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What?

Agenda

@ What is this all about?
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Penetration Testing (Pentesting)

Pentesting

Actively verifying network defenses by conducting an intrusion in the
same way an attacker would.
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Penetration Testing (Pentesting)

Pentesting

Actively verifying network defenses by conducting an intrusion in the
same way an attacker would.

@ Well-established industry (roots back to the 60s).
@ Points out specific dangerous attacks (as opposed to vulnerability
scanners).

@ Pentesting tools sold by security companies, like Core Security.

— Core IMPACT (since 2001); Immunity Canvas (since 2002);
Metasploit (since 2003).

@ Run security checks launching exploits.
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Penetration Testing (Pentesting)

Pentesting

Actively verifying network defenses by conducting an intrusion in the
same way an attacker would.

@ Well-established industry (roots back to the 60s).
@ Points out specific dangerous attacks (as opposed to vulnerability
scanners).

@ Pentesting tools sold by security companies, like Core Security.

— Core IMPACT (since 2001); Immunity Canvas (since 2002);
Metasploit (since 2003).

@ Run security checks launching exploits.

@ Core IMPACT uses Metric-FF for automation since 2010.

Jorg Hoffmann Simulated Penetration Testing 4/49


http://www.coresecurity.com/

What?
00000

Automation

Security teams are typically small:
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Automation

Increase testing coverage:
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Automation

The security officer’s “rat race”:
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Automation

— Simulated Pentesting:

@ Make a model of the network and exploits.

@ Run attack planning on the model to simulate attacks.
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Automation

— Simulated Pentesting:

@ Make a model of the network and exploits.
@ Run attack planning on the model to simulate attacks.

@ Running the rat race ~ update the model, go drink a coffee.
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The Turing Test++: “Hacking, not Talking!”

Ultimate vision: realistically simulate a human hacker!
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reconnaissance.
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@ Yes hacking is more technical.

@ However: socio-technical attacks, e. g. social network
reconnaissance.

— Turing Test as a sub-problem of spying on people
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The Turing Test++: “Hacking, not Talking!”

Ultimate vision: realistically simulate a human hacker!

e
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SENSITIVE

@ Yes hacking is more technical.
@ However: socio-technical attacks, e. g. social network
reconnaissance.

— Turing Test as a sub-problem of spying on people (e.g. [Huber et
al. (2009))).
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@ What is this all about?

@ Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
© Attack Graphs

@ Towards Accuracy: POMDP Models [Sarraute et al. (2012)]

© The MDP Middle Ground

@ A Model Taxonomy

@ And Now?
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Agenda

@ Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
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Simulated Pentesting at Core Security

Core IMPACT system architecture:

Exploits & Attack Modules H——tansform—_ Actions
\/_\
Attack Workspace || ——transform—___| |nitial conditions
\_/_\
Pentesting Framework PDDL Description

execution
Planner
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Simulated Pentesting at Core Security

Core IMPACT system architecture:

Exploits & Attack Modules H——tansform—_ Actions
\/_\
Attack Workspace || ——transform—___| |nitial conditions
\/_\
Pentesting Framework PDDL Description

execution
Planner

— In practice, the attack plans are being used to point out to the
security team where to look.
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Simulated Pentesting at Core Security

“Point out to the security team where to look”
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Simulated Pentesting at Core Security

“Point out to the security team where to look”

Look here!
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Classical Planning

A STRIPS planning task is a tuple (P, A, so, G):
@ P: set of facts (Boolean state variables).

e A: set of actions a, each a tuple (pre(a), add(a), del(a), c(a)) of
precondition, add list, delete list, and non-negative cost.

@ sq: initial state; G: goal.
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Classical Planning

A STRIPS planning task is a tuple (P, A, so, G):
@ P: set of facts (Boolean state variables).

e A: set of actions a, each a tuple (pre(a), add(a), del(a), c(a)) of
precondition, add list, delete list, and non-negative cost.

@ sq: initial state; G: goal.

Definition
A STRIPS planning task's state space is a tuple (S, A, T, so, Sa):

o S: set of all states; A: actions as above.

e T state transitions (s, a,s’)

@ so: initial state as above; Sg: goal states.

