Neural Network Action Policy Verification via Predicate Abstraction
Technical Report

Marcel Vinzent,' Marcel Steinmetz,! Jorg Hoffmann'?

! Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
2 German Research Center for Artificial Intelligence (DFKI), Saarbriicken, Germany
{vinzent, steinmetz, hoffmann} @cs.uni-saarland.de

Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies. Verifying that such policies are
safe is potentially very hard as it compounds the state space
explosion with the difficulty of analyzing even single NN de-
cision episodes. Here we address that challenge through ab-
stract reachability analysis. We show how to compute predi-
cate abstractions of the policy state space subgraph induced
by fixing an NN action policy. A key sub-problem here is the
computation of abstract state transitions that may be taken by
the policy, which as we show can be tackled by connecting
to off-the-shelf SMT solvers. We devise a range of algorith-
mic enhancements, leveraging relaxed tests to avoid costly
calls to SMT. We empirically evaluate the resulting machin-
ery on a collection of benchmarks. The results show that our
enhancements are required for practicality, and that our ap-
proach can outperform two competing approaches based on
explicit enumeration and bounded-length verification.

1 Introduction

Neural networks (NN) are an increasingly important rep-
resentation of action policies, in particular in planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Garg, Bajpai, and Mausam 2019; Toyer et al. 2020). But how
to verify that such a policy is safe?

While there has been remarkable progress on analyzing
individual NN decision episodes (Katz et al. 2017, 2019;
Huang et al. 2017; Gehr et al. 2018; Li et al. 2019), the ver-
ification of NN decision sequences is still in its early stages.
The most prominent line of works addresses neural con-
trollers of dynamical systems, where the NN outputs a vec-
tor u of reals forming input to a continuous state-evolution
function f. This has been investigated for linear f (Sun,
Khedr, and Shoukry 2019; Tran et al. 2019) as well as for
Lipschitz continuous f (Huang et al. 2019; Dutta, Chen, and
Sankaranarayanan 2019). Recent work extends this thread
to hybrid systems, addressing smooth (tanh/sigmoid) acti-
vation functions by compilation into such systems (Ivanov
et al. 2021). In a context closer to Al sequential decision
making, but still considering NN controllers influencing a
linear state-evolution function, the use of MIP encodings for
safety verification has been explored (Akintunde et al. 2018,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2019). Here we explore a context and method complemen-
tary to all those, namely NN policies m with ReLU activa-
tion functions taking discrete action choices in sequential
decision making, and the extension of predicate abstrac-
tion (PA) (Graf and Saidi 1997; Ball et al. 2001; Henzinger
et al. 2004) for verifying the safety of such 7.

We tackle non-deterministic state spaces over bounded-
integer state variables. Given a policy , a start condition
@0, and an unsafety condition ¢¢;, we verify whether a state
su | ¢u is reachable from a state sg = ¢ under w. We
do so by building an abstraction defined through a set P of
predicates, where each p € P is a linear constraint over the
state variables (e.g. * = 7 or x < y). Abstract states are
characterized by truth value assignments to P, grouping to-
gether all concrete states that result in the same truth values.
Like in other abstraction methods (e.g. underlying heuristic
functions (Edelkamp 2001; Helmert et al. 2014; Seipp and
Helmert 2018)), transitions are over-approximated to pre-
serve all possible behaviors. However, we abstract not the
full state space ©, but the policy-restricted state space O,
i.e., the state-space subgraph containing only the transitions
taken by 7. We refer to the predicate abstraction of ©7 as
the policy predicate abstraction (PPA) OF. We build the
fragment of ©F reachable from ¢¢, and check whether ¢y
is reached. If this is not the case then 7 is safe.

To compute the PA ©p, one frequently needs to solve the
sub-problem of deciding whether there is a transition from
abstract state A to abstract state A’: does there exist a state
s € Aand an action a s.t. executing a in s resultsins' € A'?
This satisfiability problem is routinely addressed using SMT
solvers such as Z3 (de Moura and Bjgrner 2008). To com-
pute the PPA ©F, however, we additionally need to check
whether 7(s) = a, i.e., whether the policy actually selects a
on s. This is still an SMT problem: one can encode the entire
NN as a conjunction of constraints — one for every neuron —
and add those to the SMT encoding. But scalability of course
becomes an issue as these SMT encodings can get large.

We devise a range of algorithmic enhancements to address
this, using relaxed tests to avoid costly calls to SMT. Most
importantly, continuous relaxation of the state variables al-
lows to leverage recent SMT solvers specialized to NN with
ReLU activation functions (Katz et al. 2017, 2019). We de-
vise a method that simplifies exact-SMT tests via informa-
tion obtained on relaxed tests, and a method using branch-

and-bound around relaxed tests to avoid exact tests alto-
gether. While these enhancements are conceptually straight-
forward (and effective PA though not PPA has been inten-
sively explored (Cimatti et al. 2009; Cavada et al. 2014)),
our overall machinery constitutes a substantial engineering
effort. We contribute that effort in terms of an implemen-
tation based on the automata language JANI (Budde et al.
2017). Our tool (and all experiments) are publicly available.'

We run experiments on a collection of benchmarks, con-
sisting of Racetrack, Blocksworld, SlidingTiles, and a sim-
ple Transport domain. We adapted the latter three of these
to include non-determinism and an unsafety condition. We
do not automate the selection of abstraction predicates yet,
instead providing these as input and scaling them as an im-
portant algorithm parameter in our experiments. As com-
peting approaches, we implement a naive approach explic-
itly enumerating all states the policy can reach, as well as
a bounded-length verification approach following the ideas
of Akintunde et al. (2018; 2019). Our results show that our
algorithmic enhancements are required for practicality, and
that our approach can outperform its competitors.”

2 State Space Representation

The particular language JANI we use in our implementa-
tion is not relevant to understanding our contribution. We
hence abstract from the language to a generic representation
of non-deterministic state spaces, as follows.

A state space is a tuple (V, £, O) of state variables V,
action labels £, and operators O. For each variable v € V
the domain D, is a non-empty bounded integer interval. We
denote by Ezp the set of linear integer expressions over
V, i.e., expressions of the form dy - vy + -+ d, - v, + ¢
with dy,...,d,,c € Z. C denotes the set of linear integer
constraints over V, i.e., constraints of the form e; > es
with 1 € {<,=,>} and e;,e3 € FEzp, and all Boolean
combinations thereof. An operator o € O is a tuple (g, [, u)
with label [€ £, guard g € C, and update u: V — Ezp.

A (partial) variable assignment s over) is a function
with domain dom(s) C V and s(v) € D, for v € dom(s).
Given s1, s2, we denote by s1[s2] the update of s; by so, i.e.,
dom(s1[sz2]) = dom(s1)Udom(s2) with s1[s2](v) = s2(v)
if v € dom(sa), else s1[s2](v) = s1(v). By e(s) we denote
the evaluation of e € Exp over s, and by ¢(s) the evaluation
of ¢ € C.1If ¢(s) evaluates to true, we write s |= ¢.

The state space of (), £, O) is a labeled transition system
(LTS) © = (S, L, T). The set of states S is the (finite) set of
all complete variable assignments over V. The set of transi-
tions 7 C S x £ x S contains (s, 1, ') iff there exists an
operator o = (g,l,u) such that s = g and s’ = s[u(s)], i.e.,
the guard is satisfied in the source state s, and the successor
state s results from applying the update to s. Here, u(s) de-
notes the partial variable assignment induced by u evaluated
over s, i.e., u(s) = {v — u(v)(s) | v € dom(u)}.We also
write s = o for s |= g, and abbreviate s[o] for s[u(s)].

"https://fai.cs.uni-saarland.de/vinzent/downloads/icaps22.zip
2We skip many formal details here. These are available in the
appendix.

From an Al Planning perspective, the only unusual aspect
here (reflecting JANI/automata languages) is the separation
between action labels and operators. This is useful because
it supports both, state-dependent effects (different operators
with the same label [applicable in different states); as well as
action outcome non-determinism (different operators with
the same label [applicable in the same state).

3 NN Action Policies

An action policy 7 is a function S — L. The policy-
restricted state space O7 is the subgraph (S, £, 7™) of ©
with 7™ = {(s,1,s") € T | n(s) = }.

