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Abstract

In penetration testing (pentesting), network administrators
attack their own network to identify and fix vulnerabili-
ties. Planning-based simulated pentesting can achieve much
higher testing coverage than manual pentesting. A key chal-
lenge is for the attack planning to imitate human hackers as
faithfully as possible. POMDP models have been proposed
to this end, yet they are computationally very hard, and it is
unclear how to acquire the models in practice. At the other
extreme, classical planning models are scalable and simple
to obtain, yet completely ignore the incomplete knowledge
characteristic of hacking. We propose contingent planning as
a new middle ground, feasible in both computation burden
and model acquisition effort while allowing for a represen-
tation of incomplete knowledge. We design the model, show
how to adapt available solvers, and show how to acquire the
model from real network scans in practice. We experiment on
real networks and show that our approach scales to practical
input sizes.

1 Introduction

Penetration testing (pentesting) identifies vulnerabilities in
networks, by launching controlled attacks (Burns et al.
2007). A successful attack reveals weaknesses in the net-
work, which the network administrators can then remedy.
Such attacks typically begin at one entrance point, and ad-
vance from one machine to another, through the network
connections. For each attacked machine a series of known
exploits is attempted, based on the machine configuration,
until a successful exploit occurs. The attack continues until
the attacker succeeds in controlling a critical machine, al-
lowing to access sensitive data or inflict critical damage.

AI planning was previously suggested as a tool for con-
ducting pentesting. In particular, the two extreme cases have
been explored — classical planning, where the entire net-
work structure and machine configuration are known to
the attacker (Boddy et al. 2005; Lucangeli, Sarraute, and
Richarte 2010); and Partially observable Markov decision
processes (POMDP), where machine configurations are ini-
tially unknown to the attacker and can be partially sensed
(Sarraute, Buffet, and Hoffmann 2012).
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The classical planning approach scales well, and has been
used commercially. However, the simplifying assumptions
of complete knowledge and deterministic outcomes results
in an overly optimistic attacker point-of-view. It may well
be that a classical-planning attack has a significantly lower
cost than a real attack, identifying vulnerabilities that are un-
likely to be found and exploited by actual attackers. MDPs
(Durkota et al. 2015; Hoffmann 2015) have been proposed
as a slightly more realistic model, yet they still do not re-
flect the partial information attackers typically have, nor the
sensing which is an integral part of real-world attacks.

The POMDP approach, in contrast, can be argued to be
a valid representation of the real world. One can model the
attacker’s prior knowledge about the network configuration
as a probability distribution over possible states, known as
a belief. Probing actions, designed to reveal configuration
properties of machines, can be modeled as sensing actions.

However, the POMDP approach also has several major
weaknesses. POMDP solvers do not scale anywhere near
the size of realistic input (Sarraute et al. (2012) propose to
use the POMDP for single machines only, and assemble an
approximate attack for the overall network from that). Fur-
ther issues pertain to model acquisition. The standard reward
maximization models are questionable in practice as it is un-
clear how to quantify the importance of different assets in
the network, and therewith capture attacker utility. Humans
find such quantification notoriously hard to do, and different
reward choices may affect the result produced in complex
and unpredictable ways. Finally, and most importantly, the
POMDP model requires an accurate probability distribution
for the initial belief. In pentesting, as in many other applica-
tions, it is unclear how to reliably obtain that distribution. In
particular, this pertains to identifying an accurate probabil-
ity distribution over the possible OS for the machines in the
network. Prior work (Sarraute, Buffet, and Hoffmann 2012)
has devised only a crude over-simplifying model of “soft-
ware updates”, for generating synthetic benchmarks. Again,
the choices made in the design of the initial belief may sig-
nificantly affect the result, hampering the practical use and
added value of the analysis for a human network administra-
tor.

Here we introduce an intermediate model, between classi-
cal planning and POMDPs. We replace POMDPs with par-
tially observable contingent planning, a qualitative model
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where probability distributions are replaced with sets of
possible configurations or action effects, and rewards are
replaced with goal-directed behavior (e.g. (Weld, Ander-
son, and Smith 1998; Hoffmann and Brafman 2005; Al-
bore, Palacios, and Geffner 2009)). Contingent planners
attempt to find a plan tree (or graph) of actions, where
edges are labeled by observations and all leaves attain goal
states. Solvers for this type of model scale much better than
POMDP solvers, and can be used for more practical net-
works. As these models require neither probabilities nor re-
wards, we avoid the need for their specification.

Contingent planning naturally models an attacker who ini-
tially has qualitative knowledge about the network configu-
ration, and improves that knowledge during the attack using
the outcomes of attempted exploits, as well as explicit sens-
ing actions. In particular, like POMDPs and unlike any other
planning-based pentesting model yet proposed, the contin-
gent planning model is able to consciously mix exploits and
sensing actions similarly to real attackers.

We formalize our model as a qualitative variant of the
partially-observable Canadian Hacker Problem previously
sketched by Hoffmann (2015). We then provide a con-
crete encoding in terms of established contingent-planning
PDDL. We show how to acquire this model from network
scans in practice. The semantics of our model slightly differs
from standard contingent planning, in its handling of unsolv-
able initial states (network configurations in which the target
machine is unreachable). We show how to adapt an available
contingent planner to handle this semantics.

We experiment with real networks of two organizations,
with the real vulnerabilities that were found in a scan of
these networks. We show that our contingent planner suc-
ceeds in computing plans for the networks. In addition,
we compare contingent plans to POMDP policies for much
smaller networks that were sub-sampled from the real net-
work data that we collected. The results show that our
method finds attack policies of lower yet reasonable quality,
many orders of magnitude faster than the POMDP model.