— Objective: Find cheapest path from s to (a state in) Sg.
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Core Security Attack Planning PDDL

Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s)
(connected 7s ?t)
(has_OS 7t Windows)
(has_OS _edition 7t Professional)
(has_OS_servicepack ?t Sp2)
(has_OS_version 7t WinXp)
(has_architecture ?t 1386)
(has_service 7t ovtred))
-effect (and (compromised 7t) (increase (time) 10)))
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Core Security Attack Planning PDDL

Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s)
(connected 7s ?t)
(has_OS 7t Windows)
(has_OS _edition 7t Professional)
(has_OS_servicepack ?t Sp2)
(has_OS_version 7t WinXp)
(has_architecture ?t 1386)
(has_service 7t ovtred))
-effect (and (compromised ?t) (increase (time) 10)))

Action cost:

@ Average execution time.
@ Success statistic against hosts with the same/similar observable
configuration parameters.
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Core Security Attack Planning PDDL, ctd.

Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (7s - host ?t - host)
:precondition (and (compromised ?s)
(connected 7s ?t)
(has_OS 7t Windows)
(has_OS_edition 7t Professional)
(has_OS_servicepack 7t Sp2)
(has_OS_version ?t WinXp)
(has_architecture 7t 1386)
(has_service 7t ovtred))
:effect (and (compromised ?t) (increase (time) 10)))

Initial state:

@ “connected” predicates: network graph.
@ “has_*" predicates: host configurations.
@ One compromised host: models the internet.

Goal: Compromise one or several goal hosts.
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Remarks

History:

@ Planning domain “of this kind" (less IT-level, including also physical
actions like talking to somebody) first proposed by [Boddy et al.
(2005)]; used as benchmark in IPC'08 and IPC'11.
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Remarks

History:

@ Planning domain “of this kind" (less IT-level, including also physical
actions like talking to somebody) first proposed by [Boddy et al.
(2005)]; used as benchmark in IPC'08 and IPC'11.

@ Presented encoding proposed by [Lucangeli et al. (2010)].

@ Used commercially by Core Security in Core INSIGHT since 2010,
running a variant of Metric-FF [Hoffmann (2003)].

Do Core Security’s customers like this?

@ | am told they do.

@ In fact, they like it so much already that Core Security is very
reluctant to invest money in making this better ...
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Remarks

And now:

Jorg Hoffmann

some remarks about the model.
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Assumption (iii)

:precondition (and (compromised ?s)
(connected 7s 7t)
(has_OS 7t Windows)
(has_OS_edition ?t Professional)
(has_OS_servicepack ?t Sp2)
(has_OS_version 7t WinXp)
(has_architecture ?t 1386)
(has_service 7t ovtred))
-effect (and (compromised ?t) (increase (time) 10)))

— Which of the predicates are static?
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Assumption (iii)

:precondition (and (compromised ?s)
(connected 7s 7t)
(has_OS 7t Windows)
(has_OS_edition ?t Professional)
(has_OS_servicepack ?t Sp2)
(has_OS_version 7t WinXp)
(has_architecture ?t 1386)
(has_service 7t ovtred))
-effect (and (compromised ?t) (increase (time) 10)))

— Which of the predicates are static? All except “compromised”.

] ] Assumption (iii):
Static network
P
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Assumption (iv)

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (7s - host ?t - host)

-effect (and (compromised 7t) (increase (time) 10)))

— Are you missing something?

Jorg Hoffmann Simulated Penetration Testing 16/49



Classical
00000000

Assumption (iv)

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (7s - host ?t - host)

-effect (and (compromised 7t) (increase (time) 10)))

— Are you missing something? There are no delete effects.

Jorg Hoffmann Simulated Penetration Testing 16/49



Classical
00000000

Assumption (iv)

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (7s - host ?t - host)

-effect (and (compromised 7t) (increase (time) 10)))

— Are you missing something? There are no delete effects.

I**\H(k\ PP
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Assumption (iv)

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (7s - host ?t - host)

-effect (and (compromised 7t) (increase (time) 10)))

— Are you missing something? There are no delete effects.

I**\&kk\ PP

The attack is monotonic (growing set of attack assets).

= delete-relaxed planning.

Metric-FF solves this once in every search state ...

