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Abstract
This paper proposes a model-based technique for low-

ering the entrance barrier for service providers to register
services with a marketplace broker, such that the service is
rapidly configured to utilize the broker’s local service de-
livery management components. Specifically, it uses pro-
cess modeling for supporting the execution steps of a ser-
vice and shows how service delivery functions (e.g. pay-
ment points) “local” to a service broker can be correctly
configured into the process model. By formalizing the differ-
ent operations in a service delivery function (like payment
or settlement) and their allowable execution sequences (full
payments must follow partial payments), including cross-
function dependencies, it shows how through tool support,
the non-technical user can quickly configure service deliv-
ery functions in a consistent and complete way.

1. Introduction
With maturing Web services technologies, SOA shifting

from early adoption to mainstream development and on-
premise hosting giving way to the “cloud”, a new revolution
of service provisioning is emerging. Companies are mov-
ing beyond “firewalls” and well-established value-chains
through wider partnerships which expose and deliver their
services to new markets. In service industries, new channels
for service delivery are established through service brokers
wherein services are published so that they may be discov-
ered, bundled, ordered, accessed, paid for, and rewarded [2].

The most prominent example of service brokerage is
Software-as-a-Service marketplaces [13], e.g. Salesforce
AppExchange1 and Rearden Commerce2, which allow soft-
ware services related to a common domain to be registered
from the open community, integrated into a common suite
and ordered though pay-per-use models. Another signifi-
cant development is one-stop citizen-and constituency ser-
vices in the public sector. Although they are not market-

1http://www.salesforce.com/appexchange/
2http://www.reardencommerce.com

places in the strict commercial sense, they have similar
features such as bringing consumers (e.g. citizens) and
providers (government agencies) together to allow “one-
stop” exposure of business services (e.g. land parcel checks
and life events) through centralized channels, e.g. Direct-
Gov.uk3, usa.gov4 and the European Union Services Direc-
tive5 in planning. In turn, business service marketplaces
are emerging, e.g. American Express Intelligent Online
Marketplace (AXIOM)6, governed by a dominant commer-
cial player exposing services like flight, hotel and car rental
bookings that are available through it and its global partners.
The dominant player benefits from increased revenue by
exposing wider choice and best deals for consumers while
partners enjoy a greater market visibility for their services.

Given these trends, the question turns to how current
technical solutions of brokerage scale for more complex
services. In current marketplaces, the form of service de-
livery has similarities to conventional e-commerce market-
places given that the consumable items are much like goods:
software components or widgets, and business service list-
ings are essentially presented in product catalogs. However,
more complex services in service industries present salient
differences. To take property conveyance, insurance claims,
and business formation as examples, they are long-running,
can involve multiple stakeholder and are often implemented
through legacy applications hosted by their providers.

For third-party brokers to act as intermediaries for these
sorts of business services and to be able to deliver these
without hosting service implementations or assuming inti-
mate domain expertise of services, special service interfac-
ing is required between brokers and service providers. The
interfaces enable brokers to orchestrate the execution of ser-
vice steps which invoke operations of service implementa-
tions hosted through service providers. In addition, the in-

3http://www.direct.gov.uk
4http://usa.gov
5http://ec.europa.eu/internal_market/services/

services-dir/index_en.htm
6http://www.americanexpress.com/axiom/
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terfaces allow brokers to provide “front-desk” service deliv-
ery support, for instance checking customer credentials and
access permissions for services, collecting payment, calcu-
lating rewards, and even subsidizing payment by inclusion
of advertising or cost subsidizing services (e.g. collecting
customer-particular and general service utilization statistics
for markers). Operations which enable these would be con-
figured into the brokered service, invoking service delivery
components like customer-relationship management, pay-
ment and analytics, utilized by the broker.

In this paper, we propose a technique for configuring in-
terfaces of long-running services so that they can be deliv-
ered through third-party brokers. In particular, we present
a semantic configuration technique for business process-
based descriptions representing exposed interfaces of ser-
vices to service brokers. The key contribution is configur-
ing business process models for service delivery functions
at different steps, in a consistent and complete way. For
this purpose, we combine and adapt our earlier work on ser-
vice composition [7] and verification of semantically an-
notated process models [14]. In contrast to other semantic
process composition techniques, we hereby require neither
an up-front semantic annotation of the provider service nor
a-priori knowledge of the service consumer. In this way, we
present a realistic solution with a low entry barrier for ser-
vice providers. Also in contrast to many approaches using
semantics, the additional modeling effort for the broker is
minimal and can be seen as negligible in comparison to the
implementation effort of the service delivery functions.

