
Towards Scalable Web Service Composition With Partial Matches

Adina Sirbu, Jörg Hoffmann
Semantic Technology Institute (STI) Innsbruck

University of Innsbruck, Austria
{adina.sirbu, joerg.hoffmann}@sti2.at

Abstract

We investigate scalable algorithms for automated com-
position (WSC) of Semantic Web Services. Our notion of
WSC is very general: the composition semantics includes
background knowledge and we use the most general no-
tion of matching, partial matches, where several web ser-
vices can cooperate, each covering only a part of a require-
ment. Unsurprisingly, automatic composition in this set-
ting is very hard. We identify a special case with simpler
semantics, which covers many relevant scenarios. We de-
velop a composition tool for this special case. Our goal
is to achieve scalability: we overcome large search spaces
by guiding the search using heuristic techniques. The com-
puted solutions are optimal up to a constant factor. We test
our approach on a simple, yet powerful real world use-case;
the initial results attest the potential of the approach.

1 Introduction

Automatic processing of Semantic Web Services (SWS)
is the main advantage of combining Semantic Web and Web
service technologies. In this paper we concentrate on one
important challenge, that of automatically composing SWS
(WSC). Through WSC, existing web services can be reused,
thus reducing development time and effort. We address
composition at the functional level, where only the over-
all behavior of web services is taken into account. This
corresponds to the WSMO [6] web service capability and
OWL-S [4] service profile level. The input/output behav-
ior of web services is mapped to input/output parameters on
which preconditions and effects are specified.

In any task that involves SWS one needs support for
background knowledge, modeled as ontologies. In the case
of WSC, almost all existing solutions compile the problem
into AI Planning formalisms. The motivation is that plan-
ning tools have become many times more scalable in recent
years. The problem here is that those tools cannot handle
background ontologies.

Background theories are explored in some planning
works, e.g., [5]. However, incorporating this notion into
modern scalable planning tools poses serious challenges,
and has not even been tried. Due to the background the-
ory, even computing a state transition (now a form of belief
revision) is a computationally very hard task. The existing
planning tools dealing with background theories map the
problem into generic deduction, which is well known for
its lack of scalability. As a result, many existing planning
tools dealing with WSC, e.g., [12, 1], ignore the ontology
and assume exact matches. Few approaches allow restricted
ontologies and assume plug-in matches, e.g., [9]. In con-
trast, we use the most general notion of matching, partial
matches, where several web services can cooperate, each
covering only a part of a requirement.

An interesting special case of WSC has been recently
identified in [7]. Web services may output new constants
(the outputs model generated data). Now, if all ramifica-
tions of a web service concern only propositions involving
at least one new constant, then a belief revision is not nec-
essary. This special case has been termed forward effects:
the effects are “forward” in the sense that no backwards-
directed belief revision is necessary. Many WSC scenarios
from literature and real case studies have forward effects,
involving the creation of tickets or confirmations.

The work reported in this paper naturally builds on [7].
However, while [7] focuses on a restriction of forward ef-
fects which can be compiled into a planning formalism, here
we develop a dedicated tool for WSC with forward effects.
By solving the problem in its natural form we expect to ob-
tain a more efficient tool, optimized for problems that are
composition-specific. For example, in comparison to the
planning tasks which involve a relatively small number of
predefined actions, WSC has to deal with a large number of
web services, and therefore with a huge branching factor.

We present the formalism for WSC with partial matches.
As shown in [7], testing if a sequence of web service ap-
plications is a solution (solution testing) is Πp

2-complete in
general, but only coNP-complete with forward effects. Al-
though coNP is still hard, planning under uncertainty has

the same complexity of solution testing and scalable tools
have been developed. Our algorithms are based on ideas un-
derlying one such tool, namely Conformant-FF [8]. These
algorithms are presented in detail. We define the search
space by encoding forward effects beliefs as propositional
CNFs. To deal with large search spaces, we control the
search via heuristic techniques. We design an admissible
heuristic function, and achieve optimality up to a constant
factor by combining it with a weighted A* search strategy.

The paper is structured as follows. Section 2 introduces
our reference example. We present the formalism and dis-
cuss the forward effects in section 3. In section 4 we build
a tool for forward effects. Section 5 presents our initial re-
sults. Section 6 positions the work in a broader context. We
conclude and discuss future directions in section 7.

2 A Motivating Example

Our reference example (Fig. 1) is a variation of the travel
scenario more widely known as the “virtual travel agency”
(VTA). The web services in this scenario serve for mak-
ing travel arrangements. They have forward effects because
they generate new constants corresponding to tickets and
reservations, and set their properties relative to the inputs.

The general user request is to set up a travel itinerary:
flight, shuttle service from/to airport, accommodation. This
request can be further refined when concrete input data is
available, for example when the destination is known. A
solution to such a composition task is a subset of the avail-
able web services and an appropriate ordering, such that the
subset completely satisfies the request. A general request
is valuable when we wish to solve the composition task at
design-time. Through composition, we search for the sub-
set of web services that can theoretically fulfill all concrete
user requests. Then, a solution does not need to be recom-
puted when real data is available, it can simply be obtained
by removing from the general solution the web services that
are always non-applicable.

