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1. INTRODUCTION

Exploration of large discrete state transition systems to answer questions about reach-
ability arises in many areas of computer science. For example, this is the case in arti-
ficial intelligence (AI) subareas such as planning [Ghallab et al. 2004] and diagnosis
[Lamperti and Zanella 2003], in model checking [Clarke et al. 2000], and in the multi-
ple sequence alignment problem in bioinformatics [Korf and Zhang 2000]. Systems of
interest are defined in some representation, such as state variables and operators, net-
works of synchronized automata, or bounded Petri nets, which is exponentially more
compact than the transition system it represents. This exponential difference between
the size of a compact system representation and the number of represented states is
known as the state explosion problem [Valmari 1989]. State explosion makes building
an explicit representation of the complete transition system infeasible and pushes the
complexity of the reachability problem from being solvable in polynomial time (in the
size of the system) to hard for polynomial space (in the size of the compact represen-
tation). Search algorithms that explore such implicitly defined transition systems use
information extracted from the compact representation to reduce the part of the system
that must be built to find the desired answer.

We consider the extraction of a particular type of information, namely admissible
heuristics, using a particular class of methods, namely abstractions. Heuristic func-
tions, in general, estimate the cost of reaching an “end state” (goal state, deadlock
state, etc.) from a given state and are used to guide informed search algorithms. Ad-
missible heuristics in particular are lower bound functions: a heuristic is admissible iff
it never overestimates the true cost. Admissible heuristics are an important tool when
searching for optimal solutions (i.e., minimum cost plans, most plausible diagnoses,
shortest error traces, etc.), because certain heuristic search algorithms, like A∗ [Hart
et al. 1968], guarantee that the solution returned is optimal under the condition that
the heuristic function used is admissible. The efficiency of optimal heuristic search
depends on the accuracy of the heuristic function: the closer its estimate is to the true
optimal cost, the less search is required to find and prove the optimality of a solu-
tion [Dechter and Pearl 1985, but note Holte 2010]. Therefore, the question is how to
compute good lower bounds.

Abstractions have a long history of use in the analysis of discrete state transition
systems. An abstraction is a mapping to an abstract system that makes fewer dis-
tinctions between states—aggregating subsets of states into one—while preserving all
transitions between states. With fewer states, analysis of the abstract system (based on
an appropriate representation of that system) is more tractable. Since transitions are
preserved, the possible behaviors—observable transition label sequences—exhibited
by the original system are overapproximated. This makes reachability in the abstract
system a necessary condition for reachability in the original system. For example, if
reaching a deadlock state is impossible in the abstraction, it is also impossible in the
original system (e.g., Cousot and Cousot [1977]). If the possible behaviors of the ab-
stract system are exactly the same as those of the original, the systems are said to be
bisimilar (e.g., Milner [1980]). Intuitively, the abstraction is then “perfect”: it incurs no
loss of information.

Any abstraction yields an admissible heuristic, and this is how we use abstractions
in this work. Note the difference to verification:

(I) Any heuristic may yield useful search guidance, so the abstraction does not need
to be perfect or preserve any reachability property exactly.

(II) We are interested not in preserving observable transition label sequences, but
merely in preserving their cost.
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Due to (I), we have full freedom in the tradeoff between the accuracy and compu-
tational cost of a heuristic. Due to (II), abstractions only need to account for the cost
associated with transitions, not for their labels; this plays a key role in the techniques
we propose.

The most widely known and used abstraction heuristics are pattern databases
(PDBs), which have been shown to be effective for many search problems (e.g., Korf
[1997], Culberson and Schaeffer [1998], Korf and Zhang [2000], and Edelkamp [2001]).
They are based on projection, that is, they aggregate states iff they agree on a sub-
set of state variables (the pattern). PDBs can be stored compactly with symbolic data
structures [Edelkamp 2002; Ball and Holte 2008], they can be combined additively
without losing admissibility under certain conditions [Felner et al. 2004; Holte et al.
2006], and suitable patterns can be computed automatically [Haslum et al. 2007].
The Achilles’ heel of PDBs is that the patterns must be small because of the state
explosion problem, and PDBs contain no information about the variables outside the
pattern. Hence, there are many transition systems for which a very accurate, even per-
fect, lower bound heuristic function can be obtained from an abstraction of reasonable
size, yet this abstraction is not a projection and hence outside the scope of PDBs. We
introduce a more general class of abstractions—merge-and-shrink abstractions—that
admits perfect heuristic functions for a significantly larger class of transition systems.

Merge-and-shrink abstraction originated in model checking of automata networks.
Sabnani et al. [1989] proposed incrementally constructing the smallest bisimilar ab-
straction of a system represented by partially synchronized automata, by interleaving
composition of component automata with reduction of the partial composites, preserv-
ing bisimilarity at each reduction step. It is often not feasible to build even this smallest
bisimilar abstraction. This inspired Dräger et al. [2006, 2009] to design an approximate
variant of the Sabnani et al. algorithm, thus inventing merge-and-shrink heuristics,
which interleave the composition of automata (merging step) with (potentially non-
bisimilar) abstraction of the composites (shrinking step). Such a heuristic requires an
abstraction strategy, that is, a rule for choosing which automata to merge and how to
shrink them. Dräger et al.’s abstraction strategy is to drop the bisimilarity requirement
when a constant limit on abstraction size is reached. They then aggregate more states,
in a potentially lossy way. The resulting heuristics were used in directed model check-
ing, that is, for guiding explicit-state search towards error states in computer-aided
verification.

The main contributions of our own work are:

(1) the extension of merge-and-shrink to the more general framework of factored tran-
sition systems, capturing the minimal requirements needed for merge-and-shrink
to work;

(2) the investigation of the expressive power of merge-and-shrink, showing in par-
ticular that merge-and-shrink strictly subsumes pattern databases: it can always
simulate these efficiently, and may be exponentially more compact;

(3) the design of conservative label reduction techniques, which may exponentially
reduce bisimulation size while still computing perfect heuristics (as opposed to
perfect abstractions, cf. (II));1

(4) the application of merge-and-shrink to AI planning, designing new abstraction
strategies and demonstrating their theoretical and practical merits.

1With a perfect heuristic, most reachability questions can be answered without search (we discuss this in
Section 2.3), so this is a possible alternative to the use of perfect abstractions. We are not aware of work in
computer-aided verification exploring this possibility.
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Factored transition systems encompass not only Dräger et al.’s automata networks,
but also state variable/operator-based descriptions that are often a more natural way
of modeling, for example, planning or diagnosis problems. Also, in difference to Dräger
et al., our framework allows transitions to be associated with arbitrary nonnegative
costs. Merge-and-shrink can also be applied to non-factored systems. However, factored
systems are the largest class in which one can always reconstruct the original transition
system by the synchronized product of its components, thus enabling this process to
construct perfect heuristics.

In addition to subsuming PDBs, we show that merge-and-shrink can efficiently sim-
ulate admissibly additive ensembles of heuristics, thus capturing such additivity in-
trinsically, and subsuming even additive ensembles of PDBs. Exploiting a relationship
between merge-and-shrink and algebraic decision diagrams, we shed some light on
an open question [Helmert and Domshlak 2009] regarding the relationship between
merge-and-shrink and critical-path heuristics [Haslum and Geffner 2000], another
family of admissible heuristics from AI planning.

Our conservative abstraction strategy guarantees to compute perfect heuristics, and
does so in polynomial time in three of the six classical planning benchmarks that have
polynomial-time optimal solution algorithms. To design approximate strategies, we
introduce greedy bisimilarity, requiring bisimilarity relative to a particular subset of
transitions only. The resulting techniques are competitive with the state of the art in
optimal planning. Apart from our own experiments, this is illustrated by the outcome
of the 2011 International Planning Competition,2 where our tool won a 2nd prize and
was part of the 1st prize winner (a portfolio of four planning algorithms, two of which
were variants of merge-and-shrink).

Preliminary versions of some of our results were presented in two conference papers
[Helmert et al. 2007; Nissim et al. 2011]. The present article is structured as follows.
Section 2 introduces the basic concepts of factored transition systems, heuristics, and AI
planning. Section 3 defines merge-and-shrink abstractions mathematically, Section 4
discusses their algorithmic aspects. Section 5 introduces conservative label reduction.
Section 6 applies Sabnani et al.’s use of bisimilarity to our framework and combines it
with label reduction. Section 7 gives our results regarding expressive power. Section 8
provides our evaluation in planning. Section 9 concludes. The main text contains proof
sketches only; full proofs are in Appendix A.

2. BASIC CONCEPTS

In this section, we introduce the notion of factored transition systems, which is the basis
for the derivation of merge-and-shrink heuristics, and discuss some of its properties. In
addition, in Sections 2.2 and 2.3, we briefly recap some basic facts about AI planning
and heuristic search.

2.1. Factored Transition Systems

A discrete state transition system is a labeled directed graph where nodes represent
states of the system and arcs represent transitions between states. Each transition has
a label, identifying the event, action, or equivalent that causes the state change. Labels
are not unique: the same label may appear on many arcs in the graph. However, we
usually assume that the system is deterministic in the sense that the labels of outgoing
arcs from any single state are distinct. A reachability problem, relative to a transition
system, asks for a directed path through the graph from a distinguished initial state to
any state in a given set of solution states. In a planning problem, these are states where

2http://www.icaps-conference.org/index.php/Main/Competitions.
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the planning goal is achieved; in a verification problem, they may be deadlock states,
or states where a safety property is violated. Note that the solution to a reachability
problem is the path from initial state to solution state, not the solution state itself. Since
we are interested in problems that require optimal solutions, we associate with each
transition label a fixed nonnegative cost, and seek a path of minimum total cost. (That
costs are nonnegative and transition systems are finite ensures that the minimum is
well defined.)

In any realistic situation, the state/transition graph is not presented explicitly, but
defined indirectly through some compact representation. Typically, states are assign-
ments of values, from some finite domain, to a set of state variables, and transitions are
instances of operators, each of which affects only a subset of variables. Alternatively,
if the system is composed of several smaller systems interacting in some way (e.g.,
by synchronizing on shared transition labels), each subsystem can be seen as a state
variable. This implies that the size of the transition system can be, and indeed usually
is, exponential in the size of the system representation, but also that the system is not
an arbitrary graph. By imposing a further restriction on how transitions and the set of
solution states are defined, we obtain a class of systems, which we call factored, that
have a particular structure. The most important feature of a factored system is that
it is isomorphic to the synchronized product of the projections onto each of its state
variables (cf. Theorem 4.5).

Definition 2.1. A labeled transition system, or transition system for short, is a
5-tuple � = (S, L, T , s0, S�) where S is a finite set of states, L is a finite set of tran-
sition labels each associated with a label cost c(l) ∈ R

+
0 , T ⊆ S × L × S is a set of

labeled transitions, s0 ∈ S is the initial state, and S� ⊆ S is the set of solution states. A
path from s to s′ in � is a sequence of transitions t1, . . . , tn such that there exist states
s = s0, . . . , sn = s′ such that (si−1, ti, si) ∈ T for all i = 1, . . . , n.

The cost of a path in � is the sum of the label costs along the transitions it takes.
The solution cost h∗ : S → R

+
0 ∪ {∞} is the function which assigns to each state s ∈ S

the minimal cost of any path in � from s to any s� ∈ S�, or h∗(s) = ∞ if there is no such
path. A path from s0 to any s� ∈ S� is a solution for �. A solution is optimal if its cost is
equal to h∗(s0).

We will only be concerned with algorithms that find provably optimal solutions to
reachability problems.

While the definition admits arbitrary nonnegative label costs, important special
cases that we will mention are discrete (integer) costs, as well as uniform costs where
c(l) = c(l′) for all l, l′ ∈ L. Note that we allow zero-cost labels, a natural model of cases
where one wishes to account only for some of the transitions in �.

Next, we define precisely the meaning of factoredness:

Definition 2.2. Let � = (S, L, T , s0, S�) be a transition system. Let V be a finite set,
where each v ∈ V has an associated finite domain Dv. We say that � has state variables
V if the set of states S is the set of functions s on V with s(v) ∈ Dv for all v ∈ V.

Definition 2.3. Let � = (S, L, T , s0, S�) be a transition system with state variables
V. For V ⊆ V and s, t ∈ S, the recombination ρV (s, t) of s and t under V is the state
defined by

ρV (s, t) := s|V ∪ t|V\V .

(Throughout the paper, f |X denotes the restriction of a function f to set X.)
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We say that � is factored if the following two conditions hold.

(i) For all s�, t� ∈ S� and V ⊆ V, ρV (s�, t�) ∈ S�.
(ii) For all (s, l, s′), (t, l, t′) ∈ T and V ⊆ V, (ρV (s, t), l, ρV (s′, t′)) ∈ T .

Note that a system that has only one variable is trivially factored. Every system
can be viewed as a system with one state variable (that variable being the state of
the system), but, as mentioned, almost any system of interest genuinely has multiple
variables. For example, in a (bounded) Petri net, the marking of each place constitutes
a state variable. In a transition system defined by composition of automata (which are
single-variable systems), the state of each component automaton can be viewed as a
variable. Thus, assuming that systems have variables, according to Definition 2.2, is
not very restrictive.

Assuming that a multivariable system is factored, however, does restrict the relation
between transitions and transition labels. Intuitively, it means that the effect of a
transition on any state variable is determined only by the value of this state variable
and the transition label: two transitions with the same label cannot change a state
variable to different values depending on the value of some other variable. Viewed
another way, it means that each transition label can be associated with an enabling
condition which is a conjunction of conditions on individual state variables, and that the
same is true also of the condition that defines solution states. The following proposition
shows that this is the case.

PROPOSITION 2.4. Let � = (S, L, T , s0, S�) be a transition system with state variables
V. Then, � is factored if and only if the following two conditions hold.

(i) There exists a family of “goal domains” (Dg
v )v∈V where Dg

v ⊆ Dv for all v ∈ V, such
that for all s ∈ S, we have s ∈ S� iff s(v) ∈ Dg

v for all v ∈ V.
(ii) For each label l ∈ L, there exists a family of “precondition/effect domains” (Dpe

v (l))v∈V
where Dpe

v (l) ⊆ Dv × Dv for all v ∈ V, such that for all s, s′ ∈ S, we have (s, l, s′) ∈ T
iff (s(v), s′(v)) ∈ Dpe

v (l) for all v ∈ V.

PROOF SKETCH. Proposition 2.4(i) implies Definition 2.3(i) because recombining states
preserves the property that s(v) ∈ Dg

v for all v ∈ V. For the other direction, define Dg
v :=

{s�(v) | s� ∈ S�}. Say that s is a state where, for all v, s(v) ∈ Dg
v . Then, by construction,

for each variable v we have a state sv
� ∈ S� with sv

� (v) = s(v). By Definition 2.3(i) these
states sv

� can be recombined to form s. On the other hand, if s is a state where s(v) /∈ Dg
v

for some v, then s cannot be a goal state by definition of Dg
v . Together, this shows the

claim. Condition (ii) is similar.

The terminology of Proposition 2.4 is borrowed from the domain of AI planning (as
detailed in Section 2.2 below), but many other modelling formalisms also satisfy the
criteria for giving rise to factored transition systems. For example, a transition in a
Petri net (which in our terminology is actually a transition label) also has a precondition
and effect on each place it is connected to, and the enabling condition for the transition
as a whole is the conjunction of these conditions. Note, however, that some common
formalisms do not. As an example, planning formalisms that include conditional effects
[Pednault 1989] do not, in general, describe factored systems.3 The reason is precisely
that with conditional effects, the effect that a transition label (i.e., action) has on a
single state variable may depend on the values of other state variables at the time the
transition is taken, without those variables affecting whether the transition is enabled
or not.

3However, conditional effects can be compiled away at the cost of a polynomial increase in plan length [Nebel
2000].
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Fig. 1. The (factored) state space of our illustrative example.

We will henceforth assume that transition systems are factored, and that they are
described in terms of the goal domains Dg and the precondition/effect domains Dpe(l)
as specified (or in a form easily convertible into these). We further assume that, for
all v and l, Dg

v and Dpe
v (l) are nonempty. (If Dg

v = ∅, then by Proposition 2.4(i) S� is
also empty, and the reachability problem trivially has no solution; if Dpe

v (l) = ∅, then l
cannot appear as the label of any transition in �, and so can be removed from the label
set.)

Example 2.5. Consider the transition system shown in Figure 1. This example
is based on a simplified logistics planning problem, and will be used for illustration
throughout this article. To be feasible for illustration, the example is very simplistic.
We have the state variables V = {truck, package-1, package-2}, whose domains are
Dtruck = {L, R}, Dpackage-1 = {L, T , R}, and Dpackage-2 = {L, T , R}. In words, the example
involves one truck and two packages that move between the two locations left (L) and
right (R). In Figure 1, each state shows the value of truck, package-1, package-2 in
this order. The initial state (at the left) is marked with an incoming arc not coming
from any other state; goal states (at the right) are shown with green background. We
will follow these conventions throughout this article. The labels correspond to driving
the truck (e.g., “drLR” drives from left to right), loading a package (e.g., “lo1L” loads
package 1 at the left), and unloading a package (e.g., “ul1R” unloads package 1 at the
right). All transitions in the system are bidirectional; the label above a transition moves
rightward (“→”), the label below moves leftward (“←”). The label costs are uniformly 1,
and we will henceforth ignore them when discussing this example.

The transition system is factored. To see this, observe the conjunctive nature of
the distribution of labels and solution states. The solution states are those where
package-1 = package-2 = R. Transitions labeled with the operator of driving from left
to right (label “drLR”) connect exactly pairs of states where truck = L in the current
state, truck = R in the new state, and the states are otherwise the same. Thus, the
precondition of this transition label (or operator) is truck = L and its effect is truck = R.
The other operators are similarly defined.

Factoredness is important because, as will be shown later (Theorem 4.5), it allows
� to be reconstructed from the projections onto each of its variables. This captures the
case when � is defined as the product of a collection of automata, but is more general
in capturing also transition systems not defined in this way a priori.
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Merge-and-shrink heuristics can be derived and used also for transition systems that
are not factored (yet compactly described), but many theoretical qualities of merge-and-
shrink—everything that relies on Theorem 4.5—are then lost.

2.2. AI Planning

We will evaluate the effectiveness of merge-and-shrink heuristics, theoretically and
empirically, in their application to AI planning. Planning is one of the oldest subareas
of AI, originating in the early 1960s with the vision to achieve human problem solving
flexibility [Newell and Simon 1963]. A plethora of approaches to planning have been
proposed; see Ghallab et al. [2004] for a comprehensive overview. The approaches
differ widely in intention and scope, but all have the common aim to design a tool
that automatically finds a “plan”, based on a high-level description of an “initial state”,
a “goal”, and a set of available “operators”. A plan is a schedule of operators that
transforms the initial state into a state satisfying the goal. We consider problems
falling into the category of so-called classical planning, arguably the most common
form of AI planning. It assumes that the initial state is fully known and that operator
effects are deterministic.

It would not serve this article to give a lengthy introduction to the practical uses
of planning today. Its traditional use is in robotics, or more generally for controlling
autonomous agents. Thanks to its flexibility, planning has recently been successfully
applied in areas as diverse as large-scale printer control [Do et al. 2008; Ruml et al.
2011], natural language sentence generation [Koller and Hoffmann 2010; Koller and
Petrick 2011], greenhouse logistics [Helmert and Lasinger 2010], and network security
[Boddy et al. 2005; Lucangeli Obes et al. 2010]. All these recent applications are based
on classical planning.

As mentioned, a planning task is provided to the automated planning tool in the form
of a high-level description, that is, a modelling formalism. Even for classical planning,
several different formalisms exist. We use a variant of the SAS+ formalism [Bäckström
and Nebel 1995], based on finite-domain state variables. This formalism is well suited
to the construction of merge-and-shrink heuristics and is in widespread use. It is a
direct generalization of the canonical classical planning formalism, STRIPS [Fikes and
Nilsson 1971; McDermott et al. 1998], which allows Boolean variables only. Its formal
definition is as follows.

Definition 2.6. A finite-domain variable planning task, or planning task for short,
is a 4-tuple � = (V,O, s0, s�) with the following components:

(i) V is a finite set of state variables, where each variable v has an associated finite
domain Dv. A partial variable assignment over V is a function s on a subset Vs of
V such that s(v) ∈ Dv for all v ∈ Vs. If Vs = V then s is called a state. We identify
(partial) variable assignments s with their set {(v, s(v)) | v ∈ Vs} of variable/value
pairs and write individual pairs (v, d) as v = d.

(ii) O is a finite set of operators, where each operator o ∈ O has an associated precon-
dition preo and effect effo, both of which are partial variable assignments, and an
associated cost costo ∈ R

+
0 .

(iii) s0 is a state called the initial state, and s� is a partial variable assignment called
the goal.

The state space associated with � is the transition system �(�) = (S, L, T , s0, S�),
where: S is the set of all states; L = O with label costs c(o) := costo; (s, o, s′) ∈ T iff
preo ⊆ s and s′ = s|V\Veffo

∪ effo; s ∈ S� iff s� ⊆ s. A solution for �(�) is a plan for �. The
plan is optimal if the solution is.
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This definition is sufficiently permissive that the problem of deciding if a given
planning task has a solution (plan existence) is PSPACE-complete [Bylander 1994]. In
other words, planning tasks are compact descriptions of potentially exponentially large
transition systems, and hence they exhibit the state explosion problem. The transition
systems associated with planning tasks are factored.

PROPOSITION 2.7. Let � = (V,O, s0, s�) be a planning task. Then �(�) is factored with
state variables V.

PROOF SKETCH. This is a straightforward application of Proposition 2.4. For example,
goal domains are given by Dg

v := {s�(v)} if s�(v) is defined, and Dg
v := Dv otherwise.

Example 2.8. Reconsider Figure 1. Clearly, this is the state space of the plan-
ning task (V,O, s0, s�) where: V = {truck, package-1, package-2} with Dtruck = {L, R},
Dpackage-1 = {L, T , R}, and Dpackage-2 = {L, T , R}; s0 = {truck = R, package-1 =
L, package-2 = L}; s� = {package-1 = R, package-2 = R}; and there are the follow-
ing ten operators:

—“drLR” with precondition {truck = L}, effect {truck = R} and cost 1
—“drRL” with precondition {truck = R}, effect {truck = L} and cost 1
—four operators of the form “loi j” (i = 1, 2, j = L, R) with precondition {truck =

j, package-i = j}, effect {package-i = T } and cost 1
—four operators of the form “uli j” (i = 1, 2, j = L, R) with precondition {truck =

j, package-i = T }, effect {package-i = j} and cost 1

In the following, we consider the most general framework for merge-and-shrink,
factored transition systems. With Proposition 2.7, planning is a special case. We will
return to that special case in Section 8, where we evaluate the performance of merge-
and-shrink when applied to planning.

2.3. Heuristic Search

Heuristic search algorithms rely on a heuristic function to guide exploration.

Definition 2.9. Let � = (S, L, T , s0, S�) be a transition system. A heuristic function,
or heuristic for short, is a function h : S → R

+
0 ∪ {∞}. The heuristic is admissible

if, for every s ∈ S, h(s) ≤ h∗(s). The heuristic is consistent if, for every (s, l, s′) ∈ T ,
h(s) ≤ h(s′) + c(l). The heuristic is perfect if h = h∗.

“Admissible” is essentially a synonym for “lower bound” (on h∗). We prefer the term
“admissible” over “lower bound” in this article because of its ubiquity in the AI and
search literature. Consistency together with the requirement that h(s�) = 0 for all
goal states s� implies admissibility. The heuristics created by merge-and-shrink are
consistent, and, as we will show, in some cases even perfect.

A large body of literature is concerned with the possible uses of heuristic functions,
that is, how to use heuristics to control the search on �. Provided with an admissible
heuristic, some (but not all) heuristic search algorithms are guaranteed to return an
optimal solution. Our focus is on optimal solutions, and hence we only consider such
algorithms. Since we are investigating the derivation and computation of heuristics
rather than their use, we evaluate merge-and-shrink heuristics using only the canon-
ical optimal search algorithm, A∗ [Hart et al. 1968]. A∗ starts by expanding s0, that
is, generating its direct successors and inserting these into a search queue. A∗ then
expands search states s by increasing order of g(s)+h(s), where g(s) is the accumulated
cost on the path from s0 to s that was generated by the search algorithm. If the ex-
panded state is a goal state, A∗ stops. If the heuristic is admissible, the solution found,
that is, the path by which the goal state was reached, is guaranteed to be optimal. If
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the heuristic is also consistent, A∗ will reach every state it expands by an optimal path,
so that it suffices to expand every state at most once, that is, duplicate search nodes
arising from transpositions (several paths leading to the same state) can be pruned
once the state has been expanded. If the heuristic is perfect, then the transition system
contains a solution iff h(s0) �= ∞. In that case, A∗ does not need to search—it finds an
optimal solution after expanding a number of nodes linear in the solution’s length—
provided that we break ties in favor of states s with smaller h(s), and that there are
no 0-cost transitions. (To understand the latter restriction, consider the case where all
transition costs are 0, in which the perfect heuristic value is 0 in all states from which
the goal is reachable.)

3. A MATHEMATICAL VIEW OF ABSTRACTIONS

Abstractions are at the core of our approach to constructing heuristics. In this section,
we introduce them from a mathematical perspective. Algorithmic aspects—that is,
how to actually compute these abstractions and their associated heuristics—will be
discussed in the next section.

Section 3.1 defines abstractions and their associated heuristic functions. Section 3.2
defines pattern databases. Section 3.3 specifies how to merge abstractions. Section 3.4
introduces merge-and-shrink abstractions as proposed in this work, and explains how
they generalize pattern databases.