The paper is structured as follows. In Section 2, an in-
sight is presented for service delivery configuration through
a multi-stakeholder example taken from the public sector
domain, namely business formation. In Section 3, a tech-
nique for supporting semantic configuration of service de-
livery needs is presented in a way that ensures consistency
and completeness of configuration. In Section 4, implemen-
tation details are provided including consistency and com-
pleteness checking and the implemented prototype. Sec-
tion 5 provides a comparison of the proposed technique with
the state-of-the-art and Section 6 concludes the paper with
open issues and further research.

2. Motivating Example

To illustrate the requirements for outsourced service de-
livery and the nature of configurations therein, consider a
small business formation service (e.g. opening up a finan-
cial planning firm or a restaurant)7. This involves obtain-
ing a business license through specific provisions which are
granted by different agencies (e.g. workplace health and
safety, partial street occupation). While governments have

7This example is based on the SmartLicence service offered through
a Queensland government agency, http://www.sd.qld.gov.au/
dsdweb/htdocs/slol/.

invested significantly in aggregating the different steps in-
volved in an otherwise lengthy process, they also see the
opportunity for third-parties to expose the service to differ-
ent markets to encourage business development. Figure 1
depicts the highest level of abstraction for the aggregated
service as it exists with the aggregating service provider (on
the right-hand side) and an extended version with required
configurations for its delivery through a third-party service
broker (on the left-hand side)

Log actions

Identify

license type

+

Service

delivery

preferences

Create

payment

apportions

Customer

check

1

Authorization

check

2

3

3

3

Log actions

Identify

license type

+

Log actionsLog actions

Identify

license type

+

Identify

license type

+

Service

delivery

preferences

Service

delivery

preferences

Create

payment

apportions

Create

payment

apportions

Customer

check

Customer

check

1

Authorization

check

2
Authorization

check

2

3

3

3

��������� ��	
���������	�� ��	
������������ ������ ��������� ����
������ ������������� ����� ��� �!�
������"����������"�#��"����"������ $��Payment apportions

��������� ��	
���������	�� ��	
������������ ������ ��������� ����
������ ������������� ����� ��� �!�
������"����������"�#��"����"������ $��

��������� ��	
���������	�� ��	
������������ ������ ��������� ����
������ ������������� ����� ��� �!�
������"����������"�#��"����"������ $��
������"����������"�#��"����"������ $��Payment apportions

Post-settle actions% &'() *+,-./+% &+0',1* 231'4+% 5&6 *+4723Post-settle actions% &'() *+,-./+% &+0',1* 231'4+% 5&6 *+4723

Identify

license type

+

Fulfill

license reqts.

+

Payment

& settlement

plan

+

.
Settlement

+

Identify

license type

+

Identify

license type

+

Fulfill

license reqts.

+

Fulfill

license reqts.

+

Payment

& settlement

plan

+

Payment

& settlement

plan

+

.
Settlement

+

.
Settlement

+

89:;<;:= >?@A9BCD;:;BCEFGHIJKLH MNOPQIKRMOKQSFGHIJKLH TIHUHIHSLHVFWIHXVHOOYHZHSO
F[NVOQZHI LPHL\FWM]ZHSO KSVOINZHSOFWM]ZHSO INSFWM]ZHSO VLPH^NYH
89:;<;:= >?@A9BCD;:;BCEFGHIJKLH MNOPQIKRMOKQSFGHIJKLH TIHUHIHSLHVFWIHXVHOOYHZHSO
F[NVOQZHI LPHL\FWM]ZHSO KSVOINZHSOFWM]ZHSO INSFWM]ZHSO VLPH^NYHFGHIJKLH MNOPQIKRMOKQSFGHIJKLH TIHUHIHSLHVFWIHXVHOOYHZHSO
F[NVOQZHI LPHL\FWM]ZHSO KSVOINZHSOFWM]ZHSO INSFWM]ZHSO VLPH^NYH

89:;<;:= >?@A9BCD;:;BCEFWQVOXVHOOYHZHSO

...
…

89:;<;:= >?@A9BCD;:;BCEFWQVOXVHOOYHZHSO

...
…

Pre-settle actions% _(-`./.(a%b33`.(4 *+44c+d+(4'a+(/e fPre-settle actions% _(-`./.(a%b33`.(4 *+44c+d+(4'a+(/e f
Fulfill

license reqts.