Note that we allow 7 to select inapplicable actions, i.e.,
there may be s € S for which 7(s) does not label any
outgoing transition. In this case, the policy execution stops.
Two remarks are in order here: (1) the possibility of the pol-
icy getting stuck raises the issue of deadlock verification
(as known from concurrent systems); (2) a popular practi-
cal trick is to super-impose applicability on , letting it se-
lect only from the applicable actions. Our approach can in
principle be adapted to perform deadlock verification or to
super-impose applicability. Both require substantially more
complex SMT encodings though, resulting in serious com-
putational challenges that future work needs to address.

We consider action policies represented by neural net-
works (NN), specifically fully connected feed-forward NN.
These consist of an input layer with an input for each state
variable; arbitrarily many hidden layers; and an output layer
with an output for each action. The policy 7 is obtained
by applying argmax to the output layer. Our approach is,
in principle, agnostic to the activation functions used. In
our current implementation we leverage SMT solvers spe-
cialized to rectified linear units (ReLU), ReLU(z) =
max(z, 0), so our experiments focus on those exclusively.

4 Safety Properties & Predicate Abstraction

We next review safety of systems in general, not considering
a policy. We give a corresponding definition of safety, and
give the background on predicate abstraction in this context.

Definition 1 (Safety Property). A safety property is a pair
p = (b0, ¢u) with ¢g, oy € C. p is violated in © iff there
exist states sg, sy € S such that sg = ¢g, sy E ¢u, and
sy is reachable from s in ©. © is unsafe with respect to p
if p is violated in ©, and safe otherwise.

The unsafety condition ¢y identifies the set of unsafe
states that should be unreachable from the set of possible
start states S, represented by ¢g.

Predicate abstraction (Graf and Saidi 1997) verifies
safety within an abstract state space, as follows. Assume a
set of predicates P C C. An abstract state sp is a (com-
plete) truth value assignment over P, also referred to as a
predicate state. The abstraction of a (concrete) state s € S
is the predicate state s|p with s|p(p) = p(s) foreach p € P.
Conversely, [sp] = {s' € S | §'|p = sp} denotes the con-
cretization of predicate state sp, i.e., the set of all concrete
state represented by sp. The abstract state space now is de-
fined in a transition-preserving manner:

Definition 2 (Predicate Abstraction). The predicate ab-
straction of © over P is the LTS Op = (Sp,L,Tp),
where Sp is the set of all predicates states over P, and

Tr ={(s|p,L,s'|p) | (s,1,8") € T}.

We say that a predicate state sp satisfies a constraint ¢ €
C, written sp = ¢, iff there exists s € [sp] such that s = ¢.
Similarly, a safety property p = (¢, ¢r) is violated in ©p
iff there exist sp, s € Sp with sp = ¢o, s = ¢ and s
is reachable from sp in ©p. Due to the over-approximating
nature of ©p, safety in © can be proven via safety in Op:

Proposition 3 (Safety in ©p). Let p be a safety property. If
Op is safe with respect to p, then so is O.

The computation of ©p necessitates to solve a satisfia-
bility problem for every possible abstract state transition:
(sp,l,s) € Tp iff there exists an operator o € O with
label [and a concrete state s € [sp] such that s = o and
s[o] € s». We denote this test by TSat(sp, 0, s).

TSat(sp, 0, s») can be encoded into a satisfiability mod-
ulo theories (SMT) (Barrett et al. 1994) formula over the
variables V), including a primed and an unprimed form for
each. The unprimed variables represent concrete states in
[sp], the primed ones [s’,]. Predicate state constraints en-
force that the predicates over the (un)primed variables eval-
uate according to the truth values in sp (s’). Operator con-
straints ensure that the unprimed variables satisfy the guard
of o, and the primed variables are consistent with the updates
of o. For example, say we have state variables x, y each with
range [0,5], P = {p} withp = (z > y), sp = (p — 1),
s = (p — 0), and o with guard 2 > y and update = :=
x — 1. Then the encoding of TSat(sp, 0, s7) is the conjunc-
tion of © > y [sp, guard]; 2’ = x — 1 [update]; =(z’ > y)
[s’]; and the bounding constraints 0 < x,y, z’,y" < 5. This
is satisfiable (e.g. by s(z) = s(y) = 1), so there is an ab-
stract state transition from sp to s%. A full specification of
the SMT encoding is in the appendix.

5 Policy Predicate Abstraction

We now extend the above concepts to policy verification.
As we shall see, the definitions themselves transfer straight-
forwardly. What becomes substantially more complex is the
satisfiability test needed to identify abstract state transitions.

Definition 4 (Policy Safety). Let p be a safety property, and
let m be a policy. 7 is safe with respect to p iff ©™ is safe
with respect to p.

In words, we apply the definition of safety (Definition 1)
to the policy-restricted state space ©™. Predicate abstraction
for policy verification is defined correspondingly:

Definition 5 (Policy Predicate Abstraction). Let P C C' be
a predicate set, and let 7 be a policy. The policy predicate
abstraction of ©™ over P is the LTS ©F = (Sp, L, T5)
where 75 = {(s|p,l,5'|p) | (s,1,s") € T,n(s) =1}.

Applying the same arguments as above, policy predicate
abstraction yields a sufficient condition for policy safety:

Proposition 6 (Safety in ©%). Let p = (4o, ¢v) be a safety
property. If ©F is safe with respect to p, then so is 7.

We compute the fragment of ©F reachable from the ab-
stract start states Solp = {sp € Sp | sp E ¢o}. If
that fragment does not contain any abstract unsafe state
s’ = ¢u. then with Proposition 6 the policy is safe.?

The new source of complexity in computing abstract
state transitions is that, in addition to the standard test
TSat(sp, 0, s), we now need to check whether the policy
m actually chooses [in the state s € [sp]:

Definition 7 (Transition Test of ©%). Let sp, s, be pred-
icate states, and let o = (g,[,u) be an operator. The tran-
sition test of ©F,, denoted TSat™ (sp, 0, s5), is satisfied iff
there exists s € [sp]s.t. s = 0, s[o] € [sp] and 7(s) = L.

Whether and how this test can be conducted depends
on the representation of 7. Policy predicate abstraction is
applicable in principle so long as any method for solv-
ing TSat" (sp, 0, s%) is available. Here, we focus on feed-
forward NN with ReLU activation functions.

We encode these into SMT by extending the
TSat(sp,0,sp) encoding as follows. The inputs to the
NN are the unprimed variables from TSat(sp, 0, s%). We
add an additional variable for every internal and output
edge of the NN. Each neuron is a constraint relating its
input and output edges, with the ReLU activation being
encoded via an if-then-else construct. The NN output edges
are constrained such that the maximal-valued edge is the
one corresponding to the label [.

For illustration, say that in the example from Section 4
we have a single-layer NN with three neurons whose out-
puts are encoded by variables ni, no, and ng, of which ng
corresponds to the label of the desired operator o. Then
TSat™(sp, 0, s%>) contains constraints relating = and y to
each of nj,ng, n3 according to the NN weights and ReLU
cases, as well as the constraints no > ni and ny > ns en-
coding that the correct label is chosen. A full specification
of the SMT encoding is in the appendix.

6 Enhancements through Relaxed Tests

An exact SMT solution of TSat™ (sp, 0, s’») is computation-
ally very expensive, due to the large number of disjunctions
encoding every ReLLU activation function — every neuron —
in the NN policy representation. Indeed, as we shall see in
our experiments, this computational expense makes policy
predicate abstraction infeasible in practice.

To improve this, we next introduce a range of algo-
rithmic enhancements, leveraging relaxed tests that over-
approximate TSat” (sp, 0,). If such a relaxed test is un-
satisfiable, then TSat™(sp,0,s’) is unsatisfiable and we
don’t need to call the exact SMT solver. We design such
relaxed SMT tests in two ways, namely 1. through re-
duced conditions that are necessary for TSat™ (sp, 0, s%) to
be satisfiable, and 2. through continuous relaxation of the
bounded-integer state variables. We now consider these two

3One could in principle build the entire graph ©7, not restricted
to a start condition, based on which one could then answer arbitrary
safety queries p. Yet this would forego the graph-size reduction
resulting from the use of a fixed policy from a fixed start condition.
As we will see, that reduction is crucial for practicability.

possibilities in turn. Then we introduce additional enhance-
ments: 3. using results of the relaxed test as per 2. to simplify
the exact SMT test; and 4. using branch-and-bound around
relaxed test as per 2. to avoid the exact SMT test altogether.