3.1. Abstractions and Abstraction Heuristics

Abstracting in general means to ignore some information or some constraints to render
a problem easier. In our case, it means to impose an equivalence relation over the states
in a transition system. States within the same equivalence class are not distinguished
in the abstraction. It will be convenient to define such abstractions as functions on
states, where states deemed to be equivalent are mapped to the same abstract state.

Definition 3.1. Let � = (S, L, T , s0, S�) be a transition system. An abstraction of �
is a surjective function α mapping S to a set of abstract states Sα. We associate α with:

(i) the abstract transition system �α := (Sα, L, T α, sα
0 , Sα

� ), where T α :=
{(α(s), l, α(s′)) | (s, l, s′) ∈ T }, sα

0 := α(s0), and Sα
� := {α(s�) | s� ∈ S�};

(ii) the abstraction heuristic, hα, which maps each s ∈ S to the optimal solution cost of
α(s) in �α; in other words, hα(s) = h∗(α(s));

(iii) the induced equivalence relation on �, ∼α, where s ∼α t iff α(s) = α(t).

The size of α, written |α|, is the number of abstract states, |Sα|.
Surjectivity of α is postulated only for simplicity of notation, to avoid useless states

in �α. An example of abstraction will be given in the next section.
We will also refer to the abstraction heuristic as the induced heuristic function. It is

easy to see from the above definition that this heuristic is admissible and consistent. For
example, to show admissibility, consider an optimal solution path s = s0, l1, s1, . . . , ln, sn
in �, where sn ∈ S� is a solution state: by definition of �α, (α(si−1), li, α(si)) for i = 1, . . . , n
is a transition in T α, and α(sn) ∈ Sα

� , so the corresponding path is a solution for α(s)
in �α. Thus, the minimum cost of reaching a solution state from α(s) in �α cannot be
greater than the minimum cost of reaching a solution state from s in �, that is, hα does
not overestimate.

Note that �α is isomorphic to �/∼α: each abstract state in Sα is the image of some set
of states in S under α, and because they are all mapped to the same abstract state, that
set of states is an equivalence class of ∼α. Both views of the abstract space are useful;
we will use both views interchangeably. The quotient �/∼α will be used to formulate
certain classes of abstractions (whose induced equivalence relations are bisimulations).

Journal of the ACM, Vol. 61, No. 3, Article 16, Publication date: May 2014.



Merge-and-Shrink Abstraction 16:11

The abstract transition system �α is what underlies our algorithms, where α is defined
in terms of partial variable assignments to compactly represent equivalence classes.
For example, consider the abstract state “{v = d}” vs. the equivalence class of all states
where the value of variable v is d.

To compute the abstraction heuristic, we rely on �α being small enough to be repre-
sented explicitly. If α is injective, then �α is identical to �, and its size is the same. As
we have already mentioned, systems of practical interest are nearly always too large
to be represented explicitly in this form. Thus, only noninjective abstractions are inter-
esting for deriving heuristics. The potential power of abstraction heuristics stems from
the observation that it is often possible to capture a significant amount of information
about a system using an exponentially smaller abstract version of it.

In Definition 3.1, we fix the abstract transition system induced by an abstraction
mapping α to be the “most precise” transition system for α: �α is the transition system
over the set of abstract states Sα that has exactly those transitions and solution states
that are necessary for α to be a homomorphism into �α and no more. A slightly more
general definition, used in our earlier work [Helmert et al. 2007], leaves more flexibility
in choosing �α. In that definition, abstractions are defined by a pair consisting of a
mapping α and any transition system �′ over the set of abstract states Sα such that
α is a (not necessarily strict) homomorphism into �′. This allows the abstract state
space to contain additional solution states and/or transitions, which still results in an
admissible and consistent (though potentially less accurate) heuristic. In this work, we
prefer Definition 3.1 because it simplifies notation, and the generalization afforded by
the alternative definition is irrelevant to almost all of our results. (The only situation
where the generalization may matter is discussed informally at the end of Section 7.1.)

3.2. Projections

A projection is a particular kind of abstraction which considers two states s and s′ to
be equivalent if and only if they agree on the values of all variables in a distinguished
subset. This corresponds to ignoring the values of all variables not in the distinguished
set, that is, restricting the state to the selected subset of variables.

Definition 3.2. Let � = (S, L, T , s0, S�) be a factored transition system with state
variables V, and let V ⊆ V be a subset of these variables. The projection onto V is
the abstraction πV of � defined by πV (s) = s|V . If V is a singleton set, π{v} is called an
atomic projection and is also written as πv.

Abstraction heuristics based on projections are known as pattern databases (PDBs);
the term “pattern” refers to the subset of variables projected on. PDBs have been used
extensively in heuristic search, and have been shown to be very effective for many
problems (e.g., Korf [1997], Culberson and Schaeffer [1998], Korf and Zhang [2000],
and Edelkamp [2001]). However, as mentioned in the introduction, PDB heuristics
have a fundamental limitation: because the abstract transition system is represented
explicitly, the number of variables included in the projection pattern must be small. In
general, if we consider families of compactly represented transition systems of scaling
size, polynomial-size PDBs must limit the number of variables in the pattern to be at
most logarithmic in the problem size (if variable domains remain fixed with increasing
problem size) or even constant (if variable domains increase with problem size). At the
same time, the PDB heuristic provides no information about variables not included in
the pattern. Transitions that depend on these ignored variables tend to create many
“shortcuts” in the abstract space, and this may result in very uninformative heuristics.
The following example illustrates this.
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Fig. 2. Projections in our illustrative example, as equivalence relations over the state space. Left: project
onto {package-1}; right: project onto {truck, package-1}.

Example 3.3. Figure 2 shows two projections of our illustrative example. The left-
hand side of the figure shows a projection onto a single one of the two package variables.
More precisely, what we see is the equivalence relation induced by the abstraction
πpackage-1. Since, in �πpackage-1 , transitions are between equivalence classes rather than
between individual states, the solution cost of πpackage-1(s0) in �πpackage-1 is 2: all we need to
do is to load package 1 at the left and unload it at the right, disregarding the roles of the
truck and the other package (note also how the set of solution states is enlarged in this
abstraction). Thus, hπpackage-1 (s0) = 2, in contrast to the actual solution cost h∗(s0) = 6
that arises from having to drive the truck 2 times, and having to deal with package 2.

Adding the truck into the projection—Figure 2 (right)—improves the lower bound a
little, yielding hπ{package-1,truck}(s0) = 4. But we still do not account for package-2, and we
will not be able to do so unless we use the trivial projection onto the whole variable set.
More generally, if there are n packages, a polynomial-size projection cannot include
more than a logarithmic number of them, so the error of the resulting abstraction
heuristic, that is, the amount by which it underestimates relative to the true optimal
solution cost, will grow without bound as n increases.

As the example shows, even in very simple cases pattern databases are not able to
compactly represent an accurate lower bound. To some extent this flaw can be side-
stepped by summing over several independent PDBs, but even this does not fully
overcome the problem. The proof of Theorem 7.4 in Section 7.2 presents an example in
which no additive ensemble of PDBs can guarantee any bound on heuristic error. Part
of the motivation for merge-and-shrink abstractions is to overcome this weakness of
pattern databases, by considering a larger class of abstractions than only projections.
Intuitively, where a PDB represents a subset of the variables exactly, merge-and-shrink
abstractions allow us to capture some information about all variables, but in a lossy way
if this is required to keep abstraction size at bay. Before we introduce merge-and-shrink
abstractions formally, we need to discuss a basic operation on abstractions.

3.3. Merging Abstractions

Given any two abstractions of a transition system, we can combine them into another
abstraction of the same system that represents all information contained in both of
them. We call this merging the two abstractions.

Definition 3.4. Let � be a transition system, and let α1 and α2 be abstractions of �.
The merged abstraction α1 ⊗ α2 of � is defined by (α1 ⊗ α2)(s) = (α1(s), α2(s)).

The merged abstraction α1 ⊗ α2 maps two states to the same abstract state only
if both α1 and α2 do that. In that sense, it is “less abstract” than either of the con-
stituent abstractions. This also means that the induced equivalence relation ∼(α1⊗α2) is
a refinement of both ∼α1 and ∼α2 .

Journal of the ACM, Vol. 61, No. 3, Article 16, Publication date: May 2014.



Merge-and-Shrink Abstraction 16:13

A special case that will appear frequently in our technical discussion is that of
merging two projections, α1 = πV1 and α1 = πV2 . Obviously, πV1 ⊗ πV2 is isomorphic to
πV1∪V2 . Indeed, the abstract transition systems differ only in that any variable common
to V1 and V2 is mentioned twice, but always with identical values, in states of πV1 ⊗πV2 .
Given this, we will not distinguish between the two abstractions, that is, we identify
πV1 ⊗ πV2 with πV1∪V2 .

Readers familiar with the operation of forming the synchronized product of tran-
sition systems should note that, in general, the transition system �α1⊗α2 induced by
the merged abstraction is not necessarily isomorphic to the product of the transition
systems �α1 and �α2 induced by the component abstractions. Later, in Section 4, we
will show that this isomorphism holds precisely when the transition system is factored
and the two abstractions depend on disjoint sets of state variables.

Example 3.5. In Figure 2, if we merge the projection πpackage-1 shown on the left
hand side with the projection πtruck onto the truck, then the resulting abstraction
πpackage-1 ⊗ πtruck is identical to the abstraction π{package-1,truck} shown on the right hand
side—the states ({package-1 = d}, {truck = e}) of the former correspond to the states
{package-1 = d, truck = e} of the latter. If we merge πpackage-1 with itself, then the
states ({package-1 = d}, {package-1 = d}) of πpackage-1 ⊗ πpackage-1 correspond to the
states {package-1 = d} of πpackage-1 itself.

We have
⊗

v∈V πv = πV . Since πV is the identity function, �
⊗

v∈V πv is identical to
the original transition system �, that is, a transition system can be reconstructed by
merging all its atomic projections. This is the basic observation underlying merge-and-
shrink abstractions.

3.4. Merge-and-Shrink Abstractions

Given a compact description of a factored transition system �, arbitrary abstractions
can be created by first building an explicit representation of �, then aggregating indi-
vidual pairs of states to make the desired abstraction. Of course, as we have repeatedly
pointed out, building such an explicit representation is infeasible in most situations,
so this is not a practical approach to creating abstractions. Rather, we need to abstract
already while constructing �, to keep the construction from growing out of bounds. But
how do we do this?

In the case of merge-and-shrink abstractions, the answer is to exploit the reconstruc-
tion of � as �

⊗
v∈V πv mentioned previously. We construct an abstraction of � incremen-

tally by starting with the collection of atomic projections πv, and iteratively merging
two abstractions. In between the merging steps, we shrink (some of) the partial compos-
ites by applying additional abstractions. For clarity, our definition makes this inductive
construction explicit in the form of a merge-and-shrink tree.

Definition 3.6. Let � be a factored transition system with variables V, and let
V ⊆ V. A merge-and-shrink tree T over V for � is a finite rooted tree whose nodes are
labeled with abstractions α of �. We say that T represents the abstraction α that labels
the root of T . Merge-and-shrink trees are defined inductively using the following rules.

(A) Atomic Projections. For any v ∈ V, the tree Tv that only consists of a single node
labeled πv is a merge-and-shrink tree over {v} for �.

(S) Shrinking. If T2 is a merge-and-shrink tree over V for � representing α2 and α1 is
a surjective function on Sα2 , then the tree T1 whose root is labeled with α1 ◦ α2 and
has T2 as its only child is a merge-and-shrink tree over V for �.
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(M) Merging. If T1 and T2 are merge-and-shrink trees over V1 and V2 for � representing
α1 and α2 such that V1 ∩ V2 = ∅, then the tree T whose root is labeled with α1 ⊗ α2
and has T1 and T2 as its children is a merge-and-shrink tree over V1 ∪ V2 for �.

We say that T is atomic if it can be constructed using only rules (A) and (S); else, it
is nonatomic. We say that T is nonabstracting if it can be constructed using only rules
(A) and (M). The maximum intermediate abstraction size of T , or size for short, written
|T |max, is the maximum over the sizes of the abstractions labeling the nodes in T .

By T α, we denote a merge-and-shrink tree whose root is labeled with α. When the dis-
tinction does not matter, we identify T with the abstraction it represents. In particular,
when we say that α is a merge-and-shrink abstraction we mean that α is represented
by a merge-and-shrink tree whose details are not important for the discussion.

We will refer back to rules (A), (S), and (M) throughout this article, so it is important
to keep them in mind. Rule (A) allows us to start from atomic projections. Rule (S),
the shrinking rule, allows us to abstract a given abstraction α2 further, by applying an
additional abstraction α1 to its image, thus reducing the size of its induced abstract
transition system. Rule (M), the merging rule, allows us to merge a pair of abstractions
provided their associated variable sets are disjoint. As will be detailed in Section 4.1,
the restriction to disjoint variable sets is required for reconstructing the abstract state
space of the merged abstraction from those of its components. In theory, the restriction
can be dropped; that possibility plays a role for some properties of merge-and-shrink
abstractions that will be discussed in Sections 7.4 and 7.5.

Observe that any abstraction α is trivially a merge-and-shrink abstraction. A naı̈ve
merge-and-shrink tree T representing α is obtained by first constructing

⊗
v∈V πv with

rules (A) and (M), then using rule (S) instantiated with α2 = ⊗
v∈V πv and α1 = α.

The important question is which abstractions we can represent compactly as a merge-
and-shrink tree. We capture this in terms of maximum intermediate abstraction size
|T |max, the maximum size of any abstraction created throughout the merge-and-shrink
process resulting in α.4 The naı̈ve T above is not compact, its size being equal to the
size of the original transition system. An important class of compactly representable
abstractions are projections.

PROPOSITION 3.7. Let � be a factored transition system with variables V, and let
V ⊆ V. Let T α be a nonabstracting merge-and-shrink tree over V . Then, �α = �πV , and
|T |max = |πV |.

PROOF. Not applying any shrinking steps, clearly α = ⊗
v∈V πv, thus �α = �

⊗
v∈V πv

which with our notational conventions is identical to the first part of the claim. The
second part of the claim holds obviously.

In other words, merge-and-shrink abstractions generalize pattern databases, which
can be constructed using only rules (A) and (M), with merge-and-shrink trees whose
size relates polynomially to the size of the pattern database. The generalization is strict,
in the sense that merge-and-shrink can compactly represent the perfect heuristic in
certain transition system families where PDBs cannot (Theorem 7.4 will show that this
is the case even for additive ensembles of PDBs).

Example 3.8. Figure 3(a) shows an abstraction α1 of πpackage-1 ⊗ πpackage-2. Precisely,
α1 results from the following steps as per Definition 3.6. We first apply rule (A) to each

4At implementation level, other important size measures are the peak memory usage during the merge-and-
shrink process, as well as the memory usage of the final heuristic function representation at the end of the
merge-and-shrink process. Both measures relate polynomially to maximum intermediate abstraction size,
and for brevity, we do not discuss them in detail.
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Fig. 3. Merge-and-shrink abstractions in our illustrative example, shown as equivalence relations. (a) A
merge-and-shrink abstraction α1 constructed by shrinking πpackage-1 ⊗ πpackage-2 (TT is not a member of the
equivalence class containing LR and RL). (b) α1 ⊗ πtruck, yielding a perfect heuristic; for readability, the
layout has been rearranged with respect to Figures 1 and 2.

of package-1 and package-2. Then, we apply rule (M) to the resulting two abstractions
πpackage-1 and πpackage-2. We finally apply rule (S), removing the distinction between the
state pairs {LT, TL}, {LR, RL}, and {TR, RT}. This results in the equivalence relation
induced by α1 as shown in the figure.

Note that the shrinking step has removed any distinction between permutations of
the two packages. Indeed, no matter where the truck is located, such permutations
have no influence on the solution cost. Therefore, merging α1 with the projection πtruck
onto the truck variable yields a perfect heuristic. The equivalence relation induced by
α1 ⊗πtruck, in the full state space of the example, is shown in Figure 3(b). Such removal
of permutations can be done for an arbitrary number of packages, and incrementally.
Thus, in difference to pattern databases (cf. Example 3.3), merge-and-shrink can com-
pute a perfect heuristic for a generalization of the example, with an arbitrary number
of packages, in polynomial time.

In this example, the ability of merge-and-shrink to compactly represent a perfect
heuristic exploits the symmetry between packages. The same phenomenon can be
observed in some other cases for which merge-and-shrink yields perfect heuristics,
discussed in Section 8. However, it is possible to construct problem families that have
no symmetries, but where a polynomially sized perfect merge-and-shrink abstraction
still exists. For example, say we have n independent variables, each of which can be
changed from its initial to its target value in two steps, but where each variable has
several intermediate values connected to each other in different non-symmetric ways.
A perfect merge-and-shrink abstraction reduces to counting how many of the variables
are one or two steps, respectively, from their target value. Conversely, there exist
problems that with certain kinds of symmetry reduction can be solved in polynomial
time, but which do not admit compact perfect merge-and-shrink abstractions. Thus,
while there is some overlap in the problem features exploited by symmetry reduction
and merge-and-shrink abstractions, neither is completely subsumed by another. The
same is true of partial-order reduction (e.g., Valmari [1989] and Clarke et al. [2000]).
(To show a separation with merge-and-shrink abstraction, it suffices to extend the
above example with a binary variable whose value is changed by each transition.)

Note that Proposition 3.7 holds even if we drop the requirement that V1 ∩ V2 = ∅ in
rule (M). That constraint plays an important role in the computation of hα, which is,
in principle, separate from the design of α. We could design α first, and only thereafter
build its abstract transition system and use that to compute hα. However, we do both
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at the same time: while constructing α, we maintain also the abstract system �α

associated with it. The advantage is that �α provides information that we can use to
decide which states are most useful to aggregate in each shrinking step. We will return
to this issue later. Next, we describe how this incremental maintenance of the induced
transition system during the construction of a merge-and-shrink abstraction is done.

4. AN ALGORITHMIC VIEW OF ABSTRACTIONS

We now discuss merge-and-shrink abstractions from an algorithmic perspective, ex-
plaining how to represent and compute them efficiently.

Section 4.1 explains how we build the abstract state space in parallel with the
construction of a merge-and-shrink abstraction. Section 4.2 presents, at a high level,
the algorithm we use to create merge-and-shrink abstraction heuristics. Section 4.3
briefly discusses some data structures and optimizations that are important for the
efficient implementation of this algorithm.

4.1. Maintaining Abstract State Spaces in Merge-and-Shrink

Assume a merge-and-shrink abstraction α, constructed according to the rules (A), (S),
(M) of Definition 3.6. We show how to build the abstract transition system �α induc-
tively alongside the construction of the abstraction. The core technique is to reconstruct
the abstract transition system of a merged abstraction as the synchronized product
of the abstract transition systems associated with its components. This is where the
factoredness of the transition system becomes important: as we will show, factored-
ness is necessary for this operation to be correct. Indeed, we will identify a necessary
and sufficient condition for this to be the case. First, we recap the definition of the
synchronized product of transition systems.

Definition 4.1. Let �1 = (S1, L1, T 1, s1
0 , S1

� ) and �2 = (S2, L2, T 2, s2
0 , S2

� ) be tran-
sition systems. The synchronized product of �1 and �2 is defined as �1 ⊗ �2 =
(S12, L12, T 12, s12

0 , S12
� ) where S12 = S1 × S2, L12 = L1 ∩ L2, ((s1, s2), l, (s′

1, s′
2)) ∈ T 12

iff (s1, l, s′
1) ∈ T 1 and (s2, l, s′

2) ∈ T 2, s12
0 = (s1

0 , s2
0 ), and S12

� = S1
� × S2

� .

Let us exemplify how this product of components can indeed reconstruct the abstract
transition system of a merged abstraction.

Example 4.2. Consider Figure 4, showing a synchronized product in our illustrative
example. In part (a) of the figure, we show the abstract state space �π{package-1,package-2} of
the projection onto {package-1, package-2}. In part (b), we show the abstract state
space �πtruck of the projection onto {truck}. These will play the role of �1 and �2 in
Definition 4.1. What we will see is that their synchronized product, �π{package-1,package-2} ⊗
�πtruck , is equal to �π{package-1,package-2}⊗πtruck , that is, to the original state space because the
abstraction π{package-1,package-2} ⊗ πtruck is injective.

Note that the labels we use here are the planning operators as per Example 2.8.
This will be important for our label reduction techniques, to be discussed in the next
section. Note also the self-loops in (a) and (b). These correspond to operators that do
not affect the variable(s) in question. They are unimportant for each of (a) and (b) in
its own right (they do not affect solution cost). They are important, however, to be able
to properly synchronize the two systems.5

The combined state space �π{package-1,package-2} of the two package variables is just a grid
multiplying all the transitions of the individual packages. This is because the possible
transitions for package-1 do not depend on the current value of package-2, and vice

5The presence of these self-loops is, in particular, what distinguishes an atomic projection onto a variable
from its so-called “domain transition graph” [Helmert 2004].
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Fig. 4. A synchronized product in our illustrative example: (a) is the abstract state space �π{package-1,package-2}

of the projection onto {package-1, package-2}; (b) is the abstract state space �πtruck of the projection onto
{truck}; (c) is �π{package-1,package-2} ⊗ �πtruck , which is equal to �π{package-1,package-2}⊗πtruck (and thus to the original
state space). The labels are taken to be the respective planning operators, cf. Example 2.8; we use arrows
→, ← to make these operators more readable; we use L and R to refer to values of the truck variable, and
Li, Ti, Ri to refer to values of variable package-i.

versa. Evidently, this is not so for the product of �π{package-1,package-2} with �πtruck , as shown
in Figure 4(c). The reason is that the possible transitions for each package do depend
on where the truck currently is. In Figure 4(b), we see this difference in the self-loops
attached to state L vs. state R: the former only allow loading/unloading operators at
L, the latter only allow these operators at R. This difference results in the complex
structure of the merged system (c).

To illustrate this, just consider the product of a single state in (a), LL, with the
two states R and L of (b). This yields the states RLL and LLL on the left-hand side
of (c). LL in (a) has the outgoing labels LL1 → T1 to TL and LL2 → T2 to LT ,
corresponding to loading the packages at L; these are self-loops of L in (b), hence LLL
in (c) gets the outgoing arcs to LTL and LLT . By contrast, R in (b) has self-loops only
for loading/unloading at R; these do not match any of the labels attached to LL in (a),
hence RLL in (c) is connected only to LLL (via the truck moves, which are self-loop
labels of every state in (a)).
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The abstract transition system of a merged abstraction cannot always be recon-
structed from the transition systems of its components. A sufficient and necessary
condition is given by Theorem 4.5. To state and prove the theorem, it will be conve-
nient to separate, notationally, the abstract transition system induced by an abstraction
α, that is, �α, which is mathematically defined as a function of α, from the abstract
transition system that we build inductively alongside a merge-and-shrink abstraction.
We refer to the latter as the transition system associated with α, and denote it by
�α. The correspondence which we will then prove is that �α = �α, for any merge-
and-shrink abstraction α. �α is defined inductively, by three rules that mirror those of
Definition 3.6.

Definition 4.3. Let � be a factored transition system with variables V, and let T α be
a merge-and-shrink tree for �. Then, the transition system associated with α, written
�α, is constructed inductively using the following rules.

(A) If T α = Tv for a variable v ∈ V, then �α := �πv .
(S) If the root of T α has a single child T α2 , and α = α1 ◦ α2, then �α := (�α2 )

α1 .
(M) If the root of T α has two children T α1 and T α2 , then �α := �α1 ⊗ �α2 .

The correctness of this construction, that is, that �α = �α, follows from a straightfor-
ward induction over the three design rules for merge-and-shrink abstractions. The only
difficult case is rule (M), where we need the reconstruction property discussed above.
The necessary and sufficient condition for this case is, first, that the original transition
system is factored (Definition 2.3), and, second, that the component abstractions being
merged are independent, in the following sense.

Definition 4.4. Let � = (S, L, T , s0, S�) be a transition system with state variables
V. Let α be an abstraction of �. We say that α depends on variable v ∈ V iff there exist
states s and t with α(s) �= α(t) and s(w) = t(w) for all w ∈ V \ {v}. The set of relevant
variables for α, written rvars(α), is the set of variables in V on which α depends.
Abstractions α1 and α2 of � are orthogonal iff rvars(α1) ∩ rvars(α2) = ∅.

THEOREM 4.5. Let � = (S, L, T , s0, S�) be a factored transition system, and let α1 and
α2 be orthogonal abstractions of �. Then, �α1 ⊗ �α2 = �α1⊗α2 .

PROOF SKETCH. The equality is shown by considering each component—states, transi-
tions, initial and solution states—of the transition systems in turn. As an example, we
consider the solution states: If (s1

� , s2
� ) is a solution state in �α1⊗α2 , then there exists a

solution state s� ∈ S� such that α1(s�) = s1
� and α2(s�) = s2

� are solution states in �α1 and
�α2 , respectively. But then, by definition of the synchronized product, (s1

� , s2
� ) is also a

solution state in �α1 ⊗�α2 . The opposite direction is trickier. If (s1
� , s2

� ) is a solution state
in �α1 ⊗ �α2 , then by definition si

� is a solution state in �αi , and there must exist two
solution states s�i ∈ S� such that αi(s�i) = si

�. However, to apply α1 ⊗ α2 and thus obtain
a solution state in �α1⊗α2 , we need a single state s� ∈ S�. This is where factoredness
and orthogonality come into play. Let s� = ρV (s�1, s�2) where V is the set of variables
that α1 depends on. Thanks to factoredness (condition (i) of Definition 2.3), we have
that s� ∈ S�. Thanks to orthogonality, ρ(s1, s2) agrees with s�i on all state variables on
which αi depends, and thus αi(s�) = αi(s�i). But then, (α1 ⊗ α2)(s�) = (s1

� , s2
� ), and since

s� ∈ S� we have that (s1
� , s2

� ) is a solution state also in �α1⊗α2 , as desired.