+

Fulfill

license reqts.

Fulfill

license reqts.

+

Identify and

validate pay.

instrument

Identify and

validate pay.

instrument

Create

payment

schedule

Create

payment

schedule

Post-settle

schedule

Post-settle

schedule

Pre-settle

schedule

Pre-settle

schedule

Payment

& settlement

plan
+

Payment

& settlement

plan

Payment

& settlement

plan
+

Settlement

+

SettlementSettlement

+

Make 

payments

Make 

payments

Service Broker

Service Provider

4

1

2

3 4

5

6

5 6

7

8

7

8

Figure 1. Configuring a service for delivery
through a service broker.

The provider’s service has four sub-processes: a ques-
tionnaire phase to identify the license type; negotiations be-
tween the applicant and the relevant agencies in order to ful-
fill the license requirements; negotiations for the payment &
settlement plan; and finally exchange of documents and ma-
terial goods as part of settlement. The corresponding service
as deployed in the service broker is the result of configuring
the provider’s service. The individual configurations that
have been applied to produce it are numbered.

The first configuration involves specifying a Customer
Check performed by the broker prior to Identify License
Type (as an activity pre-condition). This allows the bro-
ker to determine whether the customer requesting the ser-
vice is registered, has rewards, preferences, previous excep-
tions etc. This is followed by the second configuration for
an Authorization Check. The third configuration relating to
services preferences expands to three pre-condition activi-
ties: Service Delivery Preferences where the service price is
configured to allow for other partners to subsidize the cost
(e.g. advertisers, marketers); accordingly, to Create Pay-
ment Apportions; and Log Actions so that customer choices

http://www.sd.qld.gov.au/dsdweb/htdocs/slol/
http://www.sd.qld.gov.au/dsdweb/htdocs/slol/


are recorded for trend analysis. Through these subsidizing
steps, we can see how brokers could re-price services, mak-
ing them cheaper for consumers while still passing the re-
quired revenue back to the providers.

Once the consumer makes a decision to proceed with in-
vestigations to obtain a business license, work by govern-
ment agencies is required, and therefore a configuration is
made to Identify and Validate Payment Instrument followed
by a further pre-condition activity to Create Payment Sched-
ule (based on the previously specified payment apportions).
The broker can offer further support through assistance for
settlement, i.e. Pre-Settlement Schedule, prior to Payment &
Settlement Plan. Prior to Settlement, Make Payments is con-
figured to run the credit/debit transactions in the payment
schedule. After Settlement (as an activity post-condition),
the broker can extend support for bootstrapping the busi-
ness, like providing leads for taxation and other ERP ser-
vice, through Post-Settlement Schedule.

3. Semantic Service Delivery Configuration

Having provided an insight into service delivery config-
uration, we now present the details of the suggested tech-
nique to support the respective requirements. These are: (i)
service delivery functions at the broker need to be reusable
for many provider services; (ii) for providers it must be easy
to describe the required configuration; and (iii) applying a
described configuration must be automated in order to en-
able mass-configuration of services on the marketplace plat-
form. When the provider uploads the service description,
then the process model for using the interface can either
be part of this description, derivable from it, or manually
created by the provider. This process is used for the con-
figuration in the broker’s setting. To allow for individual
actions of payment, settlement and the like to be exposed
for configuration, we represent the lifecycles of service de-
livery entities as state machines, illustrated in Figure 2.
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Figure 2. Expressing possible states and
transitions of the payment entity.

The transitions correspond to logical actions of the en-
tity which can be configured, and the partial order of the
transitions constrains the order of allowable configurations.
Each logical action corresponds to one or more activities
which can be used in the configuration of the provider’s pro-
cess model. For configuration the provider selects, e.g., in
a questionnaire form, the entities that are of relevance to
her service – e.g., if authentication is handled by the ser-
vice itself, or simply unnecessary in the given case, then the
authentication entity is not required for the service at hand.
The operations of the selected entities can then be interwo-
ven with the process model: for each call to a provider’s
service operation in the process, the user can select which
entity states should be reached before, respectively after, its
execution. When done with the annotation of desired en-
tity states to process activities, the user can signal that this
configuration should be applied, which means automatic in-
sertion of calls to the broker’s service delivery operations at
the respective points in the process.

