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Abstract

Two strands of research in classical planning are
LP heuristics and conjunctions to improve approx-
imations. Combinations of the two have also been
explored. Here, we focus on convergence proper-
ties, forcing the LP heuristic to equal the perfect
heuristic h∗ in the limit. We show that, under rea-
sonable assumptions, partial variable merges are
strictly dominated by the compilation ΠC of ex-
plicit conjunctions, and that both render the state
equation heuristic equal to h∗ for a suitable set C
of conjunctions. We show that consistent poten-
tial heuristics can be computed from a variant of
ΠC , and that such heuristics can represent h∗ for
suitable C. As an application of these convergence
properties, we consider sound nogood learning in
state space search, via refining the set C. We de-
sign a suitable refinement method to this end. Ex-
periments on IPC benchmarks show significant per-
formance improvements in several domains.

1 Introduction
In classical planning, LP heuristics approximate cost-to-goal
through linear constraints. The state equation heuristic [van
den Briel et al., 2007a; Bonet, 2013] formulates LP con-
straints over the number of action occurrences needed. Apart
from integrating additional sources of information [Bonet and
van den Briel, 2014; Pommerening et al., 2014], a successful
approach are potential heuristics [Pommerening et al., 2015;
Seipp et al., 2015], based on the dual of the state equation.
The solution of that dual LP defines weights for variable val-
ues. Computed just once on the initial state, these weights de-
fine a consistent heuristic function for the entire state space.

Another research line uses variable-value (fact) conjunc-
tions to improve approximations [van den Briel et al., 2007b].
The compilation ΠC renders a set C of conjunctions explicit,
forcing delete relaxed plans to converge to real plans in the
limit, i. e., for suitable C [Haslum, 2009; Haslum, 2012;
Keyder et al., 2014]. This leads to powerful heuristics, and
in particular enables sound forward-search nogood learning,
where the heuristic is iteratively refined based on the dead-
end states encountered [Steinmetz and Hoffmann, 2017].

Here, we consider LP heuristics over conjunctions. This is
not novel per se: partial variable merges enhance the state
equation heuristic by constraints over conjunctions [Bonet
and van den Briel, 2014]; potential heuristics can be defined
over conjunctions as well [Seipp et al., 2016a; Pommerening
et al., 2017]. We contribute new results pertaining to the use
of the ΠC compilation, to convergence properties, and to the
exploitation of convergence for nogood learning.

Seipp et al. [2016a] examined the size of conjunctions
needed for a potential heuristic to find a plan without search.
Pommerening et al. [2017] designed potential heuristics over
arbitrary sets of conjunctions. While they provide an effi-
cient construction method for potential heuristics over fact
pairs, they also showed that the construction over fact triples
is already computationally hard. Here, we show that for
tasks in transition normal form (TNF) [Pommerening and
Helmert, 2015], partial variable merges are strictly dominated
by the compilation ΠC , and that both render the state equation
heuristic equal to h∗ for suitable C. We show that consistent
potential heuristics can be constructed from ΠC .1 We show
that, together with a (trivial to compute) upper bound U∗ ∈ R
on h∗(s) for solvable s, one can choose C so that the ΠC po-
tential heuristic equals h∗.

We exploit these properties, motivated by the success of
LP heuristics in the Unsolvability-IPC [Seipp et al., 2016b],
in forward-search nogood learning. Convergence is essential
here: Nogood learning using a heuristic h requires a refine-
ment method that, given a dead-end state s not pruned by h
so far, guarantees to refine h into h′ that prunes s. We design
such a refinement method for LP heuristics, choosing new
conjunctions suitable for the state equation and hence also
the potential heuristic. Experiments on IPC benchmarks show
significant performance improvements in several domains.

2 Preliminaries
We consider planning tasks in FDR notation [Bäckström
and Nebel, 1995; Helmert, 2009]. A task is a tuple Π =
〈V,A, sI , s∗〉. V is a set of variables v, each associated with
a finite domain Dv . A state is a complete assignment to V .

1This does not contradict Pommerening et al.’s [2017] hardness
result as ΠC may grow exponentially in |C|. From this perspective,
our result can be viewed as a way of identifying feasible potential
heuristics over conjunctions: where ΠC is small.



sI is the initial state. The goal s∗ is a partial variable assign-
ment. A is a finite set of actions. Each action a ∈ A is associ-
ated with a precondition prea and an effect eff a, both partial
variable assignments, and a non-negative cost costa ∈ R+

0 .
We assume that prea(v) 6= eff a(v) when both are defined.

A fact is a variable-value pair p = 〈v, dv〉. For partial vari-
able assignments P , we denote by V(P ) the set of variables
for which P is defined. For variables v 6∈ V(P ), we also write
P (v) = ⊥. We often treat (partial) variable assignments P
as sets of facts {〈v, P (v)〉 | v ∈ V(P )}. We say that two
assignments P and P ′ are compatible, written P ||P ′, if for
all v ∈ V(P ) ∩ V(P ′) we have P (v) = P ′(v).

An action a is applicable in a state s if prea ⊆ s, and the
application results in the state sJaK where sJaK(v) = eff a(v)
if v ∈ V(eff a) and sJaK(v) = s(v) otherwise. Action se-
quences π = 〈a1, . . . , an〉 are applied iteratively, and the out-
come state is denoted sJπK. If s∗ ⊆ sJπK, then π is a plan for
s. A plan for Π, or just plan, is a plan for sI . The cost of π is∑n
i=1 costai . A plan is optimal if its cost is minimal among

all plans. If there is no plan for s, then s is a dead-end. If sI
is a dead-end, we say that Π is unsolvable.

The set of all states in Π is denoted S. A heuristic is a
function S 7→ R+

0 ∪ {∞}. The perfect heuristic h∗ assigns
each state s the cost of an optimal plan for s, or ∞ if s is a
dead-end. A heuristic h is admissible if h(s) ≤ h∗(s) for all
s ∈ S; h is consistent if, whenever a ∈ A is applicable in s,
we have h(s) ≤ h(sJaK) + costa.

A notation for regression, defined in the usual way, will be
convenient. The regression of P over a is regr(P, a) = (P \
eff a)∪prea if eff a∩P 6= ∅ and eff a||P and (P \eff a)||prea;
otherwise, regr(P, a) = ⊥.

We will sometimes consider transition normal form (TNF)
[Pommerening et al., 2015]. This imposes that (TNF1)
V(eff a) ⊆ V(prea) for all a ∈ A,2 and (TNF2) V(s∗) = V .
Every task can be transformed into TNF in polynomial time.

We next introduce the ΠC compilation. We follow Haslum
[2012], with small modifications suiting our context.

A conjunction c is a partial variable assignment. To rep-
resent a set C of conjunctions explicitly in a given task Π,
the ΠC compilation introduces a new Boolean variable πc for
each c ∈ C; abusing notation, we identify πc with the fact
〈πc, 1〉. For a partial assignment P , P C := P ∪{〈πc, 1〉 | c ∈
C, c ⊆ P} ∪ {〈πc, 0〉 | c ∈ C, c ∦ P} augments P with the
conjunctions it contains as well as the negation of the con-
junctions it conflicts with. A set of conjunctions C ⊆ C is
compatible if all c, c′ ∈ C are pairwise compatible.
Definition 1. Let Π = 〈V,A, sI , s∗〉 be a task, and C be a set
of conjunctions. Then ΠC := 〈VC ,AC , sCI , sC∗〉 where VC =
V∪{πc | c ∈ C} andAC contains an action aC for every pair
a ∈ A and compatible C ⊆ C such that: (1) for all c ∈ C,
regr(c, a) 6= ⊥, and (2) for every c′ ∈ C, if regr(c′, a) 6= ⊥
and regr(c′, a) ⊆ (prea∪

⋃
c∈C regr(c, a)), then c′ ∈ C. The

action aC is given by (i) preaC = [prea ∪
⋃
c∈C regr(c, a)]C ,

(ii) eff aC = eff a ∪ {〈πc, 1〉 | c ∈ C} ∪ {〈πc′ , 0〉 | c′ ∈
C, c′||preaC , c

′ ∦ eff a}, and (iii) costaC = costa.
2This differs slightly from the TNF definition in literature where

V(prea) = V(eff a) is required. We do so for simplicity only. All
our results apply directly to the original version as well.

Intuitively, aC represents an occurrence of a that makes all
c ∈ C true. For this to happen, the regression of each c over a
must be true beforehand, as per (i). As per (ii), a conjunction
c′ potentially invalidated by a is false afterwards. Condition
(2) assures consistency: if an occurrence aC always makes
true a conjunction c, then πc must be set to true necessarily.

