
Decoupled Strong Stubborn Sets (Technical Report)

Daniel Gnad
Saarland University

Saarbrücken, Germany
gnad@cs.uni-saarland.de

Martin Wehrle
University of Basel
Basel, Switzerland

martin.wehrle@unibas.ch

Jörg Hoffmann
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

Abstract
Recent work has introduced fork-decoupled search,
addressing classical planning problems where a
single center component provides preconditions for
several leaf components. Given a fixed center path
πC , the leaf moves compliant with πC can then
be scheduled independently for each leaf. Fork-
decoupled search thus searches over center paths
only, maintaining the compliant paths for each leaf
separately. This can yield dramatic benefits. It is
empirically complementary to partial order reduc-
tion via strong stubborn sets, in that each method
yields its strongest reductions in different bench-
marks. Here we show that the two methods can
be combined, in the form of strong stubborn sets
for fork-decoupled search. This can yield exponen-
tial advantages relative to both methods. Empiri-
cally, the combination reliably inherits the best of
its components, and often outperforms both.

1 Introduction
In classical AI planning, the task is to find a sequence of
actions leading from a given initial state to a state that sat-
isfies a given goal condition, in a large deterministic tran-
sition system (the task’s state space). Gnad and Hoffmann
[2015a] (henceforth: GH) have recently introduced a new ap-
proach, fork-decoupled search, to decompose the state space.
The approach relates to factored planning (e.g. [Amir and
Engelhardt, 2003; Kelareva et al., 2007; Fabre et al., 2010;
Brafman and Domshlak, 2013]), where the factors are dis-
joint subsets of state variables. Fork-decoupled search as-
sumes that the factors induce a fork structure: a single cen-
ter factor provides preconditions for several leaf factors,
and no other cross-factor interactions exist. As GH show,
such a fork factoring, if one exists, can be easily identi-
fied in a pre-process to planning, based on the task’s causal
graph (e.g. [Knoblock, 1994; Jonsson and Bäckström, 1995;
Brafman and Domshlak, 2003; Helmert, 2006]).

In a fork factoring, the leaves are “conditionally indepen-
dent”, in the sense that, given a fixed center path πC , the com-
pliant leaf moves – those leaf moves enabled by the precon-
ditions supplied along πC – can be scheduled independently
for each leaf. This can be exploited by searching only over

center paths, and maintaining the possible compliant paths
separately for each leaf, thus avoiding the enumeration of
state combinations across leaves. GH show how to employ
standard heuristic search planning algorithms, preserving op-
timality guarantees. They obtain dramatic benefits in several
International Planning Competition (IPC) benchmarks.

Fork-decoupling can be thought of as a reformulation of
the search space. Can known search reduction methods
be applied on the reformulated search space as well? We
herein answer this in the affirmative for a prominent reduc-
tion method, namely state-of-the-art partial order reduction
via strong stubborn sets (SSS) [Valmari, 1989; Alkhazraji et
al., 2012; Wehrle and Helmert, 2012; 2014]. This method
prunes applicable actions on states s during (standard, non-
decoupled) search, namely those not contained in an SSS for
s. The SSS is guaranteed to contain at least one action start-
ing an optimal plan for s, so optimality is preserved.

Fork-decoupled search and SSS yield their respective best
reductions in different IPC domains. We show that the two
methods are indeed exponentially separated, i.e., that there
are cases where one yields exponentially stronger reductions
than the other. We show how to combine them in the form of
decoupled strong stubborn sets (DSSS), for fork-decoupled
search. We show that this combination is exponentially sep-
arated from both its components. There are cases – not com-
plex artificial examples, but simple variants of the Logistics
benchmark – where DSSS yield exponentially stronger reduc-
tions than both fork-decoupling and SSS. Empirically, DSSS
reliably inherit the strengths of each component, and some-
times outperform both. In some cases, DSSS even is “more
than the sum of its components”, yielding a stronger reduc-
tion in fork-decoupled search than SSS do in standard search.

Some proofs are replaced with proof sketches in the main
text. The full proofs are in Appendix 8.

2 Background
We employ a finite-domain state variable formalization of
planning (e.g. [Bäckström and Nebel, 1995; Helmert, 2006]).
A finite-domain representation planning task, short FDR task,
is a tuple Π = 〈V,A, s0, s?〉. V is a set of state variables,
each v ∈ V associated with a finite domain D(v). We iden-
tify (partial) variable assignments with sets of variable/value
pairs. A complete assignment to V is a state. s0 is the ini-
tial state, and the goal s? is a partial assignment to V . A



is a finite set of actions. Each action a ∈ A is a triple
〈pre(a), eff (a), cost(a)〉 where the precondition pre(a) and
effect eff (a) are partial assignments to V , with eff (a) 6= ∅;
cost(a) ∈ R0+ is a’s non-negative cost.

Given a partial assignment p, by vars(p) ⊆ V we denote
the subset of state variables on which p is defined. For V ⊆
vars(p), by p[V ] we denote the assignment to V made by p.
Action a is applicable in state s if s |= pre(a), i.e., pre(a) ⊆
s. Applying a in s changes the value of v ∈ vars(eff (a)) to
eff (a)[v], and leaves s unchanged elsewhere. A plan for Π is
an action sequence π applicable in s0 and ending in a state s
such that s |= s?. The plan is optimal if its summed-up cost,
denoted cost(π), is minimal among all plans for Π.

We next give a summary of fork-decoupled search. We will
often write “decoupled” instead of “fork-decoupled”.