We emphasize that the experiments over real networks
constitute a contribution on their own. Previous literature
on automated planning for pentesting has evaluated meth-
ods over artificially generated toy benchmarks only.

2 Pentesting and POMDPs

We summarize pentesting and its properties. We briefly in-
troduce POMDPs and previous POMDP pentesting models.

2.1 Networks and Pentesting

We model networks as directed graphs whose vertices are
a set M of machines, and edges representing connections
between pairs of machines. Like previous work in the area,
we assume that the attacker knows the structure of the net-
work. Each machine in the network can have a different
configuration specifying its hardware, operating system, in-
stalled software, installed updates, service packs, etc. The
network configuration is the conjunction of all machine con-
figurations. The configuration may be partially revealed us-
ing sensing techniques. For example, if a certain series of

4 TCP requests are sent at exact time intervals to a target
machine, the responses of the target machine vary between
different versions of Windows (Lyon 2009). In many cases,
several such methods must be combined to identify the oper-
ating system. Sending such seemingly innocent requests to
identify a machine’s configuration is known as fingerprint-
ing. Not all the properties of a target machine can be identi-
fied. For example, one may determine that a certain machine
runs Windows XP, but not which security update is installed.

We say that a machine m is controlled if the attacker can
run a malware on it, and can use it to fingerprint and at-
tack other machines. Many configurations have vulnerabil-
ities that can be exploited to gain control over the machine,
but these vulnerabilities vary between configurations. Thus,
to gain control over a machine, one typically first probes it to
identify some configuration properties, and based on these
properties attempts several appropriate exploits. As the at-
tacker cannot fully observe the configuration, these exploits
may succeed, giving the attacker full control of the target
machine, or fail as some undetectable configuration property
(e.g. a certain security update) made this exploit useless.

The objective of penetration testing (pentesting) is to con-
trol certain machines containing important assets in the net-
work. A reached machine m is connected to a controlled
machine. All other machines are not reached. The attacker
starts controlling the internet, and all machines that are di-
rectly connected to the internet are reached.

2.2 Properties of Pentesting

Previous work on planning models of pentesting has made
a number of observations – modeling assumptions justified
in the pentesting application – that are also important here.
Hoffmann (2015) comprehensively discusses and motivates
these observations. In what follows, we briefly point out
those observations relevant in our context.

The first and most basic observation is that infinite loop-
ing behaviors are not useful in pentesting. There is a finite
number of machines to gain control over, and actions natu-
rally have a strictly positive cost. In practice, a pentest stops
either when the attack succeeds, or when the attacker de-
cides to give up. It is thus natural to frame pentesting as a
Stochastic Shortest Path (SSP) problem.

Furthermore, as argued by Hoffmann (2015), the follow-
ing restrictions are reasonable: (i) The only effect of exploits
is control of the target machine, not the network structure
nor its configuration. (ii) Each exploit either succeeds or
fails, where the latter outcome has no effect. (iii) The out-
come of every action (exploits and sensing) depends deter-
ministically on the network configuration. We will refer to
these restrictions by their numbers (i) – (iii).

2.3 POMDPs

Partially observable Markov decision proccesses (POMDPs)
(Sondik 1978) are a well known model of probabilistic
planning under partial observability. A POMDP is a tuple
〈S,A,Ω, tr, O,R, b0〉, where S is a set of states, A is a set
of actions, and Ω is a set of possible observations. The tran-
sition function tr(s, a, s′) provides the probability of tran-
sitioning from state s to state s′ using action a. The obser-
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vation function O(a, s′, o) specifies the probability of ob-
serving o ∈ Ω after executing action a, arriving at state s′.
The reward function R(s, a, s′) provides the reward for ex-
ecuting action a in state s arriving at state s′; rewards may
be negative, corresponding to costs. Finally, b0 is the initial
belief, a probability distribution over states.

We do not discuss POMDPs in detail (optimal solutions,
methods for obtaining them) as this is not relevant to under-
stand our contribution. Suffice it to say that tr and O induce
a transition system over beliefs, and that the solution is a pol-
icy π mapping beliefs to actions. There is a variety of opti-
mization objectives whose applicability depends on context.
In pentesting, due to the properties outlined above, it makes
sense to assume an absorbing terminal state – reachable ei-
ther by achieving the goal or by a dedicated give-up action –
and to maximize the expected undiscounted reward given π.

Sarraute et al. (2012) introduced a POMDP model of pen-
testing. The states s are the possible configurations of the
network, encompassing the network structure and software.
Exploit actions have preconditions on the network configu-
ration, and may either succeed or fail in gaining control over
a target machine; sensing actions provide information about
configuration aspects. A give-up action always allows the
attack to terminate, at high cost. In short, Sarraute et al.’s
model is a straightforward encoding of what we outlined
above, satisfying in particular the properties discussed.

Hoffmann subsequently observed that, given (i) - (iii),
pentesting is closely related to the Canadian Traveler Prob-
lem (e.g. (Papadimitriou and Yannakakis 1991; Eyerich,
Keller, and Helmert 2010)), where the task is to traverse
a map whose individual road connections may be blocked.
The only major difference is that, in pentesting, being “at”
a location is replaced by controlling a machine, so that,
rather than moving from one location to the next, the “trav-
eler” accumulates controlled machines. Hence, Hoffmann
introduced the Canadian Hacker Problem (CHP) as an ab-
stract model, and in particular the partially observable CHP
(POCHP).