With the possible C being subsets of C, |AC |may grow ex-
ponentially in |C|. This can be ameliorated (but not overcome
entirely) with mutex information [Keyder et al., 2014]. Com-
patibility of C as postulated here is a special case thereof.

Following previous works on the ΠC-compilation, we in-
terpret heuristics for ΠC , written h[ΠC ], as heuristics for Π
by mapping every state s of Π to the state in ΠC obtained
by augmenting s with the πc-variable assignments accord-
ing to whether or not c is satisfied in s, i. e., we define
h[ΠC ](s) := h[ΠC ](sC).

Plan equivalence between Π and ΠC can be easily shown
by adapting Haslum’s [2012] proof to our slightly modified
ΠC definition. An extension of this equivalence result to in-
dividual transitions will become handy later on:

Lemma 1. For every Π and every C, it holds that every con-
sistent heuristic h for Π is consistent in ΠC , and vice versa
every consistent heuristic h for ΠC is consistent in Π.

Proof. Let h be any consistent heuristic for Π. Let t be any
state of ΠC . We denote by t|V the projection of t onto the
variables V . Let aC be any action occurrence in ΠC that is
applicable in t. Obviously, a is applicable in t|V and it holds
that t|VJaK = (tJaCK)|V . Therefore, h(t|V) ≤ h(t|VJaK) +
costa implies h(t) ≤ h(tJaCK) + costaC , which shows that h
is indeed consistent in ΠC .

Let h be any consistent heuristic for ΠC . Let s be any state
of Π, a ∈ A be s.t. prea ⊆ s. Define C := {c ∈ C |
c ⊆ sJaK, c ∩ eff a 6= ∅}. Obviously, C is compatible; for
every c ∈ C, it holds that regr(c, a) 6= ⊥; and for every
c′ ∈ (C\C), either regr(c′, a) = ⊥ or regr(c′, a) 6⊆ s and thus
regr(c′, a) 6⊆ (prea ∪

⋃
c∈C regr(c, a)). Hence, aC ∈ AC .

Moreover, the selection of C ensures that aC is applicable in
sC and that for every c ⊆ sJaK, sCJaCK(πc) = 1. For every
c 6⊆ sJaK, it holds that c 6∈ C and either sC(πc) = 0, or c ⊆ s
and c ∦ eff a, i. e., c||preaC and eff aC (πc) = 0. In both
cases, sCJaCK(πc) = 0 follows. We get h(s) = h(sC) ≤
h(sCJaCK) + costaC = h((sJaK)C) + costaC = h(sJaK) +
costa, what shows the claim.

3 The State Equation Heuristic
We introduce the state equation heuristic, and discuss its ex-
tensions to deal with conjunctions.

3.1 Definitions
The state equation (SEQ) describes a relation between
variable-value changes, the net-changes, that every plan must
satisfy. A fact p = 〈v, dv〉 is produced by an action a if
eff a(v) = dv; p is consumed by a if prea(v) = dv and
v ∈ V(eff a). Let s be any state, π be any plan for s, and
p be any fact. Every consumption of p along π requires its
production beforehand. If p is true in s, then p can be con-
sumed once more than it is produced. If p must be true after



the application of π, then pmust be produced more often than
it is consumed. So, let Countπa be the number of occurrences
of action a in π. Denote by Prod(p) (Cons(p)) the set of all
actions that produce (consume) p. Then the SEQ for p is∑

a∈Prod(p)

Countπa −
∑

a∈Cons(p)

Countπa ≥ ∆p(s) (1)

where ∆p(s) = 1 if p 6∈ s and p ∈ s∗; ∆p(s) = −1 if p ∈ s
and p 6∈ s∗; and ∆p(s) = 0 otherwise.

The state equation heuristic hSEQ is defined via an LP. The
LP contains one variable Counta ∈ R+

0 for every action a.
For every fact p the LP contains the constraint given by Equa-
tion (1) for p, choosing the right hand side ∆p(s) according
to the state s for which hSEQ(s) is being computed. The ob-
jective function is to minimize

∑
a∈A Counta · costa. If the

LP has an optimal solution, then hSEQ(s) gives the respective
the objective value. Otherwise hSEQ(s) = ∞. As every plan
must satisfy Equation (1) for every p, hSEQ is admissible.

An important weakness of the state equation heuristic is
that prevail conditions of actions, i. e., preconditions prea(v)
where v 6∈ V(eff a), are disregarded completely.
Example 1. Consider the transportation example in Figure 1.

A B C

Figure 1: Initial state in the transportation example.

There are two variables t and p, indicating the position of
the truck respectively package. The truck can move freely on
the depicted map through move actions. The package can
be loaded or unloaded at the current truck position. All ac-
tions have cost 1. The initial state is given by sI = {〈t =
B〉, 〈p = A〉}, the goal is s∗ = {〈p = C〉}. The hSEQ value
for this state is 2, accounting only for loading and unloading
the package. Truck movements are not counted since loading
and unloading the package prevail the truck position.

3.2 The State Equation over Conjunctions
The weakness just discussed can be addressed by considering
net-changes over conjunctions instead of single facts.
Example 2. Consider the set of conjunctions C = {c1, c2}
for c1 = {〈t = A〉, 〈p = A〉} and c2 = {〈t = C〉, 〈p = T 〉}.
Loading the package at A now requires and consumes πc1 ,
and unloading the package at C consumes πc2 . To produce
πc1 , the truck has to move to location A. To produce πc2 , the
truck has to move to C. Further, to satisfy Equation (1) for
t = B, the truck needs to move back fromA toB. This results
in the perfect heuristic value 5; indeed, hSEQ[ΠC ](sI) = 5.

Bonet and van den Briel [2014] designed partial variable
merges to extend hSEQ to conjunctions. We now compare this
technique to the computation of hSEQ in ΠC , and we show
convergence of both to h∗ for Π in TNF. For the sake of read-
ability, within this section, we only provide the principle ideas
underlying the proofs of our results. The detailed proofs are
available in Appendix A.

Like the ΠC-compilation, partial variable merges consider
a set of conjunctions C. But conjunctions c, c′ ∈ C are put
into relation only when they instantiate the same variables,

V(c) = V(c′). Hence the name “partial variable merges”:
Bonet and van den Briel start from the simpler idea of pre-
merging entire variable subsets V ⊆ V , extending Π by a
new variable representing this product; they improve over that
idea by considering only particular value tuples within the
product. As a result, their LP encoding grows polynomially
in |C|, but might lose information relative to ΠC because no
constraints are included across (conjunctions over) different
variable subsets V, V ′.

Specifically, partial variable merges are based on notions
of potential producers and consumers, i. e., actions whose ap-
plications can achieve respectively invalidate c: PProd(c) =
{a ∈ A | regr(c, a) 6= ⊥} and PCons(c) = {a ∈ A | c ∦
eff a, c||prea}. This complication arises because the impact
of an action a on a conjunction c depends on the context in
which a is applied: on the action occurrence.

While ΠC enumerates possible action occurrences, variable
merges handle each subset of C sharing the same variables V
separately. Denote by Π|V the product of V (which corre-
sponds to the projection of Π onto V ). To represent those Π|V
states P where P 6∈ C, an abstract state > is introduced. The
transitions within Π|V are abstracted by inserting > when-
ever the start or end state of a transition is not contained in
C. Equation (1) for a conjunction c is then defined by sum-
ming over a ∈ PProd(c) respectively a ∈ PCons(c), with
a separate occurrence-counter variable Countx→x

′

a for every
state-changing abstract transition x a−→ x′ induced by a, i. e.,∑
a∈PProd(c)

Countx→ca −
∑

a∈PCons(c)

Countc→xa ≥ ∆c(s) (2)

∆c(s) is defined similarly to single facts: ∆c(s) = 1 if c 6⊆ s
and c ⊆ s∗; ∆c(s) = −1 if c ⊆ s and c 6⊆ s∗; and ∆c(s) = 0
otherwise. The sets PProd(c) and PCons(c) thereby identify
exactly the labels of the state-changing transitions for con-
junction c. Finally, these separate counters are related back to
the main action counters via the following link constraint:∑

Countx→x
′

a ≤ Counta (3)

where the sum is over all state-changing abstract transitions
induced by a in the considered variable merge. For every
partial variable merge with corresponding variable set V and
every action a where the effect of a on any conjunction over
the variables V is independent of the application context, i. e.,
for every V and a such that V ⊆ V(prea) and there exists a
conjunction c ∈ C with V(c) = V and either (a) c ⊆ prea
and c ∦ eff a, or (b) prea ⊆ regr(c, a), a can only label a sin-
gle transition in the respective partial variable merge. More-
over, every application of a necessarily implies the execu-
tion of this transition. Hence, one can replace the inequality
in Equation (3) by an equality, strengthening the overall LP.
In the actual implementation, and as done in Bonet and van
den Briel’s [2014] original proposal, the respective transition-
count variable can directly and equivalently be replaced by
Counta.