6.1 Necessary Conditions for TSat” (sp, o, s’)

We devise four different conditions that are necessary for
TSat™ (sp, 0, s) to be satisfiable. The conditions essentially
check different parts of TSat™ (sp, 0, s%) in isolation. The
resulting SMT encodings are smaller, and hence cheaper to
reason about.

* Transition test of 7p: TSat”"(sp,0,sp) can only be
satisfied if TSat(sp, 0, s%) is. The SMT encoding of
TSat(sp, 0, s») does not involve the NN.

* Selection test IsSelect™ (sp,l): TSat™ (sp,0,sp) can
only be satisfied if there exists a concrete state s €
[sp] such that w(s) = [, where [is the label of o.
While still involving the NN, IsSelect” (sp,!) does not
include the operator-related constraints. Moreover, once
IsSelect™ (sp, 1) is violated for some [, one can skip the
transition tests TSat™ (sp, 0, s%) for all I-labeled opera-
tors o and predicate states s7, altogether.

* Applicability test iSApp(sp,0): TSat" (sp,0,sp) can
only be satisfied if o is applicable in some concrete state
s € [sp], i.e., s = o. The SMT encoding of this test
is a subset of that of TSat(sp, 0, s%). If isSApp(sp, 0) is
violated, one can directly skip TSat™ (sp, 0, s) for all
predicate states s’.

* Policy-restricted applicability test isApp”(sp,o0):
TSat™ (sp, 0, s%) can only be satisfied if the policy ac-
tually selects the label [of o for some state for which o
is applicable. The SMT encoding of this test is given by
the combination of IsSelect” (sp,) and isApp(sp, 0).

6.2 Continuous Relaxation

Each test involving the NN can be relaxed by interpreting
the integer state variables at the NN input as continuous vari-
ables (with domain R). We notate such continuously-relaxed
tests by an R subscript, e.g., TSatg (sp, 0, s).

The decisive advantage of this relaxation is the applica-
bility of existing SMT solvers dedicated to NN analysis.
Specifically, this allows us to leverage Marabou (Katz et al.
2019), an SMT solver tailored to satisfiability queries over
neural networks. Marabou assumes a neural network with
ReLU activation functions, and conjunctions of linear con-
straints over the NN inputs and outputs. It decides whether
there exists an input/output pair of tuples over R satisfying
these constraints. All our continuously-relaxed tests match
this profile and can thus be tackled by Marabou.

6.3 Fixing Activation Cases

If the continuously relaxed test TSatg(sp,o0,sp) is sat-
isfiable, then we still need to run the exact test
TSat™ (sp, 0, s%). One can, however, even in this case lever-
age TSatg(sp,0,s%) to improve the performance of the
TSat™ (sp, 0, s), namely by fixing some of the “activation
cases” in the neural network. This idea has been deployed

in other contexts before (e.g. (Mohammadi et al. 2020; Katz
et al. 2019)), and here we adopt it in our setting.

The idea for ReLU works as follows: if the activation-
function input x is known to be < 0, then the SMT con-
straints can fix the output z’ to ' = 0; if = is known to be
> 0, the output can be fixed to 2’ = x. The required knowl-
edge here can be derived from reasoning about the relaxed
encoding (e.g. TSatg (sp, 0, s)). Marabou does so by iden-
tifying bounds implied by individual constraints, as well as
reasoning about network topology through symbolic inter-
val propagation (Wang et al. 2018). We use these bounds to
simplify the exact SMT encoding (e.g. TSat" (sp, 0, s)).

6.4 Branch & Bound around Relaxation

Observe that, in the case where a relaxed test (like
TSatg (sp, 0, s5)) is satisfiable, the corresponding exact test
(like TSat™ (sp,0,5%)) is not needed if the solution to the
relaxed test found by Marabou happens to be integer. While
this will typically not be the case, one can iterate calls to
Marabou in a search for such a solution, instead of calling
the exact SMT test.

We realize this approach in terms of a branch & bound
(B&B) search around Marabou. In each iteration, if there
exists a state variable v assigned to a non-integer value « in
the solution returned by Marabou, we pick one such v and
create two search branches, adding v < |a] respectively
v > [a] to the relaxed-test encoding. A branch is terminated
when the encoding is proved to be unsatisfiable, or when an
integer solution is found.

7 Computing the Abstract State Space

Putting the pieces together, we are now ready to explain how
the abstract state space is computed. Specifically, given an
NN policy 7, a set of predicates P, and a safety property
p = (¢o, v), we build the fragment of ©F reachable from
the abstract start states So|p = {sp € Sp | sp = ¢o}.
We do so using a forward search in abstract state space. The
main challenge here is how to effectively implement abstract
state expansion. Algorithm 1 shows pseudo-code.

The main loop of the procedure iteratively processes each
action label. For the ones selected by the policy (lines 2
and 3), it proceeds to the corresponding operators. If an op-
erator is applicable (lines 5 to 7), the enumerate_states
procedure generates the successor predicate states s.

Observe that any predicate state may in principle qual-
ify for s’, — in contrast to explicit-state search, we do not
have a declarative model from which we could read off di-
rectly which states s, may be reached in a single step from
sp. Hence enumerate_states performs backtracking
search in the space of possible s’,. Branches in that search
are cut based on entailment information gleaned from simple
(small) SMT tests. Namely, first, we check in line 8 for each
predicate individually whether a truth value is entailed by
sp along with the operator o. We initialize s> accordingly.
Second, truth value commitments for one predicate may en-
tail truth values for other predicates. We pre-compute such
relations for each predicate individually. During backtrack-
ing, we use this information to propagate truth values, akin

Algorithm 1: Abstract state expansion.
Input: sp € Sp

1 for eachl € L do

// selection tests:

2 if —IsSelecti (sp, 1) then continue

3 if —IsSelect™ (sp,1) then continue

4 for each o € O witho = (g,1,u) do
// applicability tests:

5 if —isApp(sp,0) then continue
6 if —isAppg (sp,0) then continue
7 if —isApp™ (sp,0) then continue
8 s < entailment _by (sp, 0)
9 enumerate_states (s%;)

10 Procedure enumerate_states (sp: P — {0,1}):
1 if dom(s’») = P then
// transition tests:

12 if —=TSat(sp,0,sp) then return

13 if =TSatf (sp,0,s) then return

14 if =TSar™ (sp, 0, s’>) then return

15 add (sp,l,sp) 0 Th

16 else

17 pick some p € P\ dom(sp)

18 let s»(p) =1 in

19 L s + splentailment by (p, 1)]
20 enumerate_states (s%;)

2 let s%(p) =0 in

2 s + splentailment by (p, 0)]
23 L enumerate_states (s%;)

to unit propagation, prior to the recursion (lines 19 and 22).
In the leaves of the search, we run satisfiability tests to check
whether or not a transition is possible (lines 12 to 14).

Throughout Algorithm 1, we apply the various tests from
Section 6 to reduce computational effort in SMT. All tests
except TSat™ (sp, o0, s’) are optional, yet may reduce work.
The algorithm is modular with respect to how the tests are
performed, e.g., whether an off-the-shelf SMT solver or our
branch & bound method is used for TSat™ (sp, 0, s).

The set of abstract start states So|p = {sp € Sp | sp |E
¢o} at the beginning of forward search is computed in a
manner analogous to the enumerate_states procedure.
We always build the entire ©F reachable from those states,
continuing even if we already reached an abstract unsafe
state. This is because reaching an unsafe state just means
that at least one start state sp € So|p is unsafe. We can still
prove other start states safe by continuing the construction.

8 Experiments Design

The setup of our experiments is complex. Our algorithm has
a large number of possible configurations; due to the recency
of research into neural action policy verification, there is no
established competition we can compare against; and there
is no established set of benchmarks. We now address these
points, before reporting our results in the next section.

R-test Exact test
Configuration | (Alg. 1line 13) (Alg. 1 line 14)
Base X 73
Mar+Z3 v 73
Mar+Z3(Mar) v Marabou —7.3
BnB(Mar) v B&B
Mar v X

Table 1: Algorithm configurations evaluated. Base serves as
a baseline, not using any algorithmic enhancements.