In POCHP, the input consists of a graph G with start node
n0 and target nodes NT , where each edge is labeled with a
conjunctive precondition over configuration propositions C;
exploit actions attempt to traverse edges while sensing ac-
tions observe elements of their labels: and an initial belief
specifies a probability distribution over the truth value as-
signments to C. This abstract model is naturally made con-
crete – formalized and solved – as a POMDP, and indeed
Sarraute et al.’s model does exactly that.

A major downside of POMDP models for pentesting is the
need to acquire the initial belief distribution, and the rewards
and/or the cost of the give-up action. These difficulties are
irrelevant when considering a qualitative model instead.

In the following sections, we give the background on con-
tingent planning; we design a qualitative variant of POCHP
as an abstract model based on contingent planning with
modified semantics; we design a concrete model based on
established contingent-planning PDDL; finally we explain
how we adapted available contingent-planning solvers to
suit the desired semantics, for our experiments.

3 Contingent Planning

A contingent planning task is a tuple Π = 〈P,Aact, Asense,
φI , G〉. Here, P is a set of propositions, Aact is a set of
actuation actions, Asense is a set of sensing actions, φI is
a formula over P specifying the initial belief (see below),
and G ⊆ P is the goal. An actuation action aact is defined
by a precondition pre(aact) and an effect eff(aact), where
pre(aact) ⊆ P and eff(aact) is a set of conditional outcomes
(cl, l). In such a conditional outcome, the condition cl is a
formula over P , and the outcome literal l a literal over P ;
the conjunction of outcome literals in eff(aact) is satisfiable
(i.e., there are no contradictory effects).

A sensing action asense has a precondition like actua-
tion actions; instead of an effect, it defines a proposition
obs(asense) ∈ P whose value is observed when executing
asense.

The semantics of states and actuation actions is defined as
in classical planning (details omitted for brevity). The out-
come state of applying action a to state s is denoted a(s).

A belief b is a set of states. The initial belief is b0 := {s |
s |= φI}. Action a is applicable at belief b if pre(a) ⊆ s
for all s ∈ b. In that case, for a ∈ Aact the outcome belief
is defined as a(b) := {a(s) | s ∈ b}; for a ∈ Asense there
are two outcome beliefs, namely a(b, 1) := {s | s ∈ b, s |=
obs(asense)} and a(b, 0) := {s | s ∈ b, s �|= obs(asense)}.
For a goal belief b, G ⊆ s for all s ∈ b.

Plans for a contingent problem are action trees T , i.e.,
edge-labeled trees whose nodes are actions, where each a ∈
Aact has a single (unlabeled) outgoing edge, and each a ∈
Asense has two outgoing edges labeled with true and false
respectively. An action tree T solves a belief b if (1) T is
empty and b is a goal belief; or the root of T , a, is applicable
in b and either (2a) a ∈ Aact and the tree rooted at a’s child
solves a(b), or (2b) a ∈ Asense and the tree rooted at a’s child
labeled with 1 (respectively 0) solves a(b, 1) (respectively
a(b, 0)). A plan for a task Π is an action tree that solves b0.1

We remark that the semantics just specified is known as
strong plans (Cimatti et al. 2003). Alternative semantics are
weak plans, where the goal is achieved in at least one ter-
minal state; and strong cyclic plans, that ascertain the goal
in all terminal states but may include loops. Strong cyclic
plans are not relevant here because, matching property (iii),
our actions are deterministic. Weak plans are not of inter-
est either as, with property (ii), they default to a classical-
planning pentest model (where exploit preconditions are as-
sumed/sensed to be true). That said, as we shall discuss in
depth momentarily, a pentest typically contains possible ini-
tial configurations from which the goal is not reachable at
all. We will adapt the strong planning semantics above to
cater for such cases, permitting the attacker to ignore them.

4 The Qualitative POCHP

We detail a qualitative version of POCHP (in difference to
Hoffmann’s sketch) as the formal basis for our approach. We

1Action trees can often be represented more compactly as a di-
rected acyclic graphs (Komarnitsky and Shani 2014; Muise, Belle,
and McIlraith 2014). For ease of exposition, we only discuss trees
here.
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refer to our model as Q-POCHP. Like POCHP, Q-POCHP is
an abstract model, intended for the purpose of specification
and discussion. For practical purposes, we will encode Q-
POCHP as a concrete contingent-planning model below.

An instance of Q-POCHP is defined by an edge-labeled
directed graph with nodes N and edges E. There is a start
node n0 ∈ N , and a set of target nodes NT ⊆ N . There
can be several, differently labeled edges, between two given
nodes. Any one edge may be open or blocked, and the agent
does not initially know which edges are open.

The nodes correspond to machines, where n0 is initially
controlled by the attacker and NT are the critical machines.
The pentest should check whether the attacker can gain con-
trol over any one nT ∈ NT (the interpretation of NT is dis-

junctive). The edges n
ψ−→ n′ encode, in addition to the net-

work structure (connectivity), the possible exploits between
connected machines n and n′. The edge specifies that, under
a configuration condition ψ depending on the vulnerability
in question (see below), the attacker can run an exploit from
n to gain control over n′. The exploit is considered possible,
hence the edge appears in the graph; but the agent does not
know whether or not the required vulnerability actually ex-
ists on n′. The latter – whether the edge is open or blocked
– depends on the configuration of n′.