To illustrate the importance of partial matches, con-
sider the following scenario fragment. The ontology de-
fines the concepts AccomReq, HotelReq, B&BReq and
HostelReq, where HotelReq, B&BReq and HostelReq
are more specific then AccomReq (i.e., HotelReq ⊆
AccomReq). The ontology further states that HotelReq ∪
B&BReq ∪ HostelReq ⊇ AccomReq, that is, the
AccomReq is completely covered by its sub-concepts.

Our service pool contains several web services that re-
quire a booking request and provide a booking confir-
mation. However, none of them deals with a general
AccomReq. The “backpackers.com” web service handles
hostel accommodation, “venere.com” deals only with ho-
tels, while B&Bs are covered by “bedandbreakfast.com”. A
solution to this problem therefore needs to apply the three

TripReq

Flight&ShuttleReq

AccomConf, forReq

Acc
om

Req
Hos

tel
Req

AccomReq
HotelReq

AccomReq B&BReq

AccomConf, forReq

AccomConf, forReq

HostelReq AccomConf, forReq

HotelReq

B&BReq

TripReq AccomReq
Flight&ShuttleReq

TripReq
FlightTicket

ShuttleConf
AccomConf

Flight&ShuttleReq FlightTicket

Flight&ShuttleReq

FlightTicket ShuttleConf

AccomConf, forReq

AccomConf, forReq

FlightTicket
ShuttleConfFlight&ShuttleReq

Figure 1: Illustration of Example
distinct web services in conjunction.

In this example, reasoning over the background ontology
is necessary to (1) understand which services can be used,
and (2) test whether a given composition is actually a solu-
tion. Enforcing exact matches would require AccomReq =
HotelReq instead of AccomReq ∩ HotelReq 6= ∅. Ob-
viously, this renders the example unsolvable. If plug-in
matches are allowed, we would require AccomReq ⊆
HotelReq rather than AccomReq = HotelReq. This still
cannot solve our example.

3 WSC with Partial Matches

We introduce the syntax and semantics of the WSC for-
malism. Further, we define and analyze the forward effects
special case. We refer to [7] for details and proofs of the
formal claims in this section.

3.1 WSC Formalism

We assume supplies of logical predicates p, q, variable
names x, y and constant names a, b, c; (ground) literals are
defined as usual. For variables X , LX is the set of literals
using only variables from X . We write l[X] for a literal l
with variable arguments X . For a tuple C of constants sub-
stituting X , we write l[C/X]. In the same way, we use the
substitution notation for any construct involving variables.
Positive ground literals are propositions.

A clause is a disjunction of literals with universal quan-
tification on the outside, e.g. ∀x.(¬p(x) ∨ q(x)). An on-
tology is a conjunction of clauses. An web service w is

a tuple (Xw, prew, Yw, effw), where Xw, Yw are sets of
variables, prew is a conjunction of literals from LXw , and
effw is a conjunction of literals from LXw∪Yw . The in-
tended meaning is that Xw are the inputs and Yw the out-
puts, i.e., the new constants created by the web service. For
a web service w, a web service application a is given by
(prea, effa) ≡ (prew, effw)[Ca/Xw, Ea/Yw] where Ca and
Ea are vectors of constants; for Ea we require that the con-
stants are pairwise different.
WSC tasks are tuples (P,O,W,U). Here, P are predi-

cates; O is the ontology;W is the set of web services; U is
the user requirement, defined as a triple (CpU , φ

p
U , φ

e
U). φpU

and φeU are conjunctions of literals corresponding to the user
requirement precondition and effect, respectively; CpU is a
set of constants corresponding to the variables in φpU . The
interpretation will be that the constants CpU satisfy φpU , i.e.,
these variables become “generic constants” about which we
know only the user requirement precondition. We want to
apply web services to reach a situation where an appropriate
instantiation of the variables in φeU is guaranteed to exist.
Example. We formalize the scenario introduced in section 2:

• P includes {TripReq, AccomReq, HostelReq,
HotelReq, B&BReq, Flight&ShuttleReq,
AccomConf , forReq, FlightT icket, ShuttleConf}

• O is: ∀x.(¬HotelReq(x) ∨AccomReq(x)) and
∀x.(¬HostelReq(x) ∨AccomReq(x)) and
∀x.(¬B&BReq(x) ∨AccomReq(x)) and
∀x.(¬AccomReq(x) ∨HotelReq(x) ∨HostelReq(x) ∨
B&BReq(x))

• W includes: wTravelAgency = ({x}, T ripReq(x), {y, z},
Flight&ShuttleReq(y) ∧AccomReq(z))

wBackpackers = ({x}, HostelReq(x), {y},
AccomConf(y) ∧forReq(y, x))

wV enere = ({x}, HotelReq(x), {y},
AccomConf(y) ∧forReq(y, x))

wBedAndBreakfast = ({x}, B&BReq(x), {y},
AccomConf(y) ∧forReq(y, x))