8.1 Algorithm Configurations

We evaluate five variants of our ©F construction method,
shown in Table 1. Base is a baseline version, constructing
the reachable fragment of ©F in the most straightforward
fashion based on SMT tests. Mar+Z3 extends this by the
observation that continuous relaxation with Marabou can
be used to avoid costly SMT tests. Mar+Z3(Mar) in addi-
tion leverages the Marabou outcome to fix activation cases
in the Z3 queries. BnB(Mar) instead modifies Mar+Z3 by
using our branch-and-bound on top of Marabou. Finally,
Mar just drops the exact tests altogether, relying completely
on the continuous relaxation and thus computing an over-
approximation of abstract reachability.

The predicate abstraction base tests (Algorithm 1 lines 5
and 12) are enabled throughout as they never hurt. The se-
lection tests (lines 2 and 3) and applicability tests (lines 6
and 7) are disabled throughout. Our evaluation shows that
they can improve performance, and can also deteriorate it
when the benefit of the additional tests does not outweigh
the gain. For space reasons, these results are not discussed
in what follows. They are available in the appendix.

8.2 Competing Approaches

To provide a comparison to alternative verification ideas, we
implemented two competing methods:*

» Explicit enumeration (EE). This constructs the concrete
start states sp = ¢o by querying Z3 in a binary search
over the state variable domains (we experimented with
several methods, and this one worked best). It then
runs the policy from every s in turn, enumerating non-
deterministic transition outcomes. We employ duplicate
checking across all these runs to avoid repeated work.

* Bounded model checking (BMC). This encodes bounded-
length unsafety into satisfiability queries, in a straight-
forward manner loosely inspired by Akintunde et al.
(2018; 2019). We incrementally build SMT queries ask-
ing whether ©™ contains a path of length L from ¢ to
¢u . If the answer is negative, the SMT query is extended
by unrolling the transition function one step further. This
is repeated until either an unsafe path is found, or L ex-
ceeds a fixed upper bound L, 4; -

BMC can only prove safety up to length bound L4y,
and our method is the only one parameterized by abstraction

*Other approaches, such as reachability analysis using star sets
(Tran et al. 2019) or encoding abstract reachability into SMT
(Cavada et al. 2014), would be interesting to try as well but are
challenging to realize in our setting and thus beyond scope.

predicates, so the comparison across approaches needs to be
handled with care. Nevertheless though, EE cannot handle
the state explosion, and BMC cannot handle large L as the
SMT query contains one copy of the NN for every step.

8.3 Benchmarks

The benchmarks required for policy verification include not
only planning tasks, but also trained policies for those. We
trained policies for a collection of domains from the lit-
erature, adapted to include unsafety conditions and non-
deterministic actions. Details are available in the appendix.
In what follows, we give a short summary.

Planning domains. We experimented with variants of the
Racetrack, Blocksworld, and SlidingTiles domains, as well
as a simple transportation domain we will refer to as Trans-
port. We encoded all these domains in the JANT format.

In Racetrack, we use the Barto-small map (Barto,
Bradtke, and Singh 1995). Our safety property has 1000 ran-
domly chosen start states, and a state is unsafe if the car
has crashed into a wall. We use deterministic actions (no
“slippery road”) because otherwise an unsafe state is always
reachable (namely when all actions fail).

In Blocksworld, actions moving a block b may non-
deterministically fail, and when this happens the cost of
moving b (represented by an additional state variable) is in-
cremented. The start condition imposes a partial order on
the blocks in the initial stacks. A state is unsafe if the num-
ber of blocks on the table exceeds a fixed limit. We consider
instances with 6 and 8 blocks.

For SlidingTiles, we use an 8-puzzle instance. Like in
Blocksworld, actions may fail, and if they do then the cost
of moving the respective tile is incremented. The start condi-
tion imposes a partial order on the tile positions, and unsafe
states are specified in terms of a set of unsafe tile positions.

In Transport, a truck must deliver packages on a straight-
line road to the other side of a bridge, and an unsafe state
occurs if the truck is too heavily loaded while crossing the
bridge. The start condition restricts the truck and packages
to be on the “non-goal” side of the bridge.

Policy training often had trouble dealing with large num-
bers of actions (inapplicable actions were often selected).
Hence, in all domains, we leveraged the possibility (men-
tioned in Section 2 and available in JANI) to express state-
dependent effects in terms of sets of operators sharing the
same action label. For example, our actions in SlidingTiles
are simply “left, right, up, down”, avoiding the enumeration
of tile/position combinations at the level of actions.

Trained policies. For every considered domain instance,
we used deep Q-learning (Mnih et al. 2015) to train three
feed-forward NN policies of different sizes. The number of
hidden layers is fixed to 2 for each policy, the number of neu-
rons per layer is 16, 32, and 64 respectively. The rewards for
the training are positive on goal states and negative on unsafe
ones. In some cases, we used mild reward shaping (giving
positive rewards already for achieving individual goal facts)
to achieve more effective training.

In Blocksworld and SlidingTiles, we distinguish policies
that do vs. do not take move costs into account. While

the former is more natural, it sometimes makes verification
infeasible. Hence we show results for cost-aware policies
where feasible, and for cost-ignoring policies elsewhere.

The policies are mostly safe (as our verification results
show). The policies mostly select applicable actions, so that
the number of reachable states under non-determinism is too
large to enumerate (as our results for EE show).

Abstraction predicates used in our experiments. We do
not automate the selection of abstraction predicates yet, in-
stead providing these as input and scaling them as an impor-
tant algorithm parameter in our experiments.

We consider predicates of the form v > ¢, comparing
a state variable v € V to a threshold value ¢ € D,. We
scale P by gradually adding predicates until, in the maxi-
mal predicate set, all variable values can be distinguished
(and hence the abstraction ©F equals the policy-restricted
state space ©™). We mildly adapt this scheme to each do-
main. In Racetrack, we refine all state variables simultane-
ously, adding more predicates for every v in each step. In
Blocksworld and SlidingTiles, we refine the move-cost vari-
ables last, which makes sense as these are least important to
safety. In Transport, we first completely refine the truck lo-
cation, then add predicates for the other variables (package
locations, truck load) individually, as verification becomes
very hard when adding the latter. For each v, the sequence
of predicates follows a binary search pattern, iteratively cut-
ting intervals between neighboring threshold values in half.

9 Experiments Results

We have implemented our approach on top of a C++ code
base for automata networks modeled in JANI (Budde et al.
2017). We use Marabou to solve the continuously-relaxed
NN-SAT tests and we use Z3 for all other SMT queries.
All experiments were run on machines with Intel Xenon ES5-
2650 processors with a clock rate of 2.2 GHz, with time and
memory limits of 12 h and 4 GB respectively.
Our evaluation in what follows addresses four questions:

1. What are the sources of complexity in policy predicate
abstraction (PPA), compared to standard predicate ab-
straction (PA) ignoring the policy?

2. How do the PPA algorithm variants from Table 1 com-
pare? In particular, to what extent do our enhancements
improve performance?

3. Which safety properties does PPA manage to prove in our
benchmark collection?

4. How does PPA fare compared to the competing policy
verification approaches?

Figure 1 shows the data for all these discussions (data for
competing approaches is given below in Section 9.4).

9.1 Sources of Complexity

In PA, the dominating source of complexity is the state-
space explosion, which leads to (1) exponential growth of
the abstract state space as a function of |P|. When com-
puting reachability from a start condition ¢y as we do here
(as opposed to building the entire abstract state space), this
can be counter-balanced by (2) the gain in precision as |P)|

(a) racetrack (b) 6 blocks (cost-aware) (c) 8 blocks (cost-ignoring)