When the configuration of service delivery is finalized,
a check is run to determine if all entity lifecycles reach a
final state when the execution of the process ends. If this is
not the case (e.g., payment resides at an intermediate stage
and is neither finalized nor canceled), then this signifies that
the usage of the service delivery functions in the process is
invalid. Suggestions are then made to the user how to fix the
problems, e.g., by suggesting to collect the final payment
and other necessary steps before the process ends.

While the user interaction with a tool following the de-
scribed approach is not overly complex, there are some in-
tricate problems underneath the hood. One of them is the
question of the state an entity will be in at a certain point in
the process – which is of course required knowledge in or-
der to find out how the desired state can be reached. Hereby
it should be noted that the process can be much more com-
plex than the simple sequence shown in Figure 1. Another
question is how to reach the desired state, given the current
state and the available delivery functions. We address these
questions with a systems approach, that is, we build on prior
results from our research. In particular, service composition
[7] is used for the latter problem and techniques from the
verification of annotated process models [14] for the prior.
Section 4 addresses the usage of these techniques, following
the description of service delivery modeling below.

3.1. Modeling Service Delivery Functions

Service delivery functions are modeled as business en-
tities with lifecycles and cross-entity relations. The meta-
model for lifecycles is the following. There are named en-
tities (like payment) whose lifecycle is described through a
contained state machine. This state machine has a single
start state, multiple (intermediate) states, one or more end
states, and transitions between the states. From each state,



an end state must be reachable. Except for the start state, all
states must be named. In the simple case, each entity is ex-
actly in one state during execution. The path on which this
state has been reached is forgotten (the state machine is said
to be memoryless, since it does not memorize the path to the
state). Therefore, action labels attached to transitions may
repeat (cf. Create Schedule in the example). In contrast,
states are present only once in an entity.

The state machine in Figure 2 also indicates dependen-
cies to other entities. The arrow at the top of the diagram
labeled User Authenticated declares that the Authentication
entity is required to be in this state for all states of the Pay-
ment entity until one end state is reached. Once an end
state is reached, the state of the Authentication entity may
change. Furthermore, the arrow pointing to the transition
Disburse Payment is only executed if the Monitoring entity
is in state Monitoring Finished. In contrast to the previ-
ous restriction, this check is only performed locally for this
transition, i.e. the result of this check is not memorized.

The operations which can be configured from an entity
are derived from transitions in its state machine. In the sim-
ple case, each transition has an action label (e.g. Validate
Instrument) which corresponds to an operation for service
delivery whose invocation can be configured into a branch
of the process. Where needed, additional flexibility can be
achieved in the following ways:

• Using Semantic Web Service (SWS) technology and
according techniques for automatic composition, e.g.,
[7]. For this variant it suffices to relate the opera-
tions for service delivery to the states of the lifecycle,
but not necessarily in a 1:1 or 1:n correspondence be-
tween state transitions in the lifecycle and operations.
Instead, the operations then specify in which states
they can be executed – the preconditions of an SWS
– and which state(s) may result from the execution –
the SWS postconditions. The lifecycle must still prop-
erly represent the according transitions, but the opera-
tions may also provide “shortcuts” through the lifecy-
cles and can be invoked in more than one state.

• More complex or expressive lifecycle models, such as
control-state abstract state machines (ASMs, cf. [4]) or
hierarchical state machines may be used. This allows
reducing redundancies that may be present in FSMs –
as creating a schedule and validating the payment in-
strument in the example shown in Figure 2. Such rep-
resentations are particularly applicable when there are
multiple independent streams of transitions in a lifecy-
cle: an FSM always materializes all possible combina-
tions, and there may be exponentially many.

These two variants may also be combined – i.e., operations
specify pre and postconditions in more complex lifecycle
representations.

Each entity has to be in one of its final states when an
execution of the process ends. Thus, the process model has
to make use of an entity in a way that guarantees reaching
a final state on each of the used entities. Take payment as
an example: when the process ends, all payments should
be either (i) finalized and disbursed according to the agreed
revenue distribution among the involved parties, or (ii) can-
celed and any partial payments reimbursed. Any other us-
age is considered incomplete or invalid.