A factoring F is a partition of V . F is a fork factoring
if |F| ≥ 2 and there exists FC ∈ F s.t. the arcs in F’s
interaction graph are exactly {(FC , FL) | FL ∈ F \{FC}}.
Here, the interaction graph is the quotient of the task’s causal
graph over F , i.e., it contains an arc (F, F ′) if there exists
a ∈ A s.t. F ∩ [vars(pre(a)) ∪ vars(eff (a))] 6= ∅ and F ′ ∩
vars(eff (a)) 6= ∅. We refer to FC as the center of F , and to
all other factors FL ∈ FL := F \ {FC} as its leaves.

As a running example, consider a Logistics-style planning
task with 1 truck variable t, N package variables pi, and two
locations A and B. The truck and all packages are initially at
A, and the goal is for the packages to be at B. The actions
(unit costs) are drive, load, and unload, with the usual pre-
conditions and effects (e.g. load(t, pi, A) requires both t and
pi to be at A, and moves pi into the truck). Setting {t} as the
center and each {pi} as a leaf, we obtain a fork factoring.

Not every task Π has a fork factoring. We assume GH’s ap-
proach of analyzing Π’s causal graph in a pre-process, identi-
fying a fork factoring if one exists, else abstaining from solv-
ing Π. In what follows, assume a fork factoring F .

Given the structure of the interaction graph, every action
affects (touches in its effect) either only FC , or only one leaf
FL. We refer to the former kind as center actions, and to the
latter kind as leaf actions. Observe that center actions do not
have any preconditions on leaves. Furthermore, if leaf action
a affects leaf FL, then it can be preconditioned only on FC

and FL, i.e., vars(pre(a)) ⊆ FC ∪ FL.
Due to these action behaviors, a fork factoring encapsu-

lates a particular form of “conditional independence” be-
tween leaves. Assume a center path πC , i.e., a sequence of
center actions applicable to s0. A leaf path is a sequence of
leaf actions applicable to s0 when ignoring preconditions on
FC . A leaf path πL complies with πC if it uses only the center
preconditions supplied along πC , i.e., if πL can be scheduled
alongside πC so that the combined action sequence is appli-
cable in s0. Intuitively, fixing πC , the compliant leaf paths
are the possible leaf moves given πC . Observe that these pos-
sible moves are independent across leaf factors FL, i.e., for
each FL we can choose a compliant πL independently from
that choice for any other leaf factor. Hence we can search
over center paths πC only, maintaining all possible compli-
ant paths separately for each leaf. We commit to the actual
choices of compliant leaf paths only when the goal is reached.

Concretely, a decoupled state sF is given by a center path

πC(sF ). It is associated with its center state ct(sF ), sim-
ply the outcome of applying πC(sF ) to s0[FC ]; and with its
pricing function prices(sF ). The latter maps each leaf state
sL, i.e., each value assignment to some leaf FL, to its price,
defined as the cost of a cheapest leaf path that complies with
πC(sF ) and ends in sL (or∞ if no such path exists). Pricing
functions can be maintained in time low-order polynomial in
the size of the individual FL state spaces; we omit the details
for space reasons. Note the word “price”: prices(sF )[sL] is
not a cost we have already paid; rather, it is the cost we will
have to pay in case we commit to sL in sF later on.

The initial decoupled state sF0 results from the empty cen-
ter path πC(sF0 ) = 〈〉. We denote by ReachedL(sF ) the set of
leaf states sL reachable in sF , i.e., where prices(sF )[sL] <
∞. A goal decoupled state sF? is one with a goal center
state ct(sF? ) |= s?[FC ] and where, for every leaf factor
FL ∈ FL, there exists a reachable goal leaf state sL, i.e.,
sL ∈ ReachedL(sF? ) such that sL |= s?[FL]. The actions
applicable in sF are those center actions whose precondi-
tion is satisfied in ct(sF ) (recall here that we do not branch
over leaf actions). Applying a to sF results in tF where
πC(tF ) := πC(sF ) ◦ 〈a〉, and ct(tF ) as well as prices(tF )
arise from πC(tF ) as defined above.

In our example, ct(sF0 ) = {(t, A)}, and for each pi
the price of (pi, A) is 0, that of (pi, t) is 1, and that of
(pi, B) is ∞. Observe here that the prices represent possi-
ble package moves given the initial center state, rather than
moves we have already committed to. The only action ap-
plicable to sF0 in the decoupled search is the center action
drive(t, A,B), leading to the goal decoupled state sF? where
ct(sF? ) = {(t, B)} and the prices are as before except that
(pi, B) now has price 2, i.e., the package goals are reachable.

Once a goal decoupled state sF? is reached, a plan π for the
input task Π can be constructed by augmenting the center path
πC(sF? ) with compliant leaf paths ending in goal leaf states
sL? (i.e., we now select such leaf paths, and commit to them).
In our example, for each pi we may select the compliant leaf
path 〈load(t, pi, A),unload(t, pi, B)〉.

Selecting, for the plan π, the cheapest compliant paths
ending in the goal leaf states sL? , by construction we have
cost(π) = cost(πC(sF? )) +

∑
FL∈FL prices(sF? )[sL? ]. If

we select sL? with minimal prices(sF? )[sL? ], such π is op-
timal among the plans for Π whose center action subse-
quence is πC(sF? ). Given this, we refer to the cost of such
π as the local cost of sF? , denoted LocalCost(sF? ). We set
LocalCost(sF ) :=∞ for non-goal decoupled states sF .

LocalCost(sF? ) is optimal for sF? (locally optimal) but not
necessarily optimal for Π (globally optimal). Indeed, it can
happen that, from sF? , a better plan can be obtained from a
descendant of sF? . This is because, with additional center ac-
tions, cheaper leaf paths may become available. For example,
say in sF the leaf goal have-car has price 1000 via the appli-
cable leaf action buy-car. But if we apply a center action get-
manager-job, then the leaf action get-company-car becomes
applicable, reducing the leaf goal price to 0.