Note that the first direction in the proof does not rely on either of orthogonality
or factoredness. Indeed, �α1⊗α2 is always a substructure of �α1 ⊗ �α2 . This is not the
case for the opposite direction. To see that orthogonality is required, consider the
composition of a transition system with itself. In �α1 ⊗ �α1 , the state set contains all
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pairs of abstract states, whereas �α1⊗α1 is isomorphic to �α1 . To see that factoredness is
required, consider an example with only two Boolean variables v1, v2 where the solution
states are (v1 = 1, v2 = 0) and (v1 = 0, v2 = 1), and αi is the projection onto vi. Then
vi = 1 is a solution state in �αi and thus (v1 = 1, v2 = 1) is a solution state in �α1 ⊗�α2 .
But (v1 = 1, v2 = 1) is not a solution state in �α1⊗α2 = �.

Theorem 4.5 is the basis of a number of properties of our algorithms, which will be
discussed at various points in this article. In particular, it provides the crucial step in
the proof of correctness of Definition 4.3.

COROLLARY 4.6. Let � be a factored transition system with variables V, and let T α

be a merge-and-shrink tree for �. Then �α = �α.

PROOF. This property clearly holds for atomic T α. It is obviously invariant over rule
(S). To see that the property is invariant over rule (M), just observe that, whenever α
is a merge-and-shrink abstraction over V , then rvars(α) ⊆ V . This is easy to see by
induction: it trivially holds for rule (A); it is invariant over rule (S) because applying
an additional abstraction can only reduce, never increase, the relevant variables; it is
trivially invariant over (M). But then, whenever we merge α1 and α2 in (M), they are
orthogonal. The claim follows from this with Theorem 4.5.

Note that Corollary 4.6 holds also if we replace the condition V1 ∩ V2 = ∅ in rule
(M) of Definition 3.6 with the slightly weaker restriction that rvars(α1) ∩ rvars(α2) = ∅,
that is, that the two abstractions are orthogonal. This is not a useful generalization (it
generalizes the original definition only if applications of rule (S) remove all distinctions
between the values of a variable in an abstraction), so we have omitted it here for the
sake of simplicity.

To make Definition 4.3 operational, we need to specify how to perform the steps
required by rules (A), (S), (M). Rule (M) consists in forming the synchronized product
of two transition systems, as per Definition 4.1. This, of course, can be done in time
proportional to the product of the sizes of the component systems.

For rule (S), assume that α is an abstraction of �, and that we have an explicit
representation of �—in Definition 4.3 (S), this applies to α1 and �α2 . We can compute
the abstract transition system �α by a single pass through �, aggregating the current
state t into an already passed state s—that is, inserting t’s transitions at s—whenever
α(t) = α(s). This takes time linear in the size of �, and requires |S| calls to α (S being
the states in �).

Consider finally rule (A) of Definition 4.3, which requires us to construct the abstract
state space �πv of an atomic projection πv. The ability to do so efficiently—without
constructing � in the first place—relies on the factoredness of �. By Proposition 2.4, �
can be described in terms of goal domains Dg and precondition/effect domains Dpe(l).
Assuming our input is such a description, we can construct �πv directly from the
domains Dg

v and Dpe
v (l). Namely, by definition, (d, l, d′) is a transition in �πv iff there

is a transition (s, l, s′) in � where s(v) = d and s′(v) = d′. By a direct application of
Proposition 2.4, the latter is the case iff (d, d′) ∈ Dpe

v (l). Similarly, the solution states
in �πv are given by Dg

v . We can thus construct �πv by creating a state for each value
d ∈ Dv, and traversing each of Dg

v and Dpe
v once to collect the solution states and insert

the transitions. This takes time linear in the sum of the sizes of Dv,Dg
v , and Dpe

v .

4.2. The Generic Merge & Shrink Algorithm

To provide an overview and to make explicit some choices we made in our implemen-
tation of the merge-and-shrink framework, Figure 1 presents a generic algorithm for
the construction of merge-and-shrink abstractions.
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ALGORITHM 1: Generic merge-and-shrink algorithm. Computes an abstraction for a factored
transition system �, optionally with abstraction size bound N. For A = (α, �), |A| denotes the
number of states in �.
Input: Factored transition system � with variables V [and size bound N].
Output: Merge-and-shrink abstraction α with associated abstract state space �α.
A := {(πv, �

πv ) | v ∈ V}; while |A| > 1 do
Select A1 = (α1,�1), A2 = (α2, �2) ∈ A; Shrink A1 and/or A2 [until |A1| · |A2| ≤ N];
A := (α1 ⊗ α2, �1 ⊗ �2); Shrink A; A := (A \ {A1, A2}) ∪ {A};

end
return The only element of A;

The algorithm maintains a pool of orthogonal abstractions, which initially consists
of all atomic projections. Each abstraction α is paired with its associated abstract
state space �α. The algorithm alternates between performing merge and shrink steps
until only a single abstraction is left, at which point all atomic projections have been
incorporated.

Note that the algorithm removes any “used” abstraction from the set A. Hence, at
any time, the underlying variable sets of all abstractions in the pool, that is, the sets
of atomic projections incorporated into each of them, are disjoint. Thus, whenever two
abstractions A1 and A2 are merged, the disjointness condition in rule (M) of Defini-
tion 3.6 is satisfied, and so, for all (α,�) ∈ A at any stage of the algorithm, α is a
merge-and-shrink abstraction and by Corollary 4.6 we have that � = �α.

The algorithm is more specific than Definition 3.6, in that it creates only abstractions
that incorporate all variables. This makes sense since, intuitively, the power of merge-
and-shrink abstractions, compared to pattern databases, lies in being able to take into
account some information about all variables. The algorithm also allows to impose a
limit, N, on the size of any abstraction created and thus on maximum intermediate
abstraction size. This is a simple means to keep time and space requirements under
control: if N is polynomially bounded by the input size (e.g., a constant), then computing
the abstraction requires only polynomial time and space. Note that this limit is optional;
some of our implemented strategies do not apply it.

Speaking of strategies brings us to the two important choice points left unspecified
in the generic algorithm.

—Merging Strategy. Which abstractions α1 and α2 to select from the current pool?
—Shrinking Strategy. Which states to aggregate, and in which abstractions?

We refer to the combination of a particular merging and shrinking strategy as an
abstraction strategy. The generic algorithm must be augmented with such a strategy
in order to obtain a concrete algorithm. For any abstraction strategy, the resulting
heuristic function hα is admissible and consistent. Still, selecting a suitable strategy
is of paramount importance, as it determines the accuracy of the heuristic. It depends
on the application domain—and even on the particular problem instance considered—
what a good abstraction strategy is.

Our main tool for obtaining shrinking strategies is to relax bisimilarity. Bisimilar-
ity [Milner 1990] is a well-known condition under which aggregating states does not
result in a loss of information; we will discuss it in detail in Section 6. Since achieving
bisimilarity is typically too costly in practice—it does not allow to aggregate a suffi-
cient number of states to keep abstraction size small—we relax it, that is, we devise
approximate versions. Some (but not all) of these assume a constant abstraction size
bound N.

We do not investigate different merging strategies in depth in this paper, using only
some simple strategies that tend to work well for AI planning. One thing to note is that
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Fig. 5. Part of the cascading tables implementing hα in our running example. The abstraction α1 on the
right-hand side corresponds to the shrinking step illustrated in Figure 3(a).

our implemented strategies are, in fact, linear merging strategies: when we select two
abstractions from the current pool to merge, after the first merging operation, one of
the selected abstractions is always the abstraction added to the pool in the previous
round. Thus, at any time, the pool contains at most one nonatomic abstraction. A linear
merging strategy is fully specified by a variable order, v1, . . . , vn, such that the algorithm
incorporates the atomic projection of each variable sequentially in that order.

We describe our abstraction strategies with the experiments in Section 8.2. Next, we
discuss some important implementation details for merge-and-shrink in general.

4.3. Efficient Implementation

During A∗ search on the original transition system �, we will be given states s of �,
and will need to compute hα(s). It is essential for this to be as efficient as possible. Say
that A = (α,�α) is the final abstraction returned by the algorithm from Figure 1. We
need to (1) determine sα := α(s), then (2) determine hα(s) := h∗(�α, sα) where h∗(�α, .)
denotes remaining cost in �α. For (2), we simply use a look-up table created as part
of the process constructing A. For (1), we maintain during this process what we refer
to as cascading tables (a technique mentioned but not detailed by Dräger et al. [2006,
2009]). Each abstraction created has a corresponding look-up table, and the entries of
this table are used as indices into the look-up table for the subsequent abstraction.
Figure 5 illustrates.

At the start, the look-up tables correspond to atomic projections, mapping values of
the respective variable domain to integers as for the package variables in Figure 5(a).
Whenever we merge two abstractions A1 and A2, we create a combined table as for the
combination of both packages in Figure 5(b), numbering the abstract states arbitrarily.
Shrinking steps, as illustrated in Figure 5(c), are more subtle to handle appropriately.
In principle, whenever one aggregates two abstract states s and t, one can simply find
all table entries that map to t, and replace these with s. Doing a table scan, however,
takes time in the size of the abstract state space each time we aggregate two states,
which is very inefficient. Our implementation performs this operation in constant time,
as follows. Prior to shrinking, we associate each table entry s (e.g., cell 1 in Figure 5(b))
with a linked list L(s) containing the respective index pair (e.g., {(1, 0)} for cell 1 in
Figure 5(b)). Then, we discard the table and start the state aggregations. When merging
s and t, we splice L(t) into L(s). For example, if s = 1 and t = 3 in the first aggregation
step on Figure 5(b), then L(s) = {(0, 1)}, L(t) = {(1, 0)} prior to the aggregation, and
L(s) = {(0, 1), (1, 0)}, L(t) = ∅ afterwards. Once shrinking is completed, we renumber
the abstract states so that there are no gaps in the numbering. Then, we regenerate
the look-up table from the linked list information.

Computing sα := α(s) based on the cascading tables representation takes 2|V| − 1
table look-ups. To compute hα(s) := h∗(�α, sα), a last table is indexed by the (numbers
encoding the) abstract states of the final abstraction A = (α,�α), and maps to the
solution costs of these abstract states in �α. Thus, overall, computing hα(s) takes 2|V|
table look-ups and O(|V|) runtime.
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Throughout the merge-and-shrink process, we can remove unreachable and irrele-
vant abstract states. If an abstract state s cannot be reached from the initial state of
the current abstraction, then, the abstraction being an overapproximation of the real
transition system �, no concrete state corresponding to s can be reached in � either.
We can thus remove s and all its incident abstract transitions from the abstract state
space (and erase the corresponding look-up table entry) while still retaining admissi-
bility of hα on the reachable part of �. Similarly, if from s there is no abstract path of
transitions to a solution state, then there is no such path in � either. We remove s from
the abstract state space and replace the corresponding table entry with heuristic value
∞, retaining admissibility of hα.

When merging abstractions, we need to compute the synchronized product of their
abstract state spaces, which involves finding all pairs of states with a transition labeled
by the same operator in both. To do this efficiently, we store the transitions by labels.
For each abstraction A = (α,�α) and label l, T (�α, l) is the list of pairs of states (s, s′) in
�α where l labels a transition from s to s′. The transitions of the synchronized product
of abstractions A1 and A2 can then be generated simply by pairing up all options for
each l, that is, taking T (�α

1 ⊗ �α
2, l) to contain all pairs ((s1, s2), (s′

1, s′
2)) where (s1, s′

1) in
T (�α

1, l) and (s2, s′
2) in T (�α

2, l).
Finally, an important aspect of efficient implementation, at least in planning, is the

maintenance of transition labels. Planning tasks often contain thousands of different
labels (operators). Even in small abstractions, the techniques presented so far maintain
all these labels, so that the same transitions between abstract states often are given
by sizable numbers of labels. We introduce in the next section a technique reducing
distinctions between labels without affecting the heuristic computed; here, notice that
there is a simple but frequent special case we can catch quite easily. If a planning
operator o does not mention any of the variables underlying abstraction A = (α,�α)
(more generally, if the precondition/effect domains describing a label neither impose
restrictions, nor allow changes, on these variables), then the transitions labeled by o
are the pairs (s, s). That is, o labels a self-loop for every state in �α. In this case, we
leave T (�α, o) empty and just flag it as “self-loop”. The synchronized product operation
then handles these flagged lists in the obvious manner (acting as if they contained all
self-loops).

5. LABEL REDUCTION

We now discuss a technique that allows us to distinguish between fewer transition
labels during the merge-and-shrink process. The technique is conservative in the sense
that it does not change the abstractions and heuristic functions computed. It is impor-
tant because (a) it reduces the time and memory requirements of merge-and-shrink
construction, and (b) as we will show in Section 6, it may lead to exponentially smaller
bisimulations.

Section 5.1 introduces conservative label reductions and their basic properties.
Section 5.2 explains how we use this machinery in the construction of merge-and-shrink
abstractions. Section 5.3 specifies how to reduce labels maximally while remaining con-
servative.

5.1. Conservative Label Reduction

A label reduction is similar to an abstraction mapping, but operates on transition
labels instead of states. In other words, it is a function from one set of labels to another.
Applying the function to a transition system gives rise to a reduced transition system.
The function must respect the cost associated with transition labels, meaning it cannot
map two labels with different costs to the same new label.
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Definition 5.1. Let � = (S, L, T , s0, S�) be a transition system. A label reduction is
a function τ mapping L to a label set Lτ so that, for all l1, l2 ∈ L, τ (l1) = τ (l2) only if
c(l1) = c(l2). We associate τ with the reduced transition system �|τ := (S, Lτ , T |τ , s0, S�)
with T |τ := {(s, τ (l), s′) | (s, l, s′) ∈ T } and with c(τ (l)) = c(l) for l ∈ L.

The purpose of label reduction is to simplify the transition system while keeping
path costs intact, thus allowing us to represent the same heuristic more compactly.
The reduced transition system may contain fewer transitions than the original one,
namely if (s, l1, s′) ∈ T and (s, l2, s′) ∈ T for l1 �= l2 and τ (l1) = τ (l2). This happens
quite frequently in the application to planning; we will present some empirical data in
Section 8.2. For example, the transition system associated with the perfect abstraction
shown in Example 3.8 has two “parallel” transitions, for example, from state LL to
{LT , T L}, corresponding to loading each of package-1 and package-2; by projecting
the labels onto only those aspects of the operator description pertaining to the truck
variable, we may simplify these into a single transition, yielding a more compact
transition system that represents the same heuristic. Since label reduction does not
alter the label costs, by itself it does not change solution cost in the transition system.
Note that, if τ (l1) = τ (l2) but c(l1) �= c(l2), the cost of the reduced label would not be well
defined, so we must exclude this case.

In Example 4.2, we used the preconditions and effects of the planning operators that
cause state transitions as transition labels, instead of using the operator names. (To
see the difference, compare the representation of the transition system in Figure 1
with that of the same transition system in Figure 4(c).) By Proposition 2.4, we can do
this, using the precondition/effect pairs that characterize transitions, for any factored
transition system, not just ones that are defined in such terms. The label reductions
we will use are projections of these conditions onto subsets of variables. In Section 5.3,
we will show that these are the maximally coarse “conservative” label reductions,
that is, label reductions one can apply while guaranteeing to not change the heuristic
computed. In this section and the next, we state the conditions for this guarantee, and
show how label reduction is integrated into the merge-and-shrink framework.

Label reduction can interfere with the synchronized product. If we reduce labels of
two systems prior to forming their product, then the outcome may be different from
what we would get by first forming the product, and then applying the reduction to it.
This may happen even if the reduction applied on each side is the same. The reason
is that label reduction may introduce additional combined transitions, due to pairs of
transitions that did not previously have the same label, but that do after the reduction
has been applied.

Example 5.2. Reconsider Figure 4, and assume that we reduce all labels to some
unique symbol τ , prior to computing the synchronized product of Figure 4(a) with
Figure 4(b). Then every transition from (a) will be combined with every transition from
(b), resulting in an outcome vastly different from the actual synchronized product as
shown in Figure 4(c). For example, by contrast to our discussion in Example 4.2, the
state RLL in (c) will then have direct transitions to the states RTL and RLT, because the
difference between the labels RR1 → T1 and LL1 → T1, as well as between RR2 → T2
and LL2 → T2, is lost.

Therefore, to be able to maintain the abstract transition system during the merge-
and-shrink process while using label reductions, we have to impose some additional
restriction on the reduction functions. The way in which we do this is to consider classes
of equivalent labels.

Definition 5.3. Let � = (S, L, T , s0, S�) be a transition system, and let l1, l2 ∈ L be
labels. Then l1 and l2 are equivalent in � iff c(l1) = c(l2) and, for all states s, s′ ∈ S,
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(s, l1, s′) ∈ T if and only if (s, l2, s′) ∈ T . A label reduction τ is conservative for � if, for
all l1, l2 ∈ L, τ (l1) = τ (l2) only if l1 and l2 are equivalent.

The label reduction in Example 5.2 is not conservative for the transition system from
Figure 4(b), because (for example) it maps RR1 → T1 and LL1 → T1 to the same label,
although these labels are not equivalent in this system.

The following are two simple properties we will need in our analysis:

PROPOSITION 5.4. Let � be a transition system, and let α be an abstraction of �. If τ
is a conservative label reduction for �, then τ is a conservative label reduction for �α.

PROPOSITION 5.5. Let L be a set of labels, let �1 and �2 be transition systems using
L, and let τ be a label reduction on L. If τ is conservative for both �1 and �2, then τ is
conservative for �1 ⊗ �2.

The main property we need label reductions to have, to integrate seamlessly in the
merge-and-shrink process, is that reduction distributes over synchronized product. For
this, it suffices to be conservative for one of the component systems.

LEMMA 5.6. Let L be a set of labels, let �1 and �2 be transition systems using L, and
let τ be a label reduction on L. If τ is conservative for �2, then �1|τ ⊗�2|τ = (�1 ⊗�2)|τ .

PROOF SKETCH. The only interesting part here are the transitions. Obviously,
�1|τ ⊗ �2|τ is always a super-structure of (�1 ⊗ �2)|τ : by reducing labels prior to
the synchronized product, we can only ever introduce more combined transitions, be-
cause we increase the sets of transitions with a common label. Conservativeness en-
sures the other direction, that is, that no new combined transitions are introduced. If
((s1, s2), r, (s′

1, s′
2)) is a transition in �1|τ ⊗ �2|τ , then by definition, we have transitions

(s1, l1, s′
1) in �1 and (s2, l2, s′

2) in �2 where τ (l1) = τ (l2) = r. Because τ is conservative
for �2, this implies that (s2, l1, s′

2) is a transition in �2, from which it follows that
((s1, s2), τ (l1), (s′

1, s′
2)) is a transition in (�1 ⊗ �2)|τ , as desired.

Of course, the lemma holds symmetrically if τ is conservative for �1. However, we
cannot reduce the labels in both transition systems independently. If we apply different
label reductions to each of �1 and �2, then the outcome of the synchronized product
is not necessarily preserved, even if each label reduction is conservative for one of the
systems. A trivial example is that where each τ i applied to �i simply renames the
labels injectively, but into disjoint images Lτ 1 ∩ Lτ 2 = ∅: then �1|τ 1 ⊗ �2|τ 2 contains no
transitions at all. In other cases, independent label reductions may lead to spurious
transitions due to unwanted name clashes after the reduction. For example, this hap-
pens if �1 and �2 use no common labels originally, and τ i renames the labels injectively,
but into overlapping label sets Lτ 1 ∩ Lτ 2 �= ∅, and there exists l with τ 1(l) = τ 2(l).

5.2. Conservative Label Reduction in the Merge and Shrink Framework

We now explain how we employ conservative label reduction in the process of construct-
ing merge-and-shrink abstractions in such a way that we can obtain more compact
abstract transition systems but without loss of heuristic information, that is, without
altering path costs in the final abstract transition system. As shown by Lemma 5.6,
this can be done if the reductions that we use are always conservative for one side of
each merging step. We will use a family of label reductions, one for each merge that
may take place throughout the merge-and-shrink process.

The intuitive idea is easiest to explain if we consider a linear merging strategy, that
is, one that builds up the abstract transition system by merging the atomic projections
onto variables v1, v2, . . . , vn one by one into a growing composite system, abstracting the
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composite in between merge steps: (· · · ((�πv1 ⊗�πv2 )α2 ⊗�πv3 )α3 ⊗· · ·�πvn ). The idea is to
associate a label reduction τi with each variable vi, where the image of τi is contained
in the domain of τi+1. After merging in the ith variable, we apply the label reduction
τi ◦ · · · ◦ τ1, and thus reduce labels more and more. In our setup, τi+1 ◦ τi = τi+1, so
the composed label reduction is always equivalent to the most recent single one. Given
this, if each τi is conservative for the projection on variable vi+1, then, by Lemma 5.6,
the end result is equivalent to applying the label reductions after building the product
system. Note that this condition implies that τi is conservative for all the remaining
variables vi+1, . . . , vn, because τ j = τ j ◦ · · · ◦ τ1 for i + 1 ≤ j ≤ n contains τi. The last
reduction does not have to be conservative for any variable, so it may conflate any
labels that have the same cost, resulting in a representation of the heuristic that is, in
this sense, minimal.

To generalize this idea to any merging strategy, we require a family of label reduction
functions, with members for each possible merging step that may occur. We need to be
able to compose these reductions, and they need to be conservative.

Definition 5.7. Let � be a factored transition system with labels L and variables V.
A label reduction family for � is a family of reduction functions 	 = {τ V1 | V1 ⊆ V} each
of whose domains contains L, and where, for V1 ⊇ V2, the image of τ V1 is contained in
the domain of τ V2 , and τ V2 ◦ τ V1 = τ V2 . We say that 	 is conservative if, for every V1 ⊆ V,
τ V1 is conservative for �πV1 .

As previously outlined, we will obtain such a label reduction family by represent-
ing labels as precondition/effect pairs according to Proposition 2.4, and projecting these
pairs onto subsets of variables. Namely, for an intermediate merge-and-shrink abstrac-
tion α1 over variables V ′, we will project the labels onto the remaining variables, V \V ′.
We will see here that this method, which we refer to as label projection, is maximal in
the sense that, for each reduction τ V1 in Definition 5.7 (V1 = V \ V ′ in the setting just
described), we cannot reduce labels more without losing conservativeness.

It remains to specify how to actually employ these label reductions during the con-
struction of a merge-and-shrink tree. Say we wish to apply rule (M), the merging step,
to two merge-and-shrink trees T α1 and T α2 , for which we have previously constructed
label-reduced abstract transition systems �τ

α1
and �τ

α2
. We have already pointed out

above that we cannot in general reduce labels independently, even with conservative
label reductions, on both sides of a merging step (a synchronized product), without
risking to alter the outcome of that merging step. As the next example shows, this is
true even for the special case of label projection. More importantly, we cannot even
apply label projection within the subtrees T α1 and T α2 on both sides of the merging
step.

Example 5.8. Consider the planning task (V,O, s0, s�) where: V = {x, y} with Dx =
{0, 1} and Dy = {0, 1}; s0 = {x = 0, y = 0}; s� = {x = 1, y = 1}; and the set of operators
O consists of (using the same shorthand notation as before):

—“opX”: ∅ → {x = 1};
—“opY”: ∅ → {y = 1}.
The optimal solution cost of this task is 2. Consider the reconstruction of the state
space in terms of �πx ⊗�πy . Say we use label projection on each transition system, that
is, we reduce labels in �πx by τ {y} which projects all labels onto the variable subset {y},
and we reduce labels in �πy by τ {x} which projects all labels onto the variable subset
{x}. Clearly, τ {y} is conservative for �πy , and τ {x} is conservative for �πx —each retains
all information on the respective variable. However, the synchronized product of the
two label-reduced transition systems contains a spurious transition, and its solution
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cost is 1. In �πx |τ {y} , opX is reduced to τ {y}(opX) = ∅ → ∅, and in �πy |τ {x} , opY is reduced
to τ {x}(opY) = ∅ → ∅. Thus, in �πx |τ {y} ⊗ �πy |τ {x} , the two operators are taken together,
leading to a direct combined transition from s0 to s�.

Say now that we change the goal to s� = {x = 0, y = 1}. In order to reach this state in
�πx |τ {y} ⊗ �πy |τ {x} , we would need to synchronize using opY as a transition from y = 0 to
y = 1 in �πy |τ {x} , and as a self-loop on x = 0 in �πx |τ {y} . However, τ {y}(opY) = ∅ → {y = 1}
whereas τ {x}(opY) = ∅ → ∅. Hence, here, solution cost in the synchronized product of
the two label-reduced transition systems is ∞.

Say finally that we first merge �πx |τ {y} with some other variable u that does not
interact with either of x or y (no operator that mentions u also mentions x or y),
obtaining a new transition system �τ

α1
. Similarly, say we first merge �πy |τ {x} with some

other irrelevant variable v, obtaining a new transition system �τ
α2

. Clearly, if we now
merge �τ

α1
with �τ

α2
, the same issues appear.

