about
the quality of certain heuristic functions [34], or (2) the “criticality” measures proposed
previously to design problem abstractions [1]. As for (1), the absence of a certain kind of
interactions in a fact generation tree allows us to conclude that a certain heuristic function
returns the precise goal distance (as one would expect, this is not the case in any but the
most primitive examples). Like for the landmarks, it is unclear how this sort of observation
could be turned into a number estimating the “degree” of interaction. As for (2), this
appears promising since, in contrast to the previous two ideas, “criticalities” already are
numbers – estimating how “critical” a fact is for a given set of actions. The basic idea is
to estimate how many alternative ways there are to achieve a fact, and, recursively, how
critical the prerequisites of these alternatives are. The challenge is that, in particular, the
proposed computation of criticalities disregards initial state, goal, and delete effects – which
is fine in the original context, but not in our context here. All three (initial state, goal,
and delete effects) must be integrated into the computation in order to obtain a measure
of “sub-problem interaction” in our sense. It is also unclear how the resulting measure for
each individual fact would be turned into a measure of interactions between (several) facts.

We emphasize that our synthetic domains are relevant no matter how one chooses to
characterize “the degree of sub-problem interactions”. The intuition in the domains is that,
on one side, we have a CNF whose unsatisfiability arises from interactions between many
sub-problems, while on the other side we have a CNF whose unsatisfiability arises mostly
from the high degree of constrainedness of a single sub-problem. As long as it is this sort of
structure one wants to capture, the domains are representative examples. In fact, they can
be used to test quickly whether or not a candidate definition is sensible – if the definition
does not capture the transition on our k scales, then it can probably be discarded.

In some ways, our empirical and analytical observations could be used to tailor SAT
solvers for planning. A few insights obtained from our analysis of backdoors are these.
First, one should branch on actions serving, recursively over add effects and preconditions,
to support the goals; such actions can be found by simple approximative backward chaining.
Second, the number of branching decisions related to the individual goal facts should have
a similar distribution as the cost of these facts. Third, the branching should be distributed
evenly across the time steps, with not much branching in directly neighbored time steps
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(since decisions at t typically affect t − 1 and t + 1 a lot anyway). To the best of our
knowledge, such techniques have hardly been scratched so far in the (few) existing planning-
specific backtracking solvers [49, 2, 30]. The only similar technique we know of is used in
“BBG” [30]; this system branches on actions occurring in a “relaxed plan”, which is similar
to the requirement to support the goals.

A perhaps more original topic is to approximate AsymRatio, and take decisions based
on that. Due to the wide-spread use of heuristic functions in Planning, the literature
contains a wealth of well-researched techniques for approximating the number of steps
needed to achieve a goal, e.g. [5, 6, 32, 18, 24, 27, 26]. We expect that (a combination of)
these techniques could, with some experimentation, be used to design a useful approximation
of AsymRatio.

There are various possible uses of approximated AsymRatio. First, one could design
specialized branching heuristics, and choose one depending on the (approximated) value of
AsymRatio. The very different forms of our identified backdoors in the symmetrical and
asymmetrical cases offer a rich source of ideas for such heuristics. For example, it seems
that a high AsymRatio allows for large “holes” in the time steps branched upon, while a
low AsymRatio asks for more close decisions. Also, it seems that NOOP variables are not
important with high AsymRatio, but do play a crucial role with low AsymRatio; this makes
intuitive sense since, in the presence of subtle interactions, it may be more important to
preserve the truth value of some fact through time steps. Perhaps most importantly, with
some more work approximated AsymRatio could probably be made part of a successful
runtime predictor. If not in general – across domains – it is reasonable to expect that this
will work within some fixed domain (or class of domains) of interest.

Last but not least, we would like to point out that our work is merely a first step
towards understanding practical problem hardness in optimal planning. Some important
limitations of the work, in its current state, are:

• The experiments reported in Section 4 are performed only for a narrow range of
instance size parameters, for each domain. It is important to determine how the
behavior of AsymRatio changes as a function of changing parameter settings. We
have merely scratched this direction for Driverlog and Logistics; future work should
address it in full detail for some selected domains. The problem in performing
such a research lies in the large numbers of domain parameters, and the exorbitant
amount of computation time needed to explore even a single parameter setting – in
our experiments, often a single case required several months of computation time.
• Step-optimality, which we explore herein, is often not the most relevant optimization

criterion. In practice, one typically wants to minimize makespan – the end time point
of a concurrent durational plan – or the summed up cost of all performed actions.19

While there are obvious extensions of AsymRatio to these settings, it is unclear if
the phenomena observed herein will carry over.

19Note that this is a problem of present-day optimal AI planning in general, not only of our research.
Planning research has only quite recently started to develop techniques addressing makespan and, in partic-
ular, cost optimization.
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• The analyzed synthetic domains are extremely simplistic; while they provide clear
intuitions, their relevance for complex practical scenarios – in particular for scenarios
going beyond the planning competition benchmarks – is unclear.

To sum up, we are far from claiming that our research “solves” the addressed problems in
a coherent way. Rather, we hope that our work will inspire other researchers to work on
similar topics. Results on practical problem structure are difficult to obtain, but they are of
vital importance for understanding combinatorial search and its behavior in practice. We
believe that this kind of research should be given more attention.
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Appendix A. Proofs

We first prove the resolution lower bound for MAP, then we prove the theorems regard-
ing existence of backdoors of a certain size, and of their minimality.

A.1. MAP Resolution Lower Bound. By PHPn, we denote the standard pigeon
hole problem formula with n pigeons, i.e., the formula SPH1

n. By fPHPn, we de-
note the functional pigeon hole problem with n pigeons, i.e., the formula PHPn ∧∧

1≤x≤n,1≤y 6=y′≤n−1{¬x y,¬x y
′}: the pigeon hole formula plus clauses requiring that each

pigeon is assigned to at most one hole. (Throughout the section, we will denote pigeons
as “x” and holes as “y”.) By oPHPn, we denote the onto pigeon hole problem with n
pigeons, i.e., the formula PHPn ∧

∧
1≤y≤n−1{1 y, . . . , n y}: the pigeon hole formula plus

clauses requiring that at least one pigeon is assigned to each hole. By ofPHPn we denote
the combination of the two, i.e., the formula including all the above clauses. It was recently
proved that every resolution proof of ofPHPn must have size exp(Ω( n

(log(n+1))2
)) [48].

Our planning CNFs can be reduced to formulas close to the following formula, that we
call the temporal PHP, short TPHPn.

(1) The usual exclusion clauses: {¬x y,¬x′ y} for all 1 ≤ x 6= x′ ≤ n and 1 ≤ y ≤ n−1.
(2) A temporal version of the {x 1, . . . , x (n− 1)} clauses: for each 1 ≤ x ≤ n,

(a) {x 1,¬px 2}
(b) For each 2 ≤ y ≤ n− 2: {x y, px y,¬px (y + 1)}
(c) {x (n− 1), px (n− 1)}

Here, the px y are new variables whose intended meaning is that px y is set to 1 iff x is
assigned to some hole y′ < y. These variables correspond to the NOOP actions in our
encodings. By oTPHPn, we denote the onto version of this problem, i.e., the TPHPn

formula plus the clauses
∧

1≤y≤n−1{1 y, . . . , n y}.
Note that, by resolving over the px y variables, TPHPn can be reduced to PHPn in

only n(n− 2) resolution steps. So any resolution proof for PHPn can easily be turned into
a proof for TPHPn. However, to prove lower bounds for TPHPn, we need the reduction
the other way around, i.e., turn a resolution proof for TPHPn into a proof for PHPn. We
first show that fPHPn can be polynomially reduced to TPHPn.

Lemma 1. Let P be a resolution proof for TPHPn. Then a resolution proof for fPHPn

can be constructed from P by replacing each resolution step in P with at most n2 + n new
resolution steps.

Proof. We define a translation function t on literals as follows. The literals x y and ¬x y
remain untouched. For px y, we set t(px y) to {x 1, . . . , x (y − 1)}; we set t(¬px y) to
{x y, . . . , x (n− 1)}. We extend t to clauses by applying it to the individual literals in the
clause and taking the union of the result. We will show that, for any clause C that occurs
in P , we can derive the clause t(C) by resolution steps in fPHP . Since t(∅) = ∅, this
proves that we can turn P into a proof for fPHP . The claim follows from how we define
the resolution steps in fPHP . The proof is by induction over the resolution steps in P .

For the base case in the induction, observe that t(C) ∈ fPHP for every C ∈ TPHP .
This is obviously true for the exclusion clauses. As for the other clauses, for each x every
one of them is mapped onto the clause {x 1, . . . , x (n − 1)}.
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Now, say C1 C2

C3
is a resolution step in P , so that we already derived the clauses t(C1)

and t(C2). We distinguish two cases.

Case 1, C1 C2

C3
resolves over a variable x y. Say x y ∈ C1 and ¬x y ∈ C2. But

then, obviously, x y ∈ t(C1) and ¬x y ∈ t(C2). So t(C1) t(C2)
C

is a legal resolution step,
where C = t(C3).

Case 2, C1 C2

C3
resolves over a variable px y. Say px y ∈ C1 and ¬px y ∈ C2.

We have C1 = A ∪ {px y}, C2 = B ∪ {¬px y}, and C3 = A ∪ B. We have t(C1) =
t(A) ∪ {x 1, . . . , x y − 1}, and t(C2) = t(B) ∪ {x y, . . . , x (n − 1)}. We now derive the

clauses tCj
1 = t(A)∪{¬x j}, for y ≤ j ≤ n− 1. These can then be iteratively resolved with

t(C2) to obtain the clause t(A) ∪ t(B) = t(C3). Each tCj
1 is derived as follows. We first

resolve t(C1) with {¬x 1,¬x j}, yielding the clause t(A) ∪ {¬x j, x 2, . . . , x (y − 1)}. We
then resolve this with {¬x 2,¬x j} to get to the clause A∗ ∪{¬x j, x 3, . . . , x (y− 1)}, and
so on until we get rid of x (y − 1). Obviously, the number of resolution steps it takes to
derive t(C3) is bounded by n2 + n. This concludes the argument.

We can immediately conclude that a similar statement holds for ofPHPn and oTPHPn.

Corollary A.1. Let P be a resolution proof for oTPHPn. Then a resolution proof for
ofPHPn can be constructed from P by replacing each resolution step in P with at most
n2 + n new resolution steps.

Proof. Leaving the translation function t from the proof to Lemma 1 as it is, the only
observation we need to make is that the additional clauses are not affected by t, i.e.,
t({1 y, . . . , n y}) = {1 y, . . . , n y} for all y. The other arguments of the proof to Lemma 1
remain valid.

We next make a basic observation about reductions between CNF formulas that are
harmless in the sense that they preserve the existence and size of resolution proofs. Let φ be
a CNF formula with variable set V . Then a reduction function r maps V into V ∪V ∪{0, 1},
where V := {¬v | v ∈ V }. That is, r is a composition of assignments that either set
a variable v ∈ V to 0 or 1, or that replace a variable v ∈ V with (the negation of) a
potentially different variable v′ ∈ V . If v is not affected by r then r(v) = v. We require
that, for each v ∈ V , if r(v) 6= v then there is no v′ so that r(v′) = v or r(v′) = ¬v. This
forbids transitive replacements. We extend r to clauses by applying it to the individual
variables, computing negation (of negation) if required, and taking the union of the result.
We extend r to CNF formulas by applying it to the individual clauses and taking the union
of the result. Note that, for sets A and B of literals, r(A ∪ B) = r(A) ∪ r(B). For a
formula φ and reduction function r, by r∗(φ) we denote the formula that results from r(φ)
by removing literals assigned to 0, removing clauses that contain a literal assigned to 1, and
removing clauses that contain both a literal and its negation. Given formulas φ and ψ, we
say that φ is subsumed by ψ if, for every C ∈ φ, there exists C∗ ∈ ψ such that C ⊇ C∗.

Lemma 2. Let φ and ψ be unsatisfiable CNF formulas for which there exists a reduction
function r so that r∗(φ) is subsumed by ψ. Let P be a resolution proof for φ. Then a
resolution proof for ψ can be constructed from P by replacing each resolution step in P with
at most one new resolution step.
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Proof. We will show that, for any clause C that occurs in P , we either have 1 ∈ r(C), or
we have some w with {w,¬w} ⊆ r(C), or we can derive a clause C∗ ⊆ r(C) by resolution
steps in ψ. Since r(∅) = ∅, this proves that we can turn P into a proof for ψ. The claim
follows from how we define the resolution steps in ψ. The proof is by induction over the
resolution steps in P .