On the right-hand side of Figure 1, the registered pro-
cess is shown with different configuration options possi-
ble as activity pre/post-conditions. Configurations result in
changes to the process when the configuration is applied.
The configuration needs to be consistent with the lifecy-
cle and cross-entity dependencies. An activity pre/post-
condition corresponds to labels of states in the state ma-
chines of entities. Selections must abide by the sequenc-
ing of related transitions within the state models as well as
cross-entity dependencies. At subsequent steps only rele-
vant states are shown – which is possible by computing how
the entity states evolve throughout the process.

3.2. Modeling Dependencies Between Ser-
vice Delivery Entities

Cross-entity dependencies can be used to model how the
presence and current state of one entity affects the lifecy-
cle of another. Figure 3 shows some entities relevant for
service delivery, with their general dependencies depicted
as arrows. Customer is the entity that allows CRM oper-
ations to be configured in brokered services. Payment, cf.
Figure 2, allows payments pertaining to the brokered ser-
vice to be configured. Service Provider allows interactions
with the service’s owner/host to be configured. Monitoring
allows the broker to monitor the fulfillment of the service
level agreement as well as the current execution state of a
service operation. Finally, Authentication asserts the iden-
tity of a user registered with the service broker.

Customer

Authentication

Service Provider

MonitoringPayment

Figure 3. Structural entity dependencies.
The dependencies imply that a state transition in an en-

tity A can lead to an action in another entity B (shown as



A → B). The directed edges in Figure 3 leading from Au-
thentication to Payment and Monitoring indicate that they
are dependent on Authentication because the customer’s
identity needs to be verified to correctly associate payments
and monitoring information. The dashed arrow indicates a
weak dependency, meaning that dependencies between two
entities exist, but their influence is limited to cases where
the user selected the usage of both involved entities. In con-
trast, strong dependencies imply that when the dependent
entity is selected, the other entity is implicitly selected as
well. Note that bidirectional dependencies are also possible
although not illustrated in this example.

Entity lifecycles model primarily the services delivery
functions provided by service brokers. Payment seems an
obvious choice for service delivery, unlike, say, Service
Provider whose presence would only be warranted if vari-
ous operations with partners need to be made explicit, in dif-
ferent parts of the brokered service. To illustrate the point, a
Service Provider may require notifications of certain excep-
tions, disbursement of funds and feedback for service de-
livery operations in different parts of the brokered service.
Since these are different operations which can be used in
different parts of a process interface, Service Provider has
been explicitly defined as service delivery entity.

4. Realization and Implementation

Having described how services can be modeled using en-
tities and lifecycles, we now describe the realization in de-
tail. Specifically, we describe the procedure for interweav-
ing the service delivery functions with the process in Sec-
tion 4.1. The check for completeness in the entity usage is
discussed in Section 4.2. Finally, the proof-of-concept im-
plementation is the subject of Section 4.3.

4.1. Service Composition for Brokered Ser-
vice Configuration

The goal of this composition functionality is to make it
easy for a user of the service broker to configure a broker
process with service delivery functions – in particular for
users who are not familiar with process modeling tools and
the intricate details of the execution semantics of the model-
ing notation at hand. The approach is the following: the user
selects a point in the process when an entity should reach a
certain state and specifies which of the entity’s states should
be reached; this is shown in pseudo-code in Figure 4. When
this annotation is finished for all tasks, we use (for each of
the annotations) an automatic composition technique to get
from the state in which the entity will be at this point in the
process to the desired state; cf. the pseudo-code in Figure 5.

In more detail, the annotation procedure starts with the
user selecting a point in the process where she wants certain
guarantees to hold. In order to not configure illegitimate

procedure get-annotation-options(p:process, a:activity)
(1) PS := possibleEntityStates(p,a)
(2) PC := allowedConfigurationOptions(PS,p,a)
(3) return PC

Figure 4. Determine annotation options.