Given Example 5.8, in order to use label projection we must decide, prior to starting
the merge-and-shrink construction, within which of the two subtrees T α1 and T α2 of
every possible merging step to reduce the labels. This can easily be accomplished
by fixing a variable order (of the leaves in the merge-and-shrink tree) a priori, and
projecting only “upwards” according to that order. As it turns out, one can make do
with a smaller commitment that allows to choose the next variable online, during
merge-and-shrink: a priori, we only select some variable v∗, which we call the pivot
variable. During merge-and-shrink, for any merge-and-shrink tree T α over variables
V ′, we project the labels in the associated transition system �α iff v∗ ∈ V ′. (In the
case of a linear merge strategy, as described previously, the role of the pivot variable is
played by the first variable in the sequence.)

We are now ready to define how the label-reduced transition system associated with
a merge-and-shrink abstraction α is built up inductively alongside the abstraction. The
following definition mirrors Definition 4.3, only extending it by specifying which label
reduction (if any) is applied at each step.

Definition 5.9. Let � be a factored transition system with variables V, and let
V ⊆ V. Let 	 be a conservative label reduction family for �, let T α be a merge-and-
shrink tree over V for �, and let v∗ ∈ V . For V1 ⊆ V , by V1 we denote V \V1. The
label-reduced transition system associated with α, written �τ

α, is constructed using
these rules.

(A) If T α = Tv for a variable v ∈ V, then �τ
α := �πvi if vi �= v∗, and �τ

α := �πvi |
τ {vi } if

vi = v∗.
(S) If the root of T α has a single child T α2 , and α = α1 ◦ α2, then �τ

α := (�τ
α2

)α1 .
(M) If the root of T α has two children T α1 and T α2 over V1 and V2, then �τ

α := �τ
α1

⊗�τ
α2

if v∗ �∈ V1 ∪ V2, and �τ
α := (�τ

α1
⊗ �τ

α2
|
τ V1 )|

τ V1∪V2 if v∗ ∈ V1; symmetrically if v∗ ∈ V2.

Note that in a merging step where v� ∈ V1, the reduction τ V1 has already been
applied during the construction of �τ

α1
: it is applied directly to the atomic projection

on {v�} (rule (A)), and to any product over a variable set that includes v� after the
merging step (rule (M)). This is why we form the product as (�τ

α1
⊗ �τ

α2
|
τ V1 )|

τ V1∪V2 rather
than (�τ

α1
|
τ V1 ⊗ �τ

α2
|
τ V1 )|

τ V1∪V2 .
Once all variables in V have been incorporated into α, the final label reduction

applied will be τ ∅. This function is maximally unrestricted, in the sense that any pair
of labels in �π∅ that have the same cost are equivalent.

Example 5.10. Figure 6 corresponds to Figure 4, but under label projection, that
is, the label reduction family where τ V1 , for any V1 ⊆ {package-1, package-2, truck},
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Fig. 6. The synchronized product from Figure 4, now under a label reduction that projects away all but the
truck variable. Notations are as in Figure 4.

projects the label l onto the variables V1. We choose the pivot variable v∗ := package-1.
During the construction process described by Definition 5.9, we are at the point where
rule (A) has been applied for v1 = package-1, associating this abstraction with the
transition system �πpackage-1 |τ {package-2,truck} where package-1 is projected away from the labels.
Rule (A) has also been applied for v2 = package-2, associated with �πpackage-2 with no label
reduction. Then, rule (M) has been applied to the former two, reducing first the labels
in �πpackage-2 by τ {package-2,truck}, then computing the synchronized product, then reducing
the labels further by applying τ {truck}. The latter projects away everything except the
truck variable, and yields Figure 6(a). Further, rule (A) has been applied to v3 = truck,
associated with �πtruck . Finally, the situation we consider arises when rule (M) is being
applied to (a) as well as the reduction of �πtruck by τ {truck}, shown in (b). The outcome of
the synchronized product is shown in (c). As desired, this outcome is identical to the
original state space with labels reduced by τ {truck}.

To illustrate this, consider the product of LL in (a) with the two states R and L
of (b), yielding the states RLL and LLL on the left-hand side of (c). As discussed in
Example 4.2, what enables the synchronized product to assign the correct transitions is
the difference between the labels RR1 → T1, RR2 → T2, as present at R, vs. the labels
LL1 → T1, LL2 → T2, as present at LL. This difference is preserved under τ {truck},
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where these labels now read R →, R → vs. L →, L →. The difference has simply been
reduced to its essence, the truck position. Hence, we get the correct arrangement in (c),
with RLL having a single connection to LLL, which by contrast has the matching label
L → and gets the desired transitions to LTL and LLT.

Note that we could not have applied τ ∅, projecting away all variables, prior to the
synchronized product: then, every reduced label has the same form (“→”, in the notation
of Figure 6), bringing us back to the same situation as in Example 5.2, with many
spurious transitions.

Our main result here is that the correctness just observed holds in general.

THEOREM 5.11. Let � be a factored transition system with variables V, and let V ⊆ V.
Let 	 be a conservative label reduction family for �, let T α be a merge-and-shrink tree
over V for �. Then, �τ

α = �α|τ ∅ for any choice of pivot v∗ ∈ V .6

PROOF SKETCH. We prove by induction over the construction of T α that, for any inter-
mediate merge-and-shrink abstraction β over V ′: �τ

β = �β if v∗ �∈ V ′, and �τ
β = �β |

τ V ′ if
v∗ ∈ V ′. The single tricky case in the induction is the case where β = α1 ⊗ α2 and with-
out loss of generality, v∗ ∈ V1. Using the induction hypothesis, we then need to prove
that (�α1 |

τ V1 ⊗ �α2 |
τ V1 )|

τ V1∪V2 = �α1⊗α2 |
τ V1∪V2 . Since τ V1 is conservative for �

πV1 , with
V2 ⊆ V1 and Proposition 5.4, it is conservative also for �α2 . Hence, Lemma 5.6
reduces the left-hand side of our proof obligation to ((�α1 ⊗ �α2 )|

τ V1 )|
τ V1∪V2 , which

with τ V1∪V2 ◦ τ V1 = τ V1∪V2 is equal to (�α1 ⊗ �α2 )|
τ V1∪V2 . The claim then follows with

Theorem 4.5.

Thus, when conservatively reducing labels, the resulting transition system associ-
ated with α is equal to the label-reduced version of the abstract transition system of
α. Since label reduction does not affect solution cost, the heuristic computed from �τ

α

will be the same. In particular, even if we apply label reduction, not aggregating any
states results in a pattern database, and in a perfect heuristic, in case we incorporate
all variables.

COROLLARY 5.12. Let � be a factored transition system with variables V, and let
V ⊆ V. Let 	 be a conservative label reduction family for �, let T α be a nonabstracting
merge-and-shrink tree over V for �. Then �τ

α = �πV |τ ∅ for any choice of pivot v∗ ∈ V .

PROOF. This follows directly from Theorem 5.11 and Proposition 3.7.

5.3. Maximal Conservative Label Reductions

To obtain a conservative label reduction family 	 = {τ V1 | V1 ⊆ V} for an arbitrary
factored transition system, we exploit the characterization of transition labels by their
preconditions/effects on state variables, and project away some of the variables in those
labels. Next, we show that these reductions are maximal among all conservative label
reductions. A label reduction τ is maximal within a set of reductions if it is at least
as coarse as all other members of the set. A label reduction τ is at least as coarse as
another reduction τ ′ if, for all labels l1, l2, τ ′(l1) = τ ′(l2) implies that τ (l1) = τ (l2).

By Proposition 2.4(ii), we can characterize the transitions T of any factored transition
system � as follows.

For each label l ∈ L, there exists a set Dpe(l) := {Dpe
v (l) | v ∈ V} where Dpe

v (l) ⊆ Dv × Dv,
so that (s, l, s′) ∈ T iff (s(v), s′(v)) ∈ Dpe

v (l) for all v.

6In particular, �τ
α does not depend on the choice of pivot, which justifies the fact that the chosen pivot

variable is not part of the notation.
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This means that we can replace each label symbol l by the structured label
(c(l), (Dpe

v (l))v∈V ), since the two carry exactly the same information. (Note that in gen-
eral, we must include also the cost, since it is a function of the label. In the special case
where label costs are uniform, we can omit them from the structured label.) Given this,
the label projection is the label reduction family defined by τ Vi (l) := (c(l), (Dpe

v (l))v∈Vi ).
In other words, we apply a projection onto the variable subset Vi to the structured
label, thus mapping each label onto its cost along with the part of its description per-
taining to the set of variables projected upon. In the state spaces of planning tasks, this
form of label reduction is equivalent to projecting the operator descriptions, as done in
Figure 6.

We now show that label projection is conservative and maximal. The basic observa-
tion is that two labels are equivalent for a variable v iff their projection onto v is the
same.

PROPOSITION 5.13. Let � = (S, L, T , s0, S�) be a factored transition system with vari-
ables V. Let v ∈ V be a variable, and let l1, l2 ∈ L. Then l1 and l2 are equivalent in �πv if
and only if c(l1) = c(l2) and Dpe

v (l1) = Dpe
v (l2).

PROOF SKETCH. The “only if” direction is trivial. The “if” direction is direct from
Proposition 2.4.

COROLLARY 5.14. Let � be a factored transition system with variables V. Then, every
label projection τ V1 is conservative for �πV1 and is maximal among all label reductions
with this property.

PROOF. By the “if” direction in Proposition 5.13, for every v ∈ Vi, τ V1 is conservative
for �πv . With Proposition 5.5, τ V1 thus is conservative for �πV1 as desired. To see
maximality, assume that l1 and l2 are equivalent in �πV1 , but that τ V1 (l1) �= τ V1 (l2), that
is, there exists v ∈ Vi so that τ {v}(l1) �= τ {v}(l2). This yields a contradiction with the “only
if” direction in Proposition 5.13.

6. BISIMILARITY

Bisimilarity is a well-known condition under which aggregating states does not result in
a loss of information. The present section shows how this can be exploited in merge-and-
shrink to design shrinking strategies that guarantee to compute perfect heuristics. We
also introduce a relaxation of bisimilarity that underlies our more practical shrinking
strategies, used in some of our experiments.

Section 6.1 shows that bisimilarity integrates favorably with the merge-and-shrink
framework. Section 6.2 shows that the same is true of label reduction, and in particular
that this combination may reduce abstraction size exponentially. Section 6.3 discusses
our relaxation of bisimilarity.

6.1. Bisimilarity and the Merge and Shrink Framework

Bisimulations, in our framework, are a particular kind of equivalence relation.

Definition 6.1. Let � = (S, L, T , s0, S�) be a transition system. An equivalence
relation ∼ on S is a bisimulation for � if s ∼ t implies that, for every transition label
l ∈ L, {[s′] | (s, l, s′) ∈ T } = {[t′] | (t, l, t′) ∈ T }. We say that ∼ is goal-respecting for � if
∼⊆∼G where s ∼G t iff either s, t ∈ S� or s, t �∈ S�. We say that ∼ is the coarsest goal-
respecting bisimulation iff, for every goal-respecting bisimulation ∼′, we have ∼′⊆∼. If
α is an abstraction of �, then we say that α is a goal-respecting bisimulation for � iff
∼α is.

A unique coarsest goal-respecting bisimulation always exists and can be computed
efficiently based on an explicit representation of � [Milner 1990]. Bisimulations
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essentially preserve the observable behavior of the transition system. In particular,
they preserve solution cost, provided they are goal-respecting.

PROPOSITION 6.2. Let � be a transition system, and let α be an abstraction of �. If α
is a goal-respecting bisimulation for �, then hα is perfect.

PROOF. Since hα is admissible, it suffices to show that h∗(s) ≤ hα(s). To see this,
observe that, for every transition ([s], l, [s′]) in �/∼α, since α is a bisimulation, we have
a transition (s, l, t′) in � so that t′ ∈ [s′]. Since α is goal-respecting, if [s′] is a solution
state in �/∼α, then t′ is a solution state in �. Thus, every solution path in �/∼α

corresponds to a solution path in �.

We now essentially restate the result originally demonstrated and exploited by
Sabnani et al. [1989]: if rule (S) always sticks to goal-respecting bisimilarity, then
that property is preserved during merge-and-shrink. We include this result here for
the sake of self-containedness, and because we will generalize it in the next subsec-
tion. Also, different from the work of Sabnani et al., our transition systems are not
a priori defined as a synchronized product. We rely on Theorem 4.5 for making this
correspondence. We will also need the following two simple properties.

PROPOSITION 6.3. Let � be a transition system, let α be an abstraction of �, and let
β be an abstraction of �α. If α is a bisimulation for � and β is a bisimulation for �α,
then β ◦ α is a bisimulation for �.

PROPOSITION 6.4. Let �1 and �2 be transition systems, and let α1 and α2 be abstrac-
tions for �1 and �2, respectively. If α1 is a bisimulation for �1, and α2 is a bisimula-
tion for �2, then α1 ⊗ α2 is a bisimulation for �1 ⊗ �2, where α1(s1, s2) := α1(s1) and
α2(s1, s2) := α2(s2).

Both propositions follow directly from inserting the respective definitions (proofs are
in the appendix). It is obvious that the same properties hold for goal-respecting equiva-
lence relations in general, and hence for goal-respecting bisimulations in particular. In
the following, we will also use these variations of Proposition 6.3 and Proposition 6.4
without mentioning them specifically.

We next show that if α is a merge-and-shrink abstraction over V where rule (S) always
uses a goal-respecting bisimulation, then α is a goal-respecting bisimulation for �πV .
Note here the changed scope of α: α is a function on �, not on �πV , so strictly speaking
the proved property is ill-defined. However, any merge-and-shrink abstraction α over V
can be seen as the composition α = αV ◦πV of πV with an abstraction αV on �πV .7 Given
this, henceforth, if we say that a merge-and-shrink abstraction α is a goal-respecting
bisimulation for �πV , what we mean is that α = αV ◦ πV and αV is a goal-respecting
bisimulation for �πV .

COROLLARY 6.5. Let � be a factored transition system with variables V, and let
V ⊆ V. Let T α be a merge-and-shrink tree over V for � constructed so that, in each
application of Definition 3.6, rule (S) α1 is a goal-respecting bisimulation for �α2 . Then
α is a goal-respecting bisimulation for �πV .

PROOF SKETCH. This property clearly holds for atomic T α. By prerequisite and a direct
application of Proposition 6.3, the property is invariant over rule (S). To see invariance
over rule (M), presume that α1 = α1V1 ◦ πV1 and α2 = α2V2 ◦ πV2 are goal-respecting

7This is obvious for rule (A). For rule (S), if α2 = α2V ◦ πV , then α1 ◦ α2 = (α1 ◦ α2V ) ◦ πV . For rule (M), if
α1 = α1V1 ◦ πV1 and α2 = α2V2 ◦ πV2 , then α1 ⊗ α2 = (α1V1 ◦ πV1 ) ⊗ (α2V2 ◦ πV2 ) = [(α1V1 ◦ πV1 ) ⊗ (α2V2 ◦ πV2 )] ◦
πV1∪V2 .
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bisimulations for �πV1 and �πV2 , respectively. By Proposition 6.4, α1V1 ⊗ α2V2 is a goal-
respecting bisimulation for �πV1 ⊗ �πV2 which by Theorem 4.5 is identical with �πV1∪V2 .
The claim then follows because, with V1 ∩ V2 = ∅, we have that α1V1 = α1V1 ◦ πV1 = α1
and α2V2 = α2V2 ◦ πV2 = α2.

From Corollary 6.5 and Proposition 6.2, by setting V := V, it follows immediately
that, if we always stick to goal-respecting bisimulation during step (S), then we ob-
tain a perfect heuristic. The problem with this method is that, in practice, compact
bisimulations hardly ever exist. This applies even to trivial examples.

Example 6.6. Consider the family of factored transition systems �(n) = (S(n), L(n),
T (n), s0(n), S�(n)) with Boolean variables V(n) = {v1, . . . , vn}, with transitions labeled
l1, . . . , ln where c(li) = 1 and li applies if vi = 0 and sets vi to 1, where s0(n) assigns
each vi to 0, and where S�(n) contains the single state assigning each vi to 1. For any
two different states s, t in S(n), the subset of variables with value 0 is different, and
hence the sets of labels at the outgoing transitions are different. Thus, s and t are not
bisimilar. The coarsest bisimulation is the identity function.

A similar situation occurs in the abstractions yielding a perfect heuristic in our
running example, shown in Figure 3. For example, consider the states TR and RT in
Figure 3(a). As the figure shows, both are directly connected to the solution state RR.
What the figure does not show is that TR and RT need different labels for reaching
RR: RT1 → R1 for TR, RT2 → R2 for RT. The same is true of the states RTR and RRT
in Figure 3(b), requiring different labels to reach RRR. Thus, neither of the shown
equivalence relations are bisimulations.

6.2. Combining Bisimilarity with Label Reduction

Bisimilarity is too strict for our purposes. It was conceived to preserve the observable
behavior of transition systems. By contrast, all we wish to preserve is solution cost.
Thus, we do not care about the transition labels. In other words, we can combine
bisimilarity with label reduction.

PROPOSITION 6.7. Let � be a transition system, let τ be a label reduction, and let α be
an abstraction of �. If α is a goal-respecting bisimulation for �|τ , then hα is perfect.

PROOF. As in the proof to Proposition 6.2, it is easy to show that every solution path
in (�|τ )/∼α corresponds to a solution path in �|τ . Since c(τ (l)) = c(l) for all labels l, the
costs of these paths is the same as in �.

This simple result is important because, after label reduction, the bisimulation may
be exponentially more compact.

PROPOSITION 6.8. There exist families of transition systems � with associated label
reductions τ so that the coarsest goal-respecting bisimulation for �|τ is exponentially
smaller than the coarsest goal-respecting bisimulation for �.

PROOF SKETCH. Consider the family �(n) = (S(n), L(n), T (n), s0(n), S�(n)) of factored
transition systems from Example 6.6. As argued there, the coarsest goal-respecting
bisimulation for �(n) is the identity function, size 2n. On the other hand, let τ (n) be
a label reduction mapping every label to the same unique symbol. Let α(n) be an
abstraction that aggregates s and t iff they agree on the count of variables already set
to 1. Trivially, α(n) is goal-respecting for �(n)|τ (n). It is also a bisimulation for �(n)|τ (n),
because whenever we can set a variable v j to 1 in s, we can set some (potentially
different) variable vk to 1 in t; the labels lj and lk are not distinguished under τ (n). The
size of α(n) is n + 1, proving the claim.
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Considering again Figure 3, it is easy to verify that the shown equivalence relations
are bisimulations when ignoring the labels, that is, when reducing them all to the same
unique symbol. This form of reduction can be done for an arbitrary number of packages,
and hence our illustrative example also proves Proposition 6.8.

The question now remains how to combine bisimilarity with label reduction within
the merge-and-shrink framework. As pointed out in Section 5, we cannot remove all
labels to begin with, because they are needed for correctly computing the synchronized
product in merging steps. We now show that our solution to this issue, conservative
label reduction, combines gracefully with bisimilarity.

Definition 6.9. Let � be a factored transition system with variables V, and let
V ⊆ V. Let 	 be a label reduction family for �, let T α be a merge-and-shrink tree over
V for �, and let v∗ ∈ V . We say that T α is constructed by label-reduced goal-respecting
bisimulations if, in each application of Definition 3.6 rule (S) where T α2 is over the
variables V2, the following holds: if v∗ �∈ V2, then α1 is a goal-respecting bisimulation
for �α2 ; if v∗ ∈ V2, then α1 is a goal-respecting bisimulation for �α2 |

τ V2 .

THEOREM 6.10. Let � be a factored transition system with variables V, and let V ⊆ V.
Let 	 be a conservative label reduction family for �, and let T α be a merge-and-shrink
tree over V for �. If T α is constructed by label-reduced goal-respecting bisimulations,
then α is a goal-respecting bisimulation for �πV |τ ∅ .

PROOF SKETCH. Let v∗ be the pivot variable in the construction of T α. We prove by
induction over the construction of T α that, for any intermediate merge-and-shrink
abstraction β over V ′: β is a goal-respecting bisimulation for �πV ′ if v∗ �∈ V ′, and β
is a goal-respecting bisimulation for �πV ′ |

τ V ′ if v∗ ∈ V ′. The claim follows by setting
β = α.

The base case, rule (A) of Definition 3.6, is trivial. Induction over rule (S) is a direct
consequence of Proposition 6.3, as in Corollary 6.5. For induction over rule (M), say
that β = α1 ⊗ α2, where V1 and V2 are the respective sets of variables. The case
v∗ �∈ V1 ∪ V2 works exactly as in Corollary 6.5. For the remaining case where, without
loss of generality, v∗ ∈ V1, we apply the trivial observation that label reduction can
only make bisimilarity easier to achieve, thus it suffices to prove that α1 ⊗ α2 is a
goal-respecting bisimulation for �πV1∪V2 |

τ V1 (rather than for �πV1∪V2 |
τ V1∪V2 ). We apply

Theorem 4.5 to see that �πV1∪V2 |
τ V1 = (�πV1 ⊗ �πV2 )|

τ V1 . We apply Proposition 5.5 and
Lemma 5.6 to see that (�πV1 ⊗ �πV2 )|

τ V1 = �πV1 |
τ V1 ⊗ �πV2 |

τ V1 . Thus, it suffices to prove
that α1 ⊗ α2 is a goal-respecting bisimulation for �πV1 |

τ V1 ⊗ �πV2 |
τ V1 . From here, the

claim follows with Proposition 6.4, like in the proof to Corollary 6.5.

The equivalence relations from Figure 3, and thus a compactly represented per-
fect heuristic for our illustrative example, can be constructed by label-reduced goal-
respecting bisimulations.

Example 6.11. Consider first the abstraction α1 on the left-hand side of Figure 7.
That abstraction results from a shrinking step applied to πpackage-1 ⊗ πpackage-2. In line
with Definition 6.9, the shrinking step is a goal-respecting bisimulation of the transition
system associated with πpackage-1 ⊗ πpackage-2. In line with Definition 5.9, this transition
system has reduced labels. More precisely, the construction is as in Example 5.10,
using label projection applied directly to the planning-based operator descriptions. Rule
(A) is applied to v1 = package-1 and v2 = package-2. Thereafter, rule (M) is applied
by first reducing the labels in �πpackage-2 , projecting away package-1; then computing
the synchronized product; then reducing the labels further by projecting away also
package-2. The resulting system is equal to �πpackage-1⊗πpackage-2 |τ {truck} . The abstraction α1
in Figure 7 (left) is the coarsest goal-respecting bisimulation for that system. To see
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Fig. 7. Merge-and-shrink abstractions constructed by label-reduced goal-respecting bisimulations, in our
illustrative example. The abstractions are shown in terms of equivalence relations, as in Figure 3, and the
underlying labeled transition systems are notated as in Figures 4 and 6. Left-hand side: a merge-and-shrink
abstraction α1 constructed as the coarsest goal-respecting bisimulation of �πpackage-1⊗πpackage-2 with labels
projected onto the truck variable. Right-hand side: α1 ⊗ πtruck, yielding a perfect heuristic for the original
state space.

this, just note that the states within each equivalence class can reach the same other
equivalence classes using the same (reduced) labels, and that this property is not
preserved when enlarging any of the equivalence classes.

The abstraction on the right-hand side of Figure 7 is exactly what we get when
we merge α1 with πtruck. Thus, as desired, the abstraction of Figure 7 (right) can be
constructed by label-reduced goal-respecting bisimulations. Since the underlying tran-
sition system is equal to �|τ {truck} , and solution costs in �|τ {truck} are the same as those in
the original state space �, the induced heuristic is perfect.

It is easy to see that this works for an arbitrary number of packages, that is,
label-reduced goal-respecting bisimulations yield the same abstractions as discussed
in Example 3.8, not unnecessarily distinguishing between permutations of packages.
Thus, we can obtain a perfect heuristic in polynomial time.

With Theorem 6.10 and Proposition 6.7, if α is constructed by label-reduced goal-
respecting bisimulations under the specified conditions, then the resulting lower bound
is exact. With Theorem 5.11 and Corollary 5.14, we know how to compute the associ-
ated label-reduced abstract transition systems with the merge-and-shrink algorithm.
Together with the previously known methods for computing coarsest goal-respecting
bisimulations, this gives us an algorithmic method (a concrete shrinking strategy)
for computing perfect lower bounds. We refer to this shrinking strategy as Bisim-LR:
“Bisim” for bisimulation, “LR” for label reduction.

By Proposition 6.8, and as can be observed in our illustrative example, the abstrac-
tions computed by Bisim-LR can be exponentially smaller than when using bisimula-
tions without label reduction. We will see in Section 8.1 that this happens also in a
number of commonly used planning benchmarks.

6.3. Greedy Bisimilarity

The previous results notwithstanding, Bisim-LR is much too expensive—does not suf-
ficiently shrink the abstractions—on most planning benchmarks. This is only natural
since Bisim-LR guarantees a perfect heuristic, thus solving the planning problem.
In practice, we need more approximate shrinking strategies that trade off heuristic
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accuracy against the effort required for building the heuristic. Our key concept for
defining such strategies is the following relaxed version of bisimilarity.

Definition 6.12. Let � = (S, L, T , s0, S�) be a transition system. An equivalence
relation ∼ on S is a greedy bisimulation for � if it is a bisimulation for the system
(S, L, T G, s0, S�) where T G = {(s, l, s′) | (s, l, s′) ∈ T , h∗(s) = h∗(s′) + c(l)}.