10* 5 10+ 4 e %
- ; : fimd
2 10 4 i
a : 10% R
2] LN
1073 N
T 1T 1T 17T 17T 17T 17T 1T T T TT IIIII’I‘IIIIIIII 17T 17T T T T TTT1TT1TTT
0.04 0.35 0.7 1.0 0.12 04 06 08 0.13 0.38 0.56 0.78
(d) 8 puzzle (cost-ignoring) (e) 8 puzzle (cost-aware) (f) transport
0 FEE /?] /»\:]
10 5 /5 on «Sﬁ L 10* - o 1
R Vaslh- § 3 * 104 4
o 3 ° /\/A \ 3 1 E
S 10° 5 /\ 10 3
£ 1 4]]
= 1 4
2 2
10 ;)/ 10 § ¥ 103 E
10! 3 10! 3]
T T T T T T T T T TT T T T T T T T T T TT TrTTTTTTTTTTTTTTTTT
0.08 0.34 053 0.77 0.08 0.34 0.53 0.77 0.08 0.1 0.12 0.15 0.18
Base NN 16 Mar+Z3 NN 16 -+- Mar+Z3(Mar) NN 16 BnB(Mar) NN 16 - Mar NN 16 —+ PA
> Base NN 32 Mar+Z3 NN 32 -&- Mar+Z3(Mar) NN 32 BnB(Mar) NN 32 —— Mar NN 32
< Base NN 64 Mar+Z3 NN 64 -B-- Mar+Z3(Mar) NN 64 -+ BnB(Mar) NN 64 -4 Mar NN 64
(g) racetrack (h) 6 blocks (cost-aware) (i) 8 puzzle (cost-ignoring)
106 4
P 104 4" 10* 4
5]
£
2 ;
2 2
! , 10 1024
o : 5 v N
T 1T 1T 17T 17T 17T 17T 1T T T TT T T T T TTTTTTTTT T T T T 17T T1TT1TT17TTT
0.04 0.35 0.7 1.0 0.12 04 06 08 0.08 0.34 0.53 0.77
PPANN 16 —+ PA NN 16 #Abstract Start States proved safe
PPA NN 32 -+ #Abstract Start States NN 32 #Abstract Start States proved safe
-+ PPA NN 64 V- NN 64 #Abstract Start States proved safe

Figure 1: (a) — (f): runtime for policy predicate abstraction variants (cf. Table 1) and standard predicate abstraction (PA). (g) —
(i): abstract state space size, number of abstract start states, and number of abstract start states proved safe (using BnB(Mary)).
x-axes range over abstraction predicate sets P and show % of maximal |P|. Timed-out runs are omitted from the plots.

grows, pruning spurious reachability. In PPA, we addition-
ally have (3) the new source of complexity in NN analysis,
i.e., complex SMT calls; and (4) the new gain in reachabil-
ity reduction from fixing the policy together with ¢.

Figure 1 nicely shows the interplay between these aspects.
Consider first Racetrack, plots (a) and (g). In (g), we see the
impact of (1) in the growth of the PA curve (note the loga-
rithmic y-scale), and we see the impact of (4) in the reduc-
tion of abstract state space size for large predicate sets. In
(a), focusing only on the most effective PPA variants Mar
and BnB(Mar) for now, we additionally see the effect of (3),
causing PPA to be more costly than PA up to mid-size pred-
icate sets; and then the effect of (4), causing PPA to be less
costly than PA for larger predicate sets. Note here that (4)
can outweigh (3) — the verification of neural action policies
can be more effective than classical verification!

Of course this observation is specific to our context, in
particular the small size of the neural networks involved.
But similar phenomena occur across our benchmarks. In
Blocksworld, plots (b) (c) (h), the observations are exactly as
above, except that now the reduction in abstract state space
size happens near the middle of the predicate-set-size scale
already; and that (2) kicks in for PA, leading to a temporary
improvement in PA runtime. The sweetspot in abstraction
complexity (0.4 in (b), 0.56 in (c)) is exactly that where all
non-cost-predicates have been added, i.e., where costs are
abstracted away but everything else is captured precisely.
The observations in SlidingTiles, plots (d) (e) (i), are iden-
tical except that there is no benefit of kind (2) for PA. In
Transport (f), PPA is exceedingly costly on small predicate
sets due to (3). Indeed, we found (3) to typically be more
problematic for small P, as the SMT queries are then done
for larger NN input regions. For larger P, this effect gradu-
ally diminishes, and the gap between PA and PPA closes as,
thanks to (4), PPA suffers much less from (1) than PA does.

9.2 PPA Algorithm Enhancements

Consider now the comparison across PPA variants as per
Table 1. The baseline Base clearly is hopeless. There are
only a few points in our benchmark space where it man-
ages to construct the abstract state space. Adding contin-
uous relaxation and Marabou in Mar+Z3 much improves
this, but still is quite ineffective. The activation-case fixing
in Mar+Z3(Mar) can yield substantial improvements (see
e.g. Racetrack in Figure 1 (a)). But the key to scalability
is to get rid of the generic SMT solver Z3 for queries in-
volving the NN, and instead rely on Marabou completely,
which still allows to compute the policy predicate abstrac-
tion exactly thanks to our branch-and-bound approach in
BnB(Mar). The latter is only mildly less effective than the
over-approximating variant Mar which uses continuous re-
laxation without branch-and-bound.

9.3 Safety Proved

Figure 1 (g) — (i) shows data on the number of abstract start
states proved safe. In Racetrack, nothing is proved safe un-
til all predicates are added and hence the abstraction is not
abstract anymore. In Blocksworld however, all abstract start
states — and hence the overall policy behavior — are proved

min min max

U checked
Benchmark \ NN 16]32|64 16]32|64 16]32|64
Racetrack 3]3]3 36.9]40.1]316.5 12|11|7
6 Blocks (cost-awa) - - 6|54
8 Blocks (cost-ign) - - 55|14
8-puzzle (cost-ign) 2|-]- 72.8| - - 71310
8-puzzle (cost-awa) - - 3]3]0
Transport 1] - 57.0|20548.0] - 2|110

Table 2: Results for BMC: length LI™ of shortest un-
safe path is one is found; runtime t‘[}‘i“ to find that path
in seconds; maximal path length L72%, . checked at time-
out; distinguishing cost-aware policies (cost-awa) and cost-
ignoring policies (cost-ign) where applicable.

safe once all non-cost-predicates are in. In SlidingTiles, this
is the case for 4839 of 4900 abstract start states, many of
which are proved safe already with smaller predicate sets.

9.4 Competing Approaches

Let us finally discuss the competing approaches, explicit
enumeration (EE) and bounded model-checking (BMC).
Data for these is not included in Figure 1 as they achieve
very little on our benchmarks.

EE easily verifies the policies in the Racetrack task (less
than a second for each policy), as the state space there is
small. However, EE exhausts our 4GB memory limit on all
other problem instances.

Table 2 shows the data for BMC. This approach is effec-
tive in finding short unsafe paths if these exist. Yet it is use-
less otherwise. As the L;2%, . data shows, except in Race-
track where the state space is small, BMC is unable to reach
substantial path lengths.’

10 Related Work

There has been remarkable progress on analyzing individ-
ual NN decision episodes. Katz et al. (2017; 2019) combine
the Simplex algorithm with a lazy case splitting approach
to handle piecewise-linear activation functions. Huang et
al. (2017) perform robustness verification via calls to SMT.
Gehr et al. (2018) propagate abstract domains trough the net-
work to obtain an over-approximation of the NN output. Li
et al. (2019) improve precision trough symbolic propaga-
tion.

The verification of NN decision sequences is still in its
early stages. Gros et al. (2020) explore the use of statistical
model checking, but this approach is limited to small num-
bers of start states as these need to be explicitly enumerated.
For software verification, there is initial work on abstract
interpretation of programs involving NN sub-procedures
(Christakis et al. 2021).

We explore NN policies 7 with discrete action choices in
sequential decision making. Complementary to our work, a
prominent research line research addresses neural network

>To assess this in the cases where a short unsafe path exists, we
keep running BMC after that happens.

controlled systems (NNCS), where the NN outputs a vec-
tor u of reals forming input to a continuous state-evolution
function f. Tran et al. (2019) use star sets to exactly compute
respectively over-approximate reachable sets of an NNCS.
While they focus on linear f, the approach can be ex-
tended to non-linear f plugging-in existing system reach-
ability methods. Sun et al. (2019) consider linear NNCS.
Similarly to our approach, they perform abstract reachability
analysis and leverage SMT to compute the abstraction. How-
ever, their approach is specific to an (NNCS) autonomous
car setting. Dutta et al. (2019) as well as Huang et al. (2019)
consider Lipschitz continuous f and locally approximate the
NN controller. While Dutta et al. use polynomial regression,
Huang et al. leverage Bernstein polynomials. The NN ap-
proximation is then integrated into existing techniques to
over-approximate the reachable set of the NNCS.

Recent work extends this thread to general hybrid sys-
tems, addressing smooth (tanh/sigmoid) activation functions
by compilation into such systems (Ivanov et al. 2021).°
Specifically, they approximate activation functions trough
(analytically derived) Taylor models; improving from the
compilation approach of Verisig (Ivanov et al. 2019), which
integrates activation function “dynamics” directly. The com-
position of the NN controller compilation and the NN con-
trolled system can then be checked using existing hybrid
system verification techniques.