options, procedure get-annotation-options in Figure 4 first
determines (line (1)) the possible entity states the process p
will be in at a given activity a. These are states in the life-
cycles of the involved entities which will be active at this
point of the process. E.g., in the above example of the Pay-
ment entity (cf. Figure 2), if there is an activity configured
such that Payment instrument validated & schedule created
will hold, then we assume this will hold at any point after
this activity – unless there is another activity that changes
the status of Payment. Note that, given optional branches
of processes, it may not be possible to determine the exact
state in which an entity may be – instead, we can determine
a set of states, any of which the entity may be in. The un-
derlying functionality for line (1) is provided by our prior
work on the verification of semantically annotated process
models [14]; below, the details of the usage here are ex-
plained. Note that the approach is independent of the pro-
cess modeling notation used; but there are limitations on
the expressiveness – cf. [14]. Based on the set of possible
entity states, line (2) determines the allowed configuration
options as follows: allowed is any state that – according to
the lifecycle – can be reached from any state in PS, and does
not prevent an annotation “later” in the process to be reach-
able. Reachability of states in lifecycles can be computed
with standard graph algorithms, like Dijkstra. The set of al-
lowed annotation options is then returned to the user, who
may select one of these options.

The original purpose of [14] is to use the annotation in
form of preconditions and effects of process activities to
find inconsistencies in semantically annotated process mod-
els. Therefore, we propose a formalism in [14], building
on Petri Net-like token-passing mechanisms for the control-
flow, and on notions from AI for the semantics of precondi-
tions and effects. On this basis we define propagation algo-
rithms for determining the part of the logical state that must
be true whenever a given activity is activated. Herein, we
use this algorithm for three purposes: to determine which
configuration options are available; for determining the pre-
conditions of the possible composition inputs, the goal set-
tings; and for checking if all involved entities reach an end
state when the process ends.

Given an annotated process, the I-Propagation algorithm
from [14] can determine either the exact logical state in
which a process is at any given stage of execution, given
this state can be computed with certainty at design time; or
an approximation of the logical state can be computed if the
state depends on runtime information. For this purpose, we



transform the lifecycle state annotation to an effect annota-
tion as follows: if there is a desired lifecycle state of entity
A annotated as a pre-state or post-state to a given activity,
then we annotate a logical effect representing this lifecycle
state. If, however, the same entity A has an annotation a
pre-state and post-state at a given activity, then we only an-
notate the representation of the post-state, since this will be
the resulting effect from executing this activity and the ac-
cording service delivery functions. In addition, we need to
account for the workings of the lifecycle model, e.g., in an
FSM there can be only one active state. Thus, if one state is
known to be true, then all others must be false. This is cap-
tured by adding the negated representations of these respec-
tive other states to the effects as well. The I-Propagation al-
gorithm from [14] then determines exact states, if any – or,
where the exact state is unknown, it determines a set of pos-
sible states. Namely, the possible states are all those which
are not contradicted by the partial state determined by I-
Propagation. In the case of FSM lifecycles, this roughly
works as follows. After the execution of I-Propagation we
have, at any point in the process, the set S of all lifecycle
state representations of all entities which are definitely true
when a process execution is at that point. If a state of an
entity is contained in S, then the entity will definitely be in
that state. If there is no such state, then I-Propagation will at
least have identified a set not-S of lifecycle states which the
entity will definitely not be in, cf. the discussion of negated
state representations above. The entity is then known to be
in any one of its states, except those in the set not-S. Hence
there is uncertainty about the actual state of the entity, but
the uncertainty can be narrowed down as far as possible.

procedure compose-configuration(p:process)
(1) S := set of all annotations s, ordered by control flow of p
(2) for each annotation s in A at activity a

(3) PS := possibleEntityStates(p,a)
(4) Goals := {(s’,s) | s’ ∈ PS ∧ entity(s’) = entity(s) }
(5) for each g ∈ Goals : compose(g)

(6) presentation of results for user approval
(7) if approved: update process

Figure 5. Composition for interweaving.

Once the user finished annotating the process with de-
sired entity states, the configuration can be applied using
the compose-configuration function shown in Figure 5. In
the order given by the control flow of the process p, the loop
in line (2) considers the annotations of desired states s (for
the various entities) at all tasks a. First, in line (3) the pos-
sible entity states for a are determined as above in Figure 4.
Subsequently, line (4) determines all possible goal settings.
That is, if there are multiple possible states (PS) in which
the process may be, then these need to be separated from
one another, and the desired behavior for each of these is
described in a separate semantic goal. A semantic goal here

consists of preconditions (s’ in line (4)) and postconditions
(s), e.g., similar to WSMO [11].