In contrast to the standard setting, to guarantee optimal-
ity one must therefore continue the search on goal decoupled
states (GH show that standard search algorithms are easy to
adapt to this situation). The purpose of such search, trying to



decrease leaf prices, differs from that of non-goal decoupled
states, trying to reach the goal in the first place. Our design
of strong stubborn sets for decoupled search distinguishes be-
tween the two cases.

3 SSS for Non-Goal Decoupled States
We show that, for non-goal decoupled states, the definition
of strong stubborn sets (SSS) for planning [Alkhazraji et al.,
2012] can be extended to decoupled search by suitable exten-
sions of its basic components.

A SSS for a given state s is a set Ts ⊆ A constructed so
that, for every plan π for s, at least one permutation of π starts
with an action a ∈ Ts. Hence SSS are fundamentally based
on the concept of “plans for a given state”. That concept is
trivial for classical state spaces. But in decoupled state spaces
the structure of “states” sF is more complex. GH did not re-
quire, so did not introduce, such a concept. For our purposes,
the following notions will suffice.

A path πF in the decoupled state space is a decoupled plan
for sF if it leads from sF to a goal decoupled state. We say
that sF is solvable if at least one such πF exists. We denote
the center-action sequence underlying πF by πC(πF ). The
completion plan given πF , denoted ComPlan(πF ), consists
of πC(πF ) together with cheapest goal leaf paths πL com-
pliant with πC(sF ) ◦ πC(πF ), ending in cheapest goal leaf
states. In other words, ComPlan(πF ) collects the postfix
path for the center, and the complete path for each leaf. Ob-
serve that ComPlan(πF ) is not uniquely defined, as there
may be multiple suitable πL. For our purposes, this does
not matter and we assume any suitable choice of πL. We
say that πF is optimal if cost(ComPlan(πF )) is minimal
among all decoupled plans for sF . In our running example,
assume a third location C and the road map A → B →
C. Say we apply drive(t, A,B) to sF0 to obtain sF . Then
πC := 〈drive(t, B,C)〉 yields a decoupled plan πF for sF ,
and ComPlan(πF ) consists of all load(t, pi, A) actions, then
πC , then all unload(t, pi, C) actions.

Clearly, to preserve optimality, it suffices for Ts to con-
tain at least one center action starting an optimal decou-
pled plan for sF . Towards identifying sets Ts qualify-
ing for this, we will need to focus exclusively on the part
of the completion plan “behind” sF . We denote this by
PostPlan(πF ), the postfix plan. The center action subse-
quence in PostPlan(πF ) is πC(πF ). For any leaf factor
FL, say πL = 〈aL1 , . . . , aLn〉 is the goal leaf path for FL

in ComPlan(πF ), traversing leaf states 〈sL0 , . . . , sLn〉. Then
the leaf action subsequence for FL in PostPlan(πC) is de-
fined as 〈aLi+1, . . . , a

L
n〉, where i is the highest index for which

sLi ∈ ReachedL(sF ). In other words, we consider the postfix
of πL not contained in ReachedL(sF ).

Two notions, of completion plan and postfix plan, are re-
quired because postfix plans are (in contrast to the standard
setting) not suited to define optimality. The decoupled plan
leading to the cheapest postfix plan may differ from that lead-
ing to the cheapest completion plan. This is because the post-
fix plan ignores the price of the sF leaf states it starts from.1

1For example, assume trucks t1 and t2 in our running example,

The original definition of SSS in states s relies on the basic
concepts of disjunctive action landmarks, action interference,
necessary enabling sets, and action applicability. For a cor-
responding definition for decoupled states sF , the concept of
action interference remains the same, but all other concepts
must be extended. We start with applicability:

Definition 1 (Action Applicability). Let sF be a decoupled
state. A center action a is applicable in sF if ct(sF ) |=
pre(a). A leaf action a affecting leaf FL is applicable in
sF if ct(sF ) |= pre(a)[FC ], and there exists a leaf state
sL ∈ ReachedL(sF ) such that sL |= pre(a)[FL]. The set
of actions applicable in sF is denoted with appdec(sF ).

Note that this definition encompasses both, center actions
and leaf actions. This is in contrast to the decoupled search
which branches only over (applicable) center actions. Thus
the notion of “applicability” as per Definition 1 is different
from the notion used in decoupled search. It is better suited
for the definition of strong stubborn sets, lending itself to a
direct extension of the original definition.

Let us next focus on the concept of necessary enabling sets.
Given an action a whose preconditions are not true, a neces-
sary enabling set should be a set of actions one of which must
necessarily be applied in order to enable a. In the standard
setting, such a set is trivial to obtain, by picking a precondi-
tion value not currently true and selecting all actions achiev-
ing that value. In decoupled search, this is not as easy because
decoupled states do not assign unique values to leaf-factor
state variables. We adjust the concept as follows:

Definition 2 (Decoupled Necessary Enabling Set). Let sF
be a decoupled state, and let a be an inapplicable action
a 6∈ appdec(sF ). An action set A is a decoupled necessary
enabling set for a in sF if either of the following cases holds:

(i) A = {a′ ∈ A | eff (a′)[v] = pre(a)[v]} where v ∈
vars(pre(a)) ∩ FC s.t. ct(sF )[v] 6= pre(a)[v].

(ii) A = {a′ ∈ A | eff (a′)[v] = pre(a)[v]} where v ∈
vars(pre(a)) \FC s.t., for all sL ∈ ReachedL(sF ), we
have sL 6|= pre(a)[v].