For the base case of the induction, observe that the clauses C ∈ φ satisfy the require-
ments by prerequisite. Since r∗(φ) is subsumed by ψ, r(C) either contains a true literal, or
a literal and its negation, or is a superset of some C∗ ∈ ψ.

Now, say C1 C2

C3
is a resolution step in P , resolving over a variable v. We denote

C1 = A ∪ {v} and C2 = B ∪ {¬v}. We have C3 = A ∪ B, and we prove that either
1 ∈ r(C3), or there is some w with {w,¬w} ⊆ r(C3), or we already derived a clause
C∗

3 ⊆ r(C3), or we can derive a clause C∗
3 ⊆ r(C3) with a single resolution step. We have

that r(C1) = r(A)∪{r(v)}, that r(C2) = r(B)∪{¬r(v)}, and that r(C3) = r(A)∪r(B). By
induction hypothesis, we know, for each i ∈ {1, 2}, that either 1 ∈ r(Ci), or there is some w
with {w,¬w} ⊆ r(Ci), or we have derived a clause C∗

i ⊆ r(Ci). We distinguish three cases.

Case 1, 1 ∈ r(C1)∪ r(C2). Note that r(C1)∪ r(C2) = r(A) ∪ {r(v)}∪ r(B)∪ {¬r(v)}.
First, if 1 ∈ r(A)∪r(B) = r(A∪B) = r(C3) then we are done. Second, say 1 6∈ r(A)∪r(B),
and r(v) = 1. Then ¬r(v) = 0, so 1 6∈ r(C2), so by induction hypothesis we have derived a
clause C∗

2 ⊆ r(C2). But, since {¬r(v)} = ∅, this means that C∗
2 ⊆ r(B), and we are done

with r(B) ⊆ r(A ∪B). Third, 1 6∈ r(A) ∪ r(B), and r(v) = 0. Then, similarly, we get that
a clause C∗

1 ⊆ r(A) has been derived.

Case 2, there is a w so that {w,¬w} ⊆ r(C1) or {w,¬w} ⊆ r(C2). First, observe
that we are done if w 6= r(v). Say {w,¬w} ⊆ r(C1), w 6= r(v). Then r(C1) has the form
r(A)∪{r(v)} where {w,¬w} ⊆ r(A), and we are done with r(A) ⊆ r(C3). The symmetrical
argument applies if {w,¬w} ⊆ r(C2), w 6= r(v) (i.e., we get {w,¬w} ⊆ r(B) ⊆ r(C3). Say
w = r(v). If {r(v),¬r(v)} is contained in both of r(C1) and r(C2), then ¬r(v) ∈ r(A), and
r(v) ∈ r(B), so {v,¬v} ⊆ r(A) ∪ r(B), and we are done. Say w = r(v), and {r(v),¬r(v)}
is contained only in r(C1), not in r(C2). Then ¬v ∈ r(A) and thus ¬v ∈ r(A) ∪ r(B). But
then, because r(C2) = r(B) ∪ {¬v}, r(C2) ⊆ r(A) ∪ r(B), and we are done. If, finally,
w = r(v) and {r(v),¬r(v)} is contained only in r(C2), then v ∈ B and, similarly, we are
done with r(C1) ⊆ r(A) ∪ r(B).

Case 3, 1 6∈ r(C1)∪r(C2), and there is no w so that {w,¬w} ⊆ C1 or {w,¬w} ⊆ C2.

Then we know by induction hypothesis that clauses C∗
1 ⊆ r(C1) and C∗

2 ⊆ r(C2) have been

derived. If v ∈ C∗
1 and ¬v ∈ C∗

2 , then
C∗

1 C∗
2

C∗
3

is a legal resolution step, and we obviously

have C∗
3 ⊆ r(C3). Say v 6∈ C∗

1 or ¬v 6∈ C∗
2 . We make a case distinction over the possible

values of r(v). Note that r(v) can not be 0 or 1 because that would be a contradiction
to 1 6∈ r(C1) ∪ r(C2) = r(A) ∪ {r(v)}∪ r(B) ∪ {¬r(v)}. Now, first, say r(v) = v. Then,
if v 6∈ C∗

1 , we have C∗
1 ⊆ r(A) (remember that r(C1) = r(A) ∪ {r(v)}) which suffices; if

¬v 6∈ C∗
2 , we have C∗

2 ⊆ r(B) which suffices. Since one of the two must be true this case is
treated. Second, say r(v) = v′ 6= v. This case is treated with exactly the same argument

(except replacing v with v′): if v′ ∈ C∗
1 and ¬v′ ∈ C∗

2 , then
C∗

1 C∗
2

C∗
3

is a legal resolution

step; else, either C∗
1 ⊆ r(A) or C∗

2 ⊆ r(B) follows. Third, say r(v) = ¬v′. If ¬v′ ∈ C∗
1
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and v′ ∈ C∗
2 , then

C∗
1 C∗

2

C∗
3

is a legal resolution step, and we obviously have C∗
3 ⊆ r(C3).

Else, either ¬v′ 6∈ C∗
1 , or v′ 6∈ C∗

2 (or both). In the former case, C∗
1 ⊆ r(A) follows and

we are done. In the latter case, C∗
2 ⊆ r(B) follows and we are done. This concludes the

argument.

Theorem 5.1. Every resolution proof of MAP 1
n must have size exponential in n.

Proof. We define a reduction function r that reduces MAP 1
n to a formula subsumed by

oTPHPn, i.e., so that r∗(MAP 1
n) is subsumed by oTPHPn. This suffices with Lemma 2 and

Corollary A.1 since every resolution proof of ofPHPn must have size exp(Ω( n
(log(n+1))2

))

[48]. It is advisable to have a look at the definition of MAP 1
n , i.e. Section 5.1 for the

definition of the underlying planning task and Section 3 for the definition of the CNF
encoding, before reading the proof below.

For the purpose of the proof, by mapTPHPn we denote the formula

TPHP ∧
∧

1≤x≤n,1≤y≤n−2

{¬x (y + 1), 1 y, . . . , n y},

which will be the precise formula that we reduceMAP 1
n to. That is, we will get r∗(MAP 1

n) =
mapTPHPn. Obviously, mapTPHPn is subsumed by oTPHPn.

The variables in MAP 1
n are the following:

(1) move-L0-L1
i (t) for 1 ≤ i ≤ n and 1 ≤ t ≤ 2n− 2,

(2) move-L1
i -L

0(t) for 1 ≤ i ≤ n and 2 ≤ t ≤ 2n− 2,

(3) move-Lj−1
1 -Lj

1(t) for 2 ≤ j ≤ 2n− 3 and j ≤ t ≤ 2n− 2,

(4) move-Lj
1-L

j−1
1 (t) for 2 ≤ j ≤ 2n− 3 and j + 1 ≤ t ≤ 2n − 2,

(5) NOOP -at-L0(t) for 1 ≤ t ≤ 2n− 2,
(6) NOOP -at-L1

i (t) for 1 ≤ i ≤ n and 2 ≤ t ≤ 2n− 2,

(7) NOOP -at-Lj
1(t) for 2 ≤ j ≤ 2n− 3 and j + 1 ≤ t ≤ 2n− 2,

(8) NOOP -visited-L0(t) for 3 ≤ t ≤ 2n− 2,
(9) NOOP -visited-L1

i (t) for 1 ≤ i ≤ n and 2 ≤ t ≤ 2n− 2,

(10) NOOP -visited-Lj
1(t) for 2 ≤ j ≤ 2n− 3 and j + 1 ≤ t ≤ 2n− 2.

The other combinations of actions and time steps are not present. The idea behind the
reduction function is to introduce constraints of that we know that they would be satisfied
in any optimal plan for the underlying planning task. Note that this is just a rationale to
make the following understandable. The formal property that we need/that suffices is that
r∗(MAP 1

n) = mapTPHPn, which we will show below. Our reduction function is defined as
follows:

(1) We set r(move-L0-L1
i (t)) := 0 for 1 ≤ i ≤ n and t ∈ {2, 4, . . . , 2n− 2}. Any optimal

plan will iterate between consecutive moves from L0 to Li
1 and back (except in the

last step), starting at the first step. So we will never move from L0 to Li
1 in an even

time step.
(2) (a) We set r(move-L1

i -L
0(t)) := 0 for 1 ≤ i ≤ n and t ∈ {3, . . . , 2n − 3}. Same

rationale as above.
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(b) We set r(move-L1
i -L

0(t)) := move-L0-L1
i (t − 1) for 1 ≤ i ≤ n and t ∈

{2, 4, . . . , 2n − 2}. Same rationale as above.

(3) We set r(move-Lj−1
1 -Lj

1(t)) := 0 for 2 ≤ j ≤ 2n− 3 and j ≤ t ≤ 2n− 2. No optimal
plan will move along these locations.

(4) We set r(move-Lj
1-L

j−1
1 (t)) := 0 for 2 ≤ j ≤ 2n − 3 and j + 1 ≤ t ≤ 2n − 2. See

above.
(5) We set r(NOOP -at-L0(t)) := 0 for 1 ≤ t ≤ 2n − 2. We don’t have the time to be

standing still.
(6) We set r(NOOP -at-L1

i (t)) := 0 for 1 ≤ i ≤ n and 2 ≤ t ≤ 2n − 2. See above.

(7) We set r(NOOP -at-Lj
1(t)) := 0 for 2 ≤ j ≤ 2n − 3 and j + 1 ≤ t ≤ 2n − 2. See

above.
(8) We set r(NOOP -visited-L0(t)) := 0 for 3 ≤ t ≤ 2n− 2. It does not matter whether

or not we have already visited (moved to) L0.
(9) (a) We set r(NOOP -visited-L1

i (2n − 2)) := 1 for 1 ≤ i ≤ n. Since the
move-L0-L1

i (2n − 2) variables are set to 0, we will have to visit these loca-
tions earlier.

(b) We set r(NOOP -visited-L1
i (t)) := NOOP -visited-L1

i (t+ 1) for 1 ≤ i ≤ n and
t ∈ {2, 4, . . . , 2n − 4}. Since the move-L0-L1

i (t) variables at these t are set to
0, having visited L1

i by time t is the same as having visited it by time t+ 1.

(10) We set r(NOOP -visited-Lj
1(t)) := 0 for 2 ≤ j ≤ 2n − 3 and j + 1 ≤ t ≤ 2n − 2. It

does not matter whether or not we have already visited any of these locations.

After doing these replacements, the only variables that remain in the formula, i.e., where
r(v) = v, have the form move-L0-L1

i (t) and NOOP -visited-L1
i (t), for 1 ≤ t ≤ n and

t ∈ {1, 3, . . . , 2n − 3}. The intuition is the following. Imagine to rename the former to i t,
i.e. x y where x = i and y = t, and the latter to pi t, i.e. px y where x = i and y = t.
The remaining formula is exactly mapTPHPn, except that the range of t is {1, . . . , 2n− 3}
instead of {1, . . . , n − 1}. Obviously, the necessary additional renaming is (t + 1)/2 for t.
To see that we indeed get down to mapTPHPn in this way, let us consider what happens
to the clauses in MAP 1

n .
First, observe that the GC clauses, {move-L0-L1

i (2n− 2), NOOP -visited-L1
i (2n − 2)}

(plus move-L2
1-L

1
i (2n− 2), for i = 1) are removed because NOOP -visited-L1

i (2n− 2) is set
to 1.

Next, observe that the only remaining EC clauses, where none of the two variables
is set to 0, have the form {¬move-L0-L1

i (t), ¬move-L
0-L′1

i (t)}, for 1 ≤ i 6= i′ ≤ n and
t ∈ {1, 3, . . . , 2n − 3}. To see this, simply consider that NOOP -visited variables do not
participate in any EC clauses, that NOOP -visited variables are the only ones set to 1
by r, and that the only non-NOOP -visited variables not removed (set to 0 or to another
variable) by r are the move-L0-L1

i (t) variables, for t ∈ {1, 3, . . . , 2n − 3}.
So the GC clauses get removed from the formula, and the EC clauses boil down to

precisely the exclusion clauses in mapTPHPn. It remains to show that the simplified AC
clauses are equal to the other clauses in mapTPHPn. These latter clauses are, for each
1 ≤ i ≤ n:

(1) {¬pi 3, i 1},
(2) for each t ∈ {3, 5, . . . , 2n− 5}: {¬pi (t+ 2), i t, pi t},
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(3) {i (2n − 3), pi (2n− 3)},
(4) for each t ∈ {1, 3, . . . , 2n− 5}: {¬i (t+ 2), 1 t, . . . , n t}.