We denote by hCSEQ the heuristic extending Equation (1)
for facts by Equation (2) and Equation (3) for conjunctions.
Theorem 1. For every Π in TNF, every set of conjunctions C,
and every state s, it holds that hSEQ[ΠC ](s) ≥ hCSEQ(s).



Proof (sketch). Let Seq[ΠC ] be the LP underlying
hSEQ[ΠC ](s), and SeqC that underlying hCSEQ(s). Every so-
lution to Seq[ΠC ] can be transformed into a solution to SeqC,
with equal objective value. The proof is technical but straight-
forward.

Theorem 2. There exists families of Π and C s.t., to obtain
hC
′SEQ(s) ≥ hSEQ[ΠC ](s) for all states s, C′ must be expo-

nentially larger than C.
Proof (sketch). This happens, e. g., in a transportation exam-
ple where n packages must be transported from B to A, and
truck-load capacity is 1. In hSEQ[ΠC ], considering all con-
junctions of size up to 3 makes visible that no two packages
can be in the truck at the same time, yielding hSEQ[ΠC ] = h∗.
The partial variable merges in hCSEQ, however, cannot ac-
count perfectly for the interactions across packages unless all
of them are considered jointly in the same Π|V .

For general tasks Π, the relation between hSEQ[ΠC ] and
hCSEQ is however not so clear anymore. Complications stem
from actions a affecting variables v without precondition on
v. ΠC cannot relate the consumption of any conjunction c
where v ∈ V(c) with a’s action occurences. In contrast,
hCSEQ can do so by enumerating the missing preconditions
through different transitions.
Example 3. Consider the task with variables v1 and v2 and
domains Dv1 = Dv2 = {0, 1, 2}; actions: a1 requires that
v2 = 1 and sets v1 = 1, a2 requires that v1 = 1 and sets v2 =
1, and a3 with empty precondition and effect v1 = 2; initial
state sI = {〈v1, 0〉, 〈v2, 0〉} and goal s∗ = {〈v1, 1〉, 〈v2, 1〉}.
Assume that C contains all conjunctions.

Since the abstract states corresponding to the conjunctions
sI and s∗ are not connected, it is not possible to satisfy Equa-
tion (2) for s∗ without violating the state equation constraint
of any other conjunction. Hence, hCSEQ(sI) =∞.

However, hSEQ[ΠC ](sI) < ∞: let Count
a
{s∗}
1

= 1,
Count

a
{s∗}
2

= 1, Counta∅3 = 1. It is straightforward to verify
that Count satisfies Equation (1) for all facts 〈v, d〉 and πc
value-assignments. The action occurrence a∅3 is required to
satisfy the constraint for 〈πsI , 0〉.

Combining the task from Example 3 with the one from the
proof of Theorem 2 shows the existence of non-TNF Π and C
for which hSEQ[ΠC ] and hCSEQ are incomparable.

We now turn to convergence properties. It is easy to show
that partial variable merges can force hCSEQ to converge.
Theorem 3. For every planning task Π with V(s∗) = V ,
there exists a set of conjunctions C s.t. hCSEQ = h∗.

Proof. A suitable C is C := S, i. e., the set of all states in
the given task Π. The LP underlying hCSEQ then boils down
to an LP encoding of shortest paths in the state space graph,
essentially a special case of the min-cost flow problem. The
variables encode state-transition weights. The constraints en-
sure that the difference between the incoming and outgoing
flow at every state is ≥ 0, respectively ≥ −1 (≥ 1) at ini-
tial (goal) state. Minimizing action (and thus state-transition)
weights, equality holds in optimal solutions. The condition
V(s∗) = V is required because ∆c(s) = 1 may only hold if

c ⊆ s∗. Thus, in order for the state space graph, encoded as
the variable merge over variables V , to actually contain a sink
state, it must hold V(s∗) = V .

Corollary 1. For every planning task Π in TNF, there exists
a set of conjunctions C s.t. hSEQ[ΠC ] = h∗.

4 Potential Heuristics
Equation 1 depends on the state s considered. So SEQ based
heuristics need to solve an LP in every search state. Potential
heuristics solve an LP only once, in the initial state. The LP
solution is used to compute weights (potentials) that, when
combined in a linear fashion, define an admissible heuristic.

Formally, assume a given set C of conjunctions. A po-
tential heuristic hPot

C,w is then defined by a weight function
w : C 7→ R, with hPot

C,w(s) =
∑
c∈C,c⊆s w(c). The com-

putational cost of evaluating such a heuristic on a state s is
comparatively small. But how to find a suitable w guarantee-
ing admissibility?

For singleton conjunctions, Pommerening et al. [2015] de-
signed an LP encoding guaranteeing consistency and value
≤ 0 on goal states (goal-awareness), which implies admissi-
bility. Pommerening et al. [2017] extended this LP to general
conjunctions. For pairs of facts, the size of their LP encoding
is still polynomially bounded in the size of Π. For arbitrary
conjunctions, however, the LP representation may require an
exponential number of variables. In fact, Pommerening et
al. [2017] have shown that for conjunctions of size larger than
two, the construction of desired potential heuristics is com-
putationally hard. Here we explore this direction further. We
show that, for arbitrary C, the ΠC compilation can be used to
compute consistent and goal-aware potential heuristics. We
analyze the convergence properties of this approach.

4.1 Potential Heuristics Over Arbitrary C
We show that Pommerening et al.’s [2015] approach for sin-
gleton conjunctions, applied to ΠC , yields the desired w.

We assume that Π is in TNF. hPot
C,w is consistent if∑

c∈C,c⊆s w(c) ≤
∑
c∈C,c⊆sJaK w(c)+costa, or equivalently∑

c∈C,c⊆s,c 6⊆sJaK w(c) −
∑
c∈C,c 6⊆s,c⊆sJaK w(c) ≤ costa. If

all conjunctions are singletons, c = {p}, then because of
(TNF1) this inequality is equivalent to∑
{p}∈C:a∈Cons(p)

w(p)−
∑

{p}∈C:a∈Prod(p)

w(p) ≤ costa (4)

Moreover, by (TNF2) there is only a single goal state. So the
weights w ensure goal-awareness if∑

{p}∈C:p∈s∗
w(p) ≤ 0 (5)

These equations define an LP, that we denote Pot[Π], whose
variables represent the weights w. Any solution to Pot[Π]
yields an admissible potential heuristic.

The objective function in Pot[Π] can be freely chosen. Var-
ious possible objectives have been explored [Seipp et al.,
2015]. Here, we employ two of these:



(O1) Maximizing the heuristic value of an individual state s,
through maximizing the weights of the conjunctions true
in s: max

∑
c∈C,c⊆s w(c)

(O2) Maximizing the average heuristic value over all states.
This requires to normalize the weight associated with a
conjunction c with the frequency of c, i. e., by the frac-
tion of states in which c is satisfied. The frequency of
c is syntactically defined by freq(c) = 1/Π〈v,d〉∈c|Dv|.
(O2) then reads max

∑
c∈C freq(c) · w(c).

(O1) yields a connection to state equation heuristics. We use
(O2) to encode the perfect heuristic as a potential heuristic.
(Weight maximization requires an upper bound in the pres-
ence of dead-ends; we will discuss this as part of convergence
in Section 4.2.)