Then, for each such goal setting we invoke service com-
position in line (5). Thus, for each of those options, the
composer creates a chain of services that can fulfill this
goal. These different compositions are placed in optional
process branches at the point of the process (before / af-
ter the annotated activities) where required in order to sat-
isfy the user annotation – i.e., reach the desired state in an
entity. The optional branches are marked with the respec-
tive condition from the goal setting that led to this compo-
sition. The annotation and the current process state are kept
in memory, so that possible future updates of the annotation
can trigger re-compositions if these become necessary. To
illustrate the optional branches in the running example of
the Payment entity, say the current state is either Payment
instrument identified or Payment instrument validated, and
the desired state is Payment instrument validated & sched-
ule created. Assume for the sake of simplicity that there are
individual services for each of the transitions; then a ser-
vice chain for each of the possible states is constructed as
depicted in Figure 6. Finally, the result is presented to the
user (line (6)), and upon approval the process is updated (7).

State is: Payment 
instrument identified

Payment: 
Validate 

instrument

State is: Payment
instrument validated

Payment: 
Create 

schedule

Figure 6. Composed partial process for mul-
tiple possible start states.

In a more complex variant, the user can call composition
online, directly after selecting a desired state. This compli-
cates matters since it may necessitate re-composing other
parts of the process. For lack of space, we omit the details.

4.2. Brokered Service Completeness Check

While the service composition aims at reaching certain
goals in terms of the entities involved in the process at a
given point, the completeness check makes sure that each
entity is in an end state when the process ends. This crite-
rion must be met before the process can be deployed. Ac-
cording to our lifecycle model, each lifecycle must have at
least one reachable end state. The according check is per-
formed by the function in Figure 7.

When the user requests a check of the broker process’
configuration or the process is to be deployed but has not
been checked yet, the completeness-check function is exe-
cuted. It starts (line (1)) by determining the possible states
of the entities at the end node (endp) of the process (p). If all
involved entities reach one of their end states, then the check



procedure completeness-check(p:process)
(1) PS := possibleEntityStates(p,endp)
(2) if all s ∈ PS are final states: return “complete”
(3) for each s ∈ PS that is not final:

(4) FS := {s’ | s’ reachable from s ∧ s’ final}
(5) if |FS| > 1: determine s’ by user selection

else define s’ by FS = {s’}
(6) compose(s,s’)

(7) presentation of results for user approval
(8) if approved: update process

Figure 7. Completeness check.

ends successfully. Otherwise, a solution for each possible
state that is not an end state is proposed as follows. Line (3)
loops through all such states s. Inside the loop, the set of end
states reachable from s is determined (4). Per definition, at
least one final state has to be reachable from any other state.
If, however, this set contains more than one state, then the
user is asked in line (5) which of these end states is desired
for s. Either way, the composition goal, on which composi-
tion is executed (6) is set to reaching the desired or the only
final state from s. The outcome is presented to the user (7)
and upon approval, the process is updated (8).

4.3. Prototypical Implementation

The prototype is implemented as an extension to Oryx
[5]. A screenshot for making the configuration is shown in
Figure 8: when the user changes to the configuration mode
she selects the relevant entities. In the configuration mode,
she can then specify (using a context menu) for each activity
in the provider process which state should be reached be-
fore (PRE) or after (POST) the execution of this activity. In
this case, the payment entity has been selected – albeit with
a simplified lifecycle in comparison to Figure 2. Further-
more, prior to the chosen activity the entity is already used;
therefore, the state “Payment instrument identified and val-
idated” is the first state that can be selected here.

Figure 8. Configuration in the prototype.

We validated our techniques using a few example sce-
narios, but were not yet able to run more large-scale ex-
periments. However, first demonstrations of our prototype
within SAP were quite successful. Indeed, our technology
is currently being implemented in a commercial SAP tool
(NetWeaver BPM), and is scheduled for pilot evaluation
with customers in the near future.

5. Related Work
The work presented here is related to process media-

tion, process composition, lifecycle compliance, market-
place brokers in general, and our own prior work.

Process mediation, e.g., [1, 15], is the problem of me-
diating between a set of fixed process interfaces, which,
without the mediator, would not fit together. The mediation
process has some resemblance with the orchestration pro-
cess discussed in this paper. In contrast to our state anno-
tation approach, process mediation typically operates based
on data dependencies.