Generating an attack is polynomial-time. Generating an optimal
attack is NP-complete.
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Assumption (v)

:precondition (and (compromised ?s) (connected ?s ?t)
(has_0OS ?t Windows) (has_OS_edition ?t Professional)
(has_OS_servicepack 7t Sp2) (has_OS_version 7t WinXp)
(has_architecture 7t 1386) (has_service 7t ovtrcd))

— Which preconditions are not static?
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Assumption (v)

:precondition (and (compromised ?s) (connected ?s ?t)
(has_0OS ?t Windows) (has_OS_edition ?t Professional)
(has_OS_servicepack 7t Sp2) (has_OS_version 7t WinXp)
(has_architecture 7t 1386) (has_service 7t ovtrcd))

— Which preconditions are not static? Just 1: “(compromised ?s)".

N EE
exC

@ 1 positive precondition, 1 positive effect.
@ Optimal attack planning for single goal host = Dijkstra.

Fixed # goal hosts polynomial-time [Bylander (1994)].
Scaling # goal hosts = Steiner tree [Keyder and Geffner (2009)].

Assumption (v):
Actions = network hops
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Concluding Remarks?

Simulated Pentesting at Core Security

~
~

Dijkstra in the graph over network hosts where weighted edges are
defined as a function of configuration parameters and available exploits.
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Why they use planning & Metric-FF anyway:
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single “optimal” one.
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Concluding Remarks?

Simulated Pentesting at Core Security

~
~

Dijkstra in the graph over network hosts where weighted edges are
defined as a function of configuration parameters and available exploits.

Why they use planning & Metric-FF anyway:
@ Extensibility to more fine-grained models of exploits, socio-technical
aspects, detrimental side effects.
@ Bounded sub-optimal search to suggest several solutions not just a
single “optimal” one.
@ Quicker & cheaper than building a proprietary solver.

Jorg Hoffmann Simulated Penetration Testing 18/49
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Attack Graphs
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Attack Graphs
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Attack Graphs in a Nutshell

Community: Application-oriented security.

Approach: Describe attack actions by preconditions and effects.
Identify /give overview of dangerous action combinations.
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Attack Graphs
®00

Attack Graphs in a Nutshell

Community: Application-oriented security.

Approach: Describe attack actions by preconditions and effects.
Identify /give overview of dangerous action combinations.

Example model:

RSH_Connection_Spoofing:
requires with
Trusted_Partner: TP; TP.service is RSH;
Service_Active: SA; SA .service is RSH;
provides with
push_channel: PSC; PSC_using := RSH;
remote_execution: REX; REX.using := RSH,;

Jorg Hoffmann Simulated Penetration Testing 20/49



Attack Graphs
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Attack Graphs in a Nutshell, ctd.

Brief overview of variants:

Who and When? [ What? Terminology
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Brief overview of variants:

Who and When? [ What? Terminology
Schneier (1999); Templeton . “attack graph” =
and Levitt (2000) STRIPS actions action descriptions
“attack graph” =
state space

Ritchey and Ammann (2000) BDD model checking
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Attack Graphs

oeo

Attack Graphs in a Nutshell, ctd.

Brief overview of variants:
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Attack Graphs in a Nutshell, ctd.

Brief overview of variants:

Who and When?

[ What?

Terminology

Schneier (1999); Templeton
and Levitt (2000)

STRIPS actions

“attack graph” =
action descriptions

Ritchey and Ammann (2000)

BDD model checking

“attack graph” =
state space

Ammann et al. (2002)

| “Attacks are monotonic!” |

Since then, e.g. Ammann et
al. (2002); Noel et al. (2009)

Relaxed planning

“attack graph” =
relaxed planning
graph
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Attack Graphs
oeo

Attack Graphs in a Nutshell, ctd.

Brief overview of variants:

Who and When? [ What? Terminology

Schneier (1999); Templeton . “attack graph” =
and Levitt (2000) STRIPS actions action descriptions

Ritchey and Ammann (2000) BDD model checking S:;::Zl:)agcr:ph -

Ammann et al. (2002) | “Attacks are monotonic!” |
Since then, e.g. Ammann et Relaxed plannin rjIZTecdk gl;anar;n -
al. (2002); Noel et al. (2009) planning eraph planning

— Attack graphs = practical security-analysis tools based on variants of,
and analyses on, relaxed planning graphs.