In a context closer to Al sequential decision making, but
still considering (linear) NNCS the use of MIP encodings for
bounded-length verification has been explored (Akintunde
et al. 2018). Additionally, they also propose a fixed-point
formulation towards unbounded-length verification. Follow-
up work (Akintunde et al. 2019) adapts the approach to re-
current neural networks and a simplified version of linear
temporal logic on bounded executions.

11 Conclusion

The verification of neural network behavior becomes more
and more important. We have introduced policy predicate
abstraction as a new method in the so-far scant arsenal to
address such verification, and we have shown that it can
be feasible and can outperform other methods. Interestingly,
thanks to the reduced reachability when fixing both a start
condition and a policy, it can even be more effective than
standard predicate abstraction ignoring the policy.

A next step has to be the automatic derivation of abstrac-
tion predicates, canonically via counter example guided ab-
straction refinement (e.g. (Clarke et al. 2000)), which will
need to be extended to distinguish states based on NN behav-
ior. There are many opportunities to speed up our approach:
the use of other NN analysis approaches; adversarial attacks
to prove satisfiability of TSat™ (sp, 0, s%); lazy abstraction
refining the predicate set locally; and parallelization of SMT
test variants and the entire abstract state-space construction.
It may be interesting to look at possible connections to XAIP
(see (Chakraborti et al. 2019) for an overview).

SThe authors propose an extension to piecewise-linear activa-
tion functions via smooth approximation as possible future work.

Acknowledgments

This work was funded by DFG Grant 389792660 as part of
TRR 248 — CPEC (https://perspicuous-computing.science).

References

Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability Analysis for Neural Agent-Environment
Systems. In 16th International Conference on Principles
of Knowledge Representation and Reasoning (KR’18), 184—
193. AAAI Press.

Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and
Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019,
6006-6013. AAAI Press.

Ball, T.; Majumdar, R.; Millstein, T. D.; and Rajamani,
S. K. 2001. Automatic Predicate Abstraction of C Pro-
grams. In Proceedings of the 2001 ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-

tation (PLDI’01), 203-213.

Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
1994. Satisfiability modulo theories. In Handbook of Satis-
fiability, 825-885.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to Act Using Real-Time Dynamic Programming. Artif.
Intell., 72(1-2): 81-138.

Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns, A.;
Junges, S.; and Turrini, A. 2017. JANI: Quantitative Model
and Tool Interaction. In TACAS (2), LNCS 10206, 151-168.

Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti,
A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta, S. 2014.
The nuXmv Symbolic Model Checker. In Biere, A.; and
Bloem, R, eds., 26th International Conference on Computer
Aided Verification (CAV’14), 334-342.

Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? Legibility? Pre-
dictability? Transparency? Privacy? Security? The Emerg-
ing Landscape of Interpretable Agent Behavior. In Pro-
ceedings of the 29th International Conference on Automated
Planning and Scheduling (ICAPS’19).

Christakis, M.; Eniser, H. F.; Hermanns, H.; Hoffmann, J.;
Kothari, Y.; Li, J.; Navas, J.; and Wiistholz, V. 2021. Au-
tomated Safety Verification of Programs Invoking Neural

Networks. In 33rd International Conference on Computer-
Aided Verification (CAV’21).

Cimatti, A.; Dubrovin, J.; Junttila, T. A.; and Roveri, M.
2009. Structure-aware computation of predicate abstrac-
tion. In 9th International Conference on Formal Methods
in Computer-Aided Design (FMCAD’09), 9-16.

Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-Guided Abstraction Refinement. In

Emerson, E. A.; and Sistla, A. P., eds., Computer Aided Veri-
fication, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, volume 1855 of
Lecture Notes in Computer Science, 154—169. Springer.

de Moura, L.; and Bjgrner, N. 2008. Z3: An Efficient SMT
Solver. In Ramakrishnan, C.; and Rehof, J., eds., Tools and
Algorithms for the Construction and Analysis of Systems.
TACAS 2008, LNCS 4963. Berlin, Heidelberg: Springer.

Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In Proceedings of the 22nd Inter-
national Conference on Hybrid Systems: Computation and

Control (HSCC’19), 157-168.

Edelkamp, S. 2001. Planning with Pattern Databases. In
Proceedings of the 6th European Conference on Planning
(ECP’01), 13-24.

Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Benton, J.; Lipovet-
zky, N.; Onaindia, E.; Smith, D. E.; and Srivastava, S.,
eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2019,
Berkeley, CA, USA, July 11-15, 2019, 631-636. AAAI Press.

Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. T. 2018. AI2: Safety and
Robustness Certification of Neural Networks with Abstract
Interpretation. In 2018 IEEE Symposium on Security and
Privacy, SP 2018, Proceedings, 21-23 May 2018, San Fran-
cisco, California, USA, 3-18. IEEE Computer Society.

Graf, S.; and Saidi, H. 1997. Construction of Abstract State
Graphs with PVS. In 9th International Conference on Com-
puter Aided Verification (CAV), 72-83.

Gros, T. P.; Hermanns, H.; Hoffmann, J.; Klauck, M.; and
Steinmetz, M. 2020. Deep Statistical Model Checking. In
Proceedings of the 40th International Conference on For-
mal Techniques for Distributed Objects, Components, and
Systems (FORTE’20).

Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Poli-
cies Using Deep Neural Networks. In Proceedings of the
28th International Conference on Automated Planning and
Scheduling (ICAPS’18), 408-416.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & Shrink Abstraction: A Method for Generat-
ing Lower Bounds in Factored State Spaces. Journal of the
Association for Computing Machinery, 61(3): 16:1-16:63.

Henzinger, T. A.; Jhala, R.; Majumdar, R.; and McMillan,
K. L. 2004. Abstractions from proofs. In Jones, N. D.; and
Leroy, X., eds., Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2004, Venice, Italy, January 14-16, 2004,
232-244. ACM.

Huang, S.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability analysis of neural-network con-
trolled systems. ACM Transactions on Embedded Comput-
ing Systems, 18: 1-22.

Huang, X.; Kwiatkowska, M.; Wang, S.; and Wu, M. 2017.
Safety Verification of Deep Neural Networks. In Majum-
dar, R.; and Kuncak, V., eds., Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Ger-
many, July 24-28, 2017, Proceedings, Part I, volume 10426
of Lecture Notes in Computer Science, 3—29. Springer.

Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In de Weerdt, M.; Koenig, S.; Roger, G.; and Spaan, M. T. J.,
eds., Proceedings of the 28th International Conference on
Automated Planning and Scheduling (ICAPS), 422-430.

Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G.J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Transac-
tions on Embedded Computing Systems, 20(1): 7:1-7:26.

Ivanov, R.; Weimer, J.; Alur, R.; Pappas, G. J.; and Lee, L.
2019. Verisig: verifying safety properties of hybrid systems
with neural network controllers. In Ozay, N.; and Prabhakar,
P, eds., Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, April 16-18, 2019, 169-178.
ACM.

Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In CAV (1), LNCS 10426,
97-117.

Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P; Thakoor, S.; Wu, H.; Zeljic, A.;
Dill, D. L.; Kochenderfer, M.; and Barrett, C. 2019. The
Marabou Framework for Verification and Analysis of Deep
Neural Networks. In Dillig, I.; and Tasiran, S., eds., Com-
puter Aided Verification. CAV 2019, LNCS 11561. Cham:
Springer.

Li, J.; Liu, J.; Yang, P;; Chen, L.; Huang, X.; and Zhang,
L. 2019. Analyzing deep neural networks with symbolic
propagation: Towards higher precision and faster verifica-
tion. In Chang, B.-Y. E., ed., Static Analysis — 26th Interna-
tional Symposium, SAS 2019, LNCS 11822, 296-319. Porto,
Portugal: Springer.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518: 529-533.

Mohammadi, K.; Karimi, A.; Barthe, G.; and Valera, I
2020. Scaling Guarantees for Nearest Counterfactual Ex-
planations. CoRR, abs/2010.04965.

Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535-577.

Sun, X.; Khedr, H.; and Shoukry, Y. 2019. Formal Verifi-
cation of Neural Network Controlled Autonomous Systems.
In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2019,
Montreal, QC, Canada, April 16-18, 2019, 147-156. ACM.

Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. Journal
of Artificial Intelligence Research, 68: 1-68.

Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, T. T;
and Koutsoukos, X. D. 2019. Safety Verification of Cyber-
Physical Systems with Reinforcement Learning Control.
ACM Trans. Embed. Comput. Syst., 18(5s): 105:1-105:22.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018. Formal Security Analysis of Neural Networks using
Symbolic Intervals. In Enck, W.; and Felt, A. P, eds., 27th
USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018, 1599-1614. USENIX
Association.

A Networks of Automata

In this section, we attach a detailed formalization of the au-
tomata networks underlying our generic state space descrip-
tion (V, £, O). In our implementation, this corresponds to a
fragment of JANT (Budde et al. 2017).

Definition 8 (Network of Automata). A network of au-
tomata is a tuple (V, £, A, A), where V is a finite set of
integer state variables, £ is a finite set of labels (excluding
the silent label 7 ¢ £), A is a finite set of automata over V
and £, and, A C (A - £) x L is a finite set of synchro-
nization constraints.

An automaton a over V and L is a tuple (L, E), where L
is a non-empty finite set of locations, and E is a finite set of
edges of a.

An edge e of a is a tuple (I, g,l,u,l;) € E with

e source location I, € L,

e guard g € C (over V),

e label [€ L for labeled edges or [= 7 for silent edges,
e (partial) update u: V — Fzxp (over V), and

e destination location I; € L.

We also write L(a) respectively E(a) to explicitly denote the
set of locations respectively edges of automaton a.

Intuitively, in an automata network, a single automaton
consists of a set of locations connected by edges. Each edge
links a source location to a destination location. An edge
can be taken, i.e., the automaton can transit from source to
destination, only if its guard evaluates to true over the cur-
rent state variable assignment. If an edge is taken, the state
variables are updated according to the edge’s update evalu-
ated over the current state variable assignment.

While silent edges can be taken independently, labeled
edges can only be taken as part of a synchronization. Here,
a synchronization constraint specifies for each automaton —
from a subset of participating automata — an action label.
Additionally, it specifies the label of the synchronization.
Under this label, the participating automata may synchro-
nize taking edges whose label combination agrees with the
synchronization constraint. Note that this synchronization
mechanism is flexible in the sense that it can mimic many
existing synchronization styles (Budde et al. 2017).

The generic state space description (V, £, O) of an au-
tomata network (V, £, A, A) is obtained as follows:

*V =VU{uipa | @ € A}, where vy, 5 is the location
variable of automaton a with D, =L(a).’

Vloc,a

» O contains an operator

- ((UZOC,a =l g, U[{Uloc,a = lq}])
for each silent edge (I, g, 7, u,lq) € E(a)
in each automaton a € A.
- (gv l7 ’IL)
for each synchronization constraint (A, 1) € A
and each combination of edges e; € E(ay),...,e, €
E(a,,) such that
dom(\) = {a1,...,an},
e; = (1Y, g% May), u', 1) fori € {1,...,n},
and with ' 4
9= A?:l(vlloaai =IgA gl),
u= Uiy v [Vioc,a; = 1.

Note that we do not explicitly reflect silent edges in the
main text. Silent edges usually model the environment of an
agent. In other words, they can be taken independent of the
policy 7: & — L which controls the agent.

B Feed-Forward NN Action Policies

In the following, we provide a formalization of the feed-
forward NN action policies, that we consider.

Definition 9 (NN Action Policy). Let © = (S, L, T) be the
state space induced by (V, £,). An NN action policy for
O is a function

m: 8= L,s— fo(fal--. f2(f1(5))))s

where d denotes the number of layers in the NN, d; for ¢ €

{1,..., d} denotes the size of layer i, and
© f1: 8 = RU s (s(vl),...,s(vd))
is the input interface, where v € Vforj € {1,...,d;}

denotes the state variable associated with input neuron j.
. fi: R%-1 — Rdi, V= RBLU(WZ -V + Bi),

fori € {2,...,d — 1}, is the forwarding function in-
duced by hidden layer i. W; € Q% *%-1 is the rational
weight matrix, i.e., (W), » denotes the weight of the out-
put of neuron k in layer ¢ — 1 to the linear combination of
neuron j in layer i. B; € Q% is the rational bias vector,
i.e., (B;); denotes the bias of neuron j in layer 3.

o fg:R%-1 5 R% V — W,V 4+ Byisthe forwarding
function induced by output layer d.

argmaz g, V),

s forRY = LV = Iy ’ is the output in-
terface, where I2 € L for j € {1,..., dy} denotes the
action label associated with output neuron j.

In the definition above, the forwarding functions (f; for
i € {2,...,d}) correspond to the underlying NN structure,
which forwards real-valued vectors from the input to the out-
put layer. ReLLU is applied to the output of the hidden layers.
The neurons in the output layer directly output their linear
combination.

"Here, we silently interpret L(a) as bounded integer interval. In
our experiments, automata locations are represented exactly at all
time.

Each input neuron j € {1,...,d;} is associated with a
state variable vJ. The input interface maps the current state
variable assignment to an input vector accordingly.

Each output neuron j € {1, ..., dy} is associated with an
action label I7. The output interface selects an action label
according to argmazx over the neuron output values.

C SMT-Encodings

In the following, we outline the SMT encoding of the satis-
fiability tests introduced in the main text.

TSat(sp,0,5%). In the SMT-encodings of the standard
transition test TSat(sp, 0, s>) each state variable v € V,
occurs in an unprimed form; representing the state variable
in the source state. Additionally, each updated state variable
v € dom(u) occurs in a primed form v’; representing the up-
dated state variable in the successor state. The non-updated
variables in the successor state are represented by their un-
primed form.

TSat(sp, 0, s%) (with o = (g,l,u)) is then encoded by
the conjunction of the constraints:

(1) loy, <wvandv < up,

foreachv € V and D, = {lo,,...,up,},
i.e., lo, denotes the lower bound and up, denotes the
upper bound of state variable v.

(ii) lo, < v and v’ < up,
for each v € dom(u) and D, = {loy, ..., up,}.

(iii) pif sp(p) = 1, respectively
—pif sp(p) =0,
for each p in P.

(iv) p'if s%(p) = 1, respectively
—p'if sp(p) = 0,
for each p in P; where p’ denotes the predicate in
its primed form, i.e., with the updated state variables
dom(u) in their primed form.

™) 9
(vi) v' = u(v) for each v € dom(u).

(i, ii) constrain the variables to respect the corresponding
state variable domains, such that any satisfying assignment
to the SMT encoding corresponds to a valid state pair s, s’.
(iii, iv) then f.:ncode s € [sp] and s € [s]. (V) encodes
s = o, and (vi) encodes s' = s[o].

TSat" (sp,0,sp). The SMT-encoding of the policy-
restricted transition test TSat™ (sp, 0, s%) extends the en-
coding of the standard transition by additional constraints
to check the policy condition 7(s) = I. To encode the neural
network structure we introduce real-valued auxiliaries vari-
ables:

{vii|ie{2,...,d—1},je{1,...,d}}

{vi,j |Z€ {1,,d},j € {1,,d1}}
corresponding to neuron inputs and outputs respectively.
More precisely, the latter correspond to the neuron output;
the former correspond to the linear combination of the neu-
ron inputs prior to the application of ReLU (for hidden layer
neurons).

and

TSat™ (sp, 0, s%) (with 0o = (g,,u)) is then encoded by
the conjunction of the constraints:

(a) Constraints (1) — (vi).
(b) v; = vl foreachj € {1,...,d},

o di—1
(© v = > (Wi)jk - vic1k+ (Bi); and
k=1
v;,; = if-then-else(vS > 0, v"7,0)
for each hidden layer i € {2,...,d — 1} and each neu-
ronj € {1,...,d;},

dq_1
d) va; = > (Wa)jk-va—1,k~+(Ba); for the output layer
k=1
d and each neuron j € {1,...,d4},
(€) vq; > v where j € {1,...,dg} suchthat! =J and

foreach k € {1,...,ds} \ {j}.

m(s) = lis encoded by (b —e); with (b) encoding the input
interface, (c — d) encoding the NN forwarding structure, and
(e) encoding the output interface.

It remains to mention that the presented encoding focuses
on our queries to the general purpose solver Z3. In particu-
lar, while in Z3 we encode ReL.U via if-then-else, Marabou
provides a specialized construct for ReL.U constraints.