We assume a set C of machine configuration propositions.
We associate each node n with its configuration φ(n), a con-
junction of atoms from C, modeling n’s properties. We as-
sociate each edge (n, n′) with its condition ψ(n, n′), also
a conjunction of atoms from C, modeling the configuration
properties required on n′ for the respective vulnerability to
be present. We identify atom conjunctions with sets.2

Edge conditions are known to the agent, reflecting that
exploits and their prerequisites are known to the attacker.
As such, the edge conditions are part of the input, in the
form of edge labels. Node labels, however, are unknown to
the agent, as they encode the machine configuration prop-
erties, unknown prior to the attack. Instead, the agent has
qualitative prior knowledge — a set LN

0 of node-labelings
deemed to be possible, where a node-labeling is a function
lN : N �→ 2C . We do not discuss a compact representation
of LN

0 here, at the level of the abstract model. In our concrete
model, we specify LN

0 as part of the initial belief φI .
Say the agent controls a node n connected through an

(open or blocked) edge n
ψ−→ n′ to a node n′. Then the agent

may sense the observable properties of n′, one at a time. The
agent may also attempt to seize control of n′, through the

vulnerability represented by n
ψ−→ n′. If the edge is open, n′

becomes controlled. Otherwise, the agent knows that there
exists a property p ∈ ψ(n, n′) such that p /∈ φ(n′).

Optionally, one can define costs for exploits and sensing.
We assume unit costs here, for simplicity of presentation,
and as even the acquisition of costs is an issue in practice.

Overall, the syntax of Q-POCHP thus is as follows:

2One could allow arbitrary formulas over C as conditions, but
conjunctions of atoms suffice for practical modeling, and result in
correspondingly simpler PDDL syntax.

Definition 1 (Q-POCHP Syntax). A Q-POCHP task is a tu-
ple Π = 〈N,E, n0, NT , C,O, LN

0 , lE〉, where O ⊆ C are
the observable configuration propositions, lE : E �→ 2C is
the edge-labeling, and all other elements are as above.

We specify the semantics following the definitions for
contingent planning given before, in terms of transitions
over states and beliefs. We next introduce the basic nota-
tions, then define a suitable concept of solutions.

A state s in a Q-POCHP task is a pair (Ns, l
N
s ) where

Ns ⊆ N is the set of controlled nodes and lNs is the node-
labeling. An edge e = (n, n′) is active at s if n ∈ Ns. In
that case, the agent can apply an action ae exploiting e. The
outcome state, denoted ae(s), is (Ns ∪ {n′}, lN ) if lE(e) ⊆
lNs (n′) (success), and is s otherwise (failure).

We assume that the attacker does not immediately see
whether or not an exploit has succeeded, but can use a sens-
ing action to make that observation. So there are two types of
sensing actions, an′ sensing for n′ ∈ N whether or not n′ is
controlled (n′ ∈ Ns?), and an′,o sensing for (n′, o) ∈ N×O
whether or not n′ has property o (o ∈ lNs (n′)).

A belief b is a set of states. The initial belief is b0 :=
{({n0}, lN0 ) | lN0 ∈ LN

0 }. An edge e = (n, n′) is active at
a belief b if it is active in all s ∈ b. In that case, the exploit
action ae, as well as the sensing actions an′ and an′,o, are
applicable at b. The outcome belief of ae is ae(b) := {a(s) |
s ∈ b} exactly as in contingent planning. The outcome belief
an′(b, 1) contains those s ∈ b where n′ is controlled, and
an′(b, 0) contains those s ∈ b where that is not so; similarly
for an′,o(b, 1) and an′,o(b, 0). A goal belief is one where
there exists n ∈ NT s.t. n ∈ Ns for all s ∈ b.

It remains to define what a solution, a plan, for a Q-
POCHP task is. Here we cannot simply adopt the contin-
gent planning semantics, due to the existence of unsolvable
configurations, i.e., network configurations given which no
target node can be reached. If we adopted the strong-plan se-
mantics given above, then such Q-POCHP tasks would have
no plan. Yet this – reporting that there is no strong plan –
would be useless for pentesting analysis.

One can tackle this problem by introducing a give-up ac-
tion, akin to SSP variants of POMDP pentesting as designed
previously by Sarraute et al. (2012). This would, however,
incur the model-acquisition issue of defining the cost for giv-
ing up – we cannot assign unit cost to this as otherwise the
attack plan would always simply give up.

The approach we propose here instead is to permit the
attacker to ignore unsolvable network configurations, i.e., to
simply not tackle these in the plan. From the point of view of
the system administrator using the pentest analysis, the plan
then specifies what the attacker will do in all cases relevant
to the target, in other words a maximally successful attack.

Precisely, we say that a node-labeling lN is solvable if
there exists a path n0, n1, . . . , nk where nk ∈ NT and, for
every 0 ≤ i < k, (ni, ni+1) ∈ E and lE(ni, ni+1) ⊆
lN (ni+1). A state s is solvable if its node labeling lNs is solv-
able. Observe that solvability here is static, in the sense that
the state-changing actions – the exploits – do not affect the
node-labeling, in line with observation (i). Planner decisions
have no impact on configuration solvability, so unsolvable
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configurations can be naturally handled outside the plan.
Specifying the semantics of Q-POCHP is now simple. Ac-

tion trees are defined exactly as in contingent planning, and
we say that an action tree T solves a Q-POCHP belief b
under the exact same conditions (1) for empty trees (leaf
nodes), (2a) for exploit actions, and (2b) for sensing actions.
It just remains to define what a plan for the task is:

Definition 2 (Q-POCHP Semantics). A plan for a Q-
POCHP task Π is an action tree that solves the belief
{s0 | s0 ∈ b0, s0 is solvable}.