The LP-based weight computation above requires Π to be
in TNF. We use the standard transformation method [Pom-
merening and Helmert, 2015] to obtain a TNF version ΠCTNF
from ΠC : add > to the domain of every v ∈ VC ; for every
v ∈ VC and value d, create a 0-cost action unset〈v,d〉 with
precondition {v = d} and effect {v = >}; for every aC ∈
AC and v ∈ (V(eff aC ) \ V(preaC )), add 〈v = >〉 to the
precondition; add 〈v,>〉 to the goal for all v ∈ (VC \ V(sC∗)).
Pommerening and Helmert [2015] have shown that this TNF
transformation does not affect consistent and goal-aware fact
potential heuristics, i. e., a fact potential heuristic is consis-
tent and goal-aware for ΠC if and only if it is for ΠCTNF. In
other words, for every set Ĉ over singleton conjunctions over
ΠCTNF’s facts, and for every ŵ : Ĉ 7→ R satisfying Pot[ΠCTNF],
it follows that hPot

Ĉ,ŵ is a consistent and goal-aware potential

heuristic in ΠC . For an arbitrary set of conjunctions C, it
is therefore straightforward to construct a potential heuristic
over C for Π, via a detour to ΠCTNF:

Theorem 4. Let Π be any task, and C be any set of conjunc-
tions containing at least all singleton conjunctions. Let Ĉ
be the set of singleton conjunctions over ΠCTNF’s facts, and
ŵ : Ĉ 7→ R be any solution to Pot[ΠCTNF]. There exists
w : C 7→ R such that hPot

C,w(s) = hPot
Ĉ,ŵ(sC) for all states

s ∈ S.

Proof. In the following, we will assume that Ĉ does not con-
tain {〈πc, d〉} for any singleton conjunction c = {〈v, d〉}.
Since v ∈ VC , those can be handled directly and equivalently
in the ΠC-compilation, without having to introduce an auxil-
iary πc variable.

We define w as follows. Let C1 ⊆ C denote the single-
ton conjunctions in consideration. For c ∈ C1, we define
w(c) := ŵ(c), with one exception, see below. Handling con-
junctions is a bit more difficult: the facts 〈πc, 0〉 allow ŵ to
also associate weights with the negation of conjunctions; but
this is not possible withw. Consider the sum over the weights
of all negated conjunctions: δ =

∑
c∈(C\C1) ŵ({〈πc, 0〉}).

Let vδ ∈ V be an arbitrary variable. We set w({〈vδ, d〉}) :=
ŵ({〈vδ, d〉}) + δ for all values d ∈ Dvδ . And finally,
for all non-singleton conjunctions c ∈ (C \ C1), w(c) :=
ŵ({〈πc, 1〉})− ŵ({〈πc, 0〉}).

Let s ∈ S be any state. Since s defines exactly one value
for vδ , and C contains {〈vδ, d〉} for all values d of vδ , we
hence obtain hPot

C,w(s) =
∑

c∈C,c⊆s
w(c)

= δ +
∑

c∈C1,c⊆s
ŵ(c) +

∑
c∈C\C1,c⊆s

(ŵ(〈πc, 1〉)− ŵ(〈πc, 0〉))

=
∑

c∈C1,c⊆s
ŵ(c) +

∑
c∈C\C1,c⊆s

ŵ(〈πc, 1〉) +
∑

c∈C\C1,c 6⊆s
ŵ(〈πc, 0〉)

= hPot
Ĉ,ŵ(sC)

Since every feasible solution ŵ to Pot[ΠCTNF] gives a consis-
tent and goal-aware potential heuristic for ΠC , we can hence
conclude from Lemma 1 that the corresponding w gives a
consistent and goal-aware potential heuristic for Π.

Pommerening et al.’s [2017] hardness result is reflected in
the worst-case growth of ΠCTNF. But for cases where ΠCTNF
grows polynomially in |C|, Theorem 4 shows that a desired
potential heuristic can be computed in polynomial time. In
this sense, Theorem 4 identifies a sufficient criterion for the
efficient construction of potential heuristics.

It should be noted though that not every admissible po-
tential heuristic over conjunctions C can be constructed from
Pot[ΠCTNF]. This is the case because Equation (4) in Pot[ΠCTNF]
does no longer form a necessary condition for the consistency
in Π: Pot[ΠCTNF] enforces consistency over occurences aC
where C does not fully specify the action application con-
text, while this context is always completely defined when
considering Π’s transitions.
Example 4. Consider the task with binary variables v1

and v2; initial state sI = {〈v1, 0〉, 〈v2, 0〉}; goal s∗ =
{〈v1, 1〉, 〈v2, 1〉}; and two actions a1 which changes the
value of v1 from 0 to 1, and a2 which changes the value of
v2 from 0 to 1. Consider the conjunctions c1 = {〈v1 =
0, v2 = 0〉}, c2 = {〈v1 = 0, v2 = 1〉}, and c3 = {〈v1 =
1, v2 = 0〉}. Assume that C contains all singleton conjunc-
tions in addition to c1, c2, and c3. Consider the potential
heuristic with weights w({〈v1, 0〉}) = w({〈v2, 0〉}) = 2 and
w(c1) = −2 and w(c2) = w(c3) = −1 and w({p}) = 0
for all other facts p. Obviously, hPot

C,w is consistent and
goal-aware. However, it is not possible to find ŵ such that
ŵ({〈πc2 , 1〉})−ŵ({〈πc2 , 0〉}) = w(c2) and ŵ satisfies Equa-
tion (4) for a∅1, respectively Equation (4) for a∅2 and c3.

While not every weight function w, inducing a consistent
and goal-aware potential heuristic for Π, satisfies the con-
straints in Pot[ΠCTNF], it remains an open question whether
for every such w, there exists ŵ that satisfies Pot[ΠCTNF]
and hPot

C,w = hPot
Ĉ,ŵ. In Example 4, such ŵ is given by

ŵ({〈v1, 0〉}) = ŵ({〈v2, 0〉}) = 1 and ŵ(·) = 0 otherwise.

4.2 Convergence
Does there always exist C for which hPot

C,w obtained from
Pot[ΠCTNF] is perfect? The answer is “yes”, under objective
(O2) maximizing the average heuristic value. The presence
of dead-end states causes complications though.



Obviously, the value h∗(s) = ∞ for a dead-end s can-
not be produced as part of the solution to an LP. Instead, the
weights in the LP may diverge: Pot[Π] is not guaranteed to
have a solution optimal for (O2). To see this, consider that
no transition path starting from a dead-end ever reaches the
goal; so, for conjunctions c true only in dead-ends, the weight
can be made arbitrarily high while still satisfying consistency.
Intuitively, the LP encoding imposes constraints on solution
paths over conjunctions, and diverges where such a path does
not exist. For that reason, Seipp et al. [2015] introduce a
modified LP with the additional constraints w(c) ≤ U , where
U ∈ R is a parameter. We denote that LP by Pot[Π, U ].

Intuitively, U is a cut-off value on the cost of solutions con-
sidered in the LP. Convergence is achieved below U :

Theorem 5. Let Π be any task in TNF, and U ∈ R+
0 . Then

there exists a set C of conjunctions s.t., with w being ob-
tained from any solution to Pot[ΠCTNF, U ] optimal for (O2),
hPot
C,w(s) = h∗(s) for all states s with h∗(s) ≤ U .

Proof (sketch). A set of conjunctions satisfying the claim is
again C := S, the set of all states in the task. Pot[ΠCTNF, U ]
then boils down to an LP encoding of paths in the state space
of Π, with Equation (4) bounding the value of a state by its
successor states. Objective (O2) makes sure that, up to U , the
exact shortest path length is returned.

Appendix A contains the full proof.
A simple trick now suffices to obtain h∗ globally. We

pessimistically interpret the cut-off U as a dead-end indica-
tor, defining hPot

C,w,U (s) := hPot
C,w(s) if hPot

C,w(s) < U and
hPot
C,w,U (s) := ∞ otherwise. We then need to choose a cut-

off that will never apply on solvable states, U > h∗(s)
for all s with h∗(s) < ∞. This is the case for U∗ :=(∏

v∈V |Dv| ·maxa∈A costa
)

+ 1.

Corollary 2. Let Π be any task in TNF. Then there exists a
set C of conjunctions s.t., with w corresponding to a solution
to Pot[ΠCTNF, U

∗] optimal for (O2), hPot
C,w,U∗ = h∗.

For the simpler purpose of detecting all dead-end states,
it is not necessary to use the exceedingly large constant U∗.
Following previous work on potential heuristics for dead-end
detection [Seipp et al., 2016b], we instead consider the task
Π0 identical to Π except that all actions are assigned cost
0. Clearly, h∗[Π0](s) = ∞ iff h∗(s) = ∞, i. e., h∗[Π0]
detects all dead-ends in Π. But all solvable states s have
h∗[Π0](s) = 0, so setting U∗ to any number > 0 results in
hPot
C,w,U∗ that converges to h∗[Π0] as per Corollary 2. We will

denote potential heuristics constructed this way as uPot
C,w.