(iii) A =
⋃

v∈V {a′ ∈ A | eff (a′)[v] = pre(a)[v]} where
V 6= ∅ is the set of all v ∈ vars(pre(a)) s.t. exists
sL ∈ ReachedL(sF ) with sL 6|= pre(a)[v].

Case (i) in this definition corresponds to the standard set-
ting, whereA are the achievers of an open precondition on the
center, whose assignment is fixed in sF . Case (ii) captures the
situation where a leaf precondition is false in all reachable
leaf states. Case (iii) is relevant because a leaf action may
have several preconditions, each satisfied by some reachable
leaf state, but not all satisfied jointly in any reachable leaf
state. We then collect the achievers of preconditions open in
any reachable leaf state. Clearly, in every case at least one

both starting with all N packages at A, where all unloading actions
have cost 1, loading a package into t1 has cost 1 while loading it
into t2 has cost 2, and driving t1 has cost 2 while driving t2 has cost
1. Then the optimal decoupled plan for sF0 is drive(t1, A,B), to a
plan cost of 2+2N . But the postfix plan of drive(t1, A,B) has cost
2+N , and a cheaper postfix plan, of cost 1+N , is obtained by the
decoupled plan drive(t2, A,B).



a′ ∈ A must be used by any postfix plan for sF that contains
a. At least one of the cases must apply as a 6∈ appdec(sF ).
For center actions, only case (i) is possible. For leaf actions,
we first test (ii), then (iii), and finally (i), the motivation being
to focus on the open center preconditions “closest” to sF .

We finally need to adjust the concept of disjunctive action
landmarks. Given our notion of postfix plans, this is direct:
Definition 3 (Decoupled Disjunctive Action Landmark). Let
sF be a non-goal decoupled state. An action set L is a decou-
pled disjunctive action landmark for sF if, for all decoupled
plans πC for sF , we have PostPlan(πC) ∩ L 6= ∅.

In our implementation, we find decoupled disjunctive ac-
tion landmarks simply in terms of a necessary enabling set for
the goal condition s?, i.e., exactly as in Definition 2 but using
s? as the precondition of a hypothetical action a.

The last basic concept we need is the standard notion of
interference between pairs of actions. We say that a and a′
interfere if ex. v s.t. eff (a′)[v] 6= eff (a)[v] or eff (a)[v] 6=
pre(a′)[v] or eff (a′)[v] 6= pre(a)[v]. Decoupled strong stub-
born sets are now defined as follows:
Definition 4 (DSSS for Non-Goal Decoupled States). Let sF
be a non-goal decoupled state. An action set Ts is a decou-
pled strong stubborn set (DSSS) for sF if the following con-
ditions hold:

(i) Ts contains a decoupled disjunctive action landmark.
(ii) For all actions a ∈ Ts and a /∈ appdec(sF ), Ts contains

a decoupled necessary enabling set for a.
(iii) For all center actions a ∈ Ts and a ∈ appdec(sF ), Ts

contains all actions that interfere with a.
Thanks to the adapted basic concepts, this definition mir-

rors the original one [Alkhazraji et al., 2012]. Intuitively,
condition (i) ensures that Ts makes progress to the goal; con-
dition (ii) ensures that Ts backchains all the way to the cur-
rent state; condition (iii) ensures that, if we branch over a,
then we also branch over all actions that may be in conflict
with a. All three conditions are identical to the respective
original one, modulo the adapted basic concepts. The single
exception is the restriction to center actions in condition (iii).
We do not need to include interfering actions for applicable
leaf actions. That is so because postfix plans do not contain
applicable leaf actions anyhow: everything that can be done
using such actions is already reachable in sF .

By adapting the proof arguments from the standard setting,
one can show that DSSS preserve optimality:
Theorem 1. Let sF be a solvable non-goal decoupled state.
Let Ts be a DSSS in sF . Then Ts contains a center action
that starts an optimal decoupled plan for sF .

The proof considers any decoupled plan πF for sF . Denote
π = 〈a1, . . . , am〉 = PostPlan(πF ), and let i be the smallest
index so that ai ∈ Ts. For the same reasons as shown in
the original proof for SSS [Alkhazraji et al., 2012], such ai
exists, must be applicable, and – together with the fact that ai
must be a center action, as PostPlan(sF ) does not contain
any applicable leaf actions – can be moved to the front of π.

Concluding this section, observe that SSS is the special
case of DSSS where no decoupling takes place. Namely, con-
sider the trivial fork factoring where all state variables are in

the center. This is not actually a fork factoring according to
the definition, as it has only a single component. But it is
useful as a theoretical border case, where decoupled search
defaults to standard search. Using the trivial fork factoring,
DSSS as specified simplifies to SSS. This is easy to verify
based on the adapted definitions, all of which trivialize to the
standard ones in this case.

4 SSS for Goal Decoupled States
Say we are facing a goal decoupled state sF? . Instead of
actions required for reaching the goal, we need to capture
actions required to reduce the leaf-goal prices. One may
consider to define landmarks relative to the decoupled plans
reaching states tF? where LocalCost(tF? ) < LocalCost(sF? ),
and then re-use the remainder of Definition 4 unchanged. In-
deed, this was our first solution attempt. The problem is
that the landmark actions may pertain to leaf states already
reached, only at non-optimal prices; and then we may miss
the actions required to reduce those prices.

To illustrate, say that, as before, we have a leaf action
buy-car (cost 1000) applicable to sF , and a center action
get-manager-job which enables leaf action get-company-car
(cost 0). However, now the leaf goal is not have-car, but
be-at-NYC for which another leaf action drive-car is needed.
Then {drive-car} is a landmark: Any optimal completion
plan for sF has to use this action behind sF , i.e., after ap-
plying another center action. But drive-car is applicable in
sF , so Definition 4 would stop here, and Ts would not con-
tain get-company-car. In other words, the notion of necessary
enabling sets is suited to reachability but is not suited to cap-
ture what’s needed to decrease prices.