In other words, when deciding whether two states are deemed to be equivalent,
greedy bisimulations consider only the transitions that are used in an optimal solu-
tion for some state in the transition system at hand.8 Since greedy bisimulations are
bisimulations on a modified transition system, it follows trivially that coarsest greedy
bisimulations exist, are unique, and can be computed exactly like coarsest bisimu-
lations. More interestingly, greedy bisimilarity is what we call h-preserving: it still
preserves solution cost within the transition system to which it is being applied.

PROPOSITION 6.13. Let � be a transition system, let τ be a label reduction, and let α
be an abstraction of �. If α is a goal-respecting greedy bisimulation for �|τ , then hα is
perfect.

PROOF. Let �G be the transition system identical to � except that it contains only the
transitions (s, l, s′) where h∗(s) = h∗(s′) + c(l). Clearly, solution cost in �G|τ is the same
as that in �: �G contains all transitions participating in optimal solutions in �. Now
let h′ be the heuristic function that results from applying α to �G|τ . By Proposition 6.7,
h′ is equal to solution cost in �G|τ . Thus, it suffices to show that h′ = hα. The difficulty
in doing so is that hα, while using the same abstraction function α, is based on the
original transition system � which contains more transitions than �G, potentially
causing hα < h′. However, the latter cannot happen. Observe that hα can be obtained
by starting from the quotient system �G|τ /∼α underlying h′, and adding the abstract
transitions corresponding to (s, l, s′) ∈ T where h∗(s) > h∗(s′) + c(l). Since solution
costs in �G|τ /∼α are equal to those in �G|τ and thus to h∗, these transitions do not
change h′.

The shrinking strategy we will use is like Bisim-LR, except that it uses greedy bisim-
ilarity. We refer to this as GBisim-LR. Note that Proposition 6.13 does not imply that
GBisim-LR guarantees a perfect heuristic. While greedy bisimilarity is h-preserving
and thus preserves solution cost “locally” within each abstraction, it does not preserve
solution cost globally, because it is not invariant over merging steps. In other words,
an equivalent of Proposition 6.4 does not hold. This is because transitions optimal in
the merged system �1 ⊗ �2 might not be optimal in one of the component systems, �1
or �2. A simple example is one where �1 represents a truck, �2 represents a package,
and the transition drives the truck away from its own goal—which globally can be a
good idea in order to transport the package.

7. EXPRESSIVE POWER

We now proceed to the evaluation of our approach. In the present section, we evaluate
the merge-and-shrink framework from a theoretical perspective, comparing its “expres-
sive power” to that of other known frameworks. Positive results state what the approach
can accomplish, provided we choose a good abstraction strategy. Negative results state
what the approach cannot accomplish, independently of the abstraction strategy we

8We remark that the experiments in our previous conference paper [Nissim et al. 2011] used a slightly
different notion of “greedy bisimilarity”, namely considering the transitions where h∗(s′) > h∗(s). The present
definition is more accurate with respect to: (a) optimal solutions in � (h∗(s′) > h∗(s) does not imply that the
transition participates in such a solution); and (b) 0-cost labels (which participate in an optimal solution iff
h∗(s′) = h∗(s)).
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choose. In that sense, we quantify over abstraction strategies, and in particular we
will not refer to the label reduction and bisimilarity techniques just discussed. This
will change in the next section where we evaluate merge-and-shrink by its concrete
application in AI planning.

Section 7.1 shows that merge-and-shrink can capture additive heuristic ensembles
within a single heuristic. Section 7.2 shows that merge-and-shrink strictly generalizes
pattern databases. Section 7.3 argues that merge-and-shrink heuristics allow to effi-
ciently construct corresponding ADDs. Section 7.4 establishes a relationship between
merge-and-shrink trees and model counting problems. Section 7.5 exploits this connec-
tion to show a negative result regarding the relationship between merge-and-shrink
and another heuristic construction principle originating in AI planning, thus partially
closing an open question posed by Helmert and Domshlak [2009].

7.1. Additive Ensembles of Heuristics

A key technique to improve admissible heuristics is to combine them. If h1, . . . , hk are
admissible heuristics, then their pointwise maximum is an admissible heuristic domi-
nating each individual heuristic. Under certain conditions, their pointwise sum, which
dominates the maximum, is also admissible. Many recent advances in the accuracy of
admissible planning heuristics are due to better, more fine-grained methods for finding
admissible additive heuristics.

Katz and Domshlak [2008] introduced a very general criterion for admissible additive
combinations. Let � = (S, L, T , s0, S�) be a factored transition system. Let �1, . . . , �k
be factored transition systems that are identical to � except for the label costs. Let
ci : L → R

+
0 denote the label cost function for �i; let c be the original label cost function

in �. We say that c1, . . . , ck is a cost partitioning for � if
∑k

i=1 ci ≤ c (where the sum
and ≤ operators are applied pointwise). The sum of arbitrary admissible heuristics for
�i is then an admissible heuristic for �.

Cost partitioning offers a very flexible means to additively combine different heuristic
estimates in an admissible way. In particular, it subsumes earlier additivity criteria
for pattern database heuristics (e.g., Edelkamp [2001] and Felner et al. [2004]) and
for admissible heuristics in general [Haslum et al. 2005]. These criteria correspond to
the special case where ci(l) ∈ {0, c(l)}, that is, they require to account for the cost of
each label in at most one of the heuristics, rather than allowing to distribute that cost
arbitrarily across all heuristics.

We refer to an ensemble of abstractions α1, . . . , αk together with a cost partitioning
c1, . . . , ck as an additive ensemble of heuristics. Given a factored transition system �,
an abstraction α of �, and a modified label cost function c′ for �, we write hαc′

for the
heuristic induced by α when assuming label costs c′.

Our observation here is that cost partitioning is essentially not needed in the merge-
and-shrink framework: additive ensembles can be captured within a single merge-and-
shrink heuristic. This is easy to see for ensembles consisting of only two heuristics.

PROPOSITION 7.1. Let � = (S, L, T , s0, S�) be a factored transition system, let α1 and
α2 be merge-and-shrink abstractions of � over disjoint variable sets V1 and V2, and let
c1, c2 be a cost partitioning for �. Then, one can in time bounded by a polynomial in |α1|
and |α2| construct a merge-and-shrink abstraction α12 with cost function c12 ≤ c so that
hα12c12 ≥ hα1c1 + hα2c2 and |α12| = |{hα12c12 (s) | s ∈ S}|.

PROOF SKETCH. We define α12 := α1 ⊗ α2 and associate this new abstraction with the
cost function c12 := c1 +c2. We have c12 ≤ c because c1, c2 is a cost partitioning. We have
hα12c12 ≥ hα1c1 + hα2c2 because solution paths in �α12 contain solution paths for �α1 and
�α2 , dominating their summed up cost by construction of c12. The desired abstraction
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α12 is obtained from α12 by aggregating all (abstract) states with identical solution
cost.

The fact that the size of α12 is equal to the number of different heuristic values—
obtained simply by aggregating abstract states having the same value, that is, applying
the maximal h-preserving abstraction—is not essential for Proposition 7.1 itself. It is
important when considering arbitrarily large additive ensembles, to keep the overhead
polynomial. For that, it suffices to combine this shrinking strategy with one additional
aggregation step.

THEOREM 7.2. Let � = (S, L, T , s0, S�) be a factored transition system, let α1, . . . , αk
be merge-and-shrink abstractions of � over pairwise disjoint variable sets V1, . . . , Vk,
and let c1, . . . , ck be a cost partitioning for �. Then, for each 2 ≤ j ≤ k, there exists
a merge-and-shrink abstraction α1... j with cost function c1... j ≤ c so that hα1... j c1... j ≥∑ j

i=1 hαici , |α1... j | = |{hα1... j c1... j (s) | s ∈ S}|, where hα1... j c1... j (s) ≤ ∑ j
i=1 maxs∈S hαici (s) for all

s ∈ S, and α1... j can be constructed in time bounded by a polynomial in |α1|, . . . , |α j |,
|α12|, . . . , |α1...( j−1)|.

PROOF SKETCH. We simply iterate the construction underlying Proposition 7.1, merg-
ing α1...( j−1) with α j to obtain α1... j with cost function c1... j := ∑ j

i=1 ci, then aggre-
gating identical-cost abstract states in α1... j . We then apply an additional shrinking
step, obtaining α1... j by aggregating all abstract states whose solution cost is at least∑ j

i=1 maxs∈S hαici (s). It is easy to see that this will satisfy the claims regarding hα1... j c1... j

and |α1... j |. The construction of α1... j takes time polynomial in |α1...( j−1)| and |α j |, and
does otherwise not depend on the size of the synchronized product of the original
abstractions α1, . . . , α j−1.

The only entity with worst-case exponential growth in this construction is the number
of different solution costs within the abstraction α1...k. This growth has two possible
sources. First, when merging k abstractions, solution cost may grow exponentially in k.
Our construction avoids this source of complexity by aggregating any states exceeding
the sum of individual maximal costs maxs∈S hαici (s). Second, the number of different
sums of costs αi(s) may be exponential in k. For integer cost functions, such behavior is
pathological: the original label costs themselves would have to be exponentially big.

COROLLARY 7.3. Let � = (S, L, T , s0, S�) be a factored transition system with in-
teger label costs, let α1, . . . , αk be merge-and-shrink abstractions of � over pairwise
disjoint variable sets V1, . . . , Vk, and let c1, . . . , ck be a cost partitioning for � where
all cost functions are integer-valued. Then, one can in time bounded by a polynomial
in |α1|, . . . , |αk| and maxl∈L c(l) construct a merge-and-shrink abstraction α1...k with cost
function c1...k ≤ c so that hα1...kc1...k ≥ ∑k

i=1 hαici .

PROOF. This is a direct application of Theorem 7.2. (Note that all finite heuristic
values hαici are bounded by |αi| · maxl∈L c(l), so in the absence of fractional costs, the
number of different solution costs is polynomially bounded in the given quantities.)

As stated, additive ensembles are a key technology for deriving strong admissible
heuristics. Integer label costs are often not a very limiting assumption unless the set
of relevant different costs is too large to be discretized. Thus, Corollary 7.3 is a strong
result in favor of the merge-and-shrink framework.

The construction underlying Corollary 7.3 (along with Proposition 7.1 and
Theorem 7.2) can be optimized by shrinking α j before merging it with α1...( j−1). Simi-
larly, as done after the merge for α1... j , before the merge we can aggregate all α j abstract
states with identical solution cost and still obtain the same guarantees.
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An analogous result can be shown also without the condition that α1, . . . , αk be pair-
wise orthogonal. The abstraction α1...k is then no longer a merge-and-shrink abstraction
according to our Definition 3.6. However, recall that orthogonality is required only to
correctly maintain the abstract state spaces by using the synchronized product: with-
out orthogonality, that product may include additional states and transitions. Yet, α1...k
is still an abstraction, and optimal path cost in the constructed transition system is
still an admissible heuristic for path cost in the original (cf. Section 3.1). Hence, we can
define the abstraction heuristic as solution cost in the resulting transition system. It is
easy to see that, this way, we still obtain heuristics satisfying the claims just stated.

7.2. Pattern Databases

Proposition 3.7 and Corollary 7.3 together show that any additive ensemble of PDB
heuristics can (for polynomially bounded integer label costs) with polynomial overhead
be encoded as a merge-and-shrink heuristic. One simply simulates each PDB by a
nonabstracting merge-and-shrink abstraction (Proposition 3.7), then combines this
ensemble into a single merge-and-shrink heuristic (Corollary 7.3). Thus, merge-and-
shrink generalizes additive PDBs. The generalization is strict, in the sense that there
exist cases where merge-and-shrink can compactly represent the perfect heuristic and
additive PDBs cannot.

THEOREM 7.4. There exist families of transition systems where (a) there exists an
abstraction strategy for which merge-and-shrink yields a perfect heuristic in polynomial
time, whereas (b) there exists no ensemble of polynomial-size projections πV1 , . . . , πVk with
cost partitioning c1, . . . , ck which can guarantee that

∑k
i=1 hπVi ci (s0) ≥ ( 1

2 + ε)h∗(s0), for
any ε > 0.

PROOF SKETCH. It suffices to extend Example 6.6 by introducing a variable v0 that
must be set to 1, using label l0 with cost 1, in between the moves on any of the variables
v1, . . . , vn. Then, l0 contributes half of the cost of an optimal solution. A polynomial-sized
merge-and-shrink abstraction simply aggregates s and t iff they agree on v0 as well
as the count of variables j > 0 already set to 1. Any ensemble πV1 , . . . , πVk with cost
partitioning c1, . . . , ck, however, accounts only for a logarithmic number of v0 moves: for
any πVi , the cost pertaining to v0 in hπVi ci (s0) is bounded from above by (|Vi| + 1) · ci(l0);
since |πVi | = 2|Vi | is polynomial in n this bound becomes (Ai + Bi log n) · ci(l0), for some
constants Ai and Bi; summing this up we get

∑k
i=1(Ai + Bi log n) · ci(l0) ≤ A + Blog n,

for some constants A and B, because c1, . . . , ck is a cost partitioning.

As a special case of Corollary 7.3 and Theorem 7.4, merge-and-shrink strictly gener-
alizes individual PDB heuristics. Note that, since it considers only a single PDB, this
special case does not require the additional prerequisite of Corollary 7.3 (polynomially
bounded integer label costs) needed to polynomially simulate PDB ensembles. Note
also that Theorem 7.4 does not require this prerequisite at all. The theorem holds for
arbitrary additive ensembles of PDBs, regardless whether they are pairwise orthogo-
nal or not, regardless of the cost partitioning used, and regardless of the number k of
patterns (even exponentially large k would not help). Given the previously cited practi-
cal importance of PDB heuristics [Korf 1997; Culberson and Schaeffer 1998; Korf and
Zhang 2000; Edelkamp 2001; Felner et al. 2004], these are quite remarkable results.

7.3. ADDs

Merge-and-shrink abstractions α are recursively defined mappings from states to ab-
stract states. The endpoint of the mapping—the abstract state—is associated with the
heuristic value. The abstraction mapping is represented by cascading tables, as ex-
plained in Section 4.3. In this and the next section, we show two results about the
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Fig. 8. Translation from an ADD with finite-domain variables (a) to a standard, binary branching ADD
(b). In (b), “yes” branches are drawn with solid edges, “no” branches with dashed edges.

power of this representation to compactly describe functions and support efficient op-
erations. In particular, we contrast it with function representations based on (ordered)
decision diagrams, known as ADDs [Bahar et al. 1993]. First, we will show that a
subclass of merge-and-shrink abstractions, namely those built according to a linear
merging strategy, can be efficiently translated into an ADD of size polynomial in that
of the merge-and-shrink representation. We proceed in Section 7.4 by showing that for
any merge-and-shrink abstraction, as long as the merges are over orthogonal abstrac-
tions, our representation of the abstraction function supports polynomial-time model
counting, that is, counting the number of states that the abstraction heuristic maps to
a given value. (This generalizes a similar property for ADDs.) In Section 7.5, we will
use this to prove a negative result regarding merge-and-shrink’s expressive power.

Let T α be a merge-and-shrink tree. We explain the construction of an ADD Aα that
represents α in two steps: First, we use a “generalized” form of ADDs with finite-domain
variables at the inner vertices (i.e., nonbinary branching); then we translate each such
node into a small network of binary branching nodes.

If α = πv is atomic, the ADD has a single inner vertex v, with one branch for each
value in Dv. For a merged abstraction, α = α1 ⊗ α2, we attach a copy of the ADD for α2
to each leaf of the ADD for α1 and adjust the leaves of the composite ADD to represent
the combined values. For α = α1 ◦ α2, we redirect the leaves of the ADD for α2 to leaves
representing the values of α1.

To replace a finite-domain variable v, withDv = {d1, . . . , dm}, in the ADD with Boolean
variables, it is sufficient to construct a “linear” tree with |Dv| − 1 interior nodes. Each
node corresponds to the choice v = di or v �= di. At the last node, since all but the last
two values have been ruled out, the two branches point to v = dm−1 and v = dm. Figure 8
illustrates the construction.

PROPOSITION 7.5. Let T α be a merge-and-shrink tree built according to a linear
merge strategy, with variable order v1, . . . , vn. The ADD constructed according to the
scheme described in the preceding paragraphs, with the same variable order, is of size
O(|V ||T |max|Dv|).

PROOF. First, we consider the generalized, finite-domain, ADD. Consider the abstrac-
tion αi built by merging v1, . . . , vi (and intermediate shrink steps), where i < |V |. This
abstraction has at most |T |max/|Dvi+1 | states, because the abstraction that results from
merging it with the atomic abstraction πvi+1 must be of size at most |T |max. Hence, the
corresponding ADD has at most |T |max/|Dvi+1 | leaves. The ADD corresponding to πvi+1

has one interior node and |Dvi+1 | leaves. Thus, the ADD for the merged abstraction,
αi ⊕πvi+1 , adds at most |T |max nodes to the ADD for αi. If the merge step is followed by a
shrink step, then this cannot increase the size of the ADD in the construction because
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shrink steps do not lead to new ADD nodes. Thus, the size of the complete ADD is at
most |V ||T |max. Transforming the finite-domain ADD into one with binary branching
at the interior nodes increases the size by at most a factor |Dv|.

Having shown that merge-and-shrink trees with linear merge strategies can be
efficiently converted to ADDs, a natural question is whether the restriction to linear
merge strategies is necessary. We conjecture that this is indeed the case, and more
specifically, that there exists a family Tn of (nonlinear) merge-and-shrink trees over n
variables such that the smallest ADD representation of Tn is of size �((|Tn|max)c log n)
for some constant c. Furthermore, we conjecture that a bound of this form is tight and
that the log n factor in the exponent can be more accurately expressed with the Horton-
Strahler number of the merge-and-shrink tree, which is a measure of “bushiness” for
trees that ranges between 1 for degenerate trees (chains) and �log2 n� for complete
binary trees [Horton 1945].

7.4. Model Counting

Let T α be a merge-and-shrink tree over a set of variables V , representing abstraction α.
Let Nα,V (s) denote the number of complete assignments over V that α maps to abstract
state s. In this section, we will show that the merge-and-shrink tree representation
can be used to compute Nα,V (s), for all abstract states s, in time and space that is
polynomial in the size of T α. This is a property that merge-and-shrink trees share
with several other structured function representations, such as free binary decision
diagrams (FBDDs) and formulas in deterministic decomposable negation normal form
(d-DNNF) [Darwiche and Marquis 2002].

Note that the following proof relies on the restriction, postulated by Definition 3.6,
that every merging node merges abstractions over disjoint variable sets. Without this
restriction, it would be easy to provide a parsimonious reduction from the model-
counting problem for propositional logic formulas in conjunctive normal form, and
hence computing Nα,V (s) would be #P-hard.

THEOREM 7.6. From a merge-and-shrink tree T α, Nα,V (s) can be computed in time and
space O(|T |max|V |2 log |Dv|), where |Dv| denotes the size of the largest variable domain.

PROOF. We assume that the merge-and-shrink tree does not contain two consecutive
shrink nodes, that is, there is no shrink node with a shrink node as its child: a compact
representation would combine these two consecutive abstraction steps into one. With
this assumption, a merge-and-shrink tree with variables V contains at most 4|V | − 2
nodes: there must be exactly |V | leaves (one for each variable) and |V |−1 merging nodes
(because a tree with maximal degree 2 must have one less binary node than its number
of leaves), for a total of 2|V | − 1 nodes that are not shrink nodes. Each such node can
have a shrink node as a parent, for a total of at most 2 · (2|V | − 1) = 4|V | − 2 nodes.

The algorithm for computing Nα,V (s) recursively constructs a tree, mirroring T α, of
tables (similar to the cascading table representation of α). For each node in T α, labeled
with an abstraction α′, the table associated with the corresponding node in the new
tree is indexed by the abstract states in Sα′

and contains the value of Nα′,V ′(s), where
V ′ is the set of variables for this node. At each node, we first recursively invoke the
algorithm to construct these tables for the abstractions labelling each immediate child
node, and then use them to construct the table for the node itself. The size of the table
for abstraction α is bounded by |T |max|V | log |Dv| (the factor |V | log |Dv| is because
Nα,V (s) can take values up to 2|V | log |Dv |, requiring |V | log |Dv| bits to represent), and the
time to construct it is linear in its size. The recursion visits each node in T α exactly
once, which, as noted previously, is linear in the number of variables. The construction
of the table representation of Nα,V (s), and the proof that it is correct, is by cases:
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T α is an atomic abstraction, α = πv: In this case, the variable set V equals {v}. The
abstract state space of α, Sα, is simply Dv, and there is a one-to-one correspondence
between complete assignments over {v} and states in Sα, so Nα,V (s) = 1 for all s ∈ Sα.
Thus, the table representing Nα,V (s) is just an array of |Dv| 1’s.
T α is shrinking node, α = α1 ◦ α2: In this case, the variable set V that α is

defined over equals that which α2 is defined over. Let sV be a complete assignment
over V : α(sV ) = s iff there exists an s′ ∈ Sα2 such that α2(sV ) = s′ and α1(s′) = s.
Summing over the existentially quantified intermediate state, we therefore have
Nα,V (s) = ∑

s′∈Sα2 :α1(s′)=s Nα2,V (s′). We have (by recursive invocation) a table representing
Nα2,V (s). Thus, initializing the table for Nα,V (s) with all 0’s, then making a linear sweep
over all s ∈ Sα2 , adding Nα2,V (s) to the entry for α1(s) computes the table for Nα,V (s).

T α is a merging node, α = α1 ⊗ α2, where α1 and α2 are defined over disjoint variable
sets V1 and V2, respectively: In this case, V = V1 ∪ V2. For every complete assignment
sV1 over V1 that α maps to s1 there are Nα2,V2 (s2) assignments sV2 over V2 that α2 maps
to s2, and since V1 and V2 are disjoint the composition of sV1 and sV2 forms a distinct
assignment over V . Thus, there are

∑
sV1 :α1(sV1 )=s1

Nα2,V2 (s2) = Nα1,V1 (s1)Nα2,V2 (s2)
assignments over V that α maps to the abstract state (s1, s2). In other words,
Nα,V ((s1, s2)) = Nα1,V1 (s1)Nα2,V2 (s2). To represent Nα,V (s) we construct a two-dimensional
table indexed by pairs (s1, s2), of size |α| = |α1||α2|, and assign each entry Nα,V ((s1, s2))
the value Nα1,V1 (s1)Nα2,V2 (s2), computed from the tables representing Nα1,V1 (s1) and
Nα2,V2 (s2) which are obtained by the recursive call for each of T α ’s two children.

COROLLARY 7.7. Let � be a transition system with variables and T α a merge-and-
shrink tree such that |T α|max is polynomial in the compact description size of �. From
T α, the number of states s in � with hα(s) = c, for any given c, can be counted in
polynomial time.

PROOF. From the merge-and-shrink tree, we can easily extract the set of variables V α

that the abstraction α is defined over. For every abstract state s′, we can also compute
hα(s′), the distance to the closest solution state, in polynomial time. The number of
states s in � that α maps to a given abstract state s′ is Nα,V α (s′)

∏
v∈V \V α |Dv|. Thus,

we can obtain the desired count by a linear scan through the abstract states of �α,
evaluating the hα value on each abstract state to test if it matches, and summing up
the count of those that do.

7.5. Critical-Path Heuristics

AI planning research has come up with several different heuristic construction prin-
ciples. Helmert and Domshlak [2009] conducted a study of dominance relationships
between these, discovering some surprising results. A family of heuristics H is said to
dominate a family H′ if, for any individual state, H can always simulate H′ efficiently.
That is, given any state s and any h′ ∈ H′, we can in polynomial time construct an
additive ensemble of heuristics h1, . . . , hk ∈ H (with a suitable cost partitioning) such
that

∑k
i=1 hi(s) ≥ h′(s).9

Helmert and Domshlak [2009] proved dominance, or absence thereof, between all
four major classes of heuristics in planning (discovering, e.g., that two by appearance
quite different classes are in fact equivalent). A single question remained open. That
question concerns the family of so-called critical-path heuristics. These approximate

9Note that this is a weaker form of dominance than what we showed above for merge-and-shrink in compar-
ison to pattern databases. Here, we construct a suitable heuristic h ∈ H per individual state. By contrast,
Proposition 3.7 and Corollary 7.3 show that H = merge-and-shrink always contains a heuristic h dominating
h′ ∈ H′ = PDBs across all states under the conditions of the corollary.
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the cost of reaching a state s (an assignment to all variables) by the maximum cost of
reaching any m-subset of s (an assignment to at most mvariables that complies with s),
where m is a parameter. The resulting heuristic function is denoted hm. Its computation
is exponential in m, but polynomial in task size for fixed m. Helmert and Domshlak
proved that h1 is dominated by merge-and-shrink, and that merge-and-shrink is not
dominated by hm (for arbitrary m). The open question is whether hm, for m > 1, is
dominated by merge-and-shrink. We now answer this question in the negative for the
case of a single merge-and-shrink heuristic (rather than an additive ensemble). For the
sake of brevity, we omit the formal definition of hm, and we only outline our argument.
The details are in Appendix A.

Our proof relies on results regarding the counting complexity class #P, which consists
of the set of functions f for which there exists a nondeterministic Turing machine M
that runs in polynomial time, and where f (x) is the number of accepting runs of M
on input x. Knowing the value of f (x) clearly allows deciding whether M accepts x,
thus the existence of a polynomial time procedure for computing any #P-hard function
implies that P = NP. An example of a counting problem is #SAT, the problem of
counting the satisfying assignments of a propositional logic formula.