• U is: ({icws′08}, TripReq(x),
∃y, z, t.(FlightT icket(y) ∧ ShuttleConf(z) ∧
AccomConf(t)))

Assume we are given a task (P,O,W,U). States in our
formalism are pairs (Cs, Is) where Cs is a set of constants,
and Is is a Cs-interpretation, i.e., an interpretation of the
predicates P over the constants Cs. Given a state s and a
web service application a, a is applicable in s if Is |= prea,
Ca ⊆ Cs, andEa∩Cs = ∅. We allow parallel applications.
These are sets of applications performed at the same point
in time. The result of a parallel application A in a state s is
res(s,A) := {(C ′, I ′) | C ′ = Cs ∪

⋃
a∈A,appl(s,a)Ea,

I ′ ∈ min(s, C ′,O ∧
∧
a∈A,appl(s,a) effa)}

Here, min(s, C ′, φ) is the set of all C ′-interpretations
that satisfy φ and that are minimal with respect to the partial
order defined by I1 ≤ I2 :iff for all propositions p over Cs,
if I2(p) = Is(p) then I1(p) = Is(p). This is a standard

semantics where the ramification problem is addressed by
requiring minimal changes to the predecessor state s [17].
A is inconsistent with s iff res(s,A) = ∅; this can happen
in case of conflicts. Note that in the definition of res(s,A),
non-applicable a ∈ A are ignored; in particular they are
allowed. This realizes partial matches: a can be applied as
soon as it matches at least one possible situation.

We refer to the set of states possible at a given time
as a belief. The initial belief is b0 := {s | Cs = CpU ,
s |= O ∧ φpU}. A is inconsistent with a belief b if it
is inconsistent with at least one s ∈ b. In this case,
res(b, A) is undefined; else, it is

⋃
s∈b res(s,A). This is

extended to sequences of parallel applications in the obvi-
ous way. A solution is a sequence 〈A1, . . . , An〉 s.t. for all
s ∈ res(b0, 〈A1, . . . , An〉) : s |= φeU .

When assuming fixed arity – a constant upper bound on
the arity of all variable vectors (e.g., used in predicates) –
transformation to a propositional representation is polyno-
mial. Even in this case, solution testing is Πp

2-complete in
WSC. Further, polynomially bounded solution existence
has been proved to be Σp3-complete.

3.2 Forward Effects

The high complexity of WSC motivates the search for
interesting special cases. We consider a case where every
change an application makes to a state involves a new con-
stant. A WSC task (P,O,W,U) has forward effects iff:
• For all w ∈ W , and for all l[X] ∈ effw, we have X ∩
Yw 6= ∅. In words, the variables of every effect literal
contain at least one output variable.
• For all clauses cl[X] ∈ O, where cl[X] =
∀X.(l1[X1]∨ · · ·∨ ln[Xn]), we haveX = X1 = · · · =
Xn. In words, in every clause all literals share the
same arguments.

In our example, wV enere creates a AccomConf and re-
lates it to the input constant of type HotelReq. This does
not affect the previous knowledge about the input constant,
because of the second condition: effects involving new con-
stants can only affect literals involving new constants.

The set of all such tasks is denoted withWSC|fwd.
Given a state s and a parallel application A, define

res|fwd(s,A) := {(C ′, I ′) | C ′ = Cs∪
⋃
a∈A,exec(s,a)Ea,

I ′|Cs
= Is, I

′ |= O ∧
∧
a∈A,exec(s,a) effa}

Here I ′|Cs is the restriction of I ′ to propositions over Cs.
Proposition 3.1 (Semantics of WSC|fwd). Assume a
WSC|fwd task, a state s, and a parallel application A.
Then res(s,A) = res|fwd(s,A).

Hence, the semantics of applications becomes a lot sim-
pler with forward effects, no longer needing the notion of
minimal changes with respect to the previous state. In dif-
ference toWSC, we can make sure that no inconsistent ap-
plications will occur by filtering out certain applications in a

preprocessing step. If A is inconsistent with a belief b, then
there exists a ∈ A s.t. O ∧ effa is unsatisfiable. a is called
contradictory. Obviously, a contradictory application will
never yield a successor state; it can be filtered out prior to
composition, without affecting solution existence. Thanks
to this, and thanks to the simpler semantics as per Proposi-
tion 3.1, solution testing is much easier in WSC|fwd than
in WSC: it has been proved to be coNP-complete. Also,
polynomially bounded solution existence has been proved
to be Σp2-complete.

4 From Conformant-FF to Forward Effects

We develop a tool forWSC|fwd by using the correspon-
dence between WSC with partial matches and planning un-
der uncertainty. The latter is the task of generating plans
given uncertainty about the initial state, and without any
sensing capabilities during plan execution. This correspon-
dence is as follows: in both cases the world is described in
terms of a formula and the composed solution should work
for every situation satisfying that formula.