— “Al < attack graphs” community bridge could be quite useful ...
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Dimension (B): Action Model

Two major dimensions for simulated pentesting models:

(A) Uncertainty Model: Up next.

(B) Action Model: Degree of interaction between individual attack
components.
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Attack Graphs
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Dimension (B): Action Model

Two major dimensions for simulated pentesting models:

(A) Uncertainty Model: Up next.

(B) Action Model: Degree of interaction between individual attack
components.

Dimension (B) distinction lines:

o Explicit Network Graph: Actions = “hops from 7s to 7t".
1 positive precond, 1 positive effect. Subset of compromised hosts.

@ Monotonic actions: Attacker can only gain new attack assests.
Installed software, access rights, knowledge (e. g. passwords) etc.

e General actions: No restrictions (STRIPS, in simplest case).
Can model detrimental side effects.
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@ Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
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An Additional Assumption

DMZ

Web Server Application Server

Intemet

Firewall

-

Attacker

DB Server

SENSITIVE
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Assumptions (i) and (ii)

Known network graph: No uncertainty about network graph topology.

] Assumption (i):
Known network graph

M] ﬁ? (recommended)

i
—— —

Known host configurations: No uncertainty about host configurations.

“ “ Assumption (ii):

\E E/ Known host configurations

Jorg Hoffmann Simulated Penetration Testing 24/49
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An Overview Before We Begin ...

Uncertainty Model, Dimension (A):

@ None: Classical planning.
— CoreSec-Classical: Core Security’'s model, as seen.
Assumptions (i)—(v).

@ Uncertainty of action outcomes: MDPs.
— CoreSec-MDP: Minimal extension of CoreSec-Classical.
Assumptions (ii)—(viii).

@ Uncertainty of state: POMDPs.

— CoreSec-POMDP: Minimal extension of CoreSec-Classical.
Assumptions (ii)—(vii).
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Partially Observable MDP (POMDP)

A POMDRP is a tuple (S, A, T,0,0,by):
o S states, A actions, O observations.

@ T'(s,a,s'): probability of coming to state s’ when executing action a
in state s.

@ O(s,a,0): probability of making observation o when executing
action a in state s.

@ bg: initial belief, probability distribution over S.

Respectively, some (possibly factored) description thereof.
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Partially Observable MDP (POMDP)

A POMDRP is a tuple (S, A, T,0,0,by):

@ S states, A actions, @ observations.

@ T'(s,a,s'): probability of coming to state s’ when executing action a
in state s.

@ O(s,a,0): probability of making observation o when executing
action a in state s.

@ bg: initial belief, probability distribution over S.

Respectively, some (possibly factored) description thereof.

— I'll discuss optimization objectives later on.

For now, assume observable goal states S;, minimizing undiscounted
expected cost-to-goal in a Stochastic Shortest Path (SSP) formulation.
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The Basic Problem

DMZ

Web Server Application Server

Internet

SENSITIVE USERS !
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States
HO-win2000 HO-winXPsp2
HO-win2000-p445 HO-winXPsp2-p445
HO-win2000-p445-SMB HO-winXPsp2-p445-SMB
HO-win2000-p445-SMB-vuln HO-winXPsp2-p445-SMB-vuln
HO-win2000-p445-SMB-agent HO-winXPsp2-p445-SMB-agent
HO-win2003 terminal

HO-win2003-p445
HO-win2003-p445-SMB
HO-win2003-p445-SMB-vuln
HO-win2003-p445-SMB-agent

"HO": the host. “winXXX": OS. “p445": is port 445 open?
“SMB": if so, SAMBA server?

“vuln": SAMBA server vulnerable?

“agent”: has attacker exploited that vulnerability yet?
“terminal”: attacker has given up.
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Assumptions (vi) and (vii)

Succeed-or-nothing: Exploits have only two possible outcomes, succeed
or fail. Fail has an empty effect.

succ: . .
* Assumption (vi):
**exploit Succeed-or-nothing

fail:

— Abstraction mainly regarding detrimental side effects.
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Assumptions (vi) and (vii)

Succeed-or-nothing: Exploits have only two possible outcomes, succeed
or fail. Fail has an empty effect.