The indexing with “i” and “t” instead of “x” and “y” is chosen to improve readabil-
ity. Remember that the intended correspondence is i t for move-L0-L1

i (t) and pi t for
NOOP -visited-L1

i (t). (To avoid confusion, here the range {1, . . . , n − 1} for y is replaced
by the range {3, 5, . . . , 2n − 3} for t; we also did a little re-ordering of literals to have an
immediate match with the clauses listed below.)

Remember that the AC clauses for an action a at step t have the form {¬a(t), a1(t −
1), . . . , al(t− 1)}, where a1, . . . , al are all achievers of a precondition p of a that are present
at time t− 1. We have such a clause for every action a present at a time step t > 1, and for
every precondition of a. In our case, i.e. in the MAP domain, each action has only a single
precondition so there is only a single AC clause.

First, observe that many AC clauses are actually removed, because the respective vari-
ables are set to 0 by r:

• the AC clause of every NOOP -at action,

• the AC clause of every move-Lj
1-L

j+1
1 action for j ≥ 1,

• the AC clause of every move-Lj+1
1 -Lj

1 action for j ≥ 1,
• the AC clause of every move-L0-L1

i (t) variable for t ∈ {2, 4, . . . , 2n − 2},
• the AC clause of every move-L1

i -L
0(t) variable for t ∈ {1, 3, . . . , 2n − 3}.

The AC clause of every move-L1
i -L

0(t) variable for t ∈ {2, 4, . . . , 2n − 2} is removed
because it has the form {¬move-L1

i -L
0(t), move-L0-L1

i (t−1), NOOP -at-L1
i (t−1)}. This is

mapped by r onto {¬move-L0-L1
i (t− 1), move-L0-L1

i (t− 1), 0} and removed by r∗ because
it contains both a literal and its negation.

What remains are the AC clauses of the following actions, for each 1 ≤ i ≤ n (compare
the list of the remaining mapTPHPn clauses above):

(1) NOOP -visited-L1
i (3), whose AC clause has the form {¬NOOP -visited-L1

i (3),
move-L0-L1

i (1)},
(2) for each t ∈ {3, 5, . . . , 2n − 5}: NOOP -visited-L1

i (t+ 2), whose AC clause has the
form {¬NOOP -visited-L1

i (t+ 2), move-L0-L1
i (1), NOOP -visited-L1

i (t)},
(3) NOOP -visited-L1

i (2n−2), whose AC clause has the form {¬NOOP -visited-L1
i (2n−

2), move-L0-L1
i (2n−3), NOOP -visited-L1

i (2n−3)}, where NOOP -visited-L1
i (2n−

2) is set to 1 by r,
(4) for each t ∈ {1, 3, . . . , 2n − 5}: move-L0-L1

i (t + 2), whose AC clause has the form
{¬move-L0-L1

i (t+2), NOOP -at-L0(t+1), move-L1
1-L

0(t+1), . . . , move-L1
n-L0(t+

1)}, which is mapped by r onto {¬move-L0-L1
i (t + 2), 0, move-L0-L1

1(t), . . . ,
move-L0-L1

n(t)}.

Altogether, the remaining clauses we get are exactly the same as those in mapTPHPn.
This concludes the argument.

We now consider the backdoors of MAP, SBW, and SPH in turn. The reader is advised
to read the proof to Theorem 5.3 first. It explains the various arguments used in most detail,
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and some of the general argumentation chains, notations, and terminology are re-used in
the subsequent proofs.

A.2. MAP Backdoors. We first consider the symmetrical case, then the asymmetrical
case.

A.2.1. Symmetrical Case. Recall that the clauses encoding action precondition support are
referred to as action precondition (AC) clauses, the clauses encoding goal support are re-
ferred to as goal (GC) clauses, and the clauses encoding action incompatibility are referred
to as exclusion (EC) clauses. Recall also that every pair of non-NOOP actions is incom-
patible in our encodings – in particular, there is an EC clause, at any time step, for any
two move actions in MAP.

As stated in Section 5.1, the backdoor we identify for MAP 1
n , denoted by MAP 1

nB, is
defined as follows (compare Figure 9), where T := {3, 5, . . . , 2n − 3}:

MAP 1

nB := {move-L0-L1

i (t) | t ∈ T, 2 ≤ i ≤ n} ∪
{NOOP -visited-L1

i (t) | t ∈ T, 3 ≤ i ≤ n} ∪
{NOOP -at-L0(1)} ∪
{move-L0-L1

1
(t) | t ∈ T \ {2n− 5, 2n− 3}}

Theorem 5.3. MAP 1
nB is a backdoor for MAP 1

n .

Proof. Throughout the proof, to simplify the notation, we denote φ := MAP 1
n . The main

idea behind the proof is to look at any assignment a to the variables in MAP 1
nB in a

regression-style nature. In the last time step of φ, t = 2n − 2, there are the n GC clauses,
the “goal constraints” requiring, for each branch i, to either visit L1

i right here, or to include
a NOOP indicating that L1

i has been visited earlier already. Now, if we assign values to
all MAP 1

nB variables at time step 2n − 3, then we will find that at least n− 1 of the goal
constraints have “survived”, i.e., after unit propagation we will have at least n− 1 similar
clauses in time step 2n − 4. Iterating this argument, we end up with a non-empty set of
goal constraints at time step 2. From there, the backdoor property follows with a number
of subtle observations and case distinctions.

To formalize the “regression steps”, we will need another notation. For a formula ψ
(i.e., for a partially instantiated version of φ) we denote

Gt(ψ) := {i | {NOOP -visited-L1
i (t),move-L

0-L1
i (t)} ∈ ψ}.

That is, Gt(ψ) denotes the set of the indices of the branches for which goal constraints are
present in ψ at time t.

First, observe that G2n−2(φ) = {2, . . . , n}. This is just due to the GC clauses contained
in the original formula at the last time step. Note that the GC clause for branch 1 is
different because L1

1 can also be reached from L2
1. Precisely, the goal constraint for branch

1 is {NOOP -visited-L1
i (2n−2), move-L0-L1

i (2n−2), move-L2
1-L

1
i (2n−2)}; we will dedicate

a special case treatment to it further below. That special case treatment will also make
use of the |T | − 2 move-L0-L1

1 variables in MAP 1
nB; until then, we ignore (don’t need to

consider) these variables.
From now on, we assume we are given any truth value assignment a to the variables

in MAP 1
nB. Our task is to show that UP (φa) contains a contradiction, i.e., contains the
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empty clause. Since, as stated, we will be looking at a in regression-style, we denote with
a≥t the restriction of a to the subset of variables in MAP 1

nB at time steps t′ ≥ t.
Before we formalize the regression steps, it is instructive to observe that, if G2(ψ) ≥ 2,

then branching over NOOP -at-L0(1) yields a contradiction. More precisely:

• Observation 1. Let ψ result from φ by executing all value assignments in a at time
steps t′ ≥ 3, and applying UP, i.e., ψ = UP (φa≥3). If G2(ψ) ⊇ {g, g′} for some
g 6= g′, then after assigning a value to NOOP -at-L0(1) UP yields the empty clause.

Case 1, a sets NOOP -at-L0(1) to 0. Then UP sets move-L0-L1
g(2) and

move-L0-L1
g′(2) to 0 due to these variables’ AC clauses. In effect, UP over the two

goal constraints sets NOOP -visited-L1
g(2) and NOOP -visited-L1

g′(2) to 1. Over

AC clauses, UP now sets both move-L0-L1
g(1) and move-L0-L1

g′(1) to 1, resulting
in an empty EC clause.

Case 2, a sets NOOP -at-L0(1) to 1. Then UP sets move-L0-L1
g(1)

and move-L0-L1
g′(1) to 0 [EC clauses], sets NOOP -visited-L1

g(2) and

NOOP -visited-L1
g′(2) to 0 [AC clauses], and sets move-L0-L1

g(2) and

move-L0-L1
g′(2) to 1 [goal constraints], yielding again an empty EC clause.

There are initially n− 1 goal constraints, G2n−2(φ) = {2, . . . , n}. There are n− 2 time
steps in T = {3, 5, . . . , 2n − 3}. As we move over the time steps t ∈ T , as we will show we
get rid of at most one of these per time step. Precisely, at each step t ∈ T we are in the
following situation. We have Gt+1 := Gt+1(UP (φa≥t+2)), and we want to show something
about Gt−1 := Gt−1(UP (φa≥t)). Note that, for t = 2n − 3, i.e. for the highest step in T ,
a≥t+2 = a≥2n−1 is the empty assignment, and Gt+1 = Gt+1(UP (φa≥t+2)) = G2n+2(φ) =
{2, . . . , n}. The possible regression steps are:

• Regression step A. There is an xt ∈ {2, . . . , n} so that a sets move-L0-L1
xt(t) to

1. Then Gt−1 = Gt+1 \ {xt}.

After setting move-L0-L1
i (t) to 1, UP does the following assignments:

move-L0-L1
i (t) = 0 for i 6= xt [EC clauses; we get a contradiction if one of

these variables is is set to 1 by a]; move-L1
i -L

0(t) = 0 for i 6= xt [EC clauses];
NOOP -at-L0(t) = 0 [EC clause]; move-L0-L1

i (t + 1) = 0 for all i [AC clauses];
NOOP -visited-L1

g(t+1) = 1 for g ∈ Gt+1 [goal constraints]; NOOP -visited-L1
g(t) =

1 for g ∈ Gt+1\{xt} [AC clause forNOOP -visited-L1
g(t); the respective move actions

are set to 0 already; if aNOOP -visited-L1
g(t) is set to 0 by a, we get a contradiction].

The last step proves the claim: for each g ∈ Gt+1 \ {xt} we get, from the AC clause
to NOOP -visited-L1

g(t), the clause {NOOP -visited-L1
g(t− 1),move-L0-L1

g(t− 1)}.

• Regression step B. All move-L0-L1
i (t) variables, 2 ≤ i ≤ n, are set to 0 by a,

and there is an xt ∈ {3, . . . , n} so that a sets NOOP -visited-L1
xt(t) to 0. Then

move-L0-L1
xt(t+ 1) is set to 1 by UP, and Gt−1 = Gt+1 \ {xt}.

After NOOP -visited-L1
xt(t) is set to 0, UP does the following assignments:

NOOP -visited-L1
xt(t + 1) = 0 [AC clause]; move-L0-L1

xt(t + 1) = 1 [goal con-

straint for xt]; move-L0-L1
i (t + 1) = 0 for i 6= xt; NOOP -visited-L1

g(t + 1) = 1 for
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g ∈ Gt+1 \{xt} [goal constraints]; NOOP -visited-L1
g(t) = 1 for g ∈ Gt+1 \{xt} [AC

clause for NOOP -visited-L1
g(t); the respective move actions are assigned to 0 by a;

if a NOOP -visited-L1
g(t) is set to 0 by a, we get a contradiction]. The claim now

follows with the same argument as above.

• Regression step C. All move-L0-L1
i (t) variables, 2 ≤ i ≤ n, are set to 0 by

a, and all NOOP -visited-L1
i (t) variables, 3 ≤ i ≤ n, are set to 1 by a. Then

Gt−1 = Gt+1 \ {xt} where xt := 2.

Having set all the NOOP -visited-L1
i (t) variables to 1, from the AC clauses to

these variables for i ∈ Gt+1 we immediately get the claim.

What the above immediately shows is that, as we move along a from the top to the
bottom of the time steps, at each t ∈ T we either get an empty clause by UP, or there exists
some xt ∈ {2, . . . , n} so that Gt−1 = Gt+1\{xt}. Since |T | = n−2, this means that |G2| ≥ 1.
Observation 1 above tells us that we get a contradiction if |G2| ≥ 2. Clearly, |G2| is 1 only
if all the xt, t ∈ T , are pairwise different – that is, if at each regression step we get rid of
a different goal constraint. (Also, a must assign 0 to each variable NOOP -visited-L1

xt(t′),
for t′ < t, in order to not re-introduce the goal constraint for xt.)

At this point, we must do a little forward-style reasoning. Let tC be the time point in
T at which a “uses” regression step C (with the above, there is exactly one such time point,
or we get an empty clause by UP). We will now show that, by UP, NOOP -visited-L1

2(tC),
i.e. the NOOP variable not in MAP 1

n at that time, is set to 0 by UP. This then implies
that the regression step at tC is exactly identical to regression step B; in particular, a move
variable (move-L0-L1

2) is set to 1 by UP at time tC + 1. We will need this for our final case
distinction below.