Note that, while elegant and simple, it is unclear how
to make this definition operational. Given a specific node-
labeling lN , one can test easily whether or not lN is solvable
(remove blocked edges from the graph and test the reacha-
bility of NT from n0).

We need, though, to identify the subset of solvable lN

within the initial belief, which in practice will be represented
compactly. We will tackle this below, when describing our
modified planning tools for contingent pentesting, by ob-
serving that Definition 2 is equivalent to a restricted form of
allowing to give up. Prior to that, we introduce our concrete
contingent-planning model.

5 Concrete PDDL Model

We now briefly review a PDDL specification for a Q-
POCHP task, formulated as a contingent planning prob-
lem under partial observability, using standard contingent
PDDL syntax (Albore, Palacios, and Geffner 2009; Bonet
and Geffner 2011).

First, the machine connectivity structure is captured by
(hacl ?src ?target) predicates, specifying that machine
?target can be directly reached from machine ?src. These
connectivity predicates are initially known and static. We
use a predicate of the form (controlling ?m) to capture the
set of machines controlled by the attacker. The node n0 in
our modeling represents a public machine outside the orga-
nization network, and is the only one initially controlled.

The set C of machine configuration properties is modeled
by a set of propositions modeling the operating system and
software running on a machine. We use predicates of the
form (HostOS ?m ?os) and (HostSW ?m ?sw) to model
which OS and software a specific machine runs. One could
add additional such predicates capturing other configuration
properties, such as specific installed updates, open ports, and
so forth. These properties are initially unknown, and can be
sensed by probing from a controlled neighboring machine:

( : a c t i o n ProbeOS
: p a r a m e t e r s ( ? s r c − h o s t ? t a r g e t − h o s t ? o − os )
: p r e c o n d i t i o n ( and ( h a c l ? s r c ? t a r g e t ) ( c o n t r o l l i n g ? s r c )

( n o t ( c o n t r o l l i n g ? t a r g e t ) )
: o b s e r v e ( HostOS ? t a r g e t ? o )

)

Recall that edges e ∈ E in a Q-POCHP capture not only
connectivity, but also a possible existence of a vulnerability
on the target machine. In the Q-POCHP this is captured by

the edge labeling n
ψ−→ n′, where ψ captures the configura-

tion condition, i.e., combination of OS and software required

for a vulnerability to apply. To model this in a reusable man-
ner, we model the requirements for a vulnerability of a given
type independent of a machine, using predicates of the form
(Match ?os ?sw ?v) specifying whether a given vulnera-
bility can exist in a given os-software combination.

Even though a target machine configuration matches a
specific vulnerability, the vulnerability may not exist on the
target machine due to, e.g., a security patch that was installed
and cannot be probed from outside the machine. We capture
this by (ExistV uln ?v ?m) predicates, specifying whether
a vulnerability exists on a machine. These predicates are ini-
tially unknown, and cannot be directly sensed, modeling the
inability to probe for all information. An edge (n, n′) ∈ E
is hence open if (hacl n n′) ∧ (ExistV uln v n′), where v
is the vulnerability associated with the edge.

In the Q-POCHP semantics this means that we model di-
rectly only the observable properties O ⊆ C (operating sys-
tem and running software), and the unobservable properties
are modeled by the (ExistV uln ?v ?m) predicates.

An attacker controlling a machine can attempt to exploit
vulnerabilities to control neighboring machines only if the
vulnerability may exist on the machine configuration. Only
after probing for the observable machine configuration prop-
erties, the attacker can launch an exploit action:

( : a c t i o n e x p l o i t
: p a r a m e t e r s ( ? s − h o s t ? t − h o s t ? o − os ?sw − sw

? v − vu ln )
: p r e c o n d i t i o n ( and ( h a c l ? s ? t )

( c o n t r o l l i n g ? s ) ( n o t ( c o n t r o l l i n g ? t ) )
( HostOS ? t ? o ) ( HostSW ? t ?sw ) ( Match ? o ?sw ? v ) )

: e f f e c t ( when ( E x i s t V u l n ? v ? t ) ( c o n t r o l l i n g ? t ) )
)

We follow the Q-POCHP definition where the attacker does
not know whether an attack has succeeded. This is modeled
in the conditional effect of the exploit action, which achieves
control only if the vulnerability exists. Hence, following an
exploit on a machine m the value of (controlling m) be-
comes unknown. We add a sensing action to check whether
an attacker controls a machine:

( : a c t i o n CheckCon t ro l
: p a r a m e t e r s ( ? s r c − h o s t ? t a r g e t − h o s t )
: p r e c o n d i t i o n ( and ( h a c l ? s r c ? t a r g e t ? p )

( c o n t r o l l i n g ? s r c ) )
: o b s e r v e ( c o n t r o l l i n g ? t a r g e t )

)

We use a CNF formula (in addition to oneof clauses), stan-
dard in contingent planning problems, to express the initial
belief — the set of possible states. Unit clauses represent
known facts, such as the network connectivity structure. Dis-
junction and oneof clauses capture partial knowledge, such
as the possible operating system on a given machine.