4.3 Relation to the State Equation
Pommerening et al. [2015] have shown that Pot[Π] under ob-
jective (O1) for a state s is the dual of the state equation LP
for s. By the strong duality theorem for linear programs, the
two heuristics therefore have identical values on s.

Beyond individual states, the heuristics differ though: on
states other than s, the potential heuristic merely gives a lower
bound on hSEQ(s). In fact, there exist tasks and conjunction
sets where no potential heuristic hPot

C,w equals hSEQ[ΠC ] on all
states.

Example 5. Consider the task with variables v1 and v2 and
domains Dv1 = Dv2 = {0, 1, 2}; goal s∗ = {〈v1 =
2〉, 〈v2 = 2〉}; and two actions: a1 which changes the val-
ues of both v1 and v2 from 0 to 2, and a2 which changes their
values from 1 to 2. Both actions have 0-cost. The initial state
is not important. Every state which does not assign both v1

and v2 to the same value is a dead-end. Consider the set
of all singleton conjunctions C. In order to satisfy the state
equation constraints for 〈v1 = 2〉 respectively 〈v2 = 2〉 in
any non-goal state, one of a1 and a2 must be selected. How-
ever, since a1 consumes 〈v1 = 0〉 and 〈v2 = 0〉, and a2 con-
sumes 〈v1 = 1〉 and 〈v2 = 1〉, there exist feasible solutions
to Seq only for the non dead-end states, i. e., hSEQ recognizes
all dead-ends.

Consider the dead-ends s1 = {〈v1 = 0〉, 〈v2 = 1〉} and
s2 = {〈v1 = 1, v2 = 0〉}. Observe that there is no consis-
tent and goal-aware dead-end potential heuristic uPot

C,w which
recognizes both s1 and s2. In order for uPot

C,w to be consistent,
it must hold w(〈v1 = 0〉) + w(〈v2 = 0〉) ≤ 0 and w(〈v1 =
1〉) + w(〈v2 = 1〉) ≤ 0. In order that uPot

C,w recognizes both
s1 and s2, it must hold that w(〈v1 = 0〉) + w(〈v2 = 1〉) > 0
and w(〈v1 = 1〉) + w(〈v2 = 0〉) > 0. There obviously does
not exist w that satisfies all 4 inequalities. The example can
be easily extended to potential heuristics hPot

C,w in general.

5 Refining the State Equation
We have shown that LP heuristics converge to h∗ for suitable
conjunctions C. As an application of this property, for the
rest of the paper we consider proving unsolvability, through
nogood learning (dead-end detection) using LP heuristics.
This is motivated by the success of LP heuristics in the
Unsolvability-IPC [Seipp et al., 2016b]. Convergence is es-
sential as the heuristic must be able to represent arbitrary sets
of dead-end states in the limit.

The key step in nogood learning with a heuristic h is refine-
ment: given a dead-end state s not pruned by h so far, refine
h into h′ that prunes s. Whether this can be done, and how
to best do it in practice, depends crucially on which heuristic
h is used. Steinmetz and Hoffmann [2017] have shown how
to select new conjunctions for critical-path heuristics. Here
we introduce a new refinement method selecting conjunctions
suitable to refine the state equation.

To provide an overview, we next describe the forms of no-
good learning we use in our experiments. Then we introduce
our refinement method.

5.1 Nogood Learning
We start with C containing the singleton conjunctions. We
experiment with three different forms of nogood learning:
CISeq : Proves the task unsolvable on the initial state. We it-

eratively apply refinement, adding new conjunctions into
C, until hSEQ[ΠC ](sI) =∞.

CSSeq : Forward-search nogood learning as per Steinmetz
and Hoffmann [2017], using hSEQ[ΠC ]. A depth-
oriented search calls refinement when backtracking out
of a state s then known to be a (undetected) dead-end.
The refined hSEQ[ΠC ] may generalize to dead-ends not
yet encountered, reducing the future search space.



CSPot : Similar to CSSeq, but using potential heuristics. We
maintain a collection of such heuristics. The refinement
steps work as before, finding a larger set C suitable for
hSEQ[ΠC ]; but now we also add a new potential heuristic
uPot
C,w (optimal under (O1) for s considered in the refine-

ment) into the collection. To check whether a new state
is a dead-end, only the potential heuristics are evaluated,
which does not require any LP solving.

5.2 Refinement Method
We assume Π to be in TNF. Let C be any set of conjunctions,
and s any dead-end where hSEQ[ΠC ](s) 6= ∞. We need to
extend C to C′ ⊇ C such that hSEQ[ΠC

′
](s) =∞. We do so by

iteratively finding a conjunction x 6∈ C whose SEQ constraint
is not satisfied by some LP solution. We set C := C ∪ {x}. If
hSEQ[ΠC ](s) =∞, we stop; else, we iterate. By Corollary 1,
the termination condition must hold eventually.

It remains to show how to choose x. Denote by Seq[ΠC ]
the LP underlying hSEQ[ΠC ](s). The refinement is based on
a concrete solution Count to Seq[ΠC ]. Consider (1) the ΠC

actions selected by Count, i. e., {aC ∈ AC | CountaC >
0}. Additionally consider (2) two auxiliary actions as and
a∗, representing in ΠC the current state and the goal, i. e.,
preas = ∅, eff as = sC , prea∗ = sC∗ , and eff a∗ = ∅. We
denote by ACCount the actions of (1) and (2). For any (partial)
variable assignment P over the variables of ΠC , we denote
by P |V the projection of P onto V . Our key observation is
that we can find an action aC0

0 ∈ ACCount whose precondi-
tion is not supported by ACCount : (*) for all aC ∈ ACCount ,
regr(pre

a
C0
0
, a) 6⊆ preaC . (Recall that the actions in ΠC rep-

resent action occurrences in the original task, carrying the
context of application.)

In general, not every LP solution Count must actually se-
lect an action satisfying (*). However, it is always guaranteed
that there is at least one optimal LP solution for which the
desired aC0

0 exists. We next show how such LP solution is
obtained starting from an arbitrary LP solution Count. If aC0

0
already exists for the considered LP solution, we can imme-
diately proceed with the selection of x (as shown below). If
there is no such aC0

0 , we construct from Count another fea-
sible LP solution Count′ which satisfies (*) as follows. Con-
sider the graph with nodes ACCount and edges aC → aC0

0 for
every aC0

0 and aC where regr(pre
a
C0
0
, aC) ⊆ preaC . In this

graph, every path from as to a∗ would correspond to a plan
for s. Since s is a dead-end, such path cannot exist. Hence
there exists at least one node which is not connected to as. If
(*) is not satisfied for any aC0

0 , then every node must have
an incoming edge. But then, those actions in ACCount that
are disconnected from as must form at least one cycle, i. e.,
omitting the “C” superscripts for readability, there must be
a1, . . . , an ∈ ACCount \ {as} s.t. regr(preai+1

, ai) ⊆ preai
and regr(prea1 , an) ⊆ prean .

Observe that, along this sequence, every fact of ΠC is
produced as often as it is consumed. For the original facts
from Π, this follows immediately from the TNF assumption.
Moreover, given that Π is in TNF, it holds for every 〈πc, 1〉
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Figure 2: Coverage (in %) over time (in s) for different variable
orders in conjunction generation, see text.

and every ai with 〈πc, 1〉 ∈ eff ai that 〈πc, 0〉 ∈ preai . Due to
the selection of the actions a1, . . . , an and due to the defini-
tion of actions in ΠC , 〈πc, 0〉 ∈ eff ai implies 〈πc, 1〉 ∈ preai .
In conclusion, every πc-fact is indeed produced as often as it
is consumed.

But this means that we can obtain another feasible solution
Count′ to the LP such that ai 6∈ ACCount′ for at least one i: let
γ := min1≤i≤n Countai ; set Count′aC = CountaC for every
action occurrence aC such that aC 6= ai for all 1 ≤ i ≤ n,
and set Countai := Countai − γ. The explanation above
implies that, for every fact of ΠC , the the production part is
reduced by the exact same amount as the consumption part,
i. e., Count′ does still satisfies all SEQ constraints. However,
it holds Count′ai = 0 for at least one action of the sequence
a1, . . . , an. Repeatedly applying this step will eventually re-
move all cycles, leaving us with the desired action aC0

0 .
Let P now denote the precondition of aC0

0 , projected onto
the original variables V . Consider ΠC

′
for C′ = C ∪ {P},

and the πP -variable corresponding to P . Since Π is in TNF,
〈πP , 1〉 is consumed by aC0

0 . However, by (*) Count does
not include any action that produces 〈πP , 1〉. In other words,
Count violates the constraint corresponding to 〈πP , 1〉 in
Seq[ΠC

′
]. Hence P 6∈ C and we can set x := P .