We know that |G2| = 1. Let’s denote the element of G2 with x1 (the nam-
ing is chosen to be consistent with the t indices of the other xt, increasing by 2 be-
tween variables). If a assigns NOOP -at-L0(1) to 0, then UP sets move-L0-L1

x1(2) to 0

[AC clause], NOOP -visited-L1
x1(2) to 1 [goal constraint], and move-L0-L1

x1(1) to 1 [AC

clause]. If a assigns NOOP -at-L0(1) to 1, then UP sets move-L0-L1
x1(1) to 0 [EC clause],

NOOP -visited-L1
x1(2) to 0 [AC clause], and move-L0-L1

x1(2) to 1 [goal constraint]. So, no

matter what value is assigned to NOOP -at-L0(1), after UP all move variables (except those
for x1) are forced out in time steps 1 and 2; in particular, move-L0-L1

2 is forced out.
Considering the next higher time step t = 3 ∈ T , if a uses regression step A at t, then

all move variables are forced out at time t by EC clauses, and all move-L0-L1
i variables are

forced out at time t+ 1 by AC clauses (see the proof to regression step A above). If a uses
regression step B at t, then all move-L0-L1

i variables, 2 ≤ i ≤ n, are set to 0 at time t by
a, and all move variables are forced out at time t + 1 by EC clauses. We can iterate the
argument upwards over the t ∈ T , and find that, in particular, move-L0-L1

2 is forced out at
all time steps t < tC . By AC clause, obviously this causes NOOP -visited-L1

2(tC) to be set
to 0, which we wanted to show.

We now know that, in each pair of time steps {1, 2}, . . . , {2n− 3, 2n− 2}, exactly one
move variable is set to 1 after UP. There are n− 1 such pairs, and the goal constraints for
each of the n − 1 branches {2, . . . , n} have been accommodated. We now show that UP
yields a contradiction due to the remaining open goal constraint for branch 1, and the need
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to assign values to the |T | − 2 move-L0-L1
1 variables in MAP 1

n . For consistent terminology,
we say that regression step A is used at t = 1 if move-L0-L1

x1 is forced to 1 at time 1;

otherwise (i.e, if move-L0-L1
x1 is forced to 1 at time 2), we say that regression step B is used

at t = 1. We will be able to prove the theorem once we made the following observation:

• Observation 2. There is a time point t0 ∈ 1 ∪ T ∪ {2n − 1} so that, at all time
steps t < t0, regression step A is used, while, at all time steps t ≥ t0, regression step
B is used. (Or else we get a contradiction by UP.)

The reason for this is, simply, that UP yields an empty clause if regression step B
is used at t, and regression step A is used at t+ 2. Namely, using regression step B
at t enforces a move-L0-L1

i action at time t+1, and using regression step A at t+2
enforces a move-L0-L1

j action at time t + 2. The former action (variable setting)
forces, by UP over EC clauses, all precondition achievers of the latter action to be
set to 0 at time t+ 1, yielding an empty AC clause.

Figure 17 illustrates the three possible situations. We now perform a case distinction
over these situations, starting with the two extreme cases.

t=t 0

0t=t  −1

0t=t  −2

0t=t  +1

t=2

Situation 3Situation 1

t=2n−3

t=2n−2

Situation 2

t=1

Figure 17: An illustration of the three different situations in our final case distinction. The
crossed out fields stand for time steps in the encoding at which a move-L0-L1

i

variable is set to 1, and thus all other move variables are forced out by UP over
EC clauses.

Situation 1, t0 = 2n − 1. At all t ∈ {1} ∪ T , regression step A is used. This means
that move-L0-L1

1 is forced to 0 at all time steps of the CNF, which obviously implies that
the GC clause for branch 1 becomes empty in UP.
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Situation 2, t0 = 1. At all t ∈ {1} ∪ T , regression step B is used. Just like above,
this means that move-L0-L1

1 is forced to 0 at all time steps of the CNF. This is obvious for
t > 1; for t = 1 it holds because, in this situation, NOOP -at-L0(1) is set to 1 by a.

Situation 3, t ∈ T . Regression step A is used below t0, and regression step B is used
at and above t0. This case is a little more tricky; it is the only point where the |T | − 2
move-L0-L1

1 variables in MAP 1
nB come into the play.

First, observe that move-L0-L1
1 is forced to 0 at all time steps except t0. Regarding the

situation at t0, observe that, if t0 ∈ T \{2n−5, 2n−3}, then the variable move-L0-L1
1(t0) is

contained in MAP 1
nB. In that case, that variable must be set to 0 by a because otherwise

UP gets a contradiction with the move-L0-L1
i variable already set to 1 by regression step

B at step t0 + 1. Thus, if t0 ∈ T \ {2n − 3, 2n − 5}, move-L0-L1
1 is forced to 0 at all time

steps in the CNF and as above the GC clause for branch 1 becomes empty in UP. We need
to consider the case where t0 ∈ {2n− 5, 2n− 3}. We show that move-L2

1-L
1
1 is forced out at

all time steps; below we use this to finish the proof. Clearly, move-L2
1-L

1
1 is forced out at all

time steps t ≤ t0. If t0 = 2n − 3, then the only thing we need to show is that move-L2
1-L

1
1

is set to 0 at step 2n − 2, which it is, due to the move-L0-L1
i (2n − 2) variable set to 1 by

regression step B. If t0 = 2n − 5, then at 2n − 3 the action move-L1
1-L

2
1, a precondition

achiever of move-L2
1-L

1
1, is not set to 0. However, by the respective AC clause, move-L2

1-L
1
1

is still set to 0, because its precondition achievers were forced out at all earlier time steps.
We now know that move-L2

1-L
1
1 is set to 0 at all time steps in the CNF. In effect, we get

that the GC clause for branch 1 simplifies to {NOOP -visited-L1
1(2n−2), move-L0-L1

1(2n−
2)}. Butmove-L0-L1

1(2n−2) is forced to 0 so we get the unit clause {NOOP -visited-L1
1(2n−

2)}. This clause gives us, by the respective AC clause, the same goal constraint one time
step below, {NOOP -visited-L1

1(2n− 1), move-L0-L1
1(2n− 1)}. Iterating the argument, we

get the goal constraint {NOOP -visited-L1
1(t0), move-L

0-L1
1(t0)}. But, since move-L0-L1

1 is
forced to 0 at all steps t < t0, by AC clause NOOP -visited-L1

1(t0) is set to 0, and this clause
simplifies to {move-L0-L1

1(t0)}. So this move is forced in at time t0. But, since regression
step B is used at t0, a different move-L0-L1

i is forced in at step t0 +1. As before, this yields
a contradiction by UP. This concludes our argument.

Theorem 5.4. Let B′ be a subset of MAP 1
nB obtained by removing one variable. Then

the number of UP-consistent assignments to the variables in B′ is always greater than 0,
and at least (n− 3)! for n ≥ 3.

Proof. We use the terminology introduced in the proof to Theorem 5.3. Basically, the idea
behind the proof is to do at least n− 3 regression steps A or B, at n− 3 time step t. This
gives us the desired lower bound since, at every regression step, we will have a choice of what
branch xt to “regress on”, i.e. at each step we can choose the branch whose goal location is
visited: we distribute the branches over the time steps. The details are a bit involved since
we have to specify exactly what values to assign to all variables in B′, depending on what
variable is missing.

First, if n = 2 then MAP 1
nB contains the single variable NOOP -at-L0(1), and B′ is

empty. The claim follows then simply because MAP 1
2 is not solved by UP. We henceforth



GOAL ASYMMETRY AND DPLL PROOFS IN PLANNING 61

assume n ≥ 3. Say v is the variable in MAP 1
nB \ B

′. We distinguish between four cases,
regarding the type of v.

Case 1, v = NOOP -at-L0(1). Then we distribute the n − 2 branches 3, . . . , n over
the n − 2 time steps T = {3, 5, . . . , 2n − 3}, using exclusively regression step A. Precisely,
we set the variables in the following way. For each i ∈ {3, . . . , n}: there is exactly one
t ∈ T where move-L0-L1

i (t) is set to 1; for all other t′, move-L0-L1
i (t

′) is set to 0; for
t′ > t, NOOP -visited-L1

i (t
′) is set to 1; for t′ ≤ t, NOOP -visited-L1

i (t
′) is set to 0. The

move-L0-L1
1(t) variables, and the move-L0-L1

2(t) variables, are all set to 0. In effect, the
goal constraint for branch 2 gets transported to step 2 (move-L0-L1

2 is set to 0 at all later
steps). However, the goal constraint for branch 1 does not get transported to step 2. This
is because move-L1

1-L
2
1 is not set to 0 at step 2, and thus move-L2

1-L
1
1 is not set to 0 at

steps 4, . . . , 2n− 2, which implies that the GC clause for branch 1 remains binary after UP:
{move-L2

1-L
1
1(2n− 2), NOOP -visited-L1

1(2n− 2)}. So UP does not yield an empty clause,
which concludes this argument. (We remark that, even if the goal constraint for branch
1 was transported to step 2, UP would not yield an empty clause without branching over
NOOP -at-L0(1).)

Case 2, v = move-L0-L1
1(t0). We have t0 ∈ T \ {2n − 5, 2n − 3}. We distribute the

n−1 branches {2, . . . , n} over the n−1 time steps {1, 3, . . . , t0−2, t0 +1, t0 +3, . . . , 2n−2}.
This corresponds to situation 3 in Figure 17, i.e., we use regression step A at all steps below
t0, and we use regression step B at all steps at and above t0. Obviously, this can be done
by setting all the variables, in a similar fashion as above in case 1, except for the differences
necessary to produce regression step B (namely, set all move variables at t to 0, and set all
NOOP variables at t, except one, to 1), and for having to set NOOP -at-L0(1) to 0. We
do not get an empty clause in UP because move-L0-L1

1 is not set to 0 at step t0: in effect,
move-L1

1-L
2
1 is not set to 0 at steps t0 +2, t0 +4, . . . 2n−3, and move-L2

1-L
1
1 is not set to 0 at

steps t0+4, t0+6, . . . 2n−3. Note that t0+4 ≤ 2n−3 because t0 ∈ T \{2n−5, 2n−3}. Hence
the goal constraint for branch 1 remains binary at step 2n−3 after UP: {move-L2

1-L
1
1(2n−3),

NOOP -visited-L1
1(2n− 3)}, which concludes this argument.

Case 3, v = move-L0-L1
i0

(t0), i0 6= 1. Then we distribute the n−2 branches {2, . . . , n}\
{i0} over the n−2 time steps {1, 3, . . . , t0−2, t0+3, . . . , 2n−2}. This corresponds to situation
3 in Figure 17, except that no regression step is used at step t0 (i.e., no move variable gets
set to 1 at t0 + 1). Precisely, at t0 we set all present move variables to 0, and we set the
NOOP variables for i 6= i0 according to the distribution (i.e., to 1 if a move to i is assigned
earlier, and to 0 if it is assigned later). We set the NOOP for i0, if present (i.e. if i0 6= 2),
to 0. With this, the goal constraint for i0 is transported to t0 + 1. If t0 ∈ {2n− 3, 2n− 5},
then there is no move-L0-L1

1(t0) variable in MAP 1
n , so both branch 1 and branch i0 can

move to their goal locations in either t0 or t0 + 1 (the respective move variables are not set
nor forced to 0), which implies that no unit clause arises in UP: the goal constraints for
both branches are binary in t0 + 1. If t0 6∈ {2n − 3, 2n − 5}, then a similar argument as
above in case 2 holds. We have that move-L0-L1

1 is not set to 0 at step t0 + 1. In effect,
move-L1

1-L
2
1 is not set to 0 at steps t0 + 2, t0 + 4, . . . 2n − 3, and move-L2

1-L
1
1 is not set to

0 at steps t0 + 4, t0 + 6, . . . 2n− 3. The goal constraint for branch 1 remains binary at step
2n− 3 after UP, concluding this argument.
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Case 4, v = NOOP -visited-L1
i0

(t0). We have t0 ∈ T = {3, 5, . . . , 2n − 3}. In this
case we end up distributing only n− 3 branches, over n− 3 time steps. This results in the
somewhat weaker lower bound (n− 3)! rather than (n− 2)! or (n− 1)! as above. Precisely,
we distribute the branches {3, . . . , n} \ {i0} over the time steps T \ {t0}. That is, we omit
steps 1 and t0, and use regression step A at all other steps (in T ). For branches 1, 2, and i0,
we set all move variables to 0. For branch i0, we set all NOOP variables above t0 to 1 and
all NOOP variables below t0 to 0. We set NOOP -at-L0(1) to 0. What happens under UP
is this. Setting NOOP -at-L0(1) to 0 forces all move-L0-L1

i actions out at time step 2, but
leaves them unaffected at time step 1. Since the move-L0-L1

i actions at time steps above
t0 + 1 are all forced out, the goal constraints for branches 2 and i0 are transported to step
t0 + 1. In that step, both moves to these branches are still possible. Since the moves are
also possible in step 1, the goal constraints are binary, i.e., include the move variable and
the respective NOOP variable, and so no further propagation is triggered. As for branch 1,
since move-L0-L1

1 is possible at step 1, move-L1
1-L

2
1 is possible at step 2, and move-L2

1-L
1
1 is

possible at steps 4, 6, . . . 2n−2. So the goal constraint for branch 1 is binary at step 2n−2,
and does not get transported even to step 2n− 3. This concludes our argument.