For example, a possible initial belief may be:

( : i n i t
1 : ( c o n t r o l l i n g i n t e r n e t )
2 : ( h a c l i n t e r n e t h o s t 0 ) ( h a c l i n t e r n e t h o s t 1 )

( h a c l h o s t 1 h o s t 2 ) ( h a c l h o s t 0 h o s t 2 ) . . .
3 : ( oneof ( HostOS h o s t 0 winNT4ser )

( HostOS h o s t 0 winNT4ent ) )
( oneof ( HostOS h o s t 1 win7en t )

( HostOS h o s t 1 winNT4ent ) )
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. . .
4 : ( oneof ( HostSW h o s t 0 I I S 4 ) ( HostSW h o s t 1 I I S 4 ) )
. . .
5 : ( Match winNT4ser I I S 4 CVE−X−Y) . . .
6 : ( o r ( E x i s t V u l n CVE−X−Y h o s t 0 )

( E x i s t V u l n CVE−Z−W h o s t 0 ) ) . . .
)

specifying, e.g., that machine host0 runs either Windows NT
4 Server, or Windows NT 4 Enterprise edition, and that one
of the machines host0 or host1 runs Internet Information
Services (IIS). This captures partial information that is ini-
tially known to the attacker, such as that a specific subnet
contains at least one IIS server. The internet object captures
the starting point of the attacker (n0).

We use a disjunction to specify whether a vulnerability
exists on a machine, allowing a machine to have multiple
vulnerabilities. It is possible, however, that the vulnerability
that exists will not match the operating system and the soft-
ware on that machine, and hence, cannot be exploited. Thus,
an attacker cannot launch an exploit for that vulnerability,
and unless other vulnarabilities exist can never achieve con-
trol over the machine. This can lead to unsolvable initial
states as previously discussed.

6 Adapting Contingent Planners

We now introduce our contingent pentesting planner. We be-
gin by showing how to tackle the non-standard Q-POCHP
semantics as per Definition 2, then we detail the concrete
tools we implemented for our empirical evaluation.

6.1 Operational Q-POCHP Semantics

As previously discussed, the Q-POCHP semantics is not
immediately operational, as it is unclear how to identify
and compactly represent the subset of solvable initial states
among the initial belief in the concrete model above. We
tackle this by observing that such identification can be done
as part of the search for a contingent plan. Namely, we al-
low the planner to give up – to have non-goal beliefs as leaf
nodes in the plan – but only when the belief in question con-
sists entirely of unsolvable states. This criterion is equivalent
to solving only the solvable initial states to begin with (i.e.
to the Q-POCHP semantics), because solvability is static: it
depends only on the configuration, cf. property (iii), which
cannot be modified by the attacker’s actions, cf. property (i).

We make this formal in the Q-POCHP framework. Let
Π = 〈N,E, n0, NT , C,O, LN

0 , lE〉 be a Q-POCHP task. We
say that a belief b in Π is hopeless if all s ∈ b are unsolvable,
i.e., if all the node-labels lNs of these s do not open any path
from n0 to a target node nT ∈ NT .

Definition 3 (Q-POCHP Give-Up-Hopeless Semantics). A
give-up-hopeless plan for a Q-POCHP task Π is an action
tree that solves b0 when allowing empty T not only at goal
beliefs b, but also at hopeless beliefs b.

Theorem 1. Let Π be a Q-POCHP task, and let T be any
action tree in Π. We have:

1. If T is a give-up-hopeless plan for Π, then T is a plan for
Π.

2. If T is a plan for Π, then a give-up-hopeless plan T ′ for
Π can be constructed in poly-time in the size of Π and T .

Proof sketch: This holds because state-solvability is static:
if s is any state reachable from some s0 ∈ b0 in Π, then s
is unsolvable if and only if s0 is. The first claim then holds
because, starting from {s0 | s0 ∈ b0, s0 is solvable}, the
hopeless beliefs will be empty and, therefore, trivially goal
beliefs. For the second claim, we merely have to extend each
leaf node of T with a sensing action for each target node,
distingushing the goal states from the unsolvable ones.

Given Theorem 1, we can find plans for Q-POHCP tasks
by finding give-up-hopeless plans. This is straightforward in
principle: modify the search for a contingent plan to treat
beliefs known to be hopeless like goal beliefs. Clearly, the
outcome will be a give-up-hopeless plan.

Of course, in general, we cannot test easily whether or
not a belief is hopeless. But there are many methods al-
lowing to prove unsolvability in planning, in particular fast
sufficient criteria for doing so. Furthermore, in the specific
case of Q-POCHP and our concrete PDDL model, given
the known connectivity structure of the network, a belief is
proven hopeless once there exists a set of edges in the con-
nectivity graph that are already known to be blocked, and
that form a cut between the target machines and those con-
trolled by the attacker. We discuss in the next section our
concrete solver design.

Some words are in order regarding prior work related to
Definition 3 and Theorem 1. Hoffmann et al. (2012) also
define a contingent-planning semantics allowing unsolvable
leaf nodes. But they do so to handle the specifics of the busi-
ness processes their planner generates, and their semantics
is very specific to that application.

Daum et al. (2016) compute a contingent plan solving the
maximum possible subset of initial states. But in their con-
text (undoability checking), solvability is not static, so that
Theorem 1 does not hold; and their solution is very different,
allowing to give up anywhere but at a very high cost.

One can view the requirement, set by Definition 3, to
prove a belief hopeless before giving up, as an epistemic
goal on the knowledge of the planning agent, constituting
a very particular case of epistemic planning (e.g. (Bolan-
der and Andersen 2011; Ågotnes et al. 2014)). However,
epistemic planners cannot currently handle problems of this
magnitude, and specifying hopeless beliefs in current syntax
is difficult. Some tools for planning under uncertainty use
quantifications of the planning agent’s uncertainty (such as
belief size), for search guidance (Cimatti and Roveri 2000;
Bryce, Kambhampati, and Smith 2006; Albore, Palacios,
and Geffner 2009).