We tackle this situation through a notion of frontier actions,
required to make any progress on the prices:

Definition 5 (Frontier Action). Let sF? be a decoupled goal
state, and let a be a leaf action affecting leaf FL. We say
that a is a frontier action in sF? if (i) a 6∈ appdec(sF? ); and
(ii) there exists a leaf state sL ∈ ReachedL(sF? ) such that
sL |= pre(a)[FL], and, denoting the outcome of applying a
to sL with tL, prices(sF? )[sL] + cost(a) < prices(sF? )[tL].

The frontier of sF? is the set of all frontier actions in sF? .

In words, the frontier consists of those leaf actions that are
not currently applicable, but enabling whose center precondi-
tion would result in a reduced price for at least one leaf state.
This set of actions now takes the role of the landmark:

Definition 6 (DSSS for Goal Decoupled States). Let sF? be a
goal decoupled state. An action set Ts is a decoupled strong
stubborn set (DSSS) for sF? if the following conditions hold:

(i) Ts contains the frontier of sF? .

(ii) For all actions a ∈ Ts and a /∈ appdec(sF? ), Ts contains
a decoupled necessary enabling set for a.

(iii) For all center actions a ∈ Ts and a ∈ appdec(sF? ), Ts
contains all actions that interfere with a.

Consider now a state sF? where 〈〉 is not an optimal de-
coupled plan, i.e., we can find a better plan below sF? .
Consider any decoupled plan πF leading to tF? where
LocalCost(tF? ) < LocalCost(sF? ). Then ComPlan(πF )



contains at least one frontier action aF , intuitively because
these actions are needed to decrease prices relative to sF? . By
construction, aF has a center precondition not satisfied in sF? .
Therefore, with the inclusion of necessary enabling sets, we
get that Ts must contain an applicable center action a of πF .
For the same reasons as before we can move a to the front,
proving that DSSS as per Definition 6 preserve optimality:

Theorem 2. Let sF? be a goal decoupled state for which 〈〉 is
not an optimal decoupled plan. Let Ts be a decoupled strong
stubborn set for sF? . Then Ts contains a center action that
starts an optimal decoupled plan for sF? .

Observe that Frontier(sF ) may be empty. In that case, the
DSSS will be empty, too. This is valid because, in this case,
necessarily 〈〉 is an optimal decoupled plan for sF? , i.e., no
better plan can be found below sF? and the search can stop.

5 Exponential Separations
Before proceeding to the empirical part of our research, let
us state some basic theoretical facts evaluating the power of
DSSS. We say that a search space reduction method X is ex-
ponentially separated from a method Y if there exists a pa-
rameterized example family F such that, on F , X yields an
exponentially stronger reduction than Y.

Decoupled search and SSS are complementary in that each
is exponentially separated from the other:

Theorem 3. Fork-decoupled search is exponentially sepa-
rated from SSS, and vice versa.

Our running example with locations A and B is a suitable
family F for the first claim. There are only 3 reachable de-
coupled states (sF0 ; drive to B; drive back). But SSS do not
yield any pruning because, in any state s, to make progress
to the goal, Ts must include an applicable (un)load action;
which interferes with the applicable drive action; which in
turn interferes with all applicable (un)load actions. The oppo-
site claim follows from examples, e.g. IPC Parcprinter, with
no fork factoring but strong SSS pruning.

Trivially, DSSS is exponentially separated from each of
fork-decoupled search and SSS, simply because DSSS nat-
urally generalizes each of these components, so we can use
the same families F as in Theorem 3. As a much stronger
testimony to the power of DSSS, there are cases where it is
exponentially separated from both its components:

Theorem 4. There exists a parameterized example family F
such that, onF , DSSS yields an exponentially stronger reduc-
tion than both, fork-decoupled search and SSS.

Two suitable families F arise from simple modifications of
our running example. First, say we haveM trucks andN ∗M
packages, where each truck ti is associated with a group ofN
packages that only ti can transport. The number of reachable
decoupled states is exponential in M because all trucks must
be in the center factor. The SSS-pruned reachable standard
state space has size exponential in N because including an
(un)load action into Ts necessitates, due to interference via
the truck move as above, to include all applicable (un)load
actions for the respective package group. However, in decou-
pled search with DSSS pruning, there are only M reachable

states. This is because the two sources of pruning power com-
bine gracefully. Decoupling gets rid of the blow-up in N (the
packages within a group become independent leaves), while
DSSS gets rid of the blow-up in M (only a single truck is
committed to at a time).

In our second example, DSSS even is exponentially more
than the sum of its components: stubborn sets have expo-
nentially more impact on the decoupled search space than on
the standard one. Say we have N packages and M trucks
(where every truck may transport every package). Then de-
coupled search blows up in M , and SSS does not do any-
thing because any package may require any truck. Applying
DSSS to decoupled search, no truck move is pruned in sF0 .
However, after applying any one drive(ti, A,B) action, all
package prices are the cheapest possible ones, the frontier is
empty, and DSSS stops the search. So, again, there are only
M reachable states. As we shall see next, similar phenomena
seem to occur in the standard IPC Logistics benchmarks.

6 Experiments
We extended GH’s implementation of fork-decoupled search
in FD [Helmert, 2006]. To extract the fork factorings, we use
GH’s method. It computes the strongly connected compo-
nents (SCCs) of the causal graph, and, arranging the acyclic
graph of SCCs with roots “at the top” and leaves “at the bot-
tom”, greedily finds a “horizontal line” through that graph.
The part above the line becomes the center, each weakly con-
nected component below the line becomes a leaf. The tech-
nique abstains if there is ≤ 1 leaf, the rationale being that
decoupling pays off mainly through avoiding enumeration
across > 1 leaves. We show results for those benchmarks on
which the technique does not abstain. From the International
Planning Competition (IPC) STRIPS benchmarks (’98–’14),
this is the case for instances from 12 domains.