A.2.2. Asymmetrical Case. The backdoor we identify in this case, named MAP 2n−3
n , is

defined as:

MAP 2n−3

n B := {move-L2
i
−2

1
-L2

i
−1

1
(2i − 1) | 1 ≤ i ≤ ⌈log2n⌉}

Theorem 5.5. MAP 2n−3
n B is a backdoor for MAP 2n−3

n .

Proof. For simplicity of notation, we use the convention that L0
1 stands for L0. We start

with two observations:

• Observation 1. If move-Li
1-L

i+1
1 (i+1) is set to 1, then UP sets move-Lj

1-L
j+1
1 (j+

1) to 1 for all 1 ≤ j < i.

This is because, from i downwards, the only precondition achiever for

move-Lj
1-L

j+1
1 (j + 1) in time step j is move-Lj−1

1 -Lj
1(j). So the settings occur

via UP over the respective AC clauses.

• Observation 2. If move-Li
1-L

i+1
1 (i+1) is set to, then UP sets move-Lj

1-L
j+1
1 (j+2)

to 1 for all i ≤ j ≤ 2n− 4.

First, observe that move-Lj
1-L

j+1
1 (j + 1) is set to 0 by UP for i < j ≤ 2n − 4.

This happens by chaining over AC clauses just as observed above. In effect, also by

chaining over AC clauses, NOOP -at-Lj+1
1 (j + 2) and NOOP -visited-Lj+1

1 (j + 2)
are set to 0 by UP for i < j ≤ 2n − 4: the only precondition supporter for these

actions at step j + 1 is move-Lj
1-L

j+1
1 (j + 1), which is set to 0. For j = 2n − 4,

we get that NOOP -visited-L2n−3
1 (2n − 2) is set to 0. Thus the goal constraint for

branch 1 becomes unit, and move-L2n−4
1 -L2n−3

1 (2n − 2) is set to 1. The respective

AC clause simplifies to the unit clause containing only move-L2n−5
1 -L2n−4

1 (2n − 3),

because NOOP -at-L2n−4
1 (2n − 3) is already set to 0. In a similar fashion, all the

move-Lj
1-L

j+1
1 (j + 2) variables are set to 1 down to step i+ 2.

We prove below that:
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• Observation 3. For all 1 ≤ i ≤ ⌈log2n⌉, move-L
2i−2
1 -L2i−1

1 (2i − 1) must be set to
1 or else UP yields a contradiction.

This suffices because setting move-L2⌈log2n⌉−2
1 -L2⌈log2n⌉−1

1 (2⌈log2n⌉− 1) to 1 yields a con-

tradiction by UP. Let us first show the latter. With observation 1, below 2⌈log2n⌉, in every
time step a move variable is set to 1 so all other move variables are forced out; in particular,
move-L0-L1

2. To get to a point where move-L0-L1
2 can be re-inserted, i.e., to get to a time

step at which that action variable is not set to 0, one needs to “go back from L2⌈log2n⌉−1
1

to L0”. Which means, by sequencing UP over AC clauses of the actions moving back from

L2⌈log2n⌉−1
1 to L0”, UP shows that it takes 2⌈log2n⌉ − 1 steps before one gets to a step where

move-L0-L1
2 can be applied again. So the goal for branch 2 can be first achieved 2⌈log2n⌉−1

steps after step 2⌈log2n⌉−1) (where we just set a move variable to 1). Note that 2⌈log2n⌉ ≥ n.

Now, after time step 2⌈log2n⌉, there are only 2n−2⌈log2n⌉−1 time steps left in the encoding.
With 2⌈log2n⌉ ≥ n, we have at most n−1 layers left, which is less than the number of layers,
again 2⌈log2n⌉ ≥ n, before the branch 2 goal becomes re-achievable. So the branch 2 goal
constraint becomes empty at step 2n − 2.

We now prove observation 3 by induction over i. Base case, i = 1, move-L0-L1
1(1). If we

set that variable to 0, then, by observation 2, all move-Lj
1-L

j+1
1 (j + 1) variables are forced

to 1 for 1 ≤ j ≤ 2n − 3. This means, in particular, that move-L0-L1
2(t) is forced to 0 at

all layers t > 1. So the branch 2 goal constraint gets transported, by chaining over the AC
clauses of the respective NOOP actions, down to time step 1. Consequently, move-L0-L1

2(1)
gets forced to 1, in contradiction to move-L0-L1

1(2) which was already set to 1 earlier, and
now loses its precondition support, yielding an empty AC clause.

Inductive case, i→ i+1. We assume that move-L2i−2
1 -L2i−1

1 (2i−1) is set to 1. By obser-

vation 1, we get that move-Lj
1-L

j+1
1 (j+1) is set to 1 for all 1 ≤ j < 2i−1. So move-L0-L1

2(t)

is forced to 0 for all time steps t ≤ 2i − 1. Now, say we set move-L2i+1−2
1 -L2i+1−1

1 (2i+1 − 1)
to 0. Then, by observation 2, move actions are forced in at all time steps t > 2i+1 − 1. So
move-L0-L1

2(t) is also forced to 0 for all layers t > 2i+1 − 1. With that, the branch 2 goal
constraint is transported to time step 2i+1 − 1. Observe that, between step 2i − 1 and step
2i+1 − 1, there are 2i layers. But the number of steps we need to make the precondition

of move-L0-L1
2 achievable, i.e. to “go back” from L2i−1

1 to L0, is 2i − 1. So move-L0-L1
2

first re-appears (is not set to 0 by UP over AC clauses) in time step 2i+1 − 1. As observed
before, we have the goal constraint for branch 2 at that time step. Since the time step is
now the first one in the CNF where move-L0-L1

2 is not set to 0, NOOP -visited-L1
2 is not

available (forced to 0), and the goal constraint is unit. Thus move-L0-L1
2(2

i+1− 1) is set to

1. By chaining over AC clauses, also all the move actions that “go back” from L2i−1
1 to L0,

within the time steps 2i, . . . , 2i+1− 2, are set to 1 by UP. But then, the precondition clause

of move-L2i+1−2
1 -L2i+1−1

1 (2i+1), which was set to 1 earlier, becomes empty. This concludes
the argument.

The reader who is confused by all the (2x − y) indexing in the proof to Theorem 5.5
is advised to have a look at Figure 10, and instantiate the indices in the proof with the
numbers 1, 3, and 7.
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Theorem 5.6 Let B′ be a subset of MAP 2n−3
n B obtained by removing one variable. Then

there is exactly one UP-consistent assignment to the variables in B′.

Proof. The claim follows quite easily from the proof to Theorem 5.5. We use the notations
from that proof. We observe the following:

(1) If a MAP 2n−3
n B variable v at time t is set to 1, then all the MAP 2n−3

n B variables
at times t′ < t are set to 1 by UP. This follows from observation 1 in the proof to
Theorem 5.5.

(2) If the topmost variable in MAP 2n−3
n B (the variable at the latest time step) is set

to 1, then we get an empty clause in UP. This is shown below observation 3 in the
proof to Theorem 5.5.

(3) If a MAP 2n−3
n B variable v at time t is set to 0, then all the MAP 2n−3

n B variables
at times t′ > t are set to 0 by UP. This follows from observation 2 in the proof to
Theorem 5.5.

(4) If the lower most variable in MAP 2n−3
n B (the variable at time step 1) is set to

0, then we get an empty clause in UP. This corresponds to the base case in the
induction in the proof to Theorem 5.5.

(5) If we have two consecutive MAP 2n−3
n B variables v and v′, i.e. v =

move-L2i−2
1 -L2i−1

1 (2i − 1) for some 1 ≤ i < ⌈log2n⌉, and v′ =

move-L2i+1−2
1 -L2i+1−1

1 (2i+1 − 1), and v is set to 1 and v′ is set to 0, then we get an
empty clause during UP. This is because there are not enough time steps between

2i − 1 and 2i+1 to “go back” from L2i−1
1 to L0, and to accommodate the necessary

move to L1
2 at time step 2i+1 − 1. This corresponds to the inductive case in the

induction in the proof to Theorem 5.5.

Now, say v = move-L2i−2
1 -L2i−1

1 (2i − 1), for some 1 ≤ i ≤ ⌈log2n⌉, is the left-out
variable, i.e., v ∈ MAP 2n−3

n B \ B′. With the above, the only chance we have to avoid a
contradiction in UP is to set all variables at times above 2i − 1 to 0, and all variables at
times below 2i − 1 to 1. Indeed, in such a variable assignment we don’t get a contradiction
with UP because, between 2i−1−1 and 2i+1, there are enough time steps to “go back” from

L2i−1
1 to L0, and accommodate the move to L1

2. This concludes the argument.

A.3. SBW Backdoors. We first consider the symmetrical case, then the asymmetrical
case. Remember that, to simplify notation, we use the convention that g0 denotes t2, i.e.
t2 is the “lower most good block”.

A.3.1. Symmetrical Case. In the case k = 0, there are only “good” blocks, with no restric-
tions whatsoever on the possible stacking order. With n = 2 this is inconsistent under UP,
so we assume n > 2.

As stated in Section 5.2, the backdoor we identify for SBW 0
n , denoted by SBW 0

nB, is
defined as follows (compare Figure 13):

SBW 0
nB := {movetot2-gi-gj(t) | 1 ≤ i ≤ n− 2, 0 ≤ j ≤ n, j 6= i, 2 ≤ t ≤ n− 1} \

{movetot2-gi-gj(i+ 1) | max(2, n− 4) ≤ i ≤ n− 2, 0 ≤ j ≤ n− 2}

Theorem 5.8. SBW 0
nB is a backdoor for SBW 0

n.
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Proof. We assume we are given any truth value assignment a to the variables in SBW 0
nB.

Our task is to show that an empty clause arises under UP. For simplicity of notation, we
identify blocks gi with their indices i. We will also use indices i interchangeably as indices
into the blocks and as indices into the time steps. We refer to the blocks 2, . . . , n− 2 as the
cut-affected blocks. For a cut-affected block i we refer to the move variables for i at time
i+1, and to time step i+1 itself, as the cut-field of i. We say that a time step t is occupied
if some move variable is set to 1 at t, or if all move variables are set to 0 at t (for some
other reason). We say that a set B of blocks occupies a set T of time steps if all t ∈ T are
occupied, and the only move variables set to 1 at any t have the form movetot2-i-j(t), with
i ∈ B. We say that a block i is assigned if there is a time step t where some movetot2-i-j(t)
variable is set to 1.

We use the following notations. By A we denote the set of blocks for which we have
all variables, i.e., the set of blocks that are not cut-affected: the set {1} ∪ {2, . . . , n − 4}.
By CA we denote the set of cut-affected blocks whose cut-field is occupied after UP. By
CA we denote the set of cut-affected blocks whose cut-field is not occupied after UP. For a
block b ∈ CA, it may be that b is assigned at some t other than its cut-field. By CA|a we

denote these blocks, and by CA|¬a we denote the members of CA that are not assigned.

The main proof argument will be to show that CA|¬a is, in fact, empty. For better flow
of language we will sometimes refer to the blocks A ∪CA ∪CA|a as “the assigned” blocks,

and to CA|¬a as “the open” blocks. If we have a set I of blocks/block indices, by I++ we
denote the set of time steps {i + 1 | i ∈ I} – a shorthand to refer to the cut-fields of the
blocks in I. For example, CA++ denotes the set of occupied cut-fields. Note that CA++

and CA++ partition the set {max(3, n − 3) . . . , n− 1}.
We start the proof with a basic observation about the restrictions imposed by sequences

of block moves.

• Observation 1a. Say all time steps up to a time t are occupied by the blocks B,
and block b is moved last (b = t2 if B is empty). Then at time t+1, all movetot2-i-b′

variables, b′ 6= b, are forced to 0 by UP.