Creignou and Hermann [1996] provide a classification of the complexity of #SAT. A
class of formulas for which the problem is #P-hard is ϕW = ∨

{p,q}∈W (p∧ q), where W is
any set of distinct pairs in a set V of propositions. In our proof, we construct a family
of planning tasks corresponding to ϕW , using as variables only the propositions V ,
plus one additional goal-marker L. The tasks are designed so that, for any abstraction
heuristic hα where hα(s0) = h∗(s0), the states with hα(s) = 2 are exactly those where s
projected to V is an assignment that does not satisfy ϕW , and where s(L) = 0. Assume
that α is a polynomial-time constructible merge-and-shrink abstraction yielding a
heuristic with hα(s0) = h∗(s0). By Corollary 7.7, we can use the representation of hα

to count the states with hα(s) = 2, and thus to count the models of ϕW , in polynomial
time, implying that P = NP. On the other hand, h2 is perfect in these planning tasks,
which proves our result.

THEOREM 7.8. There exist families of factored transition systems where h2 is a perfect
heuristic, whereas unless P = NP there exists no polynomial-time abstraction strategy
so that merge-and-shrink yields abstractions α guaranteeing that hα(s0) = h∗(s0).

Together with the earlier results [Helmert and Domshlak 2009], this shows that
a single merge-and-shrink is incomparable with the critical-path heuristics hm for
m ≥ 2. However, to dominate h2 in the sense of Helmert and Domshlak [2009], we are
allowed to use additive ensembles of merge-and-shrink heuristics. For now, the question
whether such an additive ensemble of merge-and-shrink heuristics that dominates h2

exists and can be constructed in polynomial time remains open.

8. APPLICATION TO AI PLANNING

We now evaluate the performance of the merge-and-shrink framework when ap-
plied to AI planning, more specifically to the commonly used benchmark set of that
field. Section 8.1 discusses theoretical guarantees given in particular benchmarks,
Section 8.2 describes our experiments.

8.1. Perfect Heuristics in Polynomial Time

Planning benchmarks distinguish between domains. A domain is a parameterized
(and typically infinite) set of related planning tasks. The dominant benchmark set
in planning, which we also use here, is the one from the International Planning
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Competition10 (IPC). We consider the question whether merge-and-shrink can com-
pute a perfect heuristic, within a given domain, in time polynomial in the domain’s size
parameters. This is possible only in domains with polynomial-time optimal domain-
specific solution algorithms. Helmert [2006b] identifies six such domains in the IPC
benchmark set, named Gripper, Movie, PSR, Schedule-Strips, Dining-Philosophers,
and Optical-Telegraph. We show that, of these six domains, in all but PSR there exist
polynomial-time abstraction strategies for computing perfect merge-and-shrink heuris-
tics.11 In three of the domains, the Bisim-LR algorithm (cf. Section 6.2) yields such a
polynomial-time perfect abstraction strategy. In the interest of brevity, we only outline
the investigation.

The Movie and Gripper domains originated in the 1998 IPC. Both are quite simple:
Movie involves getting n snacks, and Gripper involves transporting n objects from A to
B using a robot with two hands. We have the following proposition.

PROPOSITION 8.1. Let P = {�n} be the family of Movie planning tasks, where n is
the number of snacks. Let P ′ = {�′

n} be the family of Gripper planning tasks, where
n is the number of transportable objects. For any linear merging strategy, maximum
intermediate abstraction size for Bisim-LR is bounded by a linear function in n for P
and by a cubic function in n for P ′.

Both results hold because the Bisim-LR shrinking strategy aggregates states that
agree on the relevant object counts (number of snacks obtained, number of objects at
A vs. B). In particular, we can solve Movie and Gripper to optimality in polynomial
time. This is, of course, not an achievement in its own right (the domains are trivial).
The point is that we solve them with a domain-independent method. The input to our
algorithm is merely a description of the domains, giving no hints whatsoever how to
solve them. Proposition 8.1, in this light, means that Bisim-LR is clever enough to
automatically uncover all relevant domain structure. Bisim-LR constitutes, in fact, the
first domain-independent heuristic function able to do so.

We next consider scheduling-like domains, where each task consists of some machines
used to change the features f (o) of a set of processable objects o.12 The relevant property
is that, for o �= o′, f (o) and f (o′) are mutually independent, that is, not affected by any
common operator. Processing an object affects the status of the machines, but does not
directly affect any other object. During merge-and-shrink, we can thus treat each of
these objects independently, and indeed that is what Bisim-LR does. It is easy to see
that the Schedule-Strips domain used in the 2000 IPC is a scheduling-like domain. We
thus have the following.

PROPOSITION 8.2. Let P be the family of Schedule-Strips planning tasks. There exists
a linear merging strategy such that maximum intermediate abstraction size for Bisim-
LR in P is bounded by a polynomial in the number of objects to process in the given
task.

Suitable merging strategies here are ones that start with all machines and then
tackle each object in turn.

We remark that label reduction is required for the above results to hold. In all three
domains, non-label-reduced bisimulations are exponentially large.

10http://www.icaps-conference.org/index.php/Main/Competitions.
11We do not have a positive or negative result for PSR, but believe that no perfect polynomial-sized abstraction
heuristics exist.
12Note the difference to typical Scheduling problems that require to optimize completion time: here, we
optimize summed-up cost.
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We finally consider Dining-Philosophers and Optical-Telegraph. The former is the
well-known problem involving a round table with n philosophers, where the plan-
ning goal is to find the deadlock in which each philosopher holds exactly one fork.
Optical-Telegraph is essentially the same, except that the “philosophers” now have
more internal states. During merge-and-shrink, if we aggregate states that agree on
the counts of philosophers/telegraphs in a particular internal state, then the resulting
heuristic is perfect. Hence, we have the following.

PROPOSITION 8.3. Let P = {�n} be the family of Dining-Philosophers (Optical-
Telegraph) planning tasks, where n is the number of philosophers (telegraphs). For any
linear merging strategy, there exists a shrinking strategy such that merge-and-shrink
in P yields a perfect heuristic and maximum intermediate abstraction size is bounded
by a polynomial in n.

It is difficult to answer whether Bisim-LR actually yields such abstraction strate-
gies. Bisim-LR depends directly on syntax, and these domains are syntactically very
complicated. They were compiled from the Promela language [Holzmann 2004] into
planning, using a generic scheme for such compilation [Edelkamp 2003], and relying
on many language features not directly supported by our formalism.13

Bisim-LR cannot in general reproduce the best possible abstraction strategy. Indeed,
the difference can be exponential. One example for this is an extension of Gripper
allowing to scale the number of robot hands. Then there still exists an abstraction
strategy that yields a perfect heuristic while maximum intermediate abstraction size
is polynomially bounded. Such a bound does not hold for Bisim-LR because states
differing on the gripper hands are not bisimilar.

8.2. Experiments

In most planning benchmark domains, bisimulations are still large even under label
reduction, and Bisim-LR is not feasible. We thus designed a family of (mostly) more
approximate merge-and-shrink variants. The family is characterized by four parame-
ters: (1) merging strategy, (2) state aggregation strategy, (3) abstraction size bound N,
(4) state aggregation threshold T .

We instantiate (1) with both merging strategies tried in planning so far, called
CausalGraph-Goal-Level (CGL) and ReverseLevel (RL). Both are linear merging strate-
gies (defined by an ordering of the variables), and both are based on well-known notions
from planning ([e.g., Helmert 2006a]). In a nutshell, the idea behind CGL is to select
the most relevant variables first (close to the planning goal), and the idea behind RL is
to select the most influential variables first (prerequisite for many planning operators).

We instantiate (2) with the two strategies discussed, Bisim-LR and GBisim-LR, which
we will refer to as B and G, as well as a strategy not based on bisimulation, which we
will refer to as H. The latter is h-preserving, aggregating states only if they agree
on their remaining cost within the abstract transition system considered, unless the
abstraction size bound N forces states with different remaining cost to be aggregated;
states with largest remaining cost are aggregated first to avoid introducing errors close
to the goal, the intuition being that such errors would propagate and cause errors in
large parts of the state space.

We instantiate (3) with N ∈ {10k, 100k, 200k,∞} and (4) with T ∈ {1, 10k, 100k,
200k,∞} where T ≤ N.

The overall shrinking strategy results from the combination of parameters (2), (3),
and (4). H performs no aggregations at all until abstraction size reaches the bound

13For a straightforward direct planning encoding of Dining-Philosophers, and a variant of greedy bisimilarity,
a perfect heuristic is computed in polynomial time. We omit this for brevity.
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N, and then proceeds as specified in Figure 1; the value of T has no effect on H. B
and G aggregate nothing until abstraction size reaches the threshold T . Then, they
attempt to build coarsest (greedy) bisimulations, by starting from a single equivalence
class containing all states, and splitting that class between states that are not (greedy)
bisimilar. Splits closer to the goal are preferred, and the splits stop once the number of
classes reaches the bound N. (This approach was originally proposed by Dräger et al.
[2006].)

Members of our merge-and-shrink family, that is, combinations of values for each of
the parameters, will be denoted in the text according to the scheme (1)-(2)-N(3)-T (4).
The total number of possible parameter combinations, and thus merge-and-shrink
variants explored here, is 64.

Our merge-and-shrink variants were quite successful at the optimal planning track
of the 2011 International Planning Competition, together with two other planners,
BJOLP [Domshlak et al. 2011] and LM-cut [Helmert and Domshlak 2009], which
are also based on A∗ search but with heuristic functions generated in a very differ-
ent manner. A portfolio of two merge-and-shrink variants, namely RL-G-N∞-T 1 and
RL-G-N200k-T 200k, won a 2nd prize at this track of IPC’11; combined in a simple se-
quential portfolio with BJOLP and LM-cut (running each algorithm for a fixed amount
of time), the same two merge-and-shrink variants won the 1st prize. The five best per-
forming optimal planners at IPC’11 were all based on A∗ and used one or several out
of these four heuristic functions (and no others). Thus these heuristics represent the
state of the art in optimal planning as measured at IPC’11. Accordingly, in the following
we compare the performance of our merge-and-shrink variants to that of BJOLP and
LM-cut.

We also compare with pattern database (PDB) heuristics, that is, abstractions based
only on projection [Culberson and Schaeffer 1998; Edelkamp 2001]. This comparison
is relevant because these are the closest relatives to merge-and-shrink.

PDB heuristics require a strategy to select the set, or sets, of variables to project on
(the pattern). When we use more than one pattern, the pattern set may contain subsets
of mutually independent patterns; heuristic values are aggregated within these subsets
using the sum, and across these subsets using the max. This is called the canonical
PDB heuristic [Haslum et al. 2007] and yields the best (i.e., highest) admissible value
that can be obtained from any given PDB collection without partitioning the cost of
operators. We consider four different strategies for selecting patterns.

Strategy (a) chooses a single pattern, including variables in the order given
by the CGL merge strategy until no more variable can be added without the
size of the abstract transition system exceeding a fixed bound P. We used P ∈
{100k, 1000k, 10000k, 100000k}. Note that these limits are larger than what is fea-
sible to use with merge-and-shrink; this is because a PDB, being a projection, can be
indexed by a perfect hash function, and therefore computed more efficiently and stored
more compactly [Edelkamp 2001].

Strategy (b) creates one pattern for each variable that has a goal value, containing
only that variable.

Strategy (c) combines the first two, choosing one pattern up to the size limit P, then
one with each remaining goal variable.

Strategy (d) is an incremental construction [Haslum et al. 2007]. It selects patterns
by a hill-climbing search in the space of pattern collections, starting from a collec-
tion with a single-variable PDB for each goal variable and growing it by iteratively
adding one new pattern that extends one of those in the current collection with one
variable. The pattern to add is chosen to maximize an estimate of the improvement
that including it will make to the canonical heuristic. The estimate is obtained by eval-
uating a (relatively small) random sample of states. The strategy has four different
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Fig. 9. Coverage data in IPC benchmarks for a selection of algorithms. Abbreviations: “D” for domains;
“BJ” is BJOLP; “LM” is LM-cut; “PDB (a)” is strategy (a) with P = 100000k; “PDB (d)” is strategy (d) with
P = 10000k, C = 100000k, S = 100, I = 10; “No L.P.” means no label projection; “RND” is a random state
aggregation strategy; “MS built” is the number of instances in which the merge-and-shrink abstraction
process completed within the given time and memory; “#D in-best” is the number of domains where coverage
is maximal among all algorithms run (not only among those shown here); “#(D > BJ)” is the number of
domains where coverage is strictly larger than that of BJOLP; “#(D > LM)” is the same for LM-cut; “#(D >

PDB)” is the number of domains where coverage is strictly larger than that of any PDB in the experiment.

parameters: a limit P on the size of any single PDB in the collection, and a limit C
on the size of the collection as a whole; the number S of samples used to estimate
improvement; and finally a limit I on the minimum improvement required to add a
new pattern to the collection. We used P ∈ {1000k, 2000k, 5000k, 10000k}, C = 10 · P,
and (S, I) ∈ {(100, 1), (100, 10), (1000, 10), (1000, 100)}.

In total, this gave us 25 different PDB heuristics.
All heuristics compared are implemented within the same framework, Fast Down-

ward [Helmert 2006a], and all results we report use the same A∗ implementation.
We ran experiments on 44 benchmark domains, from all seven editions of the Inter-
national Planning Competition so far, IPC’98 – IPC’11. For the eight domains that
were used in both IPC’08 and IPC’11, we use the benchmark instances from the latter.
The experiments were performed on dual-CPU AMD Opteron 2384 machines, running
eight experiments simultaneously in order to fully utilize the available (eight-core)
machines. Each planner instance ran on a single core with a time limit of 30 minutes
and a memory limit of 2 GB.

Figure 9 gives coverage data, that is, the number of benchmark instances solved
within the given time and memory (the size of each domain’s benchmark set is included
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Fig. 10. Coverage data in IPC benchmarks for a selection of algorithm combinations. “BL” stands for BJOLP
and LM-cut. In “Solved by Any”, “PDB” (“MS”) stands for all PDB (merge-and-shrink) variants in the
experiment; in “Portfolios”, “PDB” (“MS”) stands for the pair of PDB (merge-and-shrink) variants whose
portfolio performs best in the total, among all such pairs. Every portfolio runs the component algorithms in
sequence, giving each component an equal share of the 30 minutes runtime.

below in Figure 10). For space reasons, we show data for only 2 of the 25 PDB variants,
and for 16 of the 64 merge-and-shrink variants; 3 additional merge-and-shrink variants
(outside the family described previously) are included for test reasons. The two PDBs
shown are strategy (a) with P = 100000k (“PDB (a)”) and strategy (d) with P =
10000k, C = 100000k, S = 100, I = 10 (“PDB (d)”). Out of all possible sequential
portfolios combining two PDB variants (dividing runtime evenly), this pair perform
best in terms of total coverage; “PDB (d)” also is the best variant individually. For
merge-and-shrink, we show data only for T = 1 because this setting dominates all
T > 1 almost universally. We further omit data for CGL with N = 100k or N = 200k,
and for CGL with N = ∞ and G or H because these are almost universally dominated
either by the corresponding variant using RL, or by the corresponding variant using
CGL with N = 10k.

Consider first only the merge-and-shrink variants in Figure 9. With N = ∞, using B
yields a perfect heuristic but, as earlier hinted, is seldom feasible. CGL works slightly
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better than RL (274 for CGL vs. 252 for RL in the total). Comparing to the third column
from the right, CGL-B-N∞-T 1 with label projection turned off, we see that reducing
labels is important for obtaining smaller bisimulations (not using it, we solve only
247 instances). Note also that H with N = ∞ does not aggregate any states at all, so
builds the full state space; the small total coverage (208 for RL-H-N∞-T 1) shows the
advantage of bisimulation over a blind approach.

State aggregation method G typically builds smaller abstractions than B, and thus
incurs less of a runtime overhead. This is most pronounced in the absence of an ab-
straction size bound (N = ∞) where, for RL, B completes only 252 abstractions while
G completes 1061. This advantage often translates into better performance of G rather
than B in terms of total coverage (H is much worse than both). Interestingly, the same
is not the case when considering instead the count of domains where a technique is
competitive: as the last four rows of Figure 9 show, in this regard B often is better.
These differences are a result of the different accuracy vs. runtime trade-offs made
by the two methods—B tends to favor heuristic accuracy while G tends to favor small
runtimes—whose relative performance depends on the domain. We will get back to this
in some more detail.

For state aggregation strategy H, the states aggregated are exactly the same whether
or not label projection is used. Thus, in this setting, we can test the impact of label pro-
jection as a technique to reduce computational effort independently from the shrinking
strategy. The second column from the right shows data for CGL-H-N10k-T 1 with label
projection turned off. Comparing this to the data for CGL-H-N10k-T 1 with label projec-
tion turned on (5th column from the right), the better coverage of the latter (388 vs. 361
in the total) shows that label projection is important even just as an implementation
technique. Finally, as a sanity test, we ran a merge-and-shrink variant selecting the
state pairs to aggregate randomly (rightmost column in Figure 9). The result clearly
confirms that these choices need to be taken carefully.14

Comparing merge-and-shrink to its competitors in Figure 9, clearly all the competi-
tors (except “PDB (a)”) do better in terms of total coverage. For BJOLP and LM-cut,
the difference is huge but is, to a considerable extent, due to only two domains. They
excel in Miconic-STRIPS and FreeCell, which contain more instances than the other
domains. Ignoring Miconic-STRIPS and FreeCell, the difference becomes much smaller.
More generally, the relative performance of different planners typically is mainly de-
termined by the domain.

Counting solved instances suffers, as a performance measure, not only from the
choice of domains that happen to be included in the IPC, but also from the choice of
instances and their number (as vividly demonstrated here by Miconic-STRIPS). A more
stable measure is to only count the domains in which a planner performs well. In that
measure, LM-cut is in the lead by far, but the best merge-and-shrink variant is equally
good as BJOLP and better than the PDBs. For each of the competitors, there are several
domains (10 for BJOLP, 6 for LM-cut, 10 for PDBs) where the best merge-and-shrink
variant is strictly better.15

14The random aggregation typically leads to failure during construction of the abstraction already. From a
superficial check, it appears the main reason is that random state aggregation yields very densely connected
graphs (abstract transition systems), that is, many arcs whose handling consumes a lot of runtime and
memory.
15Regarding the comparison to PDB (d), note also that this strategy generates heuristic functions based
on several patterns, that is, based on additive ensembles of heuristics. By contrast, the merge-and-shrink
variants shown generate heuristics based on single abstractions. While merge-and-shrink can, in principle,
capture additivity within a single heuristic (cf. Section 7.1), most likely this kind of technique could be used
to further improve the performance of merge-and-shrink in practice.
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The approaches shown have strengths in different domains, and can be fruitfully
combined. Indeed, as mentioned, a portfolio doing so won the optimal planning track of
IPC’11. Figure 10 gives coverage data for some relevant combinations. We show data
for “Solved by Any” to gauge the extent of complementary strength within a group of
planners (ranging over all PDB/merge-and-shrink configurations run in the experi-
ment). We show sequential portfolios (dividing runtime evenly across all component
planners) as a simple means to gauge the extent to which this complementarity can
be turned into an advantage when respecting the runtime bound. For merge-and-
shrink, all portfolio data shown is for the two configurations RL-G-N100k-T 1 and
RL-B-N200k-T 1, the merge-and-shrink pair for which the portfolio performed best
in the total; similarly for PDBs (where these two configurations are those shown in
Figure 9). The counts “#D in-best” of domains with best performance are within each
group, that is, relative to the other “Solved by Any” and “Portfolios” configurations.

Planner combination helps significantly even within the merge-and-shrink family,
raising the total from 472 for the best individual variant to 558 for the instances solved
by any variant, and to 526 for the best portfolio of two variants. In the present data,
merge-and-shrink has more potential for combination than PDBs, overtaking them in
both solved-by-any (total 558 vs. 518, #D in-best 18 vs. 11) and in sequential portfolios
of variant pairs (total 526 vs. 509, #D in-best 22 vs. 17). This must be qualified against
the sets of variants run here, and in particular against the fact that we run 64 merge-
and-shrink variants vs. 25 PDBs. That said, the picture hardly changes when fixing
T = 1 and thus reducing our merge-and-shrink set to 24 variants: the best portfolio
remains the same; the change for solved-by-any is minor, and PDBs still are clearly
dominated (total now 551 vs. 518, #D in-best now 17 vs. 11).

BJOLP and LM-cut (together) are still in the lead, but merge-and-shrink is getting
very close (#D in-best identical for solved-by-any, and 22 vs. 23 for portfolios). This is
especially true when ignoring Miconic-STRIPS and FreeCell, both for solved-by-any
(total 458 vs 459, #D in-best 18 vs 16) and for our simple portfolios here (total 443
vs. 448, #D in-best 22 vs. 21). Adding either of merge-and-shrink or PDBs to BJOLP
and LM-cut helps significantly, showing that each of merge-and-shrink and PDBs can
contribute to the state of the art in optimal planning. The performance is about equal
regarding solved-by-any (total 698 vs. 699, #D in-best 34 vs. 33), and is stronger for
merge-and-shrink regarding portfolios (total 674 vs. 658, #D in-best 31 vs. 27). Adding
both merge-and-shrink and PDBs on top of BJOLP and LM-cut yields another small
improvement in each case.

Coverage is a function of the tradeoff between the accuracy of a heuristic function,
and the effort needed for computing it. Due to the multitude of domains and algorithms
tested, it is beyond the scope of our discussion to give detailed data. We provide a
summary for a few of the algorithms, using Richter and Helmert’s [2009] expansion
score (E) and total-runtime score (T ). Both range between 0 and 100, for each individual
instance. E = 100 if ≤ 100 expansions were made, E = 0 if ≥ 1,000,000 expansions
were made. In between, E interpolates logarithmically, so that an additive difference
of 7.53 in scores corresponds to a factor 2. Similarly, T = 100 for runtimes ≤1 second,
T = 0 for time-outs, and doubling the runtime decreases the score by about 9.25.
The advantage of these scores is that they are absolute, that is, there is no need to
restrict the set of instances considered to those solved by all planners.16 Figure 11
compares the two merge-and-shrink variants constituting the best merge-and-shrink

16Experimenting with summaries limited to commonly solved tasks, we found that they often misrepresented
the results. For example, on instances solved by both, RL-G-N∞-T 1 beats LM-cut even in some domains
where LM-cut actually scales better—because RL-G-N∞-T 1’s cheap heuristic solves the small tasks very
quickly, and times out on the larger ones.
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Fig. 11. Difference Y − X between per-domain averaged expansions (E) and total-runtime (T ) scores (as
per Richter and Helmert, see text), for selected pairs of heuristics X, Y . Columns ordered by decreasing
E(Y ) − E(X).

portfolio (RL-G-N100k-T 1 and RL-B-N200k-T 1) against each other, and compares
the individually best merge-and-shrink variant (CGL-B-N10k-T 1) against each of the
competing approaches (where for PDBs we selected the configuration PDB (d) from
Figure 9).

Considering first the leftmost part of the table, X = RL-G-N100k-T 1 vs Y = RL-
B-N200k-T 1, we clearly observe the aforementioned differences in the accuracy vs.
runtime tradeoffs of G vs B. E(Y ) − E(X) is positive in the majority of the domains,
and reaches very large values at its top end, showing that RL-B-N200k-T 1 has a
clear advantage in terms of heuristic accuracy. Despite this, T (Y ) − T (X) is negative
in the majority of the domains, that is, RL-G-N100k-T 1 is in the advantage because
the overhead for creating the abstraction is smaller (consider, e.g., ParcPrinter and
Driverlog).

In the comparison between X = BJOLP and Y = CGL-B-N10k-T 1, none of the two
planners has the edge in expansions: E(Y ) − E(X) is positive in a few more domains
which plays in favor of CGL-B-N10k-T 1, but the extent of the difference grows much
larger on the domains where E(Y ) − E(X) is negative (extreme end: Miconic-STRIPS).
In most domains, the planner better in expansions also is better in runtime (the most
notable exception to this is Driverlog).
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For LM-cut, the picture is very different. E(Y ) − E(X) is negative in 30 of the 36
domains considered here, and the difference is larger than 7.53 (i.e., about a factor 2)
in 18 of the domains. On the other hand, LM-cut creates a large overhead. It does not
require a costly pre-process (like computing an abstraction), but takes a lot of time to
compute in each state. This often counters the effect of the better heuristic accuracy
(consider, e.g., Grid and Transport); the number of domains where T (Y ) − T (X) is
negative is only 21, in only 10 of which the difference is larger than 9.25 (i.e., about a
factor 2).

Consider finally the rightmost part of Figure 9, comparing PDB (d) to CGL-B-N10k-
T 1. A basic observation about E(Y )− E(X) is that its absolute values are much smaller
than in the comparisons to BJOLP and LM-cut; the same is true when comparing
PDB (d) to RL-G-N100k-T 1 and RL-B-N200k-T 1 (except for Gripper where RL-B-
N200k-T 1 has a huge advantage). This is natural since PDBs are much more closely
related to merge-and-shrink than BJOLP and LM-cut. PDB (d) has a slight advantage
in terms of expansions. In some cases, this advantage is bought at prohibitively high
costs in runtime (consider in particular PegSolitaire and Woodworking). Conversely,
prohibitively high runtime costs also sometimes occur in CGL-B-N10k-T 1 (e.g., in
TidyBot the advantage of PDB (d) is much larger in T than in E). All in all, the two
techniques have complementary strengths, and both suffer from occasional efficiency
issues in the computation of abstractions.