We employ two optimizations. 1) we minimize P , starting
with x = P and greedily removing facts p from x so long as
the necessary properties are preserved. 2) we consider not a
single aC0

0 , but all actions with that profile, and add a conjunc-
tion x for each. This results in fewer refinement iterations.

6 Experiments
Our implementation is in Fast Downward (FD) [Helmert,
2006]. We use the UIPC’16 benchmarks, as well as unsolv-
able resource-constrained (RCP) benchmarks [Nakhost et al.,
2012; Steinmetz and Hoffmann, 2017]. All experiments were
run on machines equipped with Intel Xeon E5-2660 CPUs,
with runtime (memory) limits of 30 minutes (4 GB).

Similar to earlier works on the ΠC-compilation [Keyder et
al., 2014], we cope with the worst-case explosion by impos-
ing a size limit M on the ratio |AC |/|A|. Once ΠC reaches
the limit M , we disable the generation of new conjunctions.
We experimented with M ∈ {2, 4, 8, . . . , 1024,∞}, where
for M =∞ the size of ΠC is not limited.

Figure 2 sheds light on an implementation detail that turns
out to be important. Optimization 1) described in the previ-



ous section leaves open the order in which to remove facts p
from x. We make this choice by fixing a variable order a pri-
ori. That order has a large impact on performance. Figure 2
compares the results for CISeq and x =∞, for five randomly
generated orders, picking the per-instance best, median, and
worst variable order. The variance in coverage is large. (We
can also see that CISeq solves an instance either quickly or
not at all.)

To counteract this brittleness, all our configurations in what
follows combine the five variable orders, maintaining for each
a separate conjunction set. Refinement works on all these
sets, interleaving the individual refinement steps and stopping
as soon as any of them succeeds. As can be seen in Figure 2
(“seeds combined”), this performs almost as well as the hy-
pothetical per-instance best configuration. Considering fewer
orders negatively affects coverage. Coverage remains stable
for up to 10 orders, but starts to drop off eventually due to the
additional overhead introduced with every order.

Table 1 shows our main coverage results, comparing our
techniques to baselines and the state of the art. Here, hC is
the forward-search nogood learning algorithm of Steinmetz
and Hoffmann [2017]; PDB is a component of Aidos [Seipp
et al., 2016b], the winner of UIPC’16, evaluated separately to
consider algorithms rather than systems.

CSSeq CSPot Seq
Domain # Blind h1 hC PDB Seq Pot 128 256 ∞ 128 256 ∞ I CI

Unsolvability-IPC (UIPC) 2016 Benchmarks

BagBar 20 12 8 0 12 4 12 0 0 0 0 0 0 0 0
BagGri 25 4 3 2 3 14 8 2 2 2 2 2 2 14 2
BagTra 29 7 6 6 7 22 22 19 19 19 19 19 19 22 19
Bottle 25 10 21 9 19 25 25 25 25 25 25 25 25 25 25
CaveDi 25 7 7 8 7 8 8 7 7 2 4 3 2 1 5
Chess 23 5 5 2 5 23 23 23 23 23 23 23 23 23 23
Diagno 20 4 5 9 5 4 4 4 4 2 3 3 2 0 2
DocTra 20 5 7 5 12 6 5 9 9 7 9 9 7 0 7
NoMys 20 2 2 11 11 1 2 12 12 12 11 11 11 0 11
Rovers 20 7 7 12 12 6 7 10 8 8 10 10 10 0 4
TPP 30 17 16 19 24 11 17 17 17 17 17 16 16 2 16
PegSol 15 5 5 4 5 15 15 15 15 15 15 15 15 15 15
PegSol 24 24 24 14 24 24 24 20 20 4 16 14 4 0 4
SlidTil 20 10 10 10 10 10 10 10 10 10 10 10 10 0 0
Tetris 20 10 5 5 10 20 20 20 20 20 20 20 20 20 20∑

336 129 131 116 166 193 202 193 191 166 184 180 166 122 153

Unsolvable Resource-Constrained Planning (RCP) Benchmarks

NoMys 150 27 53 130 149 15 27 137 131 131 140 132 131 0 137
Rovers 150 3 7 142 93 1 3 117 118 117 120 121 121 0 110
TPP 25 6 5 13 20 0 5 9 9 9 8 8 8 0 9∑

325 36 65 285 262 16 35 263 258 257 268 261 260 0 256∑∑
661 165 196 401 428 209 237 456 449 423 452 441 426 122 409

Table 1: Coverage. Best results in bold. h1: search with h1 heuristic
(for dead-end detection). hC : nogood learning as per Steinmetz and
Hoffmann (see text). PDB: dead-end PDB of Aidos, as per Seipp
et al. (see text). Seq and Pot: search with state equation heuristic,
respectively potential heuristic, over singleton conjunctions. Seq, I:
hSEQ on initial state only, w/o learning; CI same but w/ learning.

Consider first the comparison of our algorithms to the base-
lines, Seq and Pot in Table 1, that use the same heuristics
but over the singleton conjunctions only, without any refine-
ment. On the UIPC benchmarks, Seq and Pot dominate in the
overall, but are outperformed by our techniques in Document-
Transfer, NoMystery, and Rovers. On the RCP benchmarks,
our techniques are vastly better. These observations hold re-

gardless of our configuration, with the single exception of
CISeq in UIPC Rovers. We remark that the bad performance
of our methods in the BagGripper and BagTransport domains
is only due to the overhead of maintaining five different con-
junction sets (cf. above); when maintaining a single set C, we
get the same coverage here as Seq respectively Pot.

Considering hSEQ on the initial state only, without vs. with
learning (the rightmost two columns), shows that the learned
larger conjunctions yield a dramatic increase in unsolvability-
detection power, despite the quick-or-not-at-all performance
profile observed in Figure 2. Indeed, the number of conjunc-
tions needed to prove sI unsolvable here is typically small.
The maximal ratio |C|/

∑
v∈V |Dv| required is 1.66.

Comparing to the state of the art, UIPC NoMystery is the
only domain where the coverage of (the best of) our new
methods is strictly higher (by the smallest margin, +1) than
that of any competitor. The main advantage of our methods
is that they combine both, the strength of LP heuristics on the
UIPC benchmarks, and that of conjunction-learning on RCP
benchmarks: they are the only configurations with near-top
performance in both benchmark categories. The “

∑∑
” row

of Table 1 illustrates this (but should be taken with a grain of
salt given the different numbers of instances per domain).

Comparing our configurations against each other, forward-
search nogood learning consistently outperforms proving un-
solvability on the initial state. The large limits M = 256
and M = ∞ are almost consistently worse than M = 128.
Somewhat surprisingly, potential heuristics hardly ever im-
prove over the state equation. Figure 3 elucidates the latter.
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Figure 3: Per-state runtime (left) and number of visited states (right),
of CSSeq (x-axes) vs. CSPot (y-axes).

CSSeq has the edge in search space size, due to its higher
pruning power; while potential heuristics are faster. Yet the
former effect tends to be larger than the latter one.

7 Conclusion
LP heuristics yield powerful approximations in planning. We
contributed insights on their definition over conjunctions, per-
taining to the natural approach of using the ΠC compilation,
its relation to previous techniques, convergence, and nogood
learning via conjunction refinement.

Interesting avenues for future work are, e. g., conjunction
refinement for optimal planning during A∗ search, and con-
junction refinement for satisficing planning targeted at Seipp
et al.’s [2016a] descending and dead-end avoiding heuristics.
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A Proofs
Theorem 1. For every Π in TNF, every set of conjunctions C,
and every state s, it holds that hSEQ[ΠC ](s) ≥ hCSEQ(s).

Proof. Let Seq[ΠC ] be the LP underlying hSEQ[ΠC ](s), and
SeqC that underlying hCSEQ(s). If there is no feasible solu-
tion to Seq[ΠC ], then hSEQ[ΠC ](s) =∞, and hSEQ[ΠC ](s) ≥
hCSEQ(s) follows trivially. For the rest of proof, we assume
X to be a feasible solution for Seq[ΠC ], where XaC denotes
the count-value for the action occurrence aC ∈ AC .