This is due to a simple UP chaining over precondition (AC) clauses: no block
other than b can be clear and above t2 at step t+ 1. More formally, the argument
is this. For b′ 6∈ B, all actions of the form movetot2-b′-j are forced to 0 at all steps
t′ ≤ t, so UP detects that b′ can not be above t2 at step t+1. For b′ ∈ B\{b}, moved
to t2 at step t′, NOOP -clear-b′ is forced to 0 at step t′ +1, and all actions achieving
clear-b′, namely the actions that move the block on b′ back to t1, are forced to 0 up
to step t. So UP detects that b′ can not be clear at step t+ 1.
• Observation 1b. Say all time steps up to a time t are occupied by the blocks B, and

block b ∈ B is moved last. Say further that NOOP -abovet2-b is set to 1 at all times
t′ > t. Then at all times t′ > t+ 1, all movetot2-i-b′ variables, b′ ∈ B ∪ {0} \ {b},
are forced to 0 by UP.

This is also due to UP chaining over AC clauses. Since NOOP -abovet2-b is set to
1 at all times t′, b can not be moved away from where it is, so by UP over EC clauses
we get that the block b′ directly below b can not be made clear. By chaining over
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AC clauses, we get that the block directly below b′ can not be made clear either,
and so forth until t2 = g0.

We now observe that we get a contradiction in UP if only a single time step is open (not
occupied).

• Observation 2. If at least n− 2 time steps are occupied, then UP yields a contra-
diction.

If all n − 1 time steps are occupied, then the goal constraints for gn−1 and gn

become empty at step n − 1. Otherwise, these goal constraints are transported to
the open step t0. Let b be the block moved at step t0 − 1 (or b = t2 if t0 = 1).
With observation 1a, the only available move actions for gn−1 and gn at step t0 are
movetot2-n− 1-b and movetot2-n-b. They will both be set to 1, yielding an empty
EC clause.

We now observe that, with an occupied cut-field, any block occupies at least one time step.

• Observation 3. For i ∈ A ∪ CA, there exist a time step t and block j such that,
after UP, movetot2-i-j(t) is set to 1.

If any variable movetot2-i-j(t), t > 1, is set to 1, there is nothing to show.
Otherwise, we know that all these variables are set to 0 (either by a or by UP
over EC clauses). Thus the goal constraint for i at step n − 1, i.e. the clause
{NOOP -abovet2-i}∪ {movetot2-i-j(n− 1) | 0 ≤ j ≤ n, j 6= i}, simplifies to the unit
clause {NOOP -abovet2-i}. Then the AC clause of that NOOP variable simplifies
to the same goal constraint at step n − 2. That is, the goal constraint for i is
transported from n − 1 to n − 2. The same argument applies downwards over the
time steps until the goal constraint for 1 becomes present at step 1. In that step,
the only present action – the only action that can bring i above t2 – is, of course,
movetot2-i-t2, so the respective variable is set to 1, which concludes this argument.

Note that we have now already shown that SBW 0
nB without the cut-fields is a backdoor:

if A was the set of all blocks {1, . . . , n − 2}, then by observation 3 we would have n − 2
occupied time steps, and by observation 2 we would have an empty clause in UP. While
this was relatively easy to prove, it is rather tricky to prove that the backdoor property
gets preserved when actually removing the cut-field variables. The following observation
delivers the case distinction that will make this proof possible. By ta we denote the highest
step in A++, i.e., the highest time step with no cut-field (ta = max(2, n− 4)).

• Observation 4. |CA|a| ≤ 1|. If |CA|a| = 0 then the blocks A ∪ CA occupy all

time steps {1} ∪ A++ ∪ CA++, except at most ta. If |CA|a| = 1| then the blocks

A ∪ CA ∪ CA|a occupy all time steps {1} ∪A++ ∪ CA++.

Observe the following. First, with observation 3 and the EC clauses, the blocks
A ∪ CA ∪ CA|a occupy at least |A| + |CA| + |CA|a time steps. Second, clearly
the occupied time steps must be taken from the set {1} ∪ A++ ∪ CA++ (namely,
from the time steps with no or with occupied cut-fields). From this it follows that
|CA|a| ≤ 1|, simply because |{1} ∪ A++ ∪ CA++| = |A ∪ CA| + 1. If CA|a| = 1|,
then by the same argument all time steps t ∈ {1} ∪A++ ∪ CA++ are occupied. If
CA|a| = 0|, then at most one step in {1} ∪A++∪CA++ can remain free. The free
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step can not be step 1 because, if a movetot2-i-j variable is set to 1 at step 2, then
UP over a respective AC clause forces movetot2-j-t2 to 1 at step 1. The free step
can’t be any of CA++ since these are all occupied by construction. Finally, the free
step can not be any step t so that t+ 1 ∈ A++. Assume that this was the case. We
then have a sequence of time steps {1, . . . , t − 1, t, t + 1, . . . , ta} where at all these
steps except t a move variable is set to 1. But, by chaining over EC and AC clauses,
this implies that either a move variable is set to 1 at t (if t− 1 moves B onto A and
t+ 1 moves D onto C), or all move variables are set to 0 at t (if t− 1 moves B onto
A and t+ 1 moves C onto A). In either case, t is occupied, which is a contradiction.

We are now ready for the final step of the proof. As stated, we will show that CA|¬a

is empty. This suffices with observations 2 and 3 since it gives us n− 2 blocks that occupy
some time step. The proof is by contradiction. Assume x is the smallest (index of a) block
in AC |¬a. We distinguish three cases.

Case 1, CA|a = ∅ and ta is occupied. In this case, since x is the smallest element

of AC |¬a, obviously all time steps below step x + 1 are occupied. Say step x is occupied
by a move for block b (an occupation through forcing out all moves can only happen at a
step t if step t + 1 is also occupied by an assigned block, which isn’t the case here). That
is, b is the “top” block. With observation 1a, movetot2-x-b is the only movetot2 action for
x not forced to 0 at time x+ 1. Now, observe that NOOP -abovet2-x is set to 0 at all times
t ≤ x + 1, simply because all the time steps below x+ 1 are occupied. Also, observe that
NOOP -abovet2-x is set to 1 at all times t > x+ 1, due to the goal constraint for x and the
fact that all movetot2 actions for x at times greater than x belong to SBW 0

nB and are set
to 0 (as x does not occupy any time step). That is, the goal constraint for x is transported
down to step x + 1, and simplifies to the unit clause setting movetot2-x-b to 1. We get
x ∈ AC, which is a contradiction to our assumption.

Case 2, CA|a = ∅ and ta is not occupied. Here, we can conclude that x = ta, i.e.
the cut-field of x is directly above ta. If this was not the case, then the block ta would be
an element of CA, which would mean that a movetot2-i-j action was set to 1 at ta + 1,
and another movetot2-i-j action was set to 1 at ta − 1. But that would imply that ta is
occupied, with the same argument as at the end of the proof to observation 4.

We have x = ta. All steps below ta are occupied, say by the blocks B. Say the top
block, moved at ta − 1, is b ∈ B. We first show that NOOP -abovet2-b is set to 1 at all
time steps t > ta − 1. Note that all assigned blocks occupy exactly one hole, because
|A ∪ CA|+ 1 = |{1} ∪A++ ∪O++|. So, in particular, all SBW 0

nB variables for b at other
time steps are set to 0. If b ∈ A, then these are all move variables for b above ta − 1. If
b ∈ CA, then the cut-field variables are set to 0 because the cut-field is occupied. In both
cases, the goal constraint for b gets transported down to ta − 1, and the claim follows.

With observation 1b, we can now conclude that, at all times t > t0, in particular at time
t0 + 1, the only movetot2 variables that are not forced to 0 are of the form movetot2-i-b′(t)
where either b′ = b or b′ 6∈ B. We now proceed to show that, for i = x and t = t0+1, the only
available option, i.e. the only such move variable not forced to 0, is movetot2-x-b(t0+1). As
for movetot2-x-(n−1)(t0 +1) and movetot2-x-n(t0+1), these are contained in SBW 0

nB and
set to 0 by construction. Consider the variables of the formmovetot2-b′-b(t0), b

′ 6∈ {n−1, n}.
All these variables are contained in SBW 0

nB and are set to 0 by construction (t0 is not
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occupied). That is, the AC clause of movetot2-x-b′(t0 + 1) becomes empty because all
precondition achievers are set to 0 at all steps t ≤ t0. We finally note that, just as argued
in case 1 above, the goal constraint for x is transported down to step t0 + 1. As a result,
movetot2-x-b(t0 + 1) gets set to 1, and x ∈ AC in contradiction to our assumption.

Case 3, CA|a = {ba}. Then ta is occupied. If x < ba then all time steps below x+ 1
are occupied, and we can argue exactly as in case 1. So we can assume that ba is the lower
most block in CA. It follows that all time steps below ba + 1 are occupied. It also follows
that x = ba +1, since otherwise the time steps ba and ba +2 would both be occupied, which
would enforce a move at ba + 1 in contradiction. Thus, like above in case 2, we have that
all time steps below the step x are occupied, i.e., the time step directly below x’s cut-field
is open but all time steps further below are occupied, by a set B of blocks with top block b
moved at time x−1. We can now proceed just like in case 2. NOOP -abovet2-b is set to 1 at
all time steps t > x−1. With observation 1b, at all times t > x, in particular at time x+1,
the only movetot2 variables that are not forced to 0 are of the form movetot2-i-b′(t) where
either b′ = b or b′ 6∈ B. We now proceed to show that, for i = x and t = x + 1, the only
available option, i.e. the only such move variable not forced to 0, is movetot2-x-b(x + 1).
Consider the variables movetot2-x-b′(x+ 1), b′ 6= b. For b′ ∈ {n− 1, n} these are contained
in SBW 0

nB and are set to 0. For b′ ∈ {1, . . . , n− 2} \ {ba}, the variable movetot2-b′-b(x) is
contained in SBW 0

nB and set to 0, implying that movetot2-x-b′(x + 1) is set to 0 by AC
clauses. The only thing left to show is that, if ba 6= b, then movetot2-x-ba(x+ 1) is set to 0.
If ba ∈ B, this follows from observation 1b. If ba 6∈ B (and ba 6= b), then ba is assigned to
some time step t > x+1. Due to the definition of SBW 0

nB, this can only be time step x+2
(= n−1), i.e., movetot2-ba-j(x+2) is set to 1 for some j. The theorem now follows because
one of the AC clauses of this variable simplifies to the unit clause {NOOP -clear-ba(x+1)}.
The other achievers of that precondition are of the form movefromt2-i-ba, which can not
be done at time step x + 1 since time step x is the first one where movetot2-ba-j is not
forced to 0 (for some j): in words, we don’t have the time to stack i into ba in the first
place. Now, setting NOOP -clear-ba(x+1) to 1 forces, by UP over the respective AC clause,
movetot2-x-ba(x+ 1) to be set to 0. This concludes the argument.

A.3.2. Asymmetrical Case. We prove that SBW n−2
n B, see its definition in Section 5.2, and

an example in Table 2, is a minimal backdoor in SBW n−2
n .

Theorem 5.9. SBW n−2
n B is a backdoor for SBW n−2

n .

Proof. First, observe that the claim is true for n = 3. There, SBW n−2
n B contains only

movetot2-g1-t2(1) and movetot2-g2-t2(1). If we set one of these to 1, then the move actions
for the other good block, as well as for the single bad block, get forced to 0 at step 1, so
they get forced to 1 (by their goal constraints) at the only other time step, number 2. This
yields an inconsistency with the respective EC clause. On the other hand, if we set both
movetot2-g1-t2(1) and movetot2-g2-t2(1) to 0, then the NOOP variables in the respective
goal constraints are forced to 0 at step 2, so both move actions get forced to 1 at step 2,
yielding again an empty EC clause.

For the rest of the proof, we assume n > 3. We next make two observations:

• Observation 1. If movetot2-bi+1-bi(i + 1), i ≥ 1, is set to 1, then UP sets
movetot2-bj+1-bj(j + 1) to 1 for all 0 ≤ j < i.
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This happens by chaining over AC clauses. In time step i, the only present
precondition achiever of movetot2-bi+1-bi, i.e. the only achiever of the precondition
abovet2-bi, is movetot2-bi-bi−1. So the latter action is forced to 1 at step i. The
same argument applies iteratively downward to step 1.
• Observation 2. If movetot2-bi+1-bi(i + 1) is set to 0, then UP sets
movetot2-bj+1-bj(j + 2) to 1 for all i ≤ j ≤ n− 3.