6.2 Q-POCHP Solver Implementation

We now describe our special purpose contingent solver for
Q-POHCP problems, built on top of the CPOR offline con-
tingent planner (Komarnitsky and Shani 2014). CPOR starts
at the initial belief. If the goal can be reached using no sens-
ing actions, then CPOR plans a path to the goal. Otherwise,
CPOR uses a heuristic to decide on the next sensing action
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to apply at the current belief, possibly following a sequence
of non-sensing actions. Then, CPOR expands both child be-
liefs. CPOR employs a mechanism for identifying equiva-
lent belief states for which a plan tree has already been com-
puted, thus reducing a plan tree to a more compact plan
graph, avoiding the need to repeatedly compute identical
plan tree fragments. CPOR maintains beliefs using regres-
sion (Brafman and Shani 2016), regressing queries through
the action-observation sequence in the current tree branch.

Our planner maintains, in addition to the data structures
required by CPOR, the current knowledge of the Q-POHCP
graph — the set of edges and their status (open, closed, or
unknown), and the set of machines and their properties.

We replace the CPOR heuristic, with a heuristic computed
over this graph. Specifically, we identify a shortest path from
a controlled machine to a goal machine, using Dijkstra’s al-
gorithm (Dijkstra 1959), assuming that all unknown edges
are open. Let m be the first machine on this path. We now
focus our attention in attacking m to gain control over it.

Given the set of possible vulnerabilities Vm for m (as
specified in the initial belief), we identify the property (op-
erating system or software) which is required for the largest
number of vulnerabilities in Vm, and sense for it. After ob-
serving the value for that property, if there is a property in
Vm that matches the machine known properties, we attempt
to exploit it. Otherwise, we sense for another property.

Once an exploit has succeeded in gaining control over a
machine, we recompute a shortest path, and repeat the pro-
cess of attacking a machine. If we have failed to gain control
over m, that is, we have exhausted all possible vulnerabili-
ties in Vm, and all exploits failed, then we check whether
the goal machines may still be reachable. If not, that is, if all
edges from controlled machines to uncontrolled machines
are closed, then we declare the current belief to be hopeless.

7 Model Acquisition

Understandably, modern organizations are concerned about
revealing information concerning their network configura-
tion, which might be useful for malicious hackers. It is not
surprising, thus, that there is currently no publicly available
network data containing all the required information, includ-
ing network connectivity and each machine configuration
and relevant software. To test our approach we created real-
istic models using data obtained from scanning the network
of a large organization, containing several subnets. Using the
machine configurations and existing exploits discovered us-
ing the scan, we can create real world models that allow us
to provide an empirical evaluation of our approach. We now
explain the model acquisition process, and then review some
properties of the acquired models.

7.1 Network Scanning

There are many existing applications that allow scanning a
network from the outside or from within to obtain a list of
hosts and their properties. We use below the Nessus scan-
ner (www.tenable.com) that scans all visible hosts in an IP
range. A scan reveals the following properties for the identi-
fied machines — the operating system, some installed soft-

ware, and a list of possible vulnerabilities, following the
CVE convention (cve.mitre.org/).

The scans contained about 50 identified software, in-
cluding well known applications such as openssh, tomcat,
pcanywhere, ftp services, and many more. The scans re-
vealed hundreds of vulnerability types. Following the CVSS
convention (www.first.org/cvss/), we filter out all vulnera-
bilities of medium and low severity, remaining with about
60 types of high or critical severity vulnerabilities. Hosts
with no vulnerabilities are not interesting for us, and were
removed from the model.

However, a Nessus scan does not attack hosts, installing
remote agents on other machines. Hence, the machines that
are not directly visible from the scanning host, such as ma-
chines behind firewalls, will not appear in the scans.

To discover all machines in the network we run a scan
from one host in each subnet, allowing us to identify all the
hosts within the subnet, and also all hosts that are visible
from within the subnet. In addition, we run one more scan
from outside the organization, identifying hosts, such as the
DMZ, that are directly accessible from the outside.

The scan also identifies some information that is redun-
dant for us, such as switches and gates in the system. We
filter out this information.

7.2 Q-POCHP Model

Given the scans, we can create the Q-POCHP model. First,
the nodes of the Q-POCHP are the hosts identified in the
scans, in addition to an “internet” host representing an ar-
bitrary host outside the organization. For each subnet s, we
assume that all hosts within s are connected. For hosts in
other subnets, we assume that all hosts in other subnets that
were visible during the scan from the machine within s are
visible to all other hosts within s.

Nessus reveals the true operating system and software
running on a machine, but an attacker must probe the ma-
chines, in a similar manner to what Nessus does, in order to
achieves this information.

The model, hence, does not specify the true operating sys-
tem and software of each host, but rather introduces uncer-
tainty, by allowing each machine in subnet s to run any of
the operating systems found within s. We add limited uncer-
tainty concerning the running software. We add to the soft-
ware that were identified by Nessus, a number of sampled
software running on other machines within the same subnet.

This process adds limited structured uncertainty into the
model, simulating the partial knowledge of an attacker. For
example, an attacker may have partial knowledge about
which operating systems are possible within a subnet, but
not which operating system each host is running.