We focus here on optimal planning, the main purpose of
the optimality-preserving pruning via strong stubborn sets.
We run A∗ with a blind heuristic as a measure of search
space size, and with LM-cut [Helmert and Domshlak, 2009]
as a representative of the state of the art, using GH’s method
(Fork-Decoupled A∗) to adopt these techniques for decou-
pled search. We compare decoupled search with DSSS prun-
ing (simply referred to as “DSSS” in what follows) against
decoupled search without that pruning (“DS” in what fol-
lows). We furthermore compare against A∗ in the standard
state space without pruning (“A∗” in what follows), and with
SSS pruning (“SSS” in what follows). All experiments are
run on a cluster of Intel E5-2660 machines running at 2.20
GHz, with time (memory) cut-offs of 30 minutes (4 GB).

Table 1 shows coverage results. The most important com-
parison for our purposes here is that between DSSS vs. DS,
i.e., the direct benefit our pruning technique yields over the
baseline search. DSSS is rarely worse (NoMystery -2 and
TPP -1 for blind search, only NoMystery -1 for LM-cut).
It is often better (6 domains for blind, 4 domains for LM-
cut), and consequently is better, though not dramatically bet-
ter, in the overall. Comparing to A∗ and SSS, we see that
DSSS improves DS whenever (i.e., in all domains where)
SSS improves A∗. Whenever SSS outperforms DS, DSSS



Blind Heuristic LM-cut
Expansions Runtime Expansions Runtime

Inst A∗ SSS DS DSSS A∗ SSS DS DSSS Inst A∗ SSS DS DSSS A∗ SSS DS DSSS

Logistics’00
p6-9 368109 368109 30 9 2.2 5.2 0.0 0.0 p12-0 116544 116544 149 98 132.3 141.8 0.2 0.1
p12-0 – – 8101 882 – – 15.1 0.2 p14-0 – – 4130 2193 – – 17.1 6.6
p12-1 – – 22644 1338 – – 46.4 0.3 p14-1 – – 8263 4726 – – 42.3 17.9
p14-0 – – – 197855 – – – 605.8 p15-0 – – 41259 15977 – – 280.3 62.5
p14-1 – – – 324152 – – – 1256.9 p15-1 – – 11710 5978 – – 59.6 21.7

Logistics’98
p1 – – 75954 15404 – – 325.48 14.2 p1 12634 12634 555 379 13.6 15.2 1.0 0.5
p5 – – – 20410 – – – 45.24 p31 56 56 12 12 0.0 0.0 0.0 0.0
p31 133855 133855 586 224 1.31 3.53 0.16 0.04 p32 108 47 20 15 0.0 0.0 0.0 0.0
p32 218003 218003 368 124 1.39 3.3 0.04 0.01 p33 92692 92692 388 104 85.8 94.2 0.4 0.1
p33 – – 3550 592 – – 1.43 0.2 p35 1636 1636 360 360 11.8 12.5 4.8 1.8

Pathways
p2 2916 531 2366 489 0.0 0.0 0.0 0.0 p3 98 64 98 66 0.0 0.0 0.0 0.0
p3 53603 2252 16030 609 0.3 0.0 0.7 0.0 p4 189 150 189 150 0.0 0.0 0.1 0.0
p4 300600 10331 31903 2131 3.8 0.2 2.6 0.1 p5 46402 6675 27346 3989 51.8 6.2 39.9 4.1

Rovers
p5 7.52M 213647 152871 6861 71.5 5.3 15.2 0.5 p5 71222 4562 9533 1154 9.7 0.5 2.2 0.2
p6 – 1.20M 6.28M 28693 – 21.0 763.8 1.9 p8 – – 1.16M 1.00M – – 896.1 630.5
p7 32.78M 25.19M 522185 406676 301.1 489.6 43.8 35.2 p9 – 892779 – 8573 – 205.5 – 3.8
p9 – – – 397564 – – – 55.8 p12 19195 11788 8915 4915 9.9 5.1 6.1 2.6
p12 – – – 1.52M – – – 278.8 p14 – – – 780716 – – – 481.7

Satellite
p2 1539 1471 303 249 0.0 0.0 0.0 0.0 p7 95606 3204 77253 10735 120.8 4.9 156.7 12.3
p3 13243 5839 1484 857 0.1 0.1 0.1 0.1 p9 – 3722 – 40514 – 35.1 – 194.1
p4 274070 14510 27706 16225 3.1 0.3 19.0 7.9 p10 – 172718 – – – 1399.1 – –
p5 22.98M 3.01M 364513 217733 636.5 106.2 181.1 149.6 p11 – 0 – 0 – 9.2 – 16.2
p6 19.81M 142382 2.17M 121935 402.7 6.3 1358.1 40.2 p18 – 8366 – 4665 – 98.2 – 140.5

Woodworking’08
p1 9797 1002 1 1 0.1 0.0 0.0 0.0 p7 32418 177 224 46 601.0 1.7 5.4 1.2
p2 23287 70 0 0 0.2 0.0 0.0 0.0 p8 – 694 – 5268 – 10.8 – 61.8
p9 – 1.65M – 30851 – 88.9 – 4.5 p9 – 5157 1103 43 – 5.7 9.3 0.3
p16 – – – 1.78M – – – 223.1 p24 9868 425 615 168 19.8 0.4 1.3 0.3
p24 – 137867 1210202 21721 – 5.2 120.6 1.7 p30 – 308 525 62 – 50.7 463.6 18.1