Among the tools for planning under uncertainty, of par-
ticular importance here is Conformant-FF [8]. Planning un-
der uncertainty can be transformed into a search problem
in belief space, the space whose elements are sets of possi-
ble worlds. The key observation in Conformant-FF is that,
for a setting where the goal and action preconditions are re-
duced to simple conjunctions of propositions, it is sufficient
to know the propositions that are true in the intersection of
worlds contained in a belief state. Based on this observa-
tion, Conformant-FF trades space for time. Instead of main-
taining complete knowledge of a belief state s in memory,
the planner maintains for s only the known propositions and
the path leading to it (the initial belief state and the action
sequence that leads to s). To check for fulfillment of the
goal and action preconditions, the planner checks that ev-
ery proposition is implied by a CNF formula that captures
the semantics of the action sequence. This approach can
be naturally extended to WSC with forward effects, since
forward effects beliefs can be represented as CNFs. A sim-
ilar encoding is not feasible in the general case, because the
compiled formulas may be exponentially large.

Making such an approach efficient is a challenging
task. Preconditions and effects are more complex in our
case, making it difficult to apply the optimizations used
in Conformant-FF, for example caching and reusing re-
sults. Moreover, Conformant-FF (and every existing plan-
ning tool) does not allow the generation of new constants.
It is critical to devise heuristics for identifying which con-
stants are important, since exponentially many constants
may be generated in general.

In section 4.1 we generate formulas that encode the se-
mantics of forward effects beliefs. We present our heuristic

function in section 4.2. Due to limited space, many details
and proofs of the formal claims in this section have been
omitted. They are available in a technical report [14].

4.1 Adapting the Generation of Formulas

Assume a WSC|fwd task (P,O,W,U) with fixed ar-
ity and without contradictory applications and a sequence
A = 〈A1, . . . , An〉 of parallel applications. Assume also
that any two applications a, a′ ∈ A are compatible, i.e. ei-
therEa∩Ea′ = ∅, or effa = effa′ . In order to determine the
known and negatively known propositions in a belief state,
and be able to test the satisfiability of the goal formula, we
construct a CNF corresponding to the semantics of A.

We introduce a predicate exists(c, t), useful for keeping
track of the constants generated at different points along
the execution of A. Further, in order to keep the number
of generated clauses polynomial, we introduce a predicate
appl(a, t), completely determined by preconditions and ex-
ists literals. Except for these predicates, there is no need for
timestamps, because once an application has generated its
outputs, the properties remain fixed.

The CNF corresponding to A can be computed incre-
mentally. We denote with ϕt, 0 ≤ t ≤ n, the formula
associated with 〈A1, . . . , At〉. Corresponding to the empty
sequence, ϕ0 contains the instantiation of ontology O and
initial literals φpU with CpU , and also

∧
c∈Cp

U
exists(c, 0).

For all t, 0 ≤ t < n, ϕt+1 = ϕt ∧ δt+1, where δt+1 is a
CNF consisting of all clauses related to At+1. For simplic-
ity, we denote with Et the set of constants that might exist
at t, i.e. Et = CpU ∪

⋃
a∈〈A1,...,At〉Ea.

First, δt+1 includes the instantiation of ontology O with
Et+1. As an optimization, we enforce that the tuples con-
tain at least one constant from

⋃
a∈At+1

Ea. For all c ∈⋃
a∈At+1

Ea we add a clause ¬exists(c, 0) because all out-
puts are generated (by construction of applications).

For all a ∈ At+1, we add clauses defining applicability:∧
l∈pre

a
l∧

∧
c∈Ca

exists(c, t)∧
∧
e∈Ea

¬exists(e, t) ⇐⇒
appl(a, t). We then add effect clauses. If a can be applied,
effa is known to hold, and each e ∈ Ea is known to exist at
t+ 1: appl(a, t)⇒

∧
l∈effa

l ∧
∧
e∈Ea

exists(e, t+ 1)
We continue with frame axioms for the exists predicate.

For every c ∈ Et+1, we add a negative frame axiom stating
that if c did not exist at t, and no a ∈ At+1 that could create
it was applicable, then it does not exist at t+ 1:
exists(c, t)∨

∨
a∈At+1,c∈Ea

appl(a, t)∨¬exists(c, t+ 1)
We add also a positive frame axiom (once created, a con-
stant will exist until step n): exists(c, t)⇒ exists(c, t+1)

For the output constants in At+1, we add frame axioms
related to the past. For every c ∈

⋃
a∈At+1

Ea, and for every
timestep 1 ≤ i ≤ t, we insert a negative frame axiom:
exists(c, i−1)∨

∨
a∈Ai,c∈Ea

appl(a, i)∨¬exists(c, i) and
a positive frame axiom: exists(c, i− 1)⇒ exists(c, i)

Example. Consider the following applications:
aTA = wTravelAgency[{icws′08}/{x}, {c1, c2}/{y, z}] and
aV = wV enere[{c2}/{x}, {c3}/{y}]. We construct a sequence
of parallel applications as 〈{aTA}, {aV }〉. The effect clauses of
aV , here directly as CNFs, are:
• ¬appl(aV , 1) ∨AccomConf(c3)
• ¬appl(aV , 1) ∨ forReq(c3, c2)
• ¬appl(aV , 1) ∨ exists(c3, 2)

Solution Testing. In the following, we clarify the mean-
ing of an execution and the correspondence between exe-
cutions and our CNF formulas. We then show that testing
whether a sequence A = 〈A1, . . . , An〉 is a solution for a
givenWSC|fwd task can be reduced to a single SAT test.