9. CONCLUSION

Merge-and-shrink abstractions are a new tool to generate lower bound estimates for
reachability in compactly described discrete transition systems. We have identified the
class of transition systems—factored ones—which allow these abstractions to be built
in a practical, incremental way, without loss of information. This also enabled us to
demonstrate the power of the approach, in particular with respect to pattern databases,
which are, in theory, strictly dominated by merge-and-shrink abstractions. The picture
is not as clear in practice, where pattern databases have advantages because they can
be implemented very efficiently; but merge-and-shrink contributes to the state of the
art in planning.

Since we observed that a major strength of merge-and-shrink lies in the combination
of heuristics resulting from different abstraction strategies, a major question for future
research is whether this can be done in a more targeted manner. Can we design meta-
strategies that automatically choose a suitable combination of parameter values? A
related question is to what extent merge-and-shrink can profit from using it in additive
ensembles rather than relying on a single abstraction.

Our present data shows that a change in the merging strategy can have a huge
effect on performance. The influence of the merging strategy on the merge-and-shrink
process, and in particular of its interaction with the shrinking strategy, are not yet well
understood.

An interesting generalization of greedy bisimilarity is to allow the algorithm to choose
an arbitrary subset of transitions relative to which bisimilarity will be established. This
allows fine-grained abstraction design, controlling the size of the transition subset to
trade off accuracy against computational effort. We have already obtained first results
along these lines [Katz et al. 2012].

Finally, merge-and-shrink can be applied to any domain in which PDBs have been
applied. Given the success of PDBs, combined with the strict domination of merge-and-
shrink over PDBs in theory and the empirical advantages in part of our benchmarks,
we consider this an exciting line of research that we hope will inspire other researchers
as well.

Journal of the ACM, Vol. 61, No. 3, Article 16, Publication date: May 2014.



Merge-and-Shrink Abstraction 16:51

APPENDIX

A. PROOFS

We restate all formal claims, now with detailed proofs. We proceed in order of presen-
tation of the main text.

A.1. Basic Concepts

PROPOSITION 2.4. Let � = (S, L, T , s0, S�) be a transition system with state variables
V. Then � is factored if and only if the following two conditions hold.

(i) There exists a family of “goal domains” (Dg
v )v∈V where Dg

v ⊆ Dv for all v ∈ V, such
that for all s ∈ S, we have s ∈ S� iff s(v) ∈ Dg

v for all v ∈ V.
(ii) For each label l ∈ L, there exists a family of “precondition/effect domains” (Dpe

v (l))v∈V
where Dpe

v (l) ⊆ Dv × Dv for all v ∈ V, such that for all s, s′ ∈ S, we have (s, l, s′) ∈ T
iff (s(v), s′(v)) ∈ Dpe

v (l) for all v ∈ V.

PROOF. We consider solution states and transitions separately, proving that each of
the characterizations is equivalent to the respective one given in Definition 2.3. We
denote the conditions (i), (ii) of that definition with (i’), (ii’).

Trivially, (i) implies (i’): recombining any s�, t� clearly results in a state with the same
property. To see that (i’) implies (i), define Dg

v := {s�(v) | s� ∈ S�}. Clearly, if s ∈ S�,
then s(v) ∈ Dg

v for all v. Conversely, consider s with s(v) ∈ Dg
v for all v. By construction,

for each v ∈ V there exists a state sv
� ∈ S� so that sv

� (v) = s(v). Let v1, . . . , vn be some
ordering of V. By (i’), s1,2

� := ρ{v1}(sv1
� , sv2

� ) ∈ S�. By construction, s1,2
� agrees with s on

both v1 and v2. Now iterate the argument by setting s1,...,i+1
� := ρ{v1,...,vi}(s

1,...,i
� , svi+1

� ). We
get s = s1,...,n

� ∈ S�.
It is easy to see that (ii) implies (ii’): if we recombine s with s′ and t with t′ on

the same variable set, then the relevant property—(ρV (s, t)(v), ρV (s′, t′)(v)) ∈ Dpe
v (l)—

remains intact for each variable v. To prove that (ii’) implies (ii), we define a suitable
family of precondition/effect domains. We set Dpe

v (l) := {(s(v), l, s′(v)) | (s, l, s′) ∈ T }.
Clearly, if (s, l, s′) ∈ T , then (s(v), s′(v)) ∈ Dpe

v (l) for all v. Conversely, consider s, s′ with
(s(v), s′(v)) ∈ Dpe

v (l) for all v. By construction, for each v ∈ V there exists a transition
(sv, l, s′v) ∈ T so that sv(v) = s(v) and s′v(v) = s′(v). Let v1, . . . , vn be some ordering of V.
By (ii’), if we define s1,2 := ρ{v1}(sv1 , sv2 ) and s′1,2 := ρ{v1}(s′v1 , s′v2 ) then (s1,2, l, s′1,2) ∈ T .
By construction, s1,2 agrees with s on both v1 and v2, and s′1,2 agrees with s′ on both
v1 and v2. Now iterate the argument by setting s1,...,i+1 := ρ{v1,...,vi}(s

1,...,i, svi+1 ) and
s′1,...,i+1 := ρ{v1,...,vi}(s

′1,...,i, s′vi+1 ). We get s = s1,...,n, s′ = s′1,...,n, and (s1,...,n, l, s′1,...,n) ∈ T .

PROPOSITION 2.7. Let � = (V,O, s0, s�) be a planning task. Then, �(�) is factored with
state variables V.

PROOF. To see this, just note that planning tasks satisfy the characterization in
Proposition 2.4. Suitable goal domains are defined by Dg

v := {s�(v)} if s�(v) is defined
and Dg

v := Dv otherwise. Further, if o is a label in �(�) (and hence an operator in O),
then suitable precondition/effect domains are given by

Dpe
v (o) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(preo(v), effo(v))} if v ∈ Vpreo
∩ Veffo

{(preo(v), preo(v))} if v ∈ Vpreo
\ Veffo

{(d, eff(v)) | d ∈ Dv} if v ∈ Veffo
\ Vpreo

{(d, d) | d ∈ Dv} otherwise.

.
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A.2. An Algorithmic View of Abstractions

THEOREM 4.5. Let � = (S, L, T , s0, S�) be a factored transition system, and let α1 and
α2 be orthogonal abstractions of �. Then, �α1 ⊗ �α2 = �α1⊗α2 .

PROOF. Let �α1 = (S1, L1, T 1, s1
0 , S1

� ), �α2 = (S2, L2, T 2, s2
0 , S2

� ), α12 = α1 ⊗ α2, �α12 =
(S12, L12, T 12, s12

0 , S12
� ), and �α1 ⊗ �α2 = (S⊗, L⊗, T ⊗, s⊗

0 , S⊗
� ).

To prove �α12 = �α1 ⊗�α2 , we must show that S12 = S⊗, L12 = L⊗ with identical label
costs, T 12 = T ⊗, s12

0 = s⊗
0 , and S12

� = S⊗
� . We show these five properties in sequence.

In the proofs of three of the properties, we will need to consider the recombination
ρV (s1, s2) of two states s1, s2 ∈ S. The set V will always be the set of state variables on
which α1 depends. Since V is always the same, we omit it from the notation for the rest
of the proof. Note that, by the orthogonality of α1 and α2, ρ(s1, s2) agrees with si on all
state variables on which αi depends, for i = 1, 2. This implies that α1(ρ(s1, s2)) = α1(s1)
and α2(ρ(s1, s2)) = α2(s2). We will refer to this equality as “the orthogonality property”
throughout the proof.

(i) S12 = S⊗: Consider (s1, s2) ∈ S12. By definition of �α12 , there exists s ∈ S with
α12(s) = (s1, s2), which by definition of α12 means that αi(s) = si and hence si ∈ Si

for i = 1, 2. Therefore, (s1, s2) ∈ S1 × S2 = S⊗. This shows that S12 ⊆ S⊗.
Conversely, consider (s1, s2) ∈ S⊗. Because S⊗ = S1 × S2, this means that si ∈ Si

for i = 1, 2, and hence there exist states si ∈ S with αi(si) = si for i = 1, 2. Let
s = ρ(s1, s2). By the orthogonality property, αi(s) = αi(si) for i = 1, 2, and hence
α12(s) = (α1(s), α2(s)) = (α1(s1), α2(s2)) = (s1, s2). Thus, there exists a state s which
α12 maps to (s1, s2), and hence (s1, s2) ∈ S12. We conclude that S⊗ ⊆ S12.

(ii) L12 = L⊗ with identical label costs: holds directly by definition since abstraction
leaves the labels untouched, that is, L12 = L1 = L2 = L = L1 ∩ L2 = L⊗ and the
label costs are all the same.

(iii) T 12 = T ⊗: Consider ((s1, s2), l, (t1, t2)) ∈ T 12. By definition of �α12 , there exists a
transition (s, l, t) ∈ T with α12(s) = (s1, s2) and α12(t) = (t1, t2). By definition of α12,
we get αi(s) = si and αi(t) = ti for i = 1, 2, and hence (s, l, t) induces the transition
(si, l, ti) ∈ T i for i = 1, 2. By definition of the synchronized product, we obtain
((s1, s2), l, (t1, t2)) ∈ T ⊗. This shows that T 12 ⊆ T ⊗.

Conversely, consider ((s1, s2), l, (t1, t2)) ∈ T ⊗. By definition of the synchronized
product, we obtain (si, l, ti) ∈ T i for i = 1, 2. By definition of �αi , there exist transi-
tions (si, l, ti) ∈ T with αi(si) = si and αi(ti) = ti for i = 1, 2. Let s = ρ(s1, s2) and t =
ρ(t1, t2). Because � is factored, we have (s, l, t) ∈ T . By the orthogonality property,
αi(s) = αi(si) and αi(t) = αi(ti), and thus the transition induced by (s, l, t) in �α12 is
(α12(s), l, α12(t)) = ((α1(s), α2(s)), l, (α1(t), α2(t))) = ((α1(s1), α2(s2)), l, (α1(t1), α2(t2))) =
((s1, s2), l, (t1, t2)), and thus ((s1, s2), l, (t1, t2)) ∈ T 12. We conclude that T ⊗ ⊆ T 12.

(iv) s12
0 = s⊗

0 : We have s12
0 = α12(s0) = (α1(s0), α2(s0)) = (s1

0 , s2
0 ) = s⊗

0 .
(v) S12

� = S⊗
� : Consider (s1

� , s2
� ) ∈ S12

� . By definition of �α12 , there exists a solution state
s� ∈ S� with α12(s�) = (s1

� , s2
� ). By definition of α12, we get αi(s�) = si

� for i = 1, 2.
Thus, by definition of �αi , si

� ∈ Si
� for i = 1, 2. By definition of the synchronized

product, we obtain (s1
� , s2

� ) ∈ S⊗
� . This shows that S12

� ⊆ S⊗
� .

Conversely, consider (s1
� , s2

� ) ∈ S⊗
� . By definition of the synchronized product, we

obtain si
� ∈ Si

� for i = 1, 2. By definition of �αi , there exist solution states s�i ∈ S�

with αi(s�i) = si
� for i = 1, 2. Let s� = ρ(s�1, s�2). Because � is factored, we have

s� ∈ S�. By the orthogonality property, αi(s�) = αi(s�i), and thus the state induced
by s� in �α12 is α12(s�) = (α1(s�), α2(s�)) = (α1(s�1), α2(s�2)) = (s1

� , s2
� ). Since s� ∈ S�, by

definition of �α12 this implies that (s1
� , s2

� ) ∈ S12
� . Thus, S⊗

� ⊆ S12
� .
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A.3. Label Reduction

PROPOSITION 5.4. Let � be a transition system, and let α be an abstraction of �. If τ is
a conservative label reduction for �, then τ is a conservative label reduction for �α.

PROOF. We need to show that for all labels l1, l2 ∈ L of �α with τ (l1) = τ (l2), every
transition in �α with label l1 has a parallel transition with label l2.

Let, l1, l2 be labels with τ (l1) = τ (l2), and let (s′, l1, t′) be a transition in �α. By
definition of abstract transition systems, there exist s ∈ α−1(s′) and t ∈ α−1(t′) so
that (s, l1, t) is a transition in �. Because τ is conservative for �, this implies that
(s, l2, t) is a transition in �, and hence by definition of abstract transition systems,
(α(s), l2, α(t)) = (s′, l2, t′) is a transition in �α.

PROPOSITION 5.5. Let L be a set of labels, let �1 and �2 be transition systems using L,
and let τ be a label reduction on L. If τ is conservative for both �1 and �2, then τ is
conservative for �1 ⊗ �2.

PROOF. Let l1 and l2 be equivalent labels. Then ((s1, s2), l1, (s′
1, s′

2)) is a transition in
�1 ⊗ �2 iff (by definition) (s1, l1, s′

1) and (s2, l1, s′
2) are transitions in �1 and �2 iff (by

prerequisite) (s1, l2, s′
1) and (s2, l2, s′

2) are transitions in �1 and �2 iff (by definition)
((s1, s2), l2, (s′

1, s′
2)) is a transition in �1 ⊗ �2.

LEMMA 5.6. Let L be a set of labels, let �1 and �2 be transition systems using L, and
let τ be a label reduction on L. If τ is conservative for �2, then �1|τ ⊗�2|τ = (�1 ⊗�2)|τ .

PROOF. Let �1 = (S1, L, T 1, s1
0 , S1

� ), �2 = (S2, L, T 2, s2
0 , S2

� ), and �1 ⊗ �2 = �12 =
(S12, L, T 12, s12

0 , S12
� ). Further, let �1|τ ⊗ �2|τ = (SA, Lτ , T A, sA

0 , SA
� ), and (�1 ⊗ �2)|τ =

(SB, Lτ , T B, sB
0 , SB

� ). It is obvious that SA = SB, sA
0 = sB

0 , SA
� = SB

� , and the label costs
are identical. We need to show that T A = T B.

The direction T B ⊆ T A is obvious: by reducing labels prior to the synchronized
product, we can only ever introduce more combined transitions because we can only
increase the sets of transitions on both sides that have a common label. More formally,
assume that ((s1, s2), r, (s′

1, s′
2)) ∈ T B. Then, by definition, there exists l ∈ L so that

r = τ (l) and ((s1, s2), l, (s′
1, s′

2)) ∈ T 12. By definition of the synchronized product, we
get (s1, l, s′

1) ∈ T 1 and (s2, l, s′
2) ∈ T 2, which immediately leads us to (s1, τ (l), s′

1) ∈
T 1|τ and (s2, τ (l), s′

2) ∈ T 2|τ . From there, we get ((s1, s2), τ (l), (s′
1, s′

2)) ∈ T A and hence
((s1, s2), r, (s′

1, s′
2)) ∈ T A as desired. Note that in this argument we do not need to make

any restrictions whatsoever on the structure of τ—as hinted, T B ⊆ T A no matter how
labels are reduced.

It remains to show T A ⊆ T B, that is, we need to show that, when reducing only labels
that are equivalent in �2, then no new combined transitions are introduced. Assume
that ((s1, s2), r, (s′

1, s′
2)) ∈ T A. We need to show ((s1, s2), r, (s′

1, s′
2)) ∈ T B. Trying to simply

reverse this argumentation, we first get that (s1, r, s′
1) ∈ T 1|τ and (s2, r, s′

2) ∈ T 2|τ . This
does not immediately show the presence of the combined transition in T 12 because,
prior to application of τ , the labels of these two transitions may be different. However,
clearly, we do know that there exist l1, l2 ∈ L so that (1) τ (l1) = τ (l2) = r, (2) (s1, l1, s′

1) ∈
T 1, and (3) (s2, l2, s′

2) ∈ T 2.
From (1) and because τ is conservative for �2, we know that l1 and l2 are equivalent in

�2, and hence (3) implies (s2, l1, s′
2) ∈ T 2. From this and (2), we get ((s1, s2), l1, (s′

1, s′
2)) ∈

T 12 and thus ((s1, s2), τ (l1), (s′
1, s′

2)) = ((s1, s2), r, (s′
1, s′

2)) ∈ T B.
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THEOREM 5.11. Let � be a factored transition system with variables V, and let V ⊆ V.
Let 	 be a conservative label reduction family for �, let T α be a merge-and-shrink tree
over V for �. Then, �τ

α = �α|τ ∅ for any choice of pivot v∗ ∈ V .

PROOF. We prove by induction over the construction of T α that, for any intermediate
merge-and-shrink abstraction β over V ′ ⊆ V :

(*) �τ
β = �β if v∗ �∈ V ′, and �τ

β = �β |
τ V ′ if v∗ ∈ V ′.

Obviously, the claim follows from the case where β = α.
Clearly, (*) holds for rule (A) of Definition 3.6, that is, if T α = Tv for a variable v ∈ V.

Since abstraction and label reduction do not interfere, (*) is invariant over rule (S).
It remains to show that (*) is invariant over rule (M), where the root of T α has two
children T α1 and T α2 over V1 and V2 such that V1 ∩ V2 = ∅. By induction hypothesis,
(*) holds for each of α1 and α2. We set β = α1 ⊗ α2.

If v∗ �∈ V1 ∪V2, then �τ
β = �τ

α1
⊗�τ

α2
. By induction hypothesis, we have that �τ

α1
= �α1

and �τ
α2

= �α2 . But then, (*) follows for β simply because (with the same argu-
ment as given for Corollary 4.6) α1 and α2 are orthogonal, and hence Theorem 4.5
applies.

Now, say, without loss of generality, that v∗ ∈ V1. We have �τ
β = (�τ

α1
⊗ �τ

α2
|
τ V1 )|

τ V1∪V2 .
By induction hypothesis we have that �τ

α1
= �α1 |

τ V1 , and that �τ
α2

= �α2 . Thus we need
to prove that (�α1 |

τ V1 ⊗�α2 |
τ V1 )|

τ V1∪V2 = �α1⊗α2 |
τ V1∪V2 . By prerequisite, τ V1 is conservative

for �
πV1 . Now, V2 ⊆ V1 (due to V1 ∩ V2 = ∅). Thus, τ V1 is conservative also for �πV2 :

πV2 is an abstraction of πV1
thus this follows with Proposition 5.4. Because �α2 is an

abstraction of �πV2 , we can again apply Proposition 5.4 and get that τ V1 is conservative
for �α2 . We can thus apply Lemma 5.6 to �α1 |

τ V1 and �α2 |
τ V1 , getting that �α1 |

τ V1 ⊗
�α2 |

τ V1 = (�α1 ⊗ �α2 )|
τ V1 . We can apply Theorem 4.5, and transform this into �α1⊗α2 |

τ V1 .
Thus, it remains to show that (�α1⊗α2 |

τ V1 )|
τ V1∪V2 = �α1⊗α2 |

τ V1∪V2 . This is obvious because,
by prerequisite, τ V1∪V2 ◦ τ V1 = τ V1∪V2 .

PROPOSITION 5.13. Let � = (S, L, T , s0, S�) be a factored transition system with vari-
ables V. Let v ∈ V be a variable, and let l1, l2 ∈ L. Then, l1 and l2 are equivalent in �πv

if and only if c(l1) = c(l2) and Dpe
v (l1) = Dpe

v (l2).

PROOF. For the “only if” direction, let l1 and l2 be equivalent in �πv . Then, c(l1) = c(l2)
follows by definition of equivalent labels. We prove Dpe

v (l1) = Dpe
v (l2) by contradiction:

assumeDpe
v (l1) �= Dpe

v (l2). Assume without loss of generality that (d, d′) ∈ Dpe
v (l1)\Dpe

v (l2).
By Proposition 2.4(ii), there exists a transition (s1, l1, s′

1) ∈ T where s1(v) = d and s′
1(v) =

d′. Thus, �πv contains the transition (d, l1, d′). On the other hand, by Proposition 2.4(ii)
there does not exist a transition (s1, l2, s′

1) ∈ T where s1(v) = d and s′
1(v) = d′. Thus, �πv

does not contain the transition (d, l2, d′). Hence, l1 and l2 are not equivalent in �πv , as
we needed to show.

For the “if” direction, say that Dpe
v (l1) = Dpe

v (l2). Assume that (d, l1, d′) is a transition
in �πv . We show that (d, l2, d′) also is a transition in �πv . This suffices because the same
argument can be applied conversely, showing together with c(l1) = c(l2) that l1 and l2
are equivalent in �πv .

By definition of abstract transition systems, there exist s1, s′
1 ∈ S so that s1(v) = d,

s′
1(v) = d′, and (s1, l1, s′

1) ∈ T . By Proposition 2.4(ii), (s1(u), s′
1(u)) ∈ Dpe

u (l1) for all
u ∈ V. Let W be the set of variables w where Dpe

w (l1) �= Dpe
w (l2). For each w ∈ W ,

let (d(w), d′(w)) ∈ Dpe
w (l2); note here that Dpe

w (l2) is not empty due to our assump-
tion that pathologically useless labels have been removed from the transition system.
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Define the state s2 to be identical to s1, except that s2(w) := d(w) for each w ∈ W .
Define the state s′

2 to be identical to s′
1, except that s′

2(w) := d′(w) for each w ∈ W .
By construction, (s2(u), s′

2(u)) ∈ Dpe
u (l2) for all u ∈ V. Hence, by Proposition 2.4(ii),

(s2, l2, s′
2) ∈ T . With this, by definition of abstract transition systems, (s2(v), l2, s′

2(v))
is a transition in �πv . By construction, v �∈ W and thus s2(v) = s1(v) = d and
s′

2(v) = s′
1(v) = d′. So (d, l2, d′) is a transition in �πv , which is what we needed to

show.

A.4. Bisimilarity

PROPOSITION 6.3. Let � be a transition system, let α be an abstraction of �, and let β
be an abstraction of �α. If α is a bisimulation for � and β is a bisimulation for �α, then
β ◦ α is a bisimulation for �.

PROOF. Let � = (S, L, T , s0, S�). Say that s, s′, t ∈ S so that (1) (s, l, s′) ∈ T and (2)
s ∼β◦α t. We need to prove that there exists t′ ∈ S so that (A) (t, l, t′) ∈ T and (B)
s′ ∼β◦α t′.

By definition of ∼β◦α, we have that [s]∼α ∼β [t]∼α . Since β is a bisimulation for �α,
which is isomorphic to �/∼α, we know that there exists [w]∼α ∈ S/∼α so that (3)
([t]∼α , l, [w]∼α ) ∈ T/∼α and (4) [s′]∼α ∼β [w]∼α . Now, due to the definition of quotient
systems, (3) implies that there exist u, v ∈ S so that (5) u ∈ [t]∼α , (6) v ∈ [w]∼α , and
(7) (u, l, v) ∈ T . Since α is a bisimulation for �, (7) together with (5) and (6) implies
that there exists t′ ∈ S so that (A) (t, l, t′) ∈ T (obtaining one half of the result) and (8)
t′ ∼α v. Finally, (8) together with (6) implies that t′ ∼α w and hence (9) t′ ∼β◦α w, (4)
implies that (10) s′ ∼β◦α w, and (9) and (10) together imply that s′ ∼β◦α t′ and hence we
get (B) as well.

PROPOSITION 6.4. Let �1 and �2 be transition systems, and let α1 and α2 be abstractions
for �1 and �2, respectively. If α1 is a bisimulation for �1, and α2 is a bisimulation
for �2, then α1 ⊗ α2 is a bisimulation for �1 ⊗ �2, where α1(s1, s2) := α1(s1) and
α2(s1, s2) := α2(s2).

PROOF. Let �12 = �1 ⊗ �2 where �12 = (S12, L, T 12, s12
0 , S12

� ). Let s = (s1, s2), s′ =
(s′

1, s′
2), t = (t1, t2) ∈ S12 and l ∈ L, such that s ∼α1⊗α2 t and (s, l, s′) ∈ T 12. To show

that α1 ⊗ α2 is a bisimulation, we need to show that there exists t′ ∈ S12 such that
(t, l, t′) ∈ T 12 and s′ ∼α1⊗α2 t′.

Since (s, l, s′) ∈ T 12, by definition of the synchronized product, we have that
(1) (s1, l, s′

1) ∈ T 1 and (2) (s2, l, s′
2) ∈ T 2. Since s ∼α1⊗α2 t, by definition of ∼α1⊗α2 we

have that (3) s1 ∼α1 t1 and (4) s2 ∼α2 t2. This is because (α1 ⊗ α2)(s) = (α1(s), α2(s)) =
(α1(s1), α2(s2)) and similarly for t, so if (α1 ⊗ α2)(s) = (α1 ⊗ α2)(t), then we have
α1(s1) = α1(t1) and α2(s2) = α2(t2).

Due to (1) and (3) and because α1 is a bisimulation for �1, there exists t′
1 such that

(5) (t1, l, t′
1) ∈ T 1 and (6) s′

1 ∼α1 t′
1. Due to (2) and (4) and because α2 is a bisimulation

for �2, there exists t′
2 such that (7) (t2, l, t′

2) ∈ T 2 and (8) s′
2 ∼α2 t′

2.
Define t′ := (t′

1, t′
2). Then, by (5) and (7), we have (t, l, t′) ∈ T 12. By (6) and (8), we

have that α1(s′
1) = α1(t′

1) and α2(s′
2) = α2(t′

2), thus (α1(s′
1), α2(s′

2)) = (α1(t′
1), α2(t′

2)), thus
(α1 ⊗ α2)(s′) = (α1 ⊗ α2)(t′), thus s′ ∼α1⊗α2 t′ as desired.

