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Abstract

DecStar extends Fast Downward by Star-Topology Decou-
pling (STD), a technique recently introduced in classical
planning. It exploits independence between components of
a planning task to reduce the size of the state-space repre-
sentation. Partitioning the state variables into components,
such that the interaction between these takes the form of a
star topology, decoupled search only searches over action se-
quences affecting the center component of the topology, and
enumerates reachable assignments to each leaf component,
separately. This can lead to an exponential reduction in the
search-space representation size. It is not always easy to find
a partitioning for a given planning task, though, so we extend
STD by a fallback option, that runs standard search whenever
no (good) partitioning could be found.

Introduction
Star-Topology Decoupling (STD) is a recently introduced
method to reduce the representation size of search spaces
(Gnad and Hoffmann 2015; Gnad, Hoffmann, and Domsh-
lak 2015; Gnad and Hoffmann 2018). By exploiting the
structure of the problem within the search – as opposed to
doing that within a heuristic function guiding the search –
the size of the decoupled state space can be exponentially
smaller than that of the standard state space. Decoupled
search achieves that by partitioning the task into several
components, called factors, trying to identify a star topol-
ogy, with a single center factor that interacts with multiple
leaf factors. By enforcing such a star structure, and thereby
restricting the dependencies between the components, de-
coupled search has proven to be very efficient and competi-
tive to state-of-the-art planners.

The performance of STD is highly influenced by the out-
come of the factoring process, i. e., the process of find-
ing a partitioning of the state variables. Just, how to find
a good factoring, and what qualifies a factoring as being
good? These questions have partially been answered by
Gnad, Poser, and Hoffmann (2017), who devised two al-
gorithms that can detect star topologies on a wide range of
planning domains. Still, the proposed algorithms can fail
to find a factoring, or succeed, but return a factoring with
undesired properties, e. g. large leaf components that incur
a prohibitive runtime overhead when generating new search

states. In this case, we simply run standard search, instead 1.
When running STD, we enable some of the extensions

that have been developed, namely partial-order reduction
(POR) (Gnad, Wehrle, and Hoffmann 2016), symmetry
breaking (Gnad et al. 2017), and dominance pruning (Tor-
ralba et al. 2016). POR via strong stubborn sets is a
technique that is well-known in standard search and origi-
nates from the model checking community (Valmari 1989;
Alkhazraji et al. 2012; Wehrle and Helmert 2012; 2014).
Symmetry breaking has recently been introduced for de-
coupled search, too. It is a widely known approach across
many areas of computer science (e. g. (Starke 1991; Emer-
son and Sistla 1996; Fox and Long 1999; Rintanen 2003;
Pochter, Zohar, and Rosenschein 2011; Domshlak, Katz,
and Shleyfman 2012)). Dominance pruning identifies states
that can be safely discarded, without affecting completeness
(and optimality). POR and symmetry breaking can be used
in any given factoring type 2, dominance pruning, however,
is only applicable if the generated factoring takes the form
of a fork, i. e., the leaves have dependencies on the center,
but not vice versa.

In the fallback case, i. e., when no good factoring could
be detected and we run standard search, we make use
of the variety of techniques that are implemented in Fast
Downward (Helmert 2006). In the optimal and bounded-
cost tracks, this includes a pattern database heuristic gener-
ated using a genetic algorithm (Edelkamp 2006), the LM-
cut heuristic (Helmert and Domshlak 2009), a Merge-&-
Shrink heuristic (Helmert, Haslum, and Hoffmann 2007;
Helmert et al. 2014), and a landmark-count heuristic (Por-
teous, Sebastia, and Hoffmann 2001; Richter, Helmert, and
Westphal 2008). In the agile and satisficing tracks, we
mostly use the hFF heuristic (Hoffmann and Nebel 2001)
and a search configuration similar to the LAMA planning
system (Richter, Westphal, and Helmert 2011).

In all tracks, we extend the standard preprocessor of Fast
Downward by the h2-based task simplification of Alcázar
and Torralba (2015), which removes irrelevant and unreach-
able facts and actions from the task.

1This limitation is merely due to the factoring strategies that we
use to identify suitable partitionings. In general, every task has a
star topology and can be tackled by decoupled search.