Woodworking’11
p5 – 137867 1.21M 21721 – 5.4 132.4 1.7 p5 9868 425 615 168 19.9 0.4 1.2 0.3
p12 – – – 1.78M – – – 220.7 p12 – 18317 22072 1920 – 30.3 118.9 5.5

p13 – 0 0 0 – 0.1 0.2 0.1
p16 32418 177 224 46 621.2 1.7 5.6 1.1
p19 – 694 – 5268 – 10.4 – 61.5
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Figure 1: Runtime, and expansions to prove optimality (before last f -layer in A∗). Table: Per-instance data on selected IPC
instances “Inst” (see text). “M”: million, “–”: out of time or memory. Scatter plots: Runtime with LM-cut, for all pairs “X vs.
Y” of non-baseline configurations. X on x-axis, Y on y-axis, time-out 1800 seconds inserted for unsolved instances.

Blind Heuristic LM-cut
Domain # A∗ SSS DS DSSS A∗ SSS DS DSSS
Driverlog 20 7 7 11 11 13 13 13 13
Logistics’00 28 10 10 22 24 20 20 28 28
Logistics’98 35 2 2 4 5 6 6 6 6
Miconic 145 50 45 35 36 136 136 135 135
NoMystery 20 8 7 17 15 14 14 20 19
Pathways 29 3 3 3 3 4 4 4 4
Rovers 40 6 7 7 9 7 9 9 11
Satellite 36 6 6 6 6 7 11 7 11
TPP 27 5 5 23 22 5 5 18 18
Wood’08 13 4 6 5 7 6 11 10 11
Wood’11 5 0 1 1 2 2 5 4 5
Zenotravel 20 8 7 11 11 13 13 13 13∑

418 109 106 145 151 233 247 267 274

Table 1: Coverage (number of instances solved).

fully makes up for this advantage: the per-domain coverage
of DSSS dominates that of SSS. The single exception to the
latter is Miconic, where DSSS just inherits the weakness (run-
time overhead at not much search gain) of decoupled search.

Figure 1 shows fine-grained performance data. Consider
first the scatter plots. The plot at the top reveals that DSSS
often improves over DS, up to 2 orders of magnitude on com-
monly solved instances, while bad cases are consistently lim-
ited to a moderate overhead. The plot SSS vs. DS shows that,
without pruning, decoupled search is in the advantage yet also
incurs several bad cases. We see in the plot SSS vs. DSSS

that, with DSSS pruning, this risk mostly disappears.
The table in Figure 1 shows data for those domains where

DSSS sometimes reduces expansions relative to DS (we dis-
cuss the other domains below). For each of blind search and
LM-cut, from the instances solved by at least one method, we
selected at most 5, namely the most challenging ones (largest
expansions under standard A∗). Where these did not include
an instance solved by all methods, to exemplify the cross-
comparison we included the most challenging such instance.

As the table shows, on those domains where DSSS does
yield pruning, it consistently improves over DS, both in ex-
pansions and runtime, for both blind search and LM-cut. The
behavior in Logistics is especially remarkable. On the stan-
dard state space, SSS yields little or no reduction, while in the
decoupled state space, DSSS yields strong reductions. This
establishes a practical case of DSSS being more than the sum
of its components. Compared to SSS, decoupled search with
DSSS is superior in Logistics, Pathways, and Rovers, and is
inferior in Satellite; the picture in Woodworking is mixed.

On the domains where DSSS does not reduce expansions
(Driverlog, Miconic, NoMystery, TPP, and Zenotravel), a
runtime overhead is incurred. For blind search, we get slow-
down factors up to 218.5 in NoMystery, 26.9 in TPP, and
4.8 in the other 3 domains. This is due to the small per-
state search effort in blind search, relative to which com-
puting a DSSS can consume substantial runtime. For the



state-of-the-art search using LM-cut, where per-state effort
is much higher, the overhead is small. The maximum (geo-
metric mean) slow-down factor is 1.3 (1.1) for Driverlog, 2.0
(1.0) for Miconic, 3.1 (2.2) for NoMystery, 2.0 (1.3) for TPP,
and 2.0 (1.1) for Zenotravel. Using a simple “safety belt”
which switches DSSS off after 1000 expansions if no action
was pruned, the slow-down disappears in almost all cases.

7 Conclusion
We have shown that fork-decoupled search and strong stub-
born sets combine gracefully in theory, and that the combi-
nation can yield good results in practice. Our next step will
be to extend decoupled strong stubborn sets to star-topology
decoupling as per Gnad and Hoffmann [2015b]. More gener-
ally, decoupled search is a new paradigm that, presumably,
can be fruitfully combined not only with (heuristic search
and) strong stubborn sets, but also with other search tech-
niques like symmetry reduction or symbolic representations.
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8 Proofs
Theorem 1. Let sF be a solvable non-goal decoupled state.
Let Ts be a DSSS in sF . Then Ts contains a center action
that starts an optimal decoupled plan for sF .

Proof. Let πF be any decoupled plan for sF . Let π :=
PostPlan(πF ) and denote π = 〈a1, . . . , an〉.

As Ts contains a decoupled disjunctive action landmark,
there is at least one action in π that is contained in Ts. Con-
sider the action ai in π and Ts with smallest index, i.e.,
{a1, . . . , ai−1} ∩ Ts = ∅.

Observe first that ai is applicable in sF . If this was not so,
then a necessary enabling set A would have to be contained
in Ts to enable ai, and one action from A would necessarily
be contained in π in front of ai, contradicting that ai is the
shared action with smallest index.