Given aWSC|fwd task, an execution of A is defined by
a pair (C, I), where C is an array of sets of constants, and
I is an array of interpretations. Each It (0 ≤ t ≤ n) is
an interpretation of the predicates P over the corresponding
set of constants Ct. For all 1 ≤ t ≤ n, and a ∈ At, a is
applicable if It−1 |= prea, Ca ⊆ Ct−1, Ea ∩ Ct−1 = ∅.
Then the pair (C, I) has the following properties:
• (C0, I0) ∈ b0, where b0 is the initial belief
• for all t, 1 ≤ t ≤ n,

– It |= O
– for all a ∈ At, if a is applicable, then It |= effa
– Ct = Ct−1 ∪ {Ea|a ∈ At, a is applicable}

For all Ii, Ij (0 ≤ i ≤ j ≤ n) interpretations of P over
Ci, respectivelyCj , we consider that Ij contains Ii, denoted
by Ii ⊆ Ij , if Ij |Ci

= Ii, and Ci ⊆ Cj . Then, for any
execution ofA given by (C, I), we have that I0 ⊆ . . . ⊆ In.
This follows directly from the definition of a result state in
the forward effects: It+1|Ct = It, Ct ⊆ Ct+1, 0 ≤ t < n.

We say that a literal l holds after A if, for all (C, I)
executions of A, In |= ∃X.(l[X]), with the quantifier re-
stricted to Cn. Further, we proved that the following cor-
respondence exists between our formula ϕn and the exe-
cutions (C, I): for all literals l over P , ϕn ⇒ ∃X.(l[X] ∧∧
x∈X exists(x, n)) ⇐⇒ l holds afterA. We extend these

statements to conjunctions of literals. Then, A is a solution
iff the goal φeU holds afterA. We can then write our solution
test as a single SAT test.
Proposition 4.1 (Solution testing equivalence). Assume a
WSC|fwd task (P,O,W,U) with fixed arity and with-
out contradictory applications, and a sequence A = 〈A1,
. . . , An〉 of parallel applications, each At representing a
compatible set of applications. Then A is a solution iff ϕn∧
¬∃X.(

∧
l∈φe

U [X] l ∧
∧
x∈X exists(x, n)) is unsatisfiable.

Optimizations. Both entailment of the goal and applica-
bility can be checked with a single SAT call. Alternatively,
these tests can be decomposed for individual propositions.
In case of ϕn, we can further determine truth values by unit
propagation. The knowledge about propositions can then
be used to simplify the formulas; it can also be used when

instantiating web services, by pruning applications as soon
as one of the precondition literals is known to be false.

An important speed-up in solving a WSC|fwd task is
given by mutexes. These are generated based on a directed
graph having as nodes the predicates in P , G := (P, E).
For every pair p, q ∈ P having the same arity, E contains:
• an edge (p, q) if they appear together in a subsumption

clause, where p is parent
• edges (p, q) and (q, p) if they appear together in any

clause in O; also, if they occur in positive literals hav-
ing the same arguments in the effects of a web service
w ∈ W or in the user requirement precondition φpU .

For every pair p, q ∈ P we check for a directed path
from p to q or from q to p. Because a concept can be the
sub-concept of several concepts, we check if there exists a
predicate r such that there is a directed path from both p to
r and q to r. If none of these conditions is satisfied, we add
to the ontology O a mutex clause ∀X.(¬p(X) ∨ ¬q(X)).

We have proved that completeness is preserved when ap-
plying the mutexes. The optimization is therefore to solve
the constrained task and further test every found solution.

4.2 Heuristic Function

Practical scenarios are expected to involve large sets of
web services, and huge search spaces (of partial composi-
tions). To overcome these huge search spaces, we intro-
duce a heuristic function tailored for the forward effects.
Here again, we started from Conformant-FF: for each be-
lief, Conformant-FF computes a relaxed solution using ap-
proximate SAT reasoning, and uses it to guide the search.
The length of this solution is the heuristic function: an es-
timate of how much more effort is required to complete the
search state. Further, the actions contained in the relaxed
solution provide an estimate of which actions are most rel-
evant to complete the search state.

We use the same principle, but apply a different relax-
ation. In Conformant-FF, the relaxation is to assume that all
delete lists are empty. Relaxing applications to have only
positive effects is not relevant in our setting, where neg-
ative effects can be useful for reaching the goal (either di-
rectly, or through consequences). Our relaxation is to ignore
logical conflicts and allow applications to output the same
constants. This is a generalization of ignoring delete lists,
which addresses a critical problem ofWSC, the fact that in
general exponentially many constants may be generated.