COROLLARY 6.5. Let � be a factored transition system with variables V, and let V ⊆ V.
Let T α be a merge-and-shrink tree over V for � constructed so that in each application
of Definition 3.6 rule (S) α1 is a goal-respecting bisimulation for �α2 . Then, α is a
goal-respecting bisimulation for �πV .
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PROOF. This property clearly holds for atomic T α. To see that the property is in-
variant over rule (S), note that by prerequisite α1 is a goal-respecting bisimulation
for �α2 , and by induction hypothesis α2 = α2V ′ ◦ πV ′ where α2V ′ is a goal-respecting
bisimulation for �πV ′ . We can apply Proposition 6.3 to �πV ′ , α2V ′ and α1, obtaining that
α1 ◦ α2V ′ is a goal-respecting bisimulation for �πV ′ . This is the same as saying that
α1 ◦ α2V ′ ◦ πV ′ = α1 ◦ α2 is a goal-respecting bisimulation for �πV ′ , so we are done. Con-
sidering property (M), suppose that α1 is a goal-respecting bisimulation for �πV1 and α2
is a goal-respecting bisimulation for �πV2 . That is, α1 = α1V1 ◦ πV1 and α2 = α2V2 ◦ πV2 ,
where α1V1 is a goal-respecting bisimulation for �πV1 and α2V2 is a goal-respecting
bisimulation for �πV2 . By Proposition 6.4, α1V1 ⊗ α2V2 is a goal-respecting bisimulation
for �πV1 ⊗ �πV2 , where α1V1 extends α1V1 to �πV1 ⊗ �πV2 by ignoring the part of the
state pertaining to �πV2 , and similarly for α2V2 . Since �πV1 and �πV2 are orthogonal, by
Theorem 4.5 their synchronized product is equal to �πV1∪V2 . Obviously, since V1∩V2 = ∅,
α1V1 = α1V1 ◦ πV1 = α1 and α2V2 = α2V2 ◦ πV2 = α2. Thus, α1 ⊗ α2 is a goal-respecting
bisimulation for �πV1∪V2 , as we needed to show.

PROPOSITION 6.8. There exist families of transition systems � with associated label
reductions τ so that the coarsest goal-respecting bisimulation for �|τ is exponentially
smaller than the coarsest goal-respecting bisimulation for �.

PROOF. Consider the family of factored transition systems �(n) = (S(n), L(n),
T (n), s0(n), S�(n)) with Boolean variables V(n) = {v1, . . . , vn}, with transitions labeled
l1, . . . ln where c(li) = 1 and li applies if vi = 0 and sets vi to 1, where s0(n) assigns each
vi to 0, and where S�(n) contains the single state assigning each vi to 1. For any two
different states s, t in S(n), the labels of the outgoing transitions are different because
the subset of variables with value 0 is different. Thus, s and t are not bisimilar, and
the coarsest possible bisimulation is the identity function. The size of this abstraction
is |S(n)| = 2n.

Now, let τ (n) be a label reduction mapping every label to the same unique symbol;
this is permissible since the label costs are uniform. Consider an abstraction α(n) that
maps two states s, t to the same symbol if and only if |{vi | s(vi) = 1}| = |{vi | t(vi) = 1}|.
The size of α(n) is n + 1. Clearly, α(n) is goal-respecting for �(n)|τ (n). It remains to
show that α(n) is a bisimulation for �(n)|τ (n). To see this, say that s, t are states with
α(n)(s) = α(n)(t), and say that (s, τ (n)(lj), s′) is a transition in �(n)|τ (n). The transition in s
sets variable v j to 1 (which implies s(v j) = 0). Because |{vi | s(vi) = 1}| = |{vi | t(vi) = 1}|,
there exists a variable vk with t(vk) = 0. Thus, we have the transition (t, τ (n)(lk), t′),
which satisfies τ (n)(lj) = τ (n)(lk) and α(n)(s′) = α(n)(t′).

THEOREM 6.10. Let � be a factored transition system with variables V, and let V ⊆ V.
Let 	 be a conservative label reduction family for �, and let T α be a merge-and-shrink
tree over V for �. If T α is constructed by label-reduced goal-respecting bisimulations,
then α is a goal-respecting bisimulation for �πV |τ ∅ .

PROOF. Let v∗ be the pivot variable in the construction of T α. We prove by induction
over the construction of T α that, for any intermediate merge-and-shrink abstraction β
over V ′:

(*) β is a goal-respecting bisimulation for �πV ′ if v∗ �∈ V ′, and β is a goal-respecting
bisimulation for �πV ′ |

τ V ′ if v∗ ∈ V .

Obviously, the claim follows from the case where β = α.
If T β = Tv for a variable v ∈ V, that is, if T β is the direct outcome of an application

of rule (A) of Definition 3.6, then β = id�πv ◦ πv, where id�πv is the identity function
on �πv . But then, (*) holds trivially because the identity function induces, of course, a

Journal of the ACM, Vol. 61, No. 3, Article 16, Publication date: May 2014.



Merge-and-Shrink Abstraction 16:57

goal-respecting bisimulation no matter if the labels in the transition system have been
reduced.

If the root of T β has a single child T α2 , and β = α1 ◦ α2, that is, if T β is the direct
outcome of an application of rule (S) of Definition 3.6, then (*) follows similarly as in the
proof to Corollary 6.5. For v∗ �∈ V ′, the argument is exactly the same. For v∗ ∈ V , the ar-
gument is the same except that we also apply a label reduction. In detail, by induction
hypothesis, we know that α2 = α2V ′ ◦ πV ′ where α2V ′ is a goal-respecting bisimula-
tion for �πV ′ |

τ V ′ . By prerequisite, α1 is a goal-respecting bisimulation for �α2 |
τ V ′ . Now,

�α2 = �α2V ′ ◦πV ′ = (�πV ′ )α2V ′ . Thus α1 is a goal-respecting bisimulation for [(�πV ′ )α2V ′ ]|
τ V ′ .

Clearly, we can commute label reduction and abstraction, getting that α1 is a
goal-respecting bisimulation for (�πV ′ |

τ V ′ )α2V ′ . Thus, we can now apply Proposition 6.3 to
�πV ′ |

τ V ′ , α2V ′ , and α1, getting that α1 ◦α2V ′ is a goal-respecting bisimulation for �πV ′ |
τ V ′ .

But then, α1 ◦ α2V ′ ◦ πV ′ = α1 ◦ α2 is a goal-respecting bisimulation for �πV ′ |
τ V ′ , so we

are done.
Say finally that β is the direct outcome of an application of rule (M) of Definition 3.6.

Then the root of T β has two children T α1 and T α2 over V1 and V2 such that V1 ∩ V2 = ∅.
By induction hypothesis, (*) holds for each of α1 and α2. We define β = α1 ⊗ α2.

If v∗ �∈ V1 ∪ V2 then, by induction hypothesis, we have that α1 is a goal-respecting
bisimulation for �πV1 , and α2 is a goal-respecting bisimulation for �πV2 . Exactly as for
Corollary 6.5, we can apply Proposition 6.4 and Theorem 4.5, and are done.

Say now without loss of generality that v∗ ∈ V1. We need to prove that α1 ⊗ α2 is
a goal-respecting bisimulation for �πV1∪V2 |

τ V1∪V2 . Since further label reduction can only
make bisimilarity easier to achieve, obviously it suffices to prove that α1 ⊗ α2 is a
goal-respecting bisimulation for �πV1∪V2 |

τ V1 . Since V1 ∩ V2 = ∅, by Theorem 4.5, this is
the same as saying that α1 ⊗ α2 is a goal-respecting bisimulation for (�πV1 ⊗ �πV2 )|

τ V1 .
Now, similarly as argued in the proof of Theorem 5.11, since by prerequisite we have
that τ V1 is conservative for �

πV1 , with Proposition 5.4 we get that τ V1 is conservative
for �πV2 . Thus, we can apply Lemma 5.6, getting that (�πV1 ⊗ �πV2 )|

τ V1 = �πV1 |
τ V1 ⊗

�πV2 |
τ V1 . Hence, it suffices to prove that (A) α1 ⊗ α2 is a goal-respecting bisimulation for

�πV1 |
τ V1 ⊗ �πV2 |

τ V1 . Now, by induction hypothesis, we have that (B) α1 is a goal-respecting
bisimulation for �πV1 |

τ V1 . We also have that α2 is a goal-respecting bisimulation for �πV2 .
Since further label reduction can only make bisimilarity easier to achieve, we have that
(C) α2 is a goal-respecting bisimulation for �πV2 |

τ V1 .
The rest of the proof now consists of appropriately applying Proposition 6.4. (B)

means that α1 = α1V1 ◦ πV1 where α1V1 is a goal-respecting bisimulation for �πV1 |
τ V1 . (C)

means that α2 = α2V2 ◦ πV2 where α2V2 is a goal-respecting bisimulation for �πV2 |
τ V1 . By

Proposition 6.4, α1V1 ⊗ α2V2 is a goal-respecting bisimulation for �πV1 |
τ V1 ⊗ �πV2 |

τ V1 ,
where α1V1 extends α1V1 to �πV1 |

τ V1 ⊗ �πV2 |
τ V1 by ignoring the part of the state pertaining

to �πV2 |
τ V1 , and similarly for α2V2 . Since V1 ∩ V2 = ∅, α1V1 = α1V1 ◦ πV1 = α1 and α2V2 =

α2V2 ◦ πV2 = α2. Thus, α1 ⊗ α2 is a goal-respecting bisimulation for �πV1 |
τ V1 ⊗ �πV2 |

τ V1 ,
which is the property (A) that we needed to show.

A.5. Expressive Power

PROPOSITION 7.1. Let � = (S, L, T , s0, S�) be a factored transition system, let α1 and
α2 be merge-and-shrink abstractions of � over disjoint variable sets V1 and V2, and let
c1, c2 be a cost partitioning for �. Then, one can in time bounded by a polynomial in |α1|
and |α2| construct a merge-and-shrink abstraction α12 with cost function c12 ≤ c so that
hα12c12 ≥ hα1c1 + hα2c2 and |α12| = |{hα12c12 (s) | s ∈ S}|.

PROOF. We first construct an abstraction α12 of � by merging α1 and α2, that is,
α12 := α1 ⊗ α2. Because the variable sets underlying α1 and α2 are disjoint, α12 is a
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merge-and-shrink abstraction according to Definition 3.6. We associate α12 with the
modified cost function c12 := c1 + c2. Since c1, c2 is a cost partitioning, we have that
c12 ≤ c, that is, as desired c12 is bounded from above by the original cost function
associated with �.

We next show that hα12c12 ≥ hα1c1 + hα2c2 . Say, for arbitrary s ∈ S, that �p12 is an
optimal solution path for α12(s) in �α12 , under the cost function c12. Note that each
transition on this path has the form ((s1, s2), l, (s′

1, s′
2)), where si, s′

i are states in �αi .
Define �pi to be the subsequence of �p12 consisting of all transitions where si �= s′

i.
That is, �pi captures the part of the solution path pertaining to αi. By definition of
synchronized transition systems, each transition in �pi has a correspondence in �αi ,
so �pi is a solution path for αi(s) in that system. Denote by ci( �pi) the cost of that
solution path under the cost function associated with αi; similar for c12( �p12). Clearly,
hαici (s) ≤ ci( �pi), and (by construction) c12( �p12) ≥ c1( �p1) + c2( �p2). Putting this together,
we get hα12c12 (s) = c12( �p12) ≥ c1( �p1) + c2( �p2) ≥ hα1c1 (s) + hα2c2 (s) as desired.

Now, we construct α12 by shrinking α12 so that states s, t ∈ Sα12 are aggregated iff
their solution cost within that abstraction is the same. That is, we reduce α12 to the
minimal abstraction required to represent the same heuristic function. Obviously, α12
satisfies the requirements of the claim.

THEOREM 7.2. Let � = (S, L, T , s0, S�) be a factored transition system, let α1, . . . , αk be
merge-and-shrink abstractions of � over pairwise disjoint variable sets V1, . . . , Vk, and
let c1, . . . , ck be a cost partitioning for �. Then, for each 2 ≤ j ≤ k, there exists a merge-
and-shrink abstraction α1... j with cost function c1... j ≤ c so that hα1... j c1... j ≥ ∑ j

i=1 hαici ,
|α1... j | = |{hα1... j c1... j (s) | s ∈ S}| where hα1... j c1... j (s) ≤ ∑ j

i=1 maxs∈S hαici (s) for all s ∈ S, and
α1... j can be constructed in time bounded by a polynomial in |α1|, . . . , |α j |, |α12|, . . . ,
|α1...( j−1)|.

PROOF. For the case j = 2, the construction is the same as the one underlying
Proposition 7.1, except for how we obtain α12 from α12. We do so by shrinking α12 in two
steps. The first step is the same as before, aggregating states s, t ∈ Sα12 iff their solution
cost within that abstraction is the same. In the second step, we remove any separate
classes of states whose solution cost exceeds the sum of the maximum costs in α1 and
α2, that is, we aggregate all states s, t whose solution cost is at least maxs∈S hα1c1 (s) +
maxs∈S hα2c2 (s). Afterwards, α12 obviously satisfies the claimed properties regarding c12,
hα12c12 , and |α12|.

If j > 2, then we first construct α123 by merging α12 with α3, and we associate α123

with the cost function c123 := c12 + c3 = ∑3
i=1 ci. We construct α123 from α123 by first

aggregating all states with identical solution cost, then aggregating all states whose
solution cost is at least

∑3
i=1 maxs∈S hαici (s). The same arguments as before show that

hα123c123 satisfies the claimed properties regarding c123, hα123c123 , and |α123|. We iterate
this construction up to j.

Regarding runtime, the crucial point is that constructing each α1... j and its heuristic
takes time polynomial in |α1...( j−1)| and |α j |, and does not depend in any other way
on the size of the synchronized product of the original abstractions α1, . . . , α j−1. Since
constructing α1... j is of course polynomial in |α1... j |, the claim follows.

THEOREM 7.4. There exist families of transition systems where (a) there exists an
abstraction strategy for which merge-and-shrink yields a perfect heuristic in polynomial
time, whereas (b) there exists no ensemble of polynomial-size projections πV1 , . . . , πVk with
cost partitioning c1, . . . , ck, which can guarantee that

∑k
i=1 hπVi ci (s0) ≥ ( 1

2 + ε)h∗(s0), for
any ε > 0.
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PROOF. We slightly extend the construction from Example 6.6. Consider the family
of factored transition systems �(n) = (S(n), L(n), T (n), s0(n), S�(n)) defined as follows.
There are the Boolean variables V(n) = {v0, v1, . . . , vn}. The transitions are labeled
l0, l1, . . . ln, where the label costs are uniformly 1. Transition l0 applies if v0 = 0, and
sets v0 to 1. For j > 0, transition lj applies if v0 = 1 and v j = 0; it sets v j to 1 and
it sets v0 to 0. The initial state s0 assigns every v j to 0, and S� contains the single
state assigning every v j to 1. In other words, we extend Example 6.6 by introducing a
variable v0 that must be set to 1 in between the moves on any of the variables v1, . . . , vn.

Say that, when constructing the merge-and-shrink heuristic α, in Step (ii) we always
aggregate (partial) states s and t iff s(v0) = t(v0) and |{v j | j > 0, s(v j) = 1}| = |{v j | j >
0, t(v j) = 1}|, that is, iff they agree on the count of variables with index j > 0 already
set to 1. It is easy to see that this yields a perfect heuristic and that abstraction size is
linear in n. This shows part (a) of the claim.

Let πV1 , . . . , πVk be any ensemble of projections, with cost partitioning c1, . . . , ck. Con-
sider the initial state s0. The solution cost is 2n + 1, owing to n moves for variables
j > 0, and n + 1 moves for v0. We show that

∑k
i=1 hπVi ci (s0) incurs the claimed error

due to accounting for only a logarithmic number of v0 moves. Consider any individual
projection onto variable subset Vi. If v0 ∈ Vi, then an optimal solution in �πVi includes
|Vi| + 1 moves of v0. If v0 �∈ Vi, no such moves are included. In both cases, the cost per-
taining to v0 in hπVi ci (s0) is bounded from above by (|Vi|+1) ·ci(l0). Now, the size of �πVi is
2|Vi |. By prerequisite, this is polynomial in the input size n, so |Vi| ∈ O(log n). Thus, the
cost pertaining to v0 in hπVi ci (s0) is bounded by (Ai + Bi log n) · ci(l0), for some constants
Ai and Bi. Summing this up over the ensemble πV1 , . . . , πVk, we get the upper bound∑k

i=1(Ai + Bi log n) ·ci(l0) ≤ (A+ Blog n) ·∑k
i=1 ci(l0) for some constants Aand B. Because

c1, . . . , ck is a cost partitioning, (A+ Blog n) ·∑k
i=1 ci(l0) ≤ (A+ Blog n) ·c(l0) = A+ Blog n.

Clearly, the contribution of variables v1, . . . , vn to
∑k

i=1 hπVi ci (s0) is at most n, so alto-
gether we have

∑k
i=1 hπVi ci (s0) ≤ n+A+Blog n. The ratio between this and h∗(s0) = 2n+1

converges to 1
2 which proves part (b) of the claim.

We now provide the proof of Theorem 7.8. In order to do so, we first need to define
the critical-path heuristics hm. These are defined for planning tasks only (not for fac-
tored transition systems in general), so we stick to that formalism here. We assume a
planning task � = (V,O, s0, s�) with state space �(�) = (S, L, T , s0, S�).

To define hm, we first need the concept of regression. Given a partial variable as-
signment sG, the set of regressions of sG, denoted R(sG), contains all pairs (o, s′

G) where
o = (preo, effo) is an operator and s′

G = (sG \ effo) ∪ preo is a partial variable assignment,
such that effo and sG are consistent (i.e., do not contain conflicting assignments to any
variable) and effo ∩ sG �= ∅ (else, there is no point in trying to achieve sG using o). A
regression (o, s′

G) ∈ R(sG) has the property that if �p is a path leading to s′
G, then �p ◦ 〈o〉

is a path leading to sG. Thus, the Bellman equation for the optimal cost function h∗ can
be formulated as:

h∗(s, sG) =
{

0 if sG ⊆ s
min(o,s′

G)∈R(sG) h∗(s, s′
G) + costo otherwise.

(1)

Note here that, deviating from Definition 2.9, we define the heuristic as a function of
two variable assignments, the first one being the state s we evaluate (previously the
only argument), the second one being a subgoal to achieve. This is merely a notational
convenience allowing to formulate the recursion in Eq. (1).

The hm heuristic function is obtained by recursively approximating the cost of achiev-
ing an assignment to more than mvariables by the highest cost of achieving the assign-
ment restricted to any subset of size m or less. Formally, it is defined as the pointwise
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greatest solution to this equation:

hm(s, sG) =
⎧⎨
⎩

0 if sG ⊆ s
min(o,s′

G)∈R(sG) hm(s, s′
G) + costo if |sG| ≤ m

maxs′
G⊂sG,|s′

G|≤m hm(s, s′
G) otherwise.

(2)

Given a vocabulary V of propositional variables, let ϕW = ∨
{p,q}∈W (p∧ q) be a propo-

sitional formula where W is allowed to be any subset of the set of all distinct pairs of
propositional variables in V . We construct a family of planning tasks corresponding
to ϕW , designed so that the state space encodes all variable assignments, and so that
those states containing a pair in W have solution cost 1, whereas those not containing
such a pair have solution cost > 1.

Given a set W ⊆ V × V as previously mentioned, the planning task �W is defined
as follows. There is one Boolean state variable p for each p ∈ V , and another Boolean
variable L. The initial state assigns each p = 0 and L = 0. The goal is L = 1. We have
the following operators.

—For every p ∈ V , an operator true(p) with cost 0, no precondition, and effects p = 1
as well as q = 0 for all q such that {p, q} ∈ W .

—For every pair {p, q} ∈ W , an operator set(p,q) with cost 1, no precondition, and
effects p = 1, q = 1.

—For every pair {p, q} ∈ W , an operator goal(p,q) with cost 1, preconditions p = 1,
q = 1, and effect L = 1.

This construction allows to reach at 0 cost any state that does not contain a pair in W .
An optimal plan is set(p,q) followed by goal(p,q), where {p, q} ∈ W .

LEMMA A.1. Let V = {p1, . . . , pn}, W ⊆ V × V , and ϕW = ∨
{p,q}∈W (p ∧ q). Let SW be

the set of assignments to V that do not satisfy ϕW . Let �W be the planning task defined
above, and let �(�W ) = (S, L, T , s0, S�). Let α be any abstraction with hα(s0) = h∗(s0) = 2.
Then, {s | s ∈ S, hα(s) = 2} = {a ∪ {L = 0} | a ∈ SW }.

PROOF. Let s be a state with s = a ∪ {L = 0} for a ∈ SW . Clearly, hα(s) ≤ 2. Assume
hα(s) < 2. By construction, we can reach s from s0 by a sequence of 0-cost true(p)
operators. From the consistency of hα we get hα(s0) ≤ 0 + hα(s) < 2, in contradiction.
For the other direction, say that s is a state with hα(s) = 2, and assume to the contrary
that either s(L) = 1, or s does contain a pair in W . If s(L) = 1, then s is a goal state,
and hence h∗(s) = 0, a contradiction because hα is admissible. Finally, consider the case
where s(L) = 0 and s does contain a pair {p, q} in W . But then, we can apply goal(p,q)
and thus h∗(s) ≤ 1, again a contradiction to the admissibility of hα. This proves the
claim.

LEMMA A.2. Let V = {p1, . . . , pn}, W ⊆ V × V , and ϕW = ∨
{p,q}∈W (p ∧ q). Let �W be

the planning task defined previously. Then, h2 is a perfect heuristic for �(�W ).

PROOF. Say �W = (V,O, s0, s�). We show that (*) any subgoal sG that can be generated
by regression on s� satisfies |sG| ≤ 2. This proves that h2(s, s�) = h∗(s, s�): We can simplify
Eq. (1) by considering only subgoals of size at most 2 in the second line. The same can
be done in Eq. (2), and consequently the third line in Eq. (2) can be dropped (it will
never be considered). The simplified equations are identical, proving the claim.

It remains to prove (*). This obviously holds for s� itself. The operators over which s�

can be regressed have the form goal(p,q) where {p, q} ∈ W—these are the only ones
affecting L—generating a subgoal of form (1) sG = {p = 1, q = 1} where {p, q} ∈ W .
Subgoals of this form cannot be regressed over any operator true(p’): if p′ �∈ {p, q}
then the intersection of the effect with sG is empty; and if p′ ∈ {p, q}, say without loss
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of generality p′ = p, then true(p’) has the effect q = 0 which is not consistent with
the assignment q = 1 in sG. Thus, subgoal (1) can be regressed only over operators
set(p’,q’) where {p′, q′} ∩ {p, q} �= ∅. If {p′, q′} = {p, q}, then the subgoal generated
is (2) sG = ∅ which cannot be regressed any further. Otherwise, say without loss of
generality that p′ = p and q′ �= q. Then, the subgoal generated is (3) sG = {q = 1}. This
can be regressed either over an operator set(p’,q’) where q ∈ {p′, q′}, yielding the
empty subgoal (2); or over the operator true(q), generating again the empty subgoal.
These are all subgoals that may be generated. They all satisfy (*), concluding the
argument.

THEOREM 7.8. There exist families of factored transition systems where h2 is a perfect
heuristic, whereas unless P = NP there exists no polynomial-time abstraction strategy
so that merge-and-shrink yields abstractions α guaranteeing that hα(s0) = h∗(s0).

PROOF. The family of factored transition systems we consider are the state spaces
�(�W ) = (S, L, T , s0, S�) of the planning tasks �W defined previously, for arbitrary
V = {p1, . . . , pn}, W ⊆ V × V , and ϕW = ∨

{p,q}∈W (p ∧ q).
Assume that we have a merge-and-shrink abstraction strategy for the planning tasks

�W , yielding abstractions α guaranteeing that hα(s0) = h∗(s0), and that this strategy
runs in polynomial time. This implies it can only construct abstractions where |T α|max is
bounded by a polynomial. Thus, by Theorem 7.6, we can use the representation of α, that
is, the merge-and-shrink tree and the abstract state space (or table of heuristic values
obtained from it), to count, in polynomial time, the number of states with hα(s) = 2,
which by Lemma A.1 is the number of assignments over V that are not models of
ϕW . Subtracting this from 2n, we obtain the number of models of ϕW . As discussed
in Section 7.5, counting the satisfying assignments for ϕW is #P-hard and thus this
implies that P = NP. The claim follows directly from this and Lemma A.2.
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Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. 2009. Directed model checking with distance-
preserving abstractions. Int. J. Softw. Tools Techn. Trans. 11, 1, 27–37.

Stefan Edelkamp. 2001. Planning with pattern databases. In Pre-proceedings of the 6th European Conference
on Planning (ECP’01). Amedeo Cesta and Daniel Borrajo, Eds., 13–24.

Stefan Edelkamp. 2002. Symbolic pattern databases in heuristic search planning. In Proceedings of the 6th
International Conference on Artificial Intelligence Planning and Scheduling (AIPS’02). Malik Ghallab,
Joachim Hertzberg, and Paolo Traverso, Eds., AAAI Press, 274–283.

Stefan Edelkamp. 2003. Promela planning. In Proceedings of the 10th International SPIN Workshop
(SPIN’03). Lecture Notes in Computer Science, Thomas Ball and Sriram K. Rajamani, Eds.,
vol. 2648, Springer-Verlag, 197–212.

Ariel Felner, Richard Korf, and Sarit Hanan. 2004. Additive pattern database heuristics. J. Artif. Intell. Res.
22, 279–318.

Richard E. Fikes and Nils J. Nilsson. 1971. STRIPS: A new approach to the application of theorem proving
to problem solving. Artif. Intell. 2, 189–208.

Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Automated Planning: Theory and Practice. Morgan
Kaufmann.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 2, 100–107.
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