This happens as follows. With the lost precondition support of
movetot2-bi+1-bi(i+1), movetot2-bi+2-bi+1(i+2) and NOOP -abovet2-bi+1(i+2) are
forced to 0. The same happens iteratively upwards until movetot2-bn−2-bn−3(n− 2)
and NOOP -abovet2-bn−3(n−2) are set to 0. Then, also NOOP -abovet2-bn−2(n−1)
is set to 0. This means that the goal constraint for bn−2, the upper most bad
block, becomes unary. Thus, movetot2-bn−2-bn−3(n − 1) is forced to 1. Since
NOOP -abovet2-bn−3(n−2) is already set to 0, this forces movetot2-bn−3-bn−4(n−2)
to 1. The same happens iteratively downwards until step i + 2, i.e., until
movetot2-bi+1-bi(i+ 2) is set to 1.

Let u be the number so that 3 ∗ 2u−1 ≤ n ≤ 3 ∗ 2u, i.e. u is the i-index of n’s BDtop

equivalence class as illustrated in Table 2 (u ≥ 1 since n > 3). Note that u = ⌈log2(n/3)⌉.
Keep in mind that 3 ∗ 2u is the largest n in the equivalence class, and that this largest n
has a CNF with n− 1 layers, numbered 1, . . . , n− 1 = 3 ∗ 2u − 1. We prove below that:

• Observation 3. For all 1 ≤ i ≤ u, movetot2-b3∗2i−1−1-b3∗2i−1−2(3 ∗ 2i−1 − 1) must
be set to 1 or else UP yields a contradiction.

This suffices because setting movetot2-b3∗2u−1−1-b3∗2u−1−2(3 ∗ 2u−1 − 1) to 1 yields a
contradiction by UP. Let us first show the latter. With observation 1, below 3 ∗ 2u−1 − 1
every time step has a movetot2 set to 1, so all other movetot2 actions are out, in particular
movetot2-g1-t2 and movetot2-g2-t2. To re-insert these actions, i.e., to reach a time step
where they are not set to 0 by UP, one needs 3 ∗ 2u−1 − 1 steps: by chaining over AC
clauses, UP finds that all of the bj that are already above t2 (i.e., 1 ≤ j ≤ 3 ∗ 2u−1 − 1)
have to be moved back to t1 again. So movetot2-g1-t2 and movetot2-g2-t2 re-appear first
in time step 3 ∗ 2u−1 + 3 ∗ 2u−1 − 1 = 3 ∗ 2u − 1. But either there aren’t that many time
steps in the CNF, namely if n < 3 ∗ 2u, yielding the g1 and g2 goal constraints empty; or
we get a contradiction in time step 3∗2u− 1 since it is the only unoccupied (by a movetot2
action) time step left, and both movetot2-g1-t2 and movetot2-g2-t2 are forced to 1 by their
respective goal constraint.

We now prove observation 3 by induction over i. Base case, i = 1, movetot2-b2-b1(2).
If we set that to 0, then, by observation 2, all movetot2-bj+1-bj(j + 2) are forced to 1 for
1 ≤ j ≤ n − 3. This means, in particular, that all layers t ≥ 3 are occupied by movetot2
actions, and only layers 1 and 2 are left to achieve the goals for g1 and g2. This reduces
to exactly the same situation as with n = 3, discussed at the start of the proof: the goal
constraints for g1 and g2 get transported down to time step 2, and the bad block b1 must
be moved either in step 1 or in step 2 due to the AC clause of movetot2-b2-b1(3), which is
set to 1.

Inductive case, i → i + 1. We assume that movetot2-b3∗2i−1−1-b3∗2i−1−2(3 ∗ 2i−1 − 1)
is set to 1. By observation 1 we get that movetot2-bj+1-bj(j + 1) is set to 1 for all 0 ≤
j < 3 ∗ 2i−1 − 2. So movetot2-g1-t2 and movetot2-g2-t2 are forced to 0 at all time steps
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t ≤ 3 ∗ 2i−1 − 1. Say we set movetot2-b3∗2i−1-b3∗2i−2(3 ∗ 2i − 1) to 0. Then, by observation
2, movetot2 actions are forced to 1 at all time steps t > 3 ∗ 2i − 1. So movetot2-g1-t2
and movetot2-g2-t2 are also forced to 0 for all time steps t > 3 ∗ 2i − 1. After applying
movetot2-b3∗2i−1−1-b3∗2i−1−2(3 ∗ 2i−1 − 1), i.e., starting from time step 3 ∗ 2i−1, the number
of steps we need to make the preconditions of movetot2-g1-t2 and movetot2-g2-t2 achievable
is 3 ∗ 2i−1 − 1: we must remove all the already moved bad blocks from t2 again (this is
basically the same argument as used further above). So movetot2-g1-t2 and movetot2-g2-t2
first re-appear in time step 3 ∗ 2i−1 + 3 ∗ 2i−1 − 1 = 3 ∗ 2i − 1. But, as observed above, all
time steps t′ > 3 ∗ 2i − 1 are already occupied, by observation 2, and since we decided to
set movetot2-b3∗2i−1-b3∗2i−2(3∗2

i−1) to 0. So both movetot2-g1-t2 and movetot2-g2-t2 get
forced to 1 at time step 3 ∗ 2i− 1 due to their goal constraints, which are transported down
to that time step. We get an empty EC clause. This concludes the argument.

The reader who is confused by all the (3∗2x−y) indexing in the proof to Theorem 5.9 is
advised to have a look at Table 2, and instantiate the indices in the proof with the numbers
1 for 3 ∗ 21−1 − 2, 4 for 3 ∗ 22−1 − 2, and 10 for 3 ∗ 23−1 − 2.

Theorem 5.10 Let B′ be a subset of SBW n−2
n B obtained by removing one variable. Then

there is exactly one UP-consistent assignment to the variables in B′.

Proof. The claim follows, with some additional thoughts, from the proof to Theorem 5.9.
We use the notations from that proof. We observe the following:

(1) If a SBW n−2
n B variable v at time t is set to 1, then all the SBW n−2

n B variables
at times t′ < t are set to 1 by UP. This follows from observation 1 in the proof to
Theorem 5.9.

(2) If the topmost SBW n−2
n B variable (the variable at the latest time step) is set to 1,

then we get an empty clause in UP. This is shown below observation 3 in the proof
to Theorem 5.9.

(3) If a SBW n−2
n B variable v at time t is set to 0, then all the SBW n−2

n B variables
at times t′ > t are set to 0 by UP. This follows from observation 2 in the proof to
Theorem 5.9.

(4) If the lower most variable regarding a bad block in SBW n−2
n B (the variable at time

step 2) is set to 0, then we get an empty clause in UP. This corresponds to the base
case in the induction in the proof to Theorem 5.9.

(5) If we have two consecutive SBW n−2
n B variables v and v′, i.e. v =

movetot2-b3∗2i−1−1-b3∗2i−1−2(3 ∗ 2i−1 − 1) for some 1 ≤ i < ⌈log2(n/3)⌉, and
v′ = movetot2-b3∗2i−1-b3∗2i−2(3 ∗ 2i − 1), and v is set to 1 and v′ is set to 0, then
we get an empty clause during UP. This is because there are not enough time steps
between 3 ∗ 2i−1 − 1 and 3 ∗ 2i − 1, to move all the bad blocks back to t1, and to
accommodate the necessary moves for the two good blocks. This corresponds to the
inductive case in the induction in the proof to Theorem 5.9.

We now prove the claim with a case distinction over the type of the left out variable v.
Case 1, v = movetot2-b3∗2i−1−1-b3∗2i−1−2(3∗2

i−1− 1), for some 1 < i ≤ ⌈log2(n/3)⌉.
That is, we leave out one of the upper moves regarding bad blocks. With the observations
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above, the only chance we have to avoid an empty clause in UP is to set all SBW n−2
n B

variables at time steps t > 3 ∗ 2i−1 − 1 (all moves of bad blocks above the left-out variable)
to 0, and all SBW n−2

n B variables at time steps 2 ≤ t < 3∗2i−1−1 (all moves of bad blocks
below the left-out variable) to 1. The SBW n−2

n B variables at time step 1, i.e., the moves of
the two good blocks, are set to 0 by UP. Since between step 3 ∗ 2i−2 − 1 and step 3 ∗ 2i − 1
there is enough time to accommodate the moves for the good blocks, we don’t get an empty
clause in UP.

Case 2, v = movetot2-b2-b1(2). With the observations above, we have to set all
SBW n−2

n B variables at time steps t > 2 (all moves of bad blocks above the left-out variable)
to 0. Then all time steps are occupied except steps 1, . . . , 5. If we set one of the SBW n−2

n B
variables at step 1 to 1, then we get an empty clause because both the move for the
remaining good block, and the move for the lower most bad block, are forced to 1 in time
step 2. However, if we set both SBW n−2

n B variables at step 1 to 0, then no empty clause
arises – the same moves are still available (not forced to 0) in all steps 2, . . . , 5.

Case 3, v = movetot2-gi-t2(1), i ∈ {1, 2}. That is, v is one of the two moves regarding
good blocks. With the observations above, we have to set all SBW n−2

n B variables at time
steps t > 1 (all moves of bad blocks) to 0. So all time steps are occupied except steps 1 and
2. If we set movetot2-gi′-t2(1), i

′ 6= i (the variable not left out at step 1) to 1, then all other
moves are forced out at that step, in particular the move movetot2-gi-t2(1), i.e. the left-out
variable. But then all SBW n−2

n B variables are instantiated, and we get an empty clause
because of Theorem 5.9. If we set movetot2-gi′-t2(1) to 0, however, the only thing that hap-
pens is that movetot2-gi-gi′ is forced to 0 at step 2. In particular, the goal constraints for
both gi and gi′ are still binary in step 2: for gi′ , the constraint is {movetot2-gi′-gi(2),
movetot2-gi′-t2(2)}; for gi, the constraint is {movetot2-gi-t2(2), NOOP -abovet2-gi(2)}.
This concludes the argument.

A.4. SPH Backdoors. As stated in Section 5.3, the backdoor we identify for SPHk
n,

denoted by SPHk
nB, is defined as follows (compare Figure 14):

SPHk
nB := {0 y | 1 ≤ y ≤ n− 1} ∪

{x y | k + 2 ≤ x ≤ n, 1 ≤ y ≤ n− 1}

Theorem 5.12 SPHk
nB is a backdoor in SPHk

n.

Proof. We prove a more general claim where the subsets of holes and normal pigeons un-
derlying the backdoor are selected arbitrarily, of the appropriate size. Denote by B any var
set such that there exist X ⊆ {k, . . . , n}, and Y ⊆ {1, . . . , n}, |X| = n− k− 1, |Y | = n− 1,
with B = {x y | x ∈ X ∪ {0}, y ∈ Y }. In words, B talks about n − 1 (i.e. all but one of
the) holes, for the bad pigeon, and for n − k − 1 (i.e. all but two of the) normal pigeons.
Obviously, SPHk

nB can be constructed this way.
Before we prove that B is a backdoor, observe that the naive encoding of

GEQ({0 1, . . . , 0 n}, k) has the following efficiency property. For any subset Y ′, |Y ′| = n−k,
of holes, if 0 y′ is set to 0 for all y′ ∈ Y ′, then 0 y is set to 1 by UP for all y 6∈ Y ′. The
reason is that, in the respective clause {0 y′ | y′ ∈ Y ′ ∪ {y}} requiring holes for the bad
pigeon, only the single open literal 0 y is left. If |Y ′| > n − k, then one of these clauses is
contained in Y ′ and becomes empty.
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Now, let a be any value assignment to the variables in B. Consider the n−k−1 pigeons
x in X. For all these x, B talks about all but one hole, so there is at least one hole y so
that x y = 1 after UP. Since no two x can occupy the same hole, it follows that, when all
X variables are set, at least n−k−1 0 y′ variables are set to 0 after UP. If more than n−k
0 y′ variables are set to 0, we get an inconsistency with the efficiency property observed
above. If exactly n − k 0 y′ variables are set to 0, then with the efficiency property the
remaining k 0 y variables are set to 1. The holes are then all occupied and the two normal
pigeons not in X yield a contradiction. So we can assume that the n− k − 1 pigeons in X
occupy only one hole each. The respective n − k − 1 0 y′ variables are set to 0 after UP.
Consider the remaining unset 0 y variables in B. If a single one of them was set to 0, with
what was stated above all others would be set to 1. This would yield n− 1 occupied holes,
and in effect by UP we would get a contradiction with the two normal pigeons not in X.
So a must set all remaining unset 0 y variables in B to 1. But there are at least k of these
unset 0 y variables in B: if all holes occupied by the X pigeons are in Y , then exactly k
(= n− 1− (n − k − 1)) variables 0 y ∈ B are unset; if one of the holes occupied by the X
pigeons is the single hole not in Y , then k + 1 variables 0 y ∈ B are unset. So, when a sets
all unset 0 y variables in B to 1, at least n − k − 1 + k = n − 1 holes are occupied, and
again we get an inconsistency with the two normal pigeons not in X. This concludes the
argument.