Given a belief determined by a sequence of parallel ap-
plications A, we compute the heuristic function with a for-
ward step, and the recommended applications with a back-
ward step. In the forward step we build a relaxed graph
which gives an approximation of the number of applica-
tions necessary for achieving the goal and the data struc-
tures from which a relaxed solution can be extracted. Sim-

ilar to the conformant setting, our relaxed graph is a se-
quence of alternating literal and application layers.

We first present in detail the data structures. We continue
with the basic mechanism for building the relaxed graph,
which we also illustrate on our reference example. The ac-
tual algorithm, together with the algorithm for building a
time step (an application and a literal layer), that for com-
puting the approximate test, as well as that for identifying a
relaxed solution can be found in [14].

At any step t, literals in Conformant-FF can be either
known or unknown (they are true when starting from some
initial world states, and false when starting from others). In
our setting, this distinction is not sufficient, and we further
distinguish “unknown” literals into partial and decision lit-
erals. Literals can therefore be:
• known, if they follow from the effects of an application

that is always applicable, or if we determine using an
approximate test that they may cover all situations;
• partial, if they follow from the effects of an application

that is partially applicable;
• decision, if they appear only in the preconditions of

applications.

Neither of these literals needs to be timestamped. It is
enough to timestamp the constants: based on its constants,
the step at which a literal occurs is easily determined.

The relation between known, partial and decision literals
is as follows. A decision literal is linked to any literal that
can possibly influence its truth value. These links are used
in the approximate test for filtering purposes: only relevant
applications will be taken into account. We connect partial
literals to decision literals using conditions, which are com-
puted incrementally. For a decision literal, the condition is
itself. For a partial literal, the condition is a formula con-
structed based on the applications that achieve the literal,
and the conditions of their preconditions. A partial literal
becomes known if its condition is approximatively implied
by the ontology, the initial literals and the effects of (a sub-
set of) already applied web service applications.

The algorithm for building the relaxed graph proceeds
as follows. First, it builds the layers referring to the past.
We compute these layers because we do not have complete
knowledge of the truth value of literals, the only knowledge
we have is that obtained by test decomposition (section 4.1).
Also, there may be implications between literals that are
relevant for the entire graph. Different from Conformant-
FF, we do not relax the applications from the past. The
number of constants created at each past step is likely to
be small. What we gain is that in the approximated test
we can conjunctively add the effects of applications from
−n, . . . ,−1: there will be no contradictions.

The algorithm continues with the 0+ layers. As long as
the goal has not been reached, we generate a set of M con-
stants, where M is the maximum number of outputs over

)eAccomConf(11

)cAccomConf(3

)c,forReq(c 23

)c,forReq(e 2
1
1

)HotelReq(c2

)cHostelReq(2

ws'08)TripReq(ic

)BReq(c&B 2

)et(eFlightTick 1
1

2-t 1-t 0t 1t

)f(eShuttleCon 1
2

2t

1
Sa

0
Fa

Va

0
Va

0
Ba

0
B&Ba

TAa)AccomReq(c2

)(cShuttleReq&Flight 1

Figure 2: Fragment of the relaxed graph for 〈{aTA}, {aV }〉

all web services in W . We then create a set of relaxed ap-
plications, allowing them to output the same constants, the
newly generated ones. We use these applications to build a
new layer. If the new constants behave exactly like the pre-
vious ones the goal cannot be reached from the input belief,
and we return∞ such that it can be pruned from the search.

Fig. 2 shows the relaxed graph for the application se-
quence 〈{aTA}, {aV }〉 (introduced in section 4.1). To
improve readability, only the applications relevant for the
approximate goal test are displayed. It is important to
note that all possible applications will be created, in-
cluding for example for t = 0 applications such as
wTravelAgency[{icws′08}/{x}, {e11, e12}/{y, z}]. We dis-
tinguish between known (gray, solid line boxes), partial
(gray, dotted line boxes) and decision literals (without
boxes). At t = 1, AccomConf(e11) and forReq(e11, c1)
will first be marked as partial. They become known be-
cause their condition (HotelReq(c2) ∨ HostelReq(c2) ∨
B&BReq(c2)) is determined to hold in the approximate
test. At t = 2, the goal is reached because there exists a
constant substitution for the goal formula such that the lit-
erals are known. Thus, the heuristic value returned is 2.

We have proved that our heuristic function is admissi-
ble, i.e., it never overestimates the number of applications
necessary to reach the goal. Therefore, it can be used with
search algorithms such as A* to find optimal solutions.

Proposition 4.2 (Admissibility). Assume aWSC|fwd task
(P,O,W,U) with fixed arity and without contradictory ap-
plications and a sequence of parallel applications A =
〈A−n, . . . , A−1〉 for which any two applications are com-
patible. Assume that 〈{a0}, . . . , {am−1}〉 is a solu-
tion for the belief b0 = res(b−n, A). Then build-
graph(A,P,O,W,U) returns tmax such that tmax ≤ m.