Observe next that, therefore, ai must be a center action.
As ai is applicable, if it was a leaf action then its outcome
state would be contained in ReachedL(sF ), and therefore
ai 6∈ PostPlan(πF ) in contradiction.

Observe finally that ai can be moved to the front of π. If
this was not so, then ai would have to interfere with an action
in {a1, . . . , ai−1}. However, in that case, as per Definition 4
(iii), the interfering action would have to be contained in Ts
as well, again contradicting the assumption on the smallest
index.

As ai can be moved to the front of π, ai can be moved to
the front of πC(πF ). Altogether, for any decoupled plan πF
for sF , Ts contains a center action starting a permutation of
πF . The claim follows.

Theorem 2. Let sF? be a goal decoupled state for which 〈〉 is
not an optimal decoupled plan. Let Ts be a decoupled strong
stubborn set for sF? . Then Ts contains a center action that
starts an optimal decoupled plan for sF? .

Proof. Let πF be an optimal decoupled plan for sF? . As the
empty plan, 〈〉, is not optimal for sF? , πF must lead to tF?
where LocalCost(tF? ) < LocalCost(sF? ).

We first prove that ComPlan(πF ) contains at least one
frontier action. Towards this, let FL be any leaf factor on
which a goal is defined. Say that 〈a1, . . . , an〉 is the goal
leaf path for FL in ComPlan(πF ), traversing FL leaf states
〈sL0 , . . . , sLn〉. Define cost(sLi ) :=

∑i
j=1 cost(ai) to be the

cost of sLi on the given path. Define i as the highest index for
which cost(sLi ) = prices(sF? )[sLi ]. At least one such index
must exist as cost(sL0 ) = 0 = prices(sF? )[sL0 ]. Define π to
be like ComPlan(πF ), but containing, for every FL, only
the leaf-path postfix behind this index i.

Let πL be a non-empty leaf path in π. Then ai+1 is a fron-
tier action in sF? . To see this, observe first that ai+1 is ap-
plicable in sLi by construction, and sLi is reached in sF? by
construction. Therefore, ai+1 must have a center precondi-
tion not satisfied in sF? , or else we would have cost(sLi+1) =

prices(sF? )[sLi+1] in contradiction to i being the highest in-
dex with this property. In particular, ai+1 6∈ appdec(sF? ) as

required for (i) in Definition 5. Furthermore, by construc-
tion we have that cost(sLi+1) < prices(sF? )[sLi+1], which
shows (ii) in Definition 5 because cost(sLi+1) = cost(sLi ) +

cost(ai+1) = prices(sF? )[sLi ] + cost(ai+1).
Clearly, as LocalCost(tF? ) < LocalCost(sF? ), we further-

more have that π contains at least one non-empty leaf path,
because otherwise the leaf prices in tF? could not be smaller
than those in sF? .

Now we now, in particular, that π contains at least one leaf
action ai+1 with an open center precondition, and that this
same action ai+1 is contained in Ts. As Ts contains necessary
enabling sets as per Definitions 6 (ii) and 2, it follows that π
and Ts must share an applicable center action. Let a be the
first such action in π.

Observe that a can be moved to the front of π. If this was
not so, then awould have to interfere with an action preceding
a in π. However, in that case, as per Definition 6 (iii), the
interfering action would have to be contained in Ts as well,
contradicting that a is the first one.

As a can be moved to the front of π, a can be moved to the
front of πC(πF ). Altogether, for any decoupled plan πF for
sF? leading to tF? where LocalCost(tF? ) < LocalCost(sF? ),
Ts contains a center action starting a permutation of πF . The
claim follows.

Theorem 3. Fork-decoupled search is exponentially sepa-
rated from SSS, and vice versa.

Proof. Consider again our running example with locations A
and B. There are only 3 reachable decoupled states: in sF0 ,
all packages can be at A or loaded (i.e., these are the reach-
able leaf states); driving to B, all packages can also be at B;
driving back to A yields the same center state but a different
pricing function. SSS, on the other hand, does not yield any
pruning. In any state s, to make progress to the goal, Ts must
include one applicable load or unload action; which interferes
with the applicable drive action; which in turn interferes with
all applicable load/unload actions.

Vice versa, consider a task family F where N binary vari-
ables are initially 0 and each must be set to 1, with an individ-
ual action. This task has no fork factoring at all. But, using
SSS, every state has only a single non-pruned action.

Theorem 4. There exists a parameterized example family F
such that, onF , DSSS yields an exponentially stronger reduc-
tion than both, fork-decoupled search and SSS.

Proof. Consider our example but with M trucks and N ∗M
packages, where each truck ti is associated with a group of
N packages that only ti can transport (all trucks and pack-
ages start at A, all packages must be transported to B). The
number of reachable decoupled states is exponential in M ,
because all trucks must be in the center factor, and their move
combinations are enumerated. For SSS, as soon as Ts con-
tains a load/unload action for one group of N packages, the
load/unload actions for all other packages in that group are
present as well, due to interference as before. So the SSS-
pruned reachable state space has size exponential in N .

Consider now decoupled search with DSSS pruning. In
sF0 , all packages can be at A or loaded into their respective



truck. The landmark will select one package, associated with
some truck ti; hence Ts includes drive(ti, A,B). This does
not interfere with the drive actions for the other trucks, so it
is the only applicable center action in Ts, and we get a single
successor state sF . In sF , the packages associated with ti
can all be at B. So the landmark for DSSS selects a package
associated with another truck tj 6= ti. The only non-pruned
action is drive(tj , A,B); and so forth. Once all trucks are at
B, we have a goal decoupled state sF? . Frontier(sF? ) = ∅ as
the package prices are already the cheapest possible ones. So
there are exactly M reachable decoupled states.