Finally, we set the possible vulnerabilities of each host
to be those detected by the scan, avoiding adding additional
vulnerabilities. The possible vulnerabilities identified by the
scan may not exist on the machine, because Nessus does not
attempt to attack the machine by exploiting a vulnerability.
We follow this, allowing for states where these vulnerabili-
ties may or may not exist in the model definition.
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POMDP Contingent - Heuristic Contingent - Random
Machines Software Vulnerabilities |S| |A| Time E(R) Time E(R) Time E(R)

2 4 6 203 22 0.75 291.271 0.009 256.143 0.251 60.48
2 5 7 493 25 5.1 265.753 0.009 247.434 0.187 -0.66
3 2 2 125 19 0.25 393.337 0.12 315.614 0.214 -3.778
3 2 4 4913 24 587 269.729 0.18 244.834 0.316 -14.141
3 4 6 8323 32 3349 139.232 0.19 114.514 0.174 -0.736
3 5 7 20,213 38 N/A N/A 0.3 104.446 0.541 6.54

Table 1: Comparing expected discounted reward and time (secs), over small networks sampled from the real network distribu-
tions. |S| and |A| are the number of states and actions in the POMDP problem.

7.3 POMDP Model

The POMDP model extends the Q-POCHP, adding probabil-
ities and costs. We follow the guidelines set by Sarraute et
al (2012). We define a state for each possible configuration
of all network machines. The configuration probabilities are
based on their frequencies within a subnet in the scan.

We use deterministic vulnerability exploit actions that
take control of a given machine, also resulting in a deter-
ministic success or failure observation. The network connec-
tivity structure is embedded into the transition and observa-
tion probabilities. Probing a machine that has no controlled
neighbor results always in a false observation. An exploit on
a machine that has no controlled neighbor does not change
the state, even if the vulnerability exists on the host.

The Nessus output contains costs for the exploits that
were identified (Lai and Hsia 2007), used for the exploit ac-
tions in our model. Probing a host for its operating system
can be done by only listening to the network traffic from
that host (Yarochkin et al. 2009). We hence set a very low
cost (0.1) for ProbeOS(host,os) actions. Probing for running
software is more costly, because it requires sending requests
to that software awaiting responses. We hence set the cost of
software probing to be equal to the least costly exploit (1).

We reward the attacker (1000) only when terminating
when one of the target machine is controlled. The agent re-
ceives no penalty when terminating at a deadend state. We
add a substantial penalty (-1000) for terminating when no
target machine is controlled, in a state which is not a dead-
end. We consider these rewards to be the weakest part of
our modeling approach, because they are not supported by
the data, but induced by us to motivate the agent towards a
desirable behavior. A deeper investigation into setting such
rewards is left for future work.

8 Empirical Study

We now provide an empirical study of the contingent plan-
ning approach to modeling penetration testing. To obtain a
plan tree (graph) for the pentesting contingent problems we
use our special purpose solver described in Section 6.2, us-
ing the network based heuristic, and goal reachability analy-
sis mechanism. The experiments are run on a machine with
an Intel Core i5 - 5300U CPU at 2.3 GHz and 8 GB of RAM.

Real networks: We ran our planner over the scanned
networks of two organizations. Table 2 shows the network
statistics, the runtime, and the number of nodes in the result-
ing plan graph. The generated models exhibit a state space

Domain Hosts OS SW Vul |S| Time Nodes
Org1 35 2 50 60 28750 116 1435
Org2 95 3 10 30 24275 3270 3270

Table 2: Statistics of real organization networks: number of
hosts, operating systems (OS), software (SW), vulnerabili-
ties (Vul), POMDP states (|S|), planner runtime (secs), and
the number of nodes in the plan graph.

well beyond the ability of current POMDP solvers.

Performance over smaller networks: While our planner
scales well to large network, the quality of the policy com-
puted by the planner is also important. This can be done by
comparing the expected reward from executing the policy to
the expected reward of a POMDP policy.

As POMDP solvers cannot scale up to the real network,
we create a set of tiny networks that can be handled by the
SARSOP solver (Kurniawati, Hsu, and Lee 2008), using the
data gathered by our network scan. First, we sample a set of
n connected machines from the various subnets of the net-
work. We sample a set of m software for each machine, from
its real set of running software, following the frequency of
the software given an operating system in our scan. We then
sample k vulnerabilities for each software, again following
the frequency of vulnerabilities in our data. Each software
and vulnerability can either exist on a machine or not. This
process provides a set of configurations, and we assume that
each machine can have any of these possible configurations.

We compute the probabilities of a configuration following
the distribution of operating systems, software, and vulnera-
bilities in our scan. The probabilities are the maximum like-
lihood estimators from the data, normalized to the reduced
sample in the particular instance.

Table 1 compares the expected reward of our plan graph
to that of the SARSOP policy. As can be seen, the expected
reward of the contingent planning solution is lower than the
expected reward of POMDP solution. This can be attributed
in part to the heuristic in our planner, that intentionally ig-
nores costs and probabilities. Adding these factors to the
heuristic selection of actions is left for future research. The
POMDP solver fails even on very small networks, with only
3 machines, 4 software, and 6 vulnerabilities. This is clearly
far below acceptable model sizes.
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9 Conclusion and Future Work
We suggest contingent planning as a tool for modeling pen-
testing, supporting partial observability of various proper-
ties, such as the operating system and installed software, that
can be sensed by probe actions. Contingent planning offers
a richer model than classical planning, while being able to
scale up better than POMDP-based approaches. We show
that our approach scales to real network sizes beyond the
capabilities of current POMDP solvers, and compare its ex-
pected reward to that of a POMDP over smaller networks.

In the future we intend to create smarter heuristics for or-
dering actions given states, to achieve better expected re-
wards. We also intend to construct automated methods to
draw conclusions from the plan graph, such as which vul-
nerabilities to fix first.
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