5 Experimental Results

We have implemented our approach into a prototype
tool. The tool accepts WSMO background ontologies, web
services and goals, all specified in a subset of the WSML
language. Reasoning is performed using an integrated
SAT solver, namely SAT4J (http://www.sat4j.org). We con-

ducted a series of experiments in order to to establish the
benefits of using our heuristic function (section 4.2).

We use for testing the scenario introduced in section 2.
Although rather small (6 web services), the scenario is pow-
erful due to the generality of our goal and the high degree
of parallelism. Already at the second step, even when intro-
ducing mutexes, at least four web service applications can
be applied, this leading to a very high branching factor. To
observe the behavior of our tool with a larger service pool,
we experimented with adding extra web services that do not
contribute to the solution. The case likely to occur in prac-
tice is that the web services are first filtered by a discovery
tool. To simulate this situation, we created extra web ser-
vices using the set of predicates from the original task.

All tests have been performed using a Dual Core CPU
running at 1.83GHz, and allowing at most 1.5GB memory.
Because the performance varies dramatically depending on
the randomized web services, for each tested situation we
have generated 10 sets of web services. Each result is there-
fore the median value over the 10 runs corresponding to the
fixed sets. For each test, we applied a timeout of 30 minutes.

We experimented with multiple configurations. Table 1
displays the results for the configurations using mutexes.
First, W is the number of original plus generated web ser-
vices. Then, “blind” search uses only the basic optimiza-
tions, while “weighted A*” search uses also the heuris-
tic (with a factor of 1 for the path cost and a factor of 3
for the heuristic). Weighted A* uses also a limited looka-
head based on the approximate solutions constructed in the
heuristic function (the lookahead is discussed in the next
experiment). We compare the performance on two criteria:
total running time expressed in seconds (T), and number of
generated search states (GS). We observe that there is a defi-
nite benefit of using the heuristic, according to both criteria.

We discuss now the additional parameter introduced for
the configuration using both mutexes and heuristic. In gen-
eral, web service applications in the relaxed solution may
not be applicable in the actual search state. However, in
this particular scenario, we have observed that the relaxed
solutions are of good quality, and more than just the first ap-
plication in the solution can be used for guiding the search.
The lookahead parameter sets the number of applications
from the relaxed solution that should be considered. It is
important to note that by using a lookahead greater than 1
we give up optimality. Similar directions have already been
explored in the planning community. Investigating this di-
rection in more detail, in our context, is future work.

We experimented with different lookahead values, at the
same time increasing the number of web services. Table 2
shows our results for a lookahead of up to 4 (higher values
yielded similar results). We observe that when using only
the first application from the relaxed plan (lookahead = 1)
the runtime is very high, meaning that the time required to

W blind weighted A*
T GS T GS

6 14.219 120 1.641 20
6+1 14.922 120 1.906 20
6+2 17.454 143 1.829 20
6+3 492.840 754 1.891 20
6+4 >30 min 2.765 26
6+10 >30 min 4.750 41
6+20 >30 min 95.000 190
6+30 >30 min >30 min

Table 1: Results when using mutexes
compute the heuristic function is very high. We conclude
that our heuristic does provide useful guidance, but is still
too costly to compute. Not shown in the table is that for a
lookahead of up to 3 all the solutions returned are optimal,
from which we conclude that for this particular scenario the
relaxed solution is reliable for at most 3 steps.

We will try to remedy this problem in two ways. First,
our current implementation leaves enough room for im-
provement. For example, roughly half of the running time
is spent performing satisfiability tests. Although large, our
CNFs are relatively easy to compute. We will experiment
with using a naive standard DPLL solver instead of the
fairly complex SAT4J. Also, the formulas are similar, and
in many cases, incremental. We will take advantage of this
similarity and devise a mechanism for caching results. Sec-
ondly, we will experiment with less costly algorithms for
computing the heuristic function, for example by further
simplifying the approximate test.

6 Related Work

There exist many approaches to WSC (e.g., [12, 13]) that
compile the composition problem into a planning formal-
ism. These approaches also assume exact matches of in-
put/output types, therefore ignoring the background ontolo-
gies. [2] focuses on information gathering at composition
time. Two approaches explore how to adapt formalisms
from hand-tailored planning, namely Golog [10], respec-
tively HTN planning [16], for WSC. Both approaches are
capable of composing services involving control constructs
(loops, branches). There is one fully automatic approach
handling control constructs [11]. There, BDD-based search
techniques are exploited to obtain complex solutions; in-
put/output type matches are assumed to be exact.