Succ* Assumption (vi):
**exploit Succeed-or-nothing

fail:

— Abstraction mainly regarding detrimental side effects.

Configuration-deterministic actions: Action outcome depends
deterministically on network configuration.

=

Assumption (vii):

E A Configuration-
[===| exploit deterministic actions
QT Yo2: * (benign)

n a

— Abstraction only in case of more fine-grained dependencies.
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Exploit Actions

Same syntax: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s)
(connected 7s 7t)
(has_OS 7t Windows)
(has_OS_edition ?t Professional)
(has_OS_servicepack ?t Sp2)
(has_OS_version 7t WinXp)
(has_architecture ?t 1386)
(has_service ?t ovtred))
:effect (and (compromised ?t) (increase (time) 10)))
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Exploit Actions

Same syntax: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s)
(connected 7s 7t)
(has_OS 7t Windows)
(has_OS_edition ?t Professional)
(has_OS_servicepack ?t Sp2)
(has_OS_version 7t WinXp)
(has_architecture ?t 1386)
(has_service ?t ovtred))
:effect (and (compromised ?t) (increase (time) 10)))

... but with a different semantics: Consider s — s’

/

1 s pre(a),s’ = appl(s,a)
T(S7aa 5/) - 1 s \7& p’f‘(:’((L)./ s’ =s
0 otherwise

1 s pre(a),s’ = appl(s,a),o = “success”
O(s,a,0) =1 1 sl=pre(a),s =s,0= "fail"
0 otherwise
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Sensing Actions

Example: (:action OS_Detect
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:observe (and

(when (has_OS 7t Windows2000) (“win"))
(when (has_OS ?t Windows2003) (“win"))
(when (has_OS 7t WindowsXPsp2) (“winXP"))
(when (has_OS 7t WindowsXPsp3) (“winXP")))

Jorg Hoffmann Simulated Penetration Testing 31/49



POMDPs
0000000e0

Sensing Actions

Example: (:action OS_Detect
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:observe (and

(when (has_OS 7t Windows2000) (“win"))
(when (has_OS ?t Windows2003) (“win"))
(when (has_OS 7t WindowsXPsp2) (“winXP"))
(when (has_OS 7t WindowsXPsp3) (“winXP")))

Network reconnaissance also satisfies the benign assumption:

g | =0l Assumption (vii):
— Configuration-

exploit\ deterministic actions
Q————= 02:* (benign)

— Non-injective but deterministic function of configuration.
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So, we're done, right?
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So, we're done, right?

Computation!
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So, we're done, right?

Computation!

But: Can use single-machine case + decomposition.
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So, we're done, right?

Modeling! DMz

Web Server Application Server

Intermet

Router
. Firewall

Atacker
| Workstation

(272)

=

DB Server

- SENSITIVE USERS
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So, we're done, right?

Modeling! DMz

Web Server Application Server

Intermet

Router
. Firewall

Atacker 7 -
Hr-- | Workstation

=

DB Server

- SENSITIVE USERS

But: Can use outcome of standard scanning scripts?
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© The MDP Middle Ground
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Markov Decision Process (MDP)

An MDP is a tuple (S, A, T, sp):

@ S states, A actions.

@ T'(s,a,s'): probability of coming to state s’ when executing action a
in state s.

@ sp: initial state.

Respectively, some (possibly factored) description thereof.

— I'll discuss optimization objectives later on.

For now, assume goal states S;, minimizing undiscounted expected
cost-to-goal in a Stochastic Shortest Path (SSP) formulation.
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The Basic Idea

Jorg Hoffmann

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s) (connected 7s ?t)
(has_OS ?t Windows)
(has_OS_edition ?t Professional)
(has-OS_servicepack ?t Sp2)
(has_OS_version 7t WinXp)
(has_architecture 7t 1386)
(has_service 7t ovtrcd))
:effect (and (compromised 7t)
(increase (time) 10)))

4

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised 7s) (connected 7s 7t))
:effect (and (probabilistic 0.3 (compromised ?t))
(increase (time) 10)))

Simulated Penetration Testing
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How to Obtain Action Outcome Probabilities?