2We use a so-far unpublished extension of strong stubborn sets
that supports general star factorings



Preliminaries
We use a finite-domain state variable formalization (FDR) of
planning (e. g. (Bäckström and Nebel 1995; Helmert 2006)),
where a planning task is a quadruple Π = 〈V,A, I,G〉. V is
a set of state variables, where each v ∈ V is associated with
a finite domain D(v). We identify (partial) variable assign-
ments with sets of variable/value pairs. A complete assign-
ment to V is a state. I is the initial state, and the goal G is
a partial assignment to V . A is a finite set of actions. Each
action a ∈ A is a triple 〈pre(a), eff(a), cost(a)〉 where the
precondition pre(a) and effect eff(a) are partial assignments
to V , and cost(a) is a’s non-negative cost.

We use the usual FDR semantics. The planning prob-
lem is to decide if there exists a sequence of actions that
transforms the initial state I of Π to a state that satisfies the
goal condition G. In the optimal and bounded-cost tracks of
the competition, we are looking for an action sequence with
minimal, respectively bounded, summed-up cost.

Decoupled Search
We perform decoupled search like introduced by Gnad and
Hoffmann (2018), in its integration in the Fast Downward
planning system (Helmert 2006). We use the improved
fork and inverted-fork, as well as the incident-arcs factor-
ing methods from Gnad, Poser, and Hoffmann (2017). The
outcome of the factoring process is a partitioning F of the
variables of the planning task Π, such that |F| > 1 and
there exists FC ∈ F such that, for every action a where
V(eff(a))∩FC = ∅, there exists F ∈ F with V(eff(a)) ⊆ F
and V(pre(a)) ⊆ F ∪ FC . We then call F a star factoring,
with center factor FC and leaf factors FL := F \ {FC}.

Given a factoring F , decoupled search is performed as
follows: The search will only branch over center actions,
i. e., those actions affecting (with an effect on) a variable in
FC . Along such a path of center actions πC , for each leaf
factor FL, the search maintains a set of leaf paths, i. e., ac-
tions only affecting variables of FL, that comply with πC .
Intuitively, for a leaf path πL to comply with a center path
πC , it must be possible to embed πL into πC into an overall
action sequence π, such that π is a valid path in the projec-
tion of the planning task Π onto FC ∪ FL. A decoupled
state corresponds to an end state of such a center action se-
quence. The main advantage over standard search originates
from a decoupled state being able to represent exponentially
many explicit states, avoiding their enumeration. A decou-
pled state can “contain” many explicit states, because by in-
stantiating the center with a center action sequence, the leaf
factors are conditionally independent. Thus, the more leaves
in the factoring, the more explicit states can potentially be
represented by a single decoupled state.

We will next describe a couple of extensions that have
been developed for decoupled search and that we use in
some of our configurations.

Symmetry Breaking in Decoupled Search
Symmetry Breaking has a long tradition in planning and
many other sub-areas of computer science (Starke 1991;
Emerson and Sistla 1996; Fox and Long 1999; Rintanen

2003; Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2012). We use an extension to decou-
pled search, introduced by Gnad et al. (2017), which is build
on orbit search (Domshlak, Katz, and Shleyfman 2015;
Wehrle et al. 2015). An orbit is a set of states all of which are
symmetric to each other. In the search, each state is mapped
to a canonical representative of its orbit. In case another state
from the same orbit has already been generated (with lower
g-cost), the new state can safely be pruned. Decoupled orbit
search extends this concept to decoupled states.

Decoupled Strong Stubborn Sets
Partial-order reduction is a well-known technique that re-
duces the size of the search space by pruning transitions
that correspond to different permutations of actions (Val-
mari 1989; Godefroid and Wolper 1991; Edelkamp, Leue,
and Lluch-Lafuente 2004; Alkhazraji et al. 2012; Wehrle et
al. 2013; Wehrle and Helmert 2014). A variant of strong
stubborn sets, decoupled strong stubborn sets (DSSS), has
also been introduced for decoupled search. We will employ
DSSS in the optimal and bounded-cost tracks. For fork fac-
torings, we use DSSS as defined by Gnad, Wehrle, and Hoff-
mann (2016). For non-fork factorings, we use a yet unpub-
lished extension that is able to handle arbitrary factorings.
To avoid the runtime overhead when DSSS are not effective,
we implemented a “safety belt” mechanism, that disables
DSSS if after the first 1000 expansions less than 20% of the
transitions have been pruned.