The requirements on matches are relaxed in the follow-
ing works. In [1], techniques are introduced that disam-
biguate concept names during WSC. [15] extends the clas-
sical HTN (Hierarchical Task Network) planning to work
with OWL-S processes, and therefore performs matching
with respect to OWL-DL ontologies. However, the type of
matches considered is plug-in, i.e. a task will match only if
all its preconditions are fulfilled. This approach further dif-
fers from ours in that, similar to [10, 16], it uses workflow

W lookahead = 1 lookahead = 2 lookahead = 3 lookahead = 4
T GS T GS T GS T GS

6 5.968 54 2.406 31 1.641 20 1.641 20
6+5 459.563 1082 62.020 295 3.422 26 3.422 26

6+10 >30 min 110.078 483 4.750 41 4.766 41
6+15 >30 min >30 min 171.390 458 164.439 123
6+20 >30 min >30 min 134.829 362 95.000 190
6+25 >30 min >30 min 221.703 530 157.860 211
6+30 >30 min >30 min >30 min >30 min

Table 2: Results when varying the lookahead

templates, describing the outline of activities that need to be
performed, to achieve composition.

Partial matches are addressed in [3], a fully automatic
approach to WSC. The approach uses numeric intervals to
encode a sub-concept hierarchy, and performs matching (as
well as service discovery) based on those intervals, by ask-
ing whether one interval (a service output) is fully contained
in the union of a set of intervals (service inputs). Both
forward and backward search are performed (however, for
backward search only complete matches are considered).
There are several differences to our approach. First, in [3]
the functionality of web services is described only with
typed inputs and outputs, without preconditions and effects.
The main consequence is that it is not possible to encode the
relation of outputs with respect to inputs, feature present in
the forward effects. Second, our ontologies are more gen-
eral, taking arbitrary clausal form instead of a sub-concept
hierarchy. Third, we guide the search using a heuristic func-
tion, instead of performing a blind depth-first search.

7 Conclusions and Future Work

We presented a tool able to solve WSC|fwd tasks. We
defined the search space of the tool and optimized the ba-
sic procedures. Further, we designed algorithms for guid-
ing the search. We compute the heuristic value of forward
effects beliefs as an approximation of the number of steps
necessary to reach the goal. With a backchaining step, we
identify a relaxed solution, from which we extract the most
promising applications.

Our future work includes adding a parallelization step, as
well as designing and evaluating less costly heuristic func-
tions. In the long term, we will incrementally enrich the
language our tool accepts, accordingly adapting the algo-
rithms. For a start, some generalizations of WSC|fwd are
possible without losing Proposition 3.1. Most importantly,
instead of requiring that every effect literal involves a new
constant, one can postulate this only for literals that may
actually be affected by the ontology.

References

[1] R. Akkiraju, B. Srivastava, I. Anca-Andreea, R. Goodwin,
and T. Syeda-Mahmood. Semaplan: Combining planning

with semantic matching to achieve web service composition.
In Proc. ICWS’06.

[2] T.-C. Au and D. Nau. The incompleteness of planning with
volatile external information. In Proc. ECAI’06.

[3] I. Constantinescu, B. Faltings, and W. Binder. Large scale,
type-compatible service composition. In ICWS, 2004.

[4] D. Martin et al. OWL-S: Semantic markup for web services.
In SWSWPC, 2004.

[5] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A
logic programming approach to knowledge-state planning,
II: The DLVK system. AI, 144(1-2):157–211, 2003.

[6] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman,
and A. Polleres. Enabling Semantic Web Services: The Web
Service Modeling Ontology. Springer-Verlag, 2006.

[7] J. Hoffmann, P. Bertoli, and M. Pistore. Web service com-
position as planning, revisited: In between background the-
ories and initial state uncertainty. In AAAI, 2007.

[8] J. Hoffmann and R. Brafman. Conformant planning via
heuristic forward search: A new approach. AI, 170(6–
7):507–541, 2006.

[9] J. Hoffmann, I. Weber, J. Scicluna, T. Kaczmarek, and
A. Ankolekar. Combining scalability and expressivity in the
automatic composition of semantic web services. Accepted
for ICWE’08.

[10] S. McIlraith and T. C. Son. Adapting Golog for composition
of semantic Web services. In Proc. KR-02.

[11] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Au-
tomated Composition of Web Services by Planning at the
Knowledge Level. In Proc. IJCAI’05, 2005.

[12] S. Ponnekanti and A. Fox. SWORD: A developer toolkit for
web services composition. In WWW, 2002.

[13] M. Sheshagiri, M. desJardins, and T. Finin. A Planner for
Composing Services Described in DAML-S. In Proc. AA-
MAS’03, 2003.

[14] A. Sirbu and J. Hoffmann. Towards scalable web service
composition with partial matches. Technical report, Uni-
versity of Innsbruck, 2008. Available from http://www.sti-
innsbruck.at/results/publications/technical-reports/.

[15] E. Sirin, B. Parsia, and J. Hendler. Template-based compo-
sition of semantic web services. In AAAI Fall Symposium on
Agents and Search, 2006.

[16] E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau.
HTN planning for Web Service composition using SHOP2.
J. Web Sem., 1(4):377–396, 2004.

[17] M. Winslett. Reasoning about actions using a possible mod-
els approach. In AAAI, 1988.