We next show how to construct from X a feasible solution
Y for SeqC with equal objective value. We choose the values
of Ya and Y x→x

′

a in the following way. For every action a ∈
A, we set

Ya :=
∑

C⊆C:aC∈AC
XaC (T1.1)

(all aC over the same base action a). The transition variables
are defined as follows:
• For every transition c a−→ c′:

Y c→c
′

a :=
∑

C⊆C:aC∈AC ,
〈πc,0〉∈eff aC ,
〈πc′ ,1〉∈eff aC

XaC (T1.2)

• For every transition > a−→ c:

Y >→ca :=
∑

C⊆C:aC∈AC ,
〈πc,1〉∈eff aC

XaC (T1.3)

• For every transition c a−→ >:

Y c→>a :=
∑

C⊆C:aC∈AC ,
〈πc,1〉∈preaC ,
〈πc,0〉∈eff aC

XaC (T1.4)

We start with showing that Equation (1) is satisfied for
all facts p = 〈v, d〉 with v ∈ V . Denote by Prod [ΠC ] and
Cons[ΠC ] the producers and consumers defined in ΠC . It is
easy to see that Prod [ΠC ](p) = {aC | a ∈ Prod(p), C ⊆
C s.t. aC ∈ AC} and that Cons[ΠC ](p) = {aC | a ∈
Cons(p), C ⊆ C s.t. aC ∈ AC}. Given (T1.1), it holds
that

∑
a∈Prod(p) Ya =

∑
a∈Prod(p)

∑
C⊆C,aC∈AC XaC =∑

aC∈Prod[ΠC ](p)XaC , and similarly for the consumers.
Since X satisfies the constraint for p in Seq[ΠC ] by assump-
tion, Y hence satisfies p’s constraint in CSeq.

Consider next Equation (3) for any partial variable merge
with associated variables V . We first show that every action
occurrence aC ∈ AC counts towards at most one transition
in this partial variable merge. Assume the contrary, and let
aC ∈ AC be an action occurrence where this is not true. Let
x1

a−→ x2 and x3
a−→ x4 be two state-changing transitions in

the considered variable merge which both count XaC . Note
that x1 6= > or x2 6= >, and x3 6= > or x4 6= >. We
distinguish between the following cases

• x2 = c1 and x4 = c2 for c1, c2 ∈ C with V(c1) =
V(c2) = V and c1 6= c2. From (T1.2) and (T1.3) and
the definition of aC , it follows that c1, c2 ∈ C what con-
tradicts the compatibility requirement of C.

• x1 = c1 and x3 = c2 for c1, c2 ∈ C with V(c1) =
V(c2) = V and c1 6= c2. Note that both (T1.2) and
(T1.4) imply that 〈πc, 1〉 ∈ preaC (c being the conjunc-
tion in the respective conditions). The latter directly im-
poses this as condition. Regarding the former, (T1.2),
since Π is in TNF and 〈πc′ , 1〉 ∈ eff aC , it follows that
V(c′) ⊆ V(regr(c′, a)) ⊆ V(preaC ). From 〈πc, 0〉 ∈
eff aC it follows in particular that c||preaC , so since
V(c) = V(c′) it holds that c ⊆ preaC , i. e., 〈πc, 1〉 ∈
preaC . Hence, 〈πc1 , 1〉 ∈ preaC and 〈πc2 , 1〉 ∈ preaC ,
what is in contradiction to the compatibility of C.

• x2 = c1 and x3 = c2 for c1, c2 ∈ C with V(c1) =
V(c2) = V where either x1 6= c2 or x4 6= c1. From
(T1.2), (T1.3), and (T1.4), it follows that 〈πc2 , 0〉 ∈
eff aC and 〈πc1 , 1〉 ∈ eff aC . By definition of aC ,
〈πc2 , 0〉 ∈ eff aC implies that c2||preaC . Therefore,
the partial variable merge must contain the transition
c2

a−→ c1. Since Π is in TNF, a can only label a sin-
gle transition going into c1, respectively a single transi-
tion going out of c2. But this means that x1 = c2 and
x4 = c1, a contradiction to the assumption.

Since x1
a−→ x2 and x3

a−→ x4 are two different transitions,
one of the three cases must apply. But all of them lead to
a contradiction to one of the assumptions. This hence shows
that every aC is associated with at most one transition per par-
tial variable merge. Moreover, if Equation (3) requires only
≤, it follows immediately that the respective constraint is sat-
isfied. If Equation (3) for action a ∈ A and partial variable
merge over variables V enforces equality, then V ⊆ V(prea)
and there must exist c ∈ C with V(c) = V and either (a)
c ⊆ prea and c ∦ eff a, or (b) prea ⊆ regr(c, a). For (a) it
follows for all action occurences aC of a that 〈πc, 1〉 ∈ preaC

and 〈πc, 0〉 ∈ eff aC . Let c a−→ x be the corresponding tran-
sition. If x = >, then Y c→>a =

∑
C⊆C,aC∈AC ,
〈πc,1〉∈preaC ,
〈πc,0〉∈eff aC

XaC =

∑
C⊆C,aC∈AC = Ya. If x = c′ for some c′ ∈ C, then

prea ⊆ regr(c′, a), and hence 〈πc′ , 1〉 ∈ eff aC for every
action occurrence aC of a (Condition (2) of ΠC definition).
In other words, Y c→c

′

a =
∑
C⊆C,aC∈AC XaC = Ya. For (b),

let x a−→ c be the corresponding transition. Due to condition
(2) of the ΠC definition, it holds that 〈πc, 1〉 ∈ eff aC for all
action occurences aC with base action a. If x = >, then
Y >→ca =

∑
C⊆C,aC∈AC,
〈πc,1〉∈eff aC

XaC =
∑
C⊆C,aC∈AC XaC = Ya.

The case x = c′ follows from the arguments given before.
Thus, Y satisfies Equation (3) regardless of whether ≤ or =
is enforced.

It is left to show that Y satisfies Equation (2) for all con-
junctions c ∈ C. Let c ∈ C be arbitrary. We show that
(a) the production part for c in Equation (2) is at least as
large as the production part for 〈πc, 1〉 in Equation (1), and
that (b) the consumption part for c is at most as large as the



consumption part of 〈πc, 1〉. As shown above, every action
occurrence is counted in at most one transition per variable
merge. Moreover, as before, for every aC , c, and c′ in (T1.2),
it holds that 〈πc, 1〉 ∈ preaC . Therefore, it follows from
(T1.2), (T1.4), and the definition Cons(〈πc, 1〉) that (b) is
satisfied. Regarding (a), observe that every action occurrence
aC with 〈πc, 1〉 ∈ eff aC is counted in at least one transition
x

a−→ c. Let aC be any such action occurrence. By definition,
regr(c, a) 6= ⊥, and hence a must induce at least one transi-
tion going into c in the respective variable merge. If > a−→ c,
then Y >→ca counts XaC by construction (T1.3). If c′ a−→ c,
then c′||regr(c, a) and c′ 6= c by definition of regression, i. e.,
c′ ∦ eff a. Thus, 〈πc′ , 0〉 ∈ eff aC , so (T1.2) makes sure that
XaC is counted in Y c

′→c
a . Since ∆c = ∆〈πc,1〉, we conclude

that Y also satisfies Equation (2) for all conjunctions c ∈ C.
Finally, note that (T1.1) implies that that the objective

value of Y is the same as that of X . This completes the
proof.

Theorem 2. There exists families of Π and C s.t., to obtain
hC
′SEQ(s) ≥ hSEQ[ΠC ](s) for all states s, C′ must be expo-

nentially larger than C.

Proof. Consider the following transportation example. The
map consists of two locations A and B, and is fully con-
nected. There is a single truck t with load capacity l, which
must bring n packages p1, . . . , pn to their destinations. To do
so, there are three types of actions: tomove the truck between
A and B; to load package pi into truck at B, requiring that
enough load capacity is available; and to unload the package
pi at location A. All actions have cost 1. In the initial state,
t is at A, l is 1, and all packages are at B. The goal is to
have all variables t, p1, . . . , pn at A, and l = 1. Every opti-
mal plan for this task needs to do one load, one unload, and
two move actions for every package, summing up to a total
of h∗(sI) = 4n.