Theorem 5.13. Let B′ be a subset of SPHk
nB obtained by removing one variable x y.

Then, if x 6= 0, to the variables in B′ there are exactly (n− 2) ∗ · · · ∗ (k + 1) UP-consistent
assignments; if x = 0 then there are exactly (n− 2) ∗ · · · ∗ k UP-consistent assignments.

Proof. As in the proof to Theorem 5.12, denote by X the normal pigeons underlying the
backdoor, and by Y the holes underlying the backdoor. Observe that the UP-consistent
assignments are exactly those where the n− k− 1 pigeons (X ∪ {0}) \ {x} occupy all n− 1
holes Y \ {y}. If an assignment does have this property, then it is UP-consistent because
both the holes y and n remain empty, with the three pigeons x, k, and k + 1 being un-
assigned. If an assignment does not have this property, then the variable x y is assigned
a value by UP, which yields an empty clause due to Theorem 5.12. From here, the claim
follows with some simple counting arguments, i.e. by counting how many such assignments
there are. If x 6= 0, then the n − k − 2 pigeons in X \ {x} can be distributed freely over
the n− 2 holes Y \ {y}, giving us (n− 2) ∗ · · · ∗ (k + 1) possibilities. After that, k holes (in
Y ) are left open to accommodate the k holes needed for the bad pigeon, adding no more
possibilities.

If x = 0, then the n − k − 1 pigeons in X can be distributed freely over the n − 2
holes Y \ {y}, giving us (n− 2) ∗ · · · ∗ k possibilities. After that, k − 1 holes (in Y ) are left
open to accommodate the k− 1 holes needed to be set to 1 for the bad pigeon (if less than
k− 1 of the present variables are set to 1, we get a contradiction by UP), giving us no more
possibilities.
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Appendix B. Cutsets

We discuss cutsets in our synthetic domains, showing that there are large lower bounds
in all cases. We consider MAP, SBW, and SPH in turn. The different kinds of subsets are
defined and explained in the MAP section; the later sections use the same terminology.

B.1. MAP. The notion of cutsets is defined in [16, 51, 17]. The simplest form of a cutset
is a cycle-cutset, defined as follows. For a CNF formula φ with variable set V and clause
set C, the constraint graph of φ is the undirected graph (V,E), where {v, v′} ∈ E iff
∃c ∈ C : v, v′ ∈ c. A cycle-cutset is a subset of nodes V ′ in the graph so that, when
removing V ′ and the incident edges from (V,E), the resulting graph is cycle-free.

It is easy to see that there are no small cycle-cutsets in MAP k
n , independently of k. This

is due to the many cliques of nodes in the constraint graph. At each time step 1 ≤ t ≤ 2n−2,
we have large cliques of variables, linear in n, due to EC clauses between move actions. At
each time step 2 ≤ t ≤ 2n − 2, we have large cliques of variables, linear in n, due to the
AC clauses of various move and NOOP actions. At time step t = 2n − 2, for each branch
1 ≤ i ≤ n, we have at most one edge between a NOOP -visited action, and a move action.
The latter are the only edges that change, over k. For example, at any 1 ≤ t ≤ 2n − 2,
the variable set {move-L0-L1

i (t), move-L
1
i -L

0(t), move-L1
1-L

2
1(t), . . . , move-L

t−1
1 -Lt

1(t) | 1 ≤
i ≤ n} forms a clique due to EC clauses. Also, for any 2 ≤ t ≤ 2n − 2 and 1 ≤ i ≤ n, the
variable set {move-L0-L1

i (t), NOOP -at-L0(t − 1), move-L1
j -L

0(t − 1) | 1 ≤ j ≤ n} forms

a clique due to the AC clause for move-L0-L1
i (t). Obviously, for a clique of size m, the

smallest cycle-cutset has size m − 2. Observe that the first kind of example cliques are
disjoint, and that the second kind of example cliques are disjoint if we choose only one i.
So, just from these example cliques, we get lower bounds of

2n−2∑

t=1

[(2n + t− 1)− 2] = 6n2 − 13n + 7

and
2n−2∑

t=2

[(n+ 2)− 2] = 2n2 − 3n

on the cycle-cutset size, independently of k. One can derive several similar lower bounds
in a similar manner. Remember that the total number of variables is 16n2 − 33n+ 14, i.e.,
also a square function in n.

A refinement of cycle-cutsets are b-cutsets. These are variable subsets so that, once
removed from the graph with their incident edges, the resulting graph has an induced width
of at most b. In a nutshell, this means that there is an ordering of the graph nodes so that,
for every node v, there are at most b parents: nodes v′ that are ordered before b, and that
are connected to v by an edge.20 If b = 1 then the b-cutset is a cycle-cutset, because only
trees have induced width 1. Now, in any clique of size m, the induced width is m− 1. To
reduce it to 1 ≤ b ≤ m− 1, m− 1− b nodes must be removed. With the above, this shows

20In fact, the nodes v are processed in reverse order, and, every time a node is processed, all its parents
are being connected by, possibly, additional edges. This can lead to a higher width encountered at later
points during the process.
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that b-cutsets aren’t suitable either to capture what changes on the k scale: we don’t gain
much in the trade-off between b and cutset size. In more detail, since solution algorithms
are exponential in b, normally one wants to set b as a constant. For any constant b, with
the above the b-cutset size is still a square function in n, irrespective of k. Even if we set
b to a linear function in n only a constant number smaller than n (the size of the second
kind of cliques above, minus 2), irrespectively of k we still get a linear-size b-cutset.

Matters can change if we move to what one could refer to as conditional cutsets. These
can be defined based on the definition of conditional constraint graphs [17]. A conditional
constraint graph depends on the cutset variables V ′ and a value assignment a to V ′. The
graph results from the constraint graph by removing the cutset variables V ′ and their edges,
plus removing all edges corresponding to clauses that are satisfied by a. For example, if A
is a cutset variable and there is a clause {A,B,C}, then the edge {B,C} is removed under
the assignment A 7→ 1, but not under the assignment A 7→ 0. Say we further strengthen
this by saying that the conditional constraint graph results from the constraint graph by
executing all unit propagations, i.e., we switch to a notion of “conditional cutsets with unit
propagation”. Then, obviously, the cutsets we get are at least as small as the backdoors we
investigate here. For every value assignment, UP will report that the conditional constraint
graph has collapsed, so any backdoor for unit propagation will also be a cycle-cutset, in
that sense. However, with this definition, both cutsets and backdoors make use of UP,
and the small cutsets for large values of k are caused by the same phenomenon as the
small backdoors. It is a topic for future work to investigate whether there exist even
smaller cutsets than backdoors, in that context. Note that conditional cutsets, just like
our backdoors here, can not be tested statically, i.e., one can not test whether V ′ is such a
cutset without enumerating the value assignments.

It is important to note that conditional cutsets without UP are still not strong enough
to capture the behavior of the MAP k

n formulas. Consider, for example, the above first
kind of example cliques. Every edge {v, v′} in such a clique comes from a clause {¬v,¬v′},
so the clique edges have a 1-to-1 correspondence to clauses. If we set a variable v in the
clique to 1, then no clause (edge) in the clique becomes satisfied. If we set v to 0, then
the clique clauses that become satisfied correspond precisely to the clique edges that would
be removed anyway since they are adjacent to v. So the above stated first lower bound,
6n2 − 13n+ 7, is still valid for conditional cycle-cutsets (without UP), independently of k.

B.2. SBW. We can derive lower bounds on the size of cutsets from the cliques in the
constraint graph formed by the pairwise incompatible move actions at each time step.
What we have to think about is how many move actions are present in a time step t,
depending on n, k, and t. We do not spell this out in detail (which would involve several
case distinctions), but only derive a simple lower bound as follows:

• In every time step 2 ≤ t ≤ k, we have (n − k) ∗ (n − k) actions that move a good
block above t2 (move any good block onto any other good block or onto t2). We
further have at least t actions that move a bad block above t2 (move b1 onto t2,
move any bi, i ≤ t, onto bi−1). Note that there is no such time step t if k < 2.
• In every time step k + 2 ≤ t ≤ n − 1, we have (n − k) ∗ (n − k) actions that move

a good block above t2, and we have at least k actions that move a bad block above
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t2. Note that we start at time step 2 if k = 0 (so we have all the (n − k) ∗ (n − k)
actions for the good blocks).

At each t, the listed move variables form a clique in the constraint graph due to the EC
clauses. Further, for distinct t, clearly the cliques are disjoint. So a cycle-cutset must
remove m− 2 variables from each of these cliques of size m. We get a lower bound of:

k∑

t=2

[(n− k)2 + t− 2] +

n−1∑

t=k+2

[(n − k)2 + k − 2]

variables to be removed. Inserting k = 0, we get
∑n−1

t=2 [n2−2] = n3−2n2−2n+4. Inserting

k = n − 2, we get
∑n−2

t=2 [4 + t − 2] = 1
2n

2 + 1
2n − 6. So, at both extreme ends of the k

scale, the obtained lower bound on cycle-cutset size is a linear function in the total number
of variables. Note that these lower bounds are, actually, quite generous since we haven’t
considered, for example, the actions that move a block back onto t1.

Regarding b-cutsets, remember that, from any clique of size m, m − 1 − b nodes must
be removed in order to reduce the induced width to 1 ≤ b ≤ m−1. With k = 0, each of the
n − 2 disjoint cliques we identified has n2 nodes. So, for any constant b, the b-cutset size
is in Ω(n3). The b-cutset size is linear in n even if we set b to a square function in n only
a constant number smaller than the clique size. With k = n− 2, matters are a little more
complicated since the identified disjoint cliques grow with the time step. If we set b to a
constant, then the b-cutset size is a square function in n. If we set b to be a large enough
linear function in n, only a constant number smaller than the largest identified clique, then
the lower bound becomes constant. Still, due to the need for a b that scales linearly with
n, this does not indicate that the b-cutsets are suitable to identify the particular structure
of the SBW n−2

n formulas.
Regarding conditional cutsets, as in MAP we observe that, without the use of unit prop-

agation in the definition of the conditional constraint graph, the lower bounds do no change
at all. The reason is, as in MAP, that no setting of the clique variables satisfies/removes any
clique clauses/edges that would not be removed anyway. If we do use UP in the definition
of the conditional constraint graph, then, as before, the cutsets trivially become as small
as the backdoors. It is an open question whether there exist even smaller cutsets in this
context.

B.3. SPH. As before we can identify large cliques of variables, that prevent the existence
of small cutsets, except when using unit propagation in the definition of the conditional
constraint graph. Precisely, in the constraint graph for SPHk

n, the cliques we get are the
following:

(1) {x 1, . . . , x n} for all pigeons 0 ≤ x ≤ n, due to the clause(s) requiring x to be put
into a (sufficient number of) hole(s). Note that, in the constraint graph, in this
respect there is no difference between the bad pigeon and the other pigeons, i.e.,
irrespective of k, the clique we get for x = 0 is the same.
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(2) {1 y, . . . , n y} for all holes 1 ≤ y ≤ n, due to the clauses requiring that in each hole
there is at most one good or normal pigeon.

(3) {0 y, k y, . . . , n y} for all holes 1 ≤ y ≤ n, due to the clauses requiring that in each
hole there is at most one bad or normal pigeon.

It is easy to see that these three kinds of cliques actually form all edges in the constraint
graph. Observe that the only cliques whose size or number depends on k is kind 3. From
kind 2, we get the desired lower bounds on various kinds of cutsets. These cliques are all
disjoint; they have size n, and there are n of them. This implies that, irrespectively of k,
any cycle-cutset has at least size (n− 2) ∗ n = n2 − 2n, i.e., just 3n variables less than the
entire number of variables in the formula. Likewise, for b-cutsets with constant b, we get
a lower bound square in n. Similarly as in MAP and SBW, conditional cutsets without
unit propagation are not any smaller, because no setting of the clique (kind 2) variables
satisfies/removes any clique clauses/edges that would not be removed anyway. Conditional
cutsets with unit propagation are just as small as the backdoors, and it is an open question
whether they can be even smaller.

Digital Enterprise Research Institute, Innsbruck, Austria

E-mail address: joerg.hoffmann@deri.org

Cornell University, Ithaca, NY, USA

E-mail address: gomes@cs.cornell.edu

Cornell University, Ithaca, NY, USA

E-mail address: selman@cs.cornell.edu