Decoupled Dominance Pruning
Another extension that has recently been introduced is domi-
nance pruning (Torralba et al. 2016), where decoupled states
that are dominated by other – already generated – states
can be safely discarded. We only deploy a very lightweight
pruning method, namely frontier pruning. The standard way
of performing duplicate checking in decoupled search can
already detect certain forms of dominance, in particular if
two decoupled states have the same center state and all leaf
states reachable in one state are (at most as costly) also
reachable in the other. Frontier pruning improves this by
only comparing a subset of the reached leaf states, those that
can possibly make so far unreached leaf states available. It
has originally been developed for optimal planning, but can
be easily adapted to become more efficient, when optimal
solutions do not matter, by replacing the real cost of reach-
ing a leaf state by 0, if a state has been reached at any cost.

Additionally, we also employ a leaf simulation, originally
proposed by Torralba and Kissmann (2015), to remove irrel-
evant leaf states and leaf actions. In some domains, this can
tremendously reduce the size of the leaf state spaces.

As indicated before, the techniques described in this sub-
section are only applicable if F is a fork factoring.

Implementation & Configurations
Decoupled Search has been implemented as an extension of
the Fast Downward (FD) planning system (Helmert 2006).
By changing the low-level state representation, many of
FD’s built-in algorithms and functionality can be used with



only minor adaptations. Of particular interest for the Dec-
Star planner are the A∗ search algorithm, and the hLM-cut

heuristic (Helmert and Domshlak 2009) for optimal, and
bounded-cost planning. In the satisficing and agile tracks,
we run greedy best-first search (GBFS) using the hFF heuris-
tic (Hoffmann and Nebel 2001). The search algorithms and
heuristics can be adapted to decoupled search using a com-
pilation defined by Gnad and Hoffmann (2018). Our imple-
mentation does not support conditional effects. On top of the
standard FD preprocessor, we perform a relevance analysis
based on h2, to eliminate actions and simplify the planning
task prior to the search (Alcázar and Torralba 2015).

In all tracks of the competition, star-topology decoupling
is the main component of our planner. However, since, as
outline before, our factoring strategies are not guaranteed to
find good task decompositions, we need a fallback method.
Given the implementation of decoupled search in FD, we
can easily make use of the many techniques that FD ships
with. Thus, in the case that no good factoring could be ob-
tained, we run standard search using some heuristics and
pruning methods that are implemented in FD.

We will use the following notation to describe our tech-
niques: the decoupled variant of search algorithm X is de-
noted DX. We denote fork (inverted-fork) factorings by F
(IF), and factorings generated using the incident-arcs algo-
rithm by IA. To combine the power of the factoring strate-
gies, we use a portfolio approach that runs multiple strate-
gies and picks the one with the maximum number of leaf
factors. Further more, we restrict the size for the per-leaf
domain-size product to ensure that the leaf state spaces are
reasonably small and do not incur a prohibitive runtime
overhead when generating new decoupled states. We denote
this size limit by |FL

max| := maxFL∈FL Πv∈FL |D(v)|. If
a fork factoring is detected, we sometimes perform frontier
dominance pruning, denoted FP and reduce the size of the
leaf state spaces removing irrelevant transitions and states
(IP). Decoupled strong stubborn sets will be abbreviated as
DSSS, where we always use the safety belt with a mini-
mum pruning ratio of 20%. In standard search, the use of
strong stubborn sets pruning is denoted SSS. (Decoupled)
orbit search is abbreviated (D)OSS. The use of preferred op-
erator pruning is denoted PO.

In all but the optimal track, we start by ignoring the ac-
tion costs. Costs are ignored altogether in the agile track,
and only re-introduced in the bounded-cost track if no plan
below the cost bound could be found. In the satisficing track,
we re-introduce the real costs upon finding the first plan.

In the following sub-sections, we detail the configurations
employed in each competition track. We provide the search
configurations, as well as the time each of the components
is allotted (in seconds).

Optimal Track
DecStar starts by running decoupled search with a fork fac-
toring with a maximum leaf size of 10 million, if one ex-
ists. In this case, it employs frontier pruning, removes ir-
relevance in the leaves, and performs partial-order reduc-
tion (DSSS). The next component tries all factoring methods
with different size constraints, and prunes states with DSSS

and DOSS. This is the main component running for 15min.
Both decoupled search components use the LM-cut heuris-
tic (Helmert and Domshlak 2009), currently the strongest
admissible heuristic that supports decoupled search.