In hSEQ[ΠC ], considering all conjunctions c of size |c| ≤ 3
makes visible that no two packages can be in the truck at
the same time, yielding hSEQ[ΠC ](sI) = h∗(sI). Similar
to Example 1, every solution to Seq[ΠC ] must load and un-
load every package once. To see that hSEQ[ΠC ](sI) must
also account for two move actions for each package, con-
sider the action a0 = unload (pi, A) for any package pi.
Every action occurrence aC0 of a0 consumes the conjunc-
tion ci = {〈t = A〉, 〈pi = T 〉}. The only possibility to
produce ci is via an action occurrence of the move action,
moving the truck to A, and assuming 〈pi = T 〉 in its con-
text. Observe that the same move action occurrence can-
not be used to achieve ci and cj for two different packages
i 6= j. This is true because every action occurrence aC1 of
a1 = move(B,A) with {〈pi = T 〉, 〈pj = T 〉} ⊆ C con-
sumes the conjunction c′ = {〈t = B〉, 〈pi = T 〉, 〈pj = T 〉}.
However, c′ cannot be produced without violating some con-
straint. There are two possibilities: (1) via an action oc-
currence of move(A,B), including {〈pi = T 〉, 〈pj = T 〉}
in the context; and (2) loading one of the packages, e. g.,
load(pi, B) including {〈pj = T 〉} in the context. Option (1)
cannot be used, as this would basically lead to a cyclic depen-
dency between the respective move(A,B) and move(B,A)

action occurrences. Option (2) leads to the consumption of
the conjunction {〈pj = T 〉, 〈l = 1〉}, which obviously cannot
be produced without violating the state equation constraints.
Hence, for every package pi, ci must be produced through
a separate move(B,A) action occurrence. Since every such
occurrence consumes 〈t = B〉, its state equation constraint
forces to count for one move(A,B) action application per
package. This shows that hSEQ[ΠC ](sI) = h∗(sI).

In contrast, in order to obtain hCSEQ(sI) = h∗(sI), C
needs to contain exponentially many conjunctions. Let C be
any set of conjunctions. Let Count denote any solution to
SeqC with minimal objective value. Consider first the state
equation constraints in Equation (1) over facts p = 〈v, d〉.
For v = t, the state equation constraints are satisfied if the
number of move(B,A) action counts matches the number
of move(A,B) action counts. For v 6= t, the move count
variables do not appear in any constraint. Next, consider any
partial variable merge over the variable set V , and let m de-
note the number of packages considered in V . For V = {v},
the satisfaction of the corresponding constraints in Equa-
tion (2) and Equation (3) are implied by the satisfaction of the
state equation constraints, Equation (1), for v. Assume that
|V | > 1. We distinguish between the following cases: For
m = 0, i. e., V = {t, l}, the abstract initial state in the corre-
sponding partial variable merge is identical to the the abstract
goal state. No move action transitions are required to satisfy
the constraints corresponding to V . For m > 0 but t 6∈ V ,
the corresponding partial variable merge does not contain any
move transition. For m > 0, t ∈ V , but l 6∈ V , to reach the
abstract goal state from the abstract initial state, at most one
move(B,A) transition and at most one move(A,B) transi-
tion is required to satisfy the constraints. If m > 0 and
t, l ∈ V , reaching the abstract goal state requires at most
m move(B,A) transitions, and at most 2m move transi-
tions in total. Choosing Countmove(A,B) or Countmove(B,A)

to a value larger than the maximal number of move(A,B)
and move(B,A) transition counts over all considered partial
variable merges, leads to a contradiction to the minimality of
Count. Hence, the combination of all the above cases shows
that Countmove(A,B) + Countmove(B,A) ≤ max{2, 2m̂}, for
the variable set V̂ with t, l ∈ V̂ and number of packages m̂
maximal among all such variable sets. As an immediate con-
sequence, if it holds that hCSEQ(sI) = h∗(sI), then it must
also hold that m̂ = n, i. e., V̂ = V .

We finally show that if C contains from any optimal plan
less than 4n− 3 states, then the partial variable merge corre-
sponding to V requires less than n move(B,A) transitions to
reach the abstract goal, and hence hCSEQ(sI) cannot encode
h∗(sI). Since there are exponentially many optimal plans,
one for each permutation of p1, . . . , pn, and they all com-
monly visit exactly two states (the initial state and the goal
state), this hence shows that C must contain exponentially
many conjunctions. We show the claim by contraposition.
Assume there is an optimal plan π = 〈a1, . . . , a4n〉 visiting
states sI = s0, s1, . . . , s4n with indices 0 ≤ i < j ≤ 4n
such that i + 3 ≤ j and si, sj 6∈ C. Since π is optimal, one
of the actions ai, . . . , ai+3 must be move(B,A). However,
since si, sj 6∈ C, both states are represented in the partial vari-



able merge by the same abstract state, introducing a shortcut,
and avoiding at least one move(B,A) transition. Hence, the
minimal number of move(B,A) transitions required to reach
the abstract goal must be smaller than n.

In conclusion, C′ must contain exponentially many con-
junctions (in n) in order that hC

′SEQ(sI) ≥ hSEQ[ΠC ](sI) =
h∗(sI), while |C| is polynomially bounded in n.

Theorem 5. Let Π be any task in TNF, and U ∈ R+
0 . Then

there exists a set C of conjunctions s.t., with w being ob-
tained from any solution to Pot[ΠCTNF, U ] optimal for (O2),
hPot
C,w(s) = h∗(s) for all states s with h∗(s) ≤ U .

Proof. We will first show that the claim holds for C := S,
i. e., the set of all states in the task, and Ĉ := {〈πs, 1〉 |
s ∈ S}. We will then extend the arguments, showing that
the claim still holds if we consider in C additionally all sin-
gleton conjunctions over Π’s facts, and in Ĉ all singleton con-
junctions over ΠCTNF’s facts, i. e., matching the requirements
of Theorem 4.

Consider the weight function ŵ : Ĉ 7→ R where
ŵ({〈πs, 1〉}) := min{h∗(s), U}. Observe that ŵ satisfies
all constraints of Pot[ΠCTNF, U ] over the conjunctions Ĉ: ŵ(s)
is bounded by U for all s ∈ C by construction. Equation (5)
is satisfied since ŵ(s∗) = h∗(s∗) = 0. Equation (4) is sat-
isfied since every occurrence aC can consume, respectively
produce, at most one 〈πs, 1〉. If aC does not produce any
〈πs, 1〉, then since ŵ(s) ≥ 0 for all s ∈ C, the constraint
is satisfied. If aC produces some 〈πs, 1〉, then since Π is
in TNF, aC must also consume some 〈πs′ , 1〉. It holds that
s′ = regr(s, a), i. e., s = s′JaK. Equation (4) turns into
ŵ({〈πs′ , 1〉})−ŵ({〈πs, 1〉}) ≤ costa, which by definition of
ŵ is equivalent to h∗(s′) − h∗(s) ≤ costa. In conclusion, ŵ
satisfies all constraints of Pot[ΠCTNF, U ]. Finally, observe that
ŵ is the only possibility to maximize (O2). Assume there was
a different ŵ′ maximizing (O2). There must be some s ∈ C
such that ŵ′({〈πs, 1〉}) > ŵ({〈πs, 1〉}) = h∗(s). As action
occurences of ΠCTNF enumerate all possible transitions in Π,
the satisfaction of the consistency constraints imply that ŵ′
violates either ŵ′({〈πs∗ , 1〉}) = 0 or ŵ′({〈πs, 1〉) ≤ U for
some s ∈ S. This shows the claim.

The proof can be extended to Ĉ containing all single-
ton conjunctions over ΠCTNF’s facts if the normalization of
the weights of Ĉ matches the frequency of conjunctions in
Π. Denote by ˆfreq the normalization coefficients for Ĉ.
We define ˆfreq({〈v, d〉}) := freq({〈v, d〉}) for v ∈ V;

ˆfreq({〈πc, 1〉}) := freq(c) and ˆfreq({〈πc, 0〉}) := 1 −
freq(c) and ˆfreq({〈πc,>〉}) := 0. It is straightforward
to show that maximizing the average heuristic value over all
states in S is equivalent to maximizing

∑
ĉ∈Ĉ ŵ(ĉ) · ˆfreq(ĉ).

Using the same arguments as before, we can show the ex-
istence of ŵ satisfying Pot[ΠCTNF, U ] with corresponding w
such that hPot

C,w(s) = h∗(s) for all states s. Due to Lemma 1
and Equation (5), for every ŵ′ satisfying Pot[ΠCTNF, U ] and
for every corresponding w′, it holds that hPot

C,w′(s) ≤ h∗(s).

Hence, ŵ maximizes the objective, what concludes the
proof.
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