Selection & Applicability tests. The remaining selection
and applicability tests are encoded by substructures of the
encoding of TSat”™ (sp, 0,) .

* Selection test IsSelect” (sp, 1):
conjunction of constraints (i), (iii) and (b) — (e).

* Applicability test isApp(sp, 0):
conjunction of constraints (i) — (V).

* Policy-restricted applicability test isApp™ (sp, 0):
conjunction of constraints (i) — (v) and (b) — (e).

The continuously-relaxed selection and applicability test
(IsSelectg (sp,!) and isAppg(sp,0)) — as well as the
continuously-relaxed transition test TSatg (sp, 0, s%) — are
encoded as their respective exact counterparts; the only dif-
ference being that the (primed and unprimed) occurrences of
the state variables) are relaxed to be real-valued.

D Experiments Design: Details on
Benchmarks

Model Encodings For Racetrack, we adapt an existing
JANI encoding (Gros et al. 2020). The encoding is simpli-
fied in the sense that wall collision is checked only at the
end coordinate of each move, instead of the entire trajectory
(the latter is possible in JANI but the model becomes quite
complex).

For Blocksworld, our encoding involves an action label
for each block as well as the table. The semantics are as fol-
lows: If an block b is in hand, then the label of block b5, cor-
responds to stacking by on bs. The table label corresponds to
putting b, on the table. If the hand is empty, the action label
for block b corresponds to picking up, respectively unstack-
ing, b. Labels are not applicable in every state, e.g., if a block
is stacked on top of the block moved by the label. For each
action label, there are several operators corresponding to the

semantics described above. For instance, for label b; there is
for each block by # by an by -labeled operator stacking by on
b1 and an b;-labeled operator unstacking b; from b,. Addi-
tionally, there is an b;-labeled operator picking up b; from
the table.

There is for each block a state variable encoding its posi-
tion as well as a flag indicating whether the block is clear.
There is also a flag indicating whether the hand is empty.
Finally, there is a state variable counting the blocks on the
table.

For SlidingTiles, the encoding involves an action label for
each move position: “left, right, up, down”; corresponding to
moving the respective tile next to the empty position. There
is a respectively labeled operator for each tile and move di-
rection. The position of each tile as well as the empty posi-
tion are encoded as state variables.

Towards non-deterministic action failing in Blocksworld
and SlidingTiles, for each operator o there is an additional
operator that corresponds to o failing, with the move cost (of
the block respectively the tile intended to be moved) being
incremented.

The encoding of our “straight-line” Transport domain in-
volves four action labels: “drive forward, drive backward,
pick up and drop”. There is a respectively labeled operator,
for each pair of connected locations and drive direction; as
well as for each location and pick-up/drop action, The truck
position, and truck load, as well as the number of packages
at each location are encoded as state variables. The instance
that we consider involves 10 locations and 15 packages.

Safety Properties On Racetrack, the car must not crash
into a wall, starting from 1000 randomly selected states. On
Blocksworld and SlidingTiles the start states are constrained
by a partial order on the blocks respectively the tiles.

On Blocksworld, the blocks are indexed. Initially blocks
may only be positioned on top of blocks with a larger index
(or on the table). Additionally, the start states must not sat-
isfy the unsafety condition, i.e., the number of blocks on the
table must not exceed a fixed limit. This limit is #blocks — 1
on all considered instances. The resulting number of start
states (compactly described) is 202 for 6 Blocks, and 4139
for 8 Blocks.

On SlidingTiles, the tiles as well as the positions are in-
dexed. Initially, the set of tiles is partitioned. Within each
partition, the position index of tiles with a smaller index
must be smaller than the one of tiles with a larger index.
Additionally, the start states must not satisfy the unsafety
condition, i.e., some tiles may not be placed on certain po-
sitions. On 8-puzzle, one randomly selected tile may not be
placed on one randomly selected position. The tiles are par-
titioned into 3, resulting in two partitions of size 3 and one
partition of size 2. The resulting number of start states (com-
pactly described) is 4900.

On our Transport domain there is a “bridge” between
the “rightmost” end-point location and its neighbor. Safety
is violated if the truck crosses the bridge exceeding a limit
on its package load. This limit is 1 on the instance that we
consider. At start, the truck as well as the packages are re-
stricted to be “left-off” the bridge (allowing packages to be

Configuration R-test Exact test
Alg. 1 line (21613) 3|7|14)
No-Sel-No-App x| x|V NE
No-Sel-Rel-App ars x| x|V
Rel-Sel-No-App | v |x|V x| X |V
Rel-Sel-Rel-App | V|V |V NE
Ex-Sel-Ex-App VIVIV VIVIV

Table 2: Algorithm configurations with selection and policy-
constrained applicability tests enabled (using branch-and-
bound for exact tests) . The base configuration No-Sel-No-
App corresponds to BnB(Mar), i.e., the best-performing ex-
act method of the evaluation in the main text (cf. Table 1 and
Figure 1). All other configurations apply at least one selec-
tion or applicability test additionally.

loaded already); resulting in more than 11.7 - 10° start states
on the instance that we consider.

E Experiments Results: Selection &
Applicability Tests

In Figure 2, we provide results for the comparison of config-
urations applying vs. not applying selection and applicabil-
ity tests. The configurations are specified in Table 2. We use
branch-and-bound for exact tests, and the base configura-
tion (No-Sel-No-App) is the best-performing exact method
BnB(Mar) (cf. Table 1 and Figure 1).

As mentioned in the main text, the additional selection
and applicability tests can improve performance, but they
may also deteriorate it. Overall, the additional tests (es-
pecially the continuously-relaxed applicability test applied
by No-Sel-Rel-App) may improve performance for larger
predicate sets, and thus finer abstractions; see, e.g., the re-
sults for No-Sel-No-App vs. No-Sel-Rel-App in Figure 2
(b) and (c). For smaller predicate sets P, and thus coarser ab-
stractions; the additional tests usually decrease performance;
see, e.g., the results for No-Sel-No-App vs. the other con-
figurations in Figure 2 (d) and (f). For coarse P, policy-
constrained tests are more costly. Thus, the state expansion
pruning due to unsatisfied selection/applicability tests does
not outweigh the increased computational effort.

(a) racetrack (b) 6 blocks (cost-aware) (c) 8 blocks (cost-ignoring)

104 4 1
E 10% 5
. E 10* 5
=] E
é 103 3 103 3
= E
1 1 103
10% o % 102 4]
T T T T T T T T T T TT rT T T TTTTTTTTTT T T 1T
0.04 0.35 0.7 1.0 0.12 04 06 0.8 0.13 0.38
(d) 8 puzzle (cost-ignoring) (e) 8 puzzle (cost-aware) (f) transport
E 0 @
] = 4% 10*1 ¥ o
4 - C 4 |
1 77 ety
= 1 3% 10* 1
2 10° - | o
E 10 103 . /K
i ./ E 4 | ’
102 14 2x10
102 4%
-IIIIIIIIIIII -IIIIIIIIIIII TTTTTTTTTTTTTTTTTT
0.08 034 053 0.77 0.08 034 053 0.77 0.08 0.1 0.12 0.15 0.18

No-Sel-No-App NN 16 - No-Sel-Rel-App NN 16 -+ Rel-Sel-No-App NN 16 Rel-Sel-Rel-App NN 16 Ex-Sel-Ex-App NN 16
No-Sel-No-App NN 32 —— No-Sel-Rel-App NN 32 -©- Rel-Sel-No-App NN 32 Rel-Sel-Rel-App NN 32 » Ex-Sel-Ex-App NN 32
-7 No-Sel-No-App NN 64 -4 No-Sel-Rel-App NN 64 & Rel-Sel-No-App NN 64 Rel-Sel-Rel-App NN 64 < Ex-Sel-Ex-App NN 64

Figure 2: Runtime for policy predicate abstraction variants using selection & applicability tests (cf. Table 2). x-axes range over
abstraction predicate sets P and show % of maximal |P|. Timed-out runs are omitted from the plots. The results for Racetrack
(a) include only a subset of the configurations (No-Sel-No-App, No-Sel-Rel-App, Ex-Sel-Ex-App). Here, each action label
[corresponds to a single non-guarded operator o, and thus selection and applicability tests coincide (i.e., Ex-Sel-Ex-App will
skip selection tests).