There is a body of work on the automatic composi-
tion of processes, aiming to combine multiple processes in
a manner that satisfies some target, e.g. [10][6][3]. Such
composition methods could in principle be applied to solve
(parts of) the brokerage problem we consider here. The
main difference between our technique and the known com-
position methods is that the latter methods are fully au-
tomatic one-shot composers, i.e., the composition tool re-
ceives as input the descriptions of processes and target, and
outputs the final composed process. By contrast, our ap-
proach works incrementally in interaction with the user, es-
tablishing the final composed process in a step-wise fash-
ion. From the point of view of maximized automation, our
approach clearly is weaker. However, such a viewpoint dis-
regards the fact that creating the models for the “automatic”
composer is human labor as well. In addition, our method
allows us to handle more complex processes with less com-
putational effort, as described below. In that sense, our con-
tribution is a specialized composition methodology suitable
for service brokerage, which improves on existing meth-
ods in terms of modeling effort and/or computational ef-
ficiency. Concretely, [10] is a well-known method for com-
posing processes modeled as finite state machines. The ap-
proach suffers from complicated target declarations (speci-
fying desired properties of the process to-be-composed) and
from severe computational complexity. [6] improves on
the complexity issue at the price of severely restricted pro-
cesses, forcing them to have a tree structure. Various works,
e.g. [3] encode the composition problem into some form of
logic, and reasoning in that logic for doing the composition.
Clearly, this also suffers from the complexity issue.

One thread of related work investigates the relations be-
tween object lifecycles and process models [8, 12]. While
[12] presents a mechanism to check whether the usage of
an object in a process model is compliant with its lifecy-
cle, [8] addresses the problem of generating process models
on the basis of multiple (possibly linked) object lifecycles.
However, there the full model is composed automatically,
whereas we describe how an existing process can be inter-
weaved with actions from a lifecycle (or, more precisely,
service delivery functions that stand behind a lifecycle).

Current marketplace brokers, such as StrikeIron and



Salesforce AppExchange, suffer from two key limitations:
Firstly, they assume a fixed service delivery model where
services are ordered, invoiced, and paid through demand-
usage. They prescribe broker services to choose from, e.g.
pay-per-use, and the marketplace counts the invocations and
creates invoices on behalf of the service providers. More-
over, the set of broker services is difficult to extend. Sec-
ondly, access to a service entails getting a reference to the
service interface. As the current brokers do not mediate in-
teractions with a service, it is not possible to mix those with
service delivery functions. Our work allows for far more
flexibility and extensibility than current marketplaces as a
registered service can be configured with arbitrary broker
services. This description facilitates broker services to be
interleaved with operations of the registered service.

Composition and state derivation can be realized with
our previous work. Our results on scalable composition
technique are presented in [7]; in principle, other compo-
sition or planning methods may be applied. [14] describes
our method for the verification of annotated process mod-
els. In the work at hand, we extend upon these works by
showing how one can leverage on them to support the ef-
fortless interleaving of broker services with operations of
the registered service.

6. Conclusions

We show how to configure services to use service deliv-
ery functions of a broker for commodity support functions.
Service providers link the desired states of the entities rep-
resenting the delivery functions to be interweaved with the
(potentially complex) flow of service provider operations.
By applying the configuration, the provider can easily turn
technical services into tradable services. As a prerequisite,
the broker needs to describe the allowed interactions with
service delivery functions. As one major benefit service
providers can refer to these predefined delivery operations
when configuring their service offers, and thereby signifi-
cantly reduce the effort for making their services tradable.
In the process of configuration, the service broker can make
sure that valid final states are reached with respect to the
entities used during configuration. Thus, another benefit for
all involved actors is that erroneous usage is avoided before
deploying the service.

A major issue with applications of semantic technolo-
gies in general is the effort and cost in defining, maintaining
and utilizing semantic descriptions [9]. Translated into the
context of this paper, this would be cost of defining, main-
taining and using service delivery entities with the mapping
to service operations. The respective overhead is low be-
cause the only domain pertaining to semantic configuration
is service delivery, and this is a one-size-fits-all for service
brokers. As the entities would be defined and maintained
by the service marketplace, and real-world brokers would

allow for limited refinement of their state machines, the ef-
fort invested into modeling the behavior of the entities is
expected to pay off quickly.

Our prototype has not yet been evaluated comprehen-
sively, but has spawned sufficient interest within SAP to be
now underway for pilot customer evaluation in a commer-
cial product (NetWeaver BPM).

A question for future work regards lifecycle manage-
ment, i.e., how to deal with changes in provider services
or the delivery functions.
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