Search Factoring |FL
max| Heuristic Pruning Runtime

DA∗ F 10M hLM-cut DSSS,FP,IP 100s
DA∗ F/IF/IA 10/10/1M hLM-cut DSSS,DOSS 800s
A∗ - - hLM-cut SSS,OSS 180s
A∗ - - hGA-PDB SSS 180s
A∗ - - hM&S - 180s
A∗ - - hLMc - 180s
A∗ - - blind - 180s

Figure 1: Portfolio configuration in the optimal track. Com-
ponents are launched top to bottom.

In case no matching factoring could be found, or when
decoupled search fails, DecStar is supported by standard
search with different heuristics. If the heuristic does not
support conditional effects, we also enable strong stubborn
sets pruning and/or orbit search, which both do not support
these, either. DecStar tries the pattern database heuristic
with patterns generated using a genetic algorithm (hGA-PDB)
(Edelkamp 2006), a Merge&Shrink heuristic with linear
merge order and bisimulation (hM&S) (Helmert, Haslum, and
Hoffmann 2007; Helmert et al. 2014; Sievers, Wehrle, and
Helmert 2014), the landmark-count heuristic (hLMc) (Porte-
ous, Sebastia, and Hoffmann 2001; Richter, Helmert, and
Westphal 2008), and finally blind search.

Satisficing Track
In the satisficing track, DecStar runs three different com-
ponents. The first, similar to the optimal track, runs de-
coupled search with a fork factoring, since these typically
perform better, in particular when combined with the strong
leaf pruning methods (FP,IP). The second component tries
all factoring strategies, and additionally enables decoupled
orbit search. The “D” in paranthesis indicates that, if none of
the factoring strategies succeeds, the component falls back
to standard search using the same options. Both components
use the hFF heuristic and perform preferred operator prun-
ing, using FD’s dual queue mechanism.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 100s
(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 1000s
GBFS - - hLM,hFF PO 700s

Figure 2: Portfolio configuration in the satisficing track.
Components are launched top to bottom.

If all is lost, DecStar gets help from his experienced friend
LAMA, adopting its first iteration (Richter, Westphal, and
Helmert 2011).

Bounded-Cost Track
The components that DecStar uses in the bounded-cost track
are a mix of the components described above for the opti-
mal and satisficing track. DecStar starts by running each



satisficing-track component for 100s. It then uses a weighted
A∗ search (weight 3), in case none of the previous compo-
nents could find a plan within the given bound. This is fol-
lowed by the components used in the optimal track.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF PO,FP,IP 100s

(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 100s

GBFS - - hLM,hFF PO 100s

DWA∗ F/IF/IA 10/10/1M hFF DOSS 400s

DA∗ F 10M hLM-cut DSSS,FP,IP 100s

DA∗ F/IF/IA 10/10/1M hLM-cut DSSS,DOSS 400s

A∗ - - hLM-cut SSS,OSS 120s

A∗ - - hGA-PDB SSS 120s

A∗ - - hM&S - 120s

A∗ - - hLMc - 120s

A∗ - - blind - 120s

Figure 3: Portfolio configuration in the bounded-cost track.
Components are launched top to bottom.

Agile Track

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 10K hFF FP,IP,PO 60s
(D)GBFS F/IF/IA 10/10/1K hFF (D)OSS,PO 120s
GBFS - - hLM,hFF PO 120s

Figure 4: Portfolio configuration in the agile track. Compo-
nents are launched top to bottom.

In the agile track, DecStar uses the same search compo-
nents as in the satisficing track, but with different timeouts
and leaf space size limits. The latter is due to the fact that
the larger the leaves, the bigger the runtime overhead per
decoupled state. Since the time limit is significantly smaller
in the agile track, we try to keep the leaves as small as pos-
sible. In spite of the tight time constraint, we still run the
h2-preprocessor for 10s.

Conclusion
DecStar is the best that star-topology decoupling currently
has to offer. Many extensions have been developed, allowing
the use of various search algorithms, heuristic functions, and
pruning techniques. Decoupled search has proved to be a
method that can beat other state-of-the-art planners, also in
the unsolvability IPC 2014, if the given planning task can be
nicely decoupled. Even outside the planning area, namely in
proving safety properties in model checking, star-topology
decoupling has shown its merit (Gnad et al. 2018).

And still, there are many possible ways of further extend-
ing it. In classical planning, where it is crucial to use strong
heuristics, the next steps are to do research on how to apply
abstraction and LP heuristics in decoupled search. In model
checking, an interesting research question is the extension
of star-topology decoupling to prove liveness properties.
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