] ] Assumption (i):
Known network graph
Ml4 (recommended)
- 01:* Assumption (vii):
. L Configuration-
M * deterministic actions
02:

(benign)
= outcome occurs iff ¢(host configurations)
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MDPs
00®00

How to Obtain Action Outcome Probabilities?

’ ] Assumption (i):
Known network graph
M& (recommended)

01:* Assumption (vii):
— Configuration-

exploit deterministic actions
02: (benign)

= outcome occurs iff ¢(host configurations)

P ] Assumption (iii):
Static network
]_] / (benign)
o—tl—e

—> outcome probability ~ P(¢(host configurations), by)

succ:
* Assumption (vi):
*A/exnloit Succeed-or-nothing

fail:

= just need success probability as function of host configurations in by

— Use Core Security success statistics as success probabilities.
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MDP vs. POMDP

Where did we cheat on the previous slide?
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) ] i Assumption (iii):
Static network
R

= outcome prob ~ P(¢(host configs), by)

— by just captures the attacker’'s initial knowledge.
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MDP vs. POMDP

Where did we cheat on the previous slide?

] Assumption (iii):
Static network
\]_]/ (benign)

= outcome prob =~ P(¢(host configs), bo)

— by just captures the attacker’'s initial knowledge.

Hence: I[nability to learn. Success probabilities develop with knowledge
in the POMDP, but remain constant in the MDP.
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MDP vs. POMDP

Where did we cheat on the previous slide?

] Assumption (iii):
Static network
\]_]/ (benign)

= outcome prob =~ P(¢(host configs), bo)

— by just captures the attacker’'s initial knowledge.

Hence: I[nability to learn. Success probabilities develop with knowledge
in the POMDP, but remain constant in the MDP.

(But: Maintain flags for partial belief-tracking in the MDP?)

Jorg Hoffmann Simulated Penetration Testing 37/49



Assumption (viii)

Assume that ?t doesn’t have the required configuration:

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s) (connected 7s ?t))
:effect (and (probabilistic 0.3 (compromised ?t))
(increase (time) 10)))
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Assume that ?t doesn’t have the required configuration:

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s) (connected 7s ?t))
:effect (and (probabilistic 0.3 (compromised ?t))
(increase (time) 10)))

— The probability of breaking into 7t eventually is 1.
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Assumption (viii)

Assume that ?t doesn’t have the required configuration:

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s) (connected 7s ?t))
:effect (and (probabilistic 0.3 (compromised ?t))
(increase (time) 10)))

— The probability of breaking into 7t eventually is 1.

This contradicts our benign assumptions (iii) and (vii).
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Assumption (viii)

Assume that ?t doesn’t have the required configuration:

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit
:parameters (?s - host 7t - host)
:precondition (and (compromised ?s) (connected 7s ?t))
:effect (and (probabilistic 0.3 (compromised ?t))
(increase (time) 10)))

— The probability of breaking into 7t eventually is 1.

This contradicts our benign assumptions (iii) and (vii). Hence:

Apply-once constraint: Allow to apply each exploit, on each target
host, at most once.

ol: Z Assumption (viii):
exploit = 1 Apply-once constraint
02:

(benign)
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Remember?

INTERESTING | INTERESTING STANDARD

STANDARD | STANDARD = STANDARD
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A Model Taxonomy

‘ Attack—Asset
z PO-CHP | POMDP | Féctéred ?OMDP
A = @) (iii) —— (viii) L () (i) (iv) (vi) — (viii) | () (i) (vii) (vii)
<! ; i Current POMDP Model
g CoreSec—POMDP (Sarraute et al. 2012)
= T T
g B Canadian Hacker Attack—Asset
£ SE| Problem (CHP) | MDP . Factored MDP
2 8 | |
% < E () (i) — (vii) | () Gii) (v) (vi) = (viiD) | () (i) (vii) (viii)
O | @) : 3
S50 | CoSecMDP | Gukowssdlivanl) |
<! . Delete—Relaxed . :
< 0 Graph Distance Classical Plan);ling | Classical Planning
2 (i) —- () (i) —= (iv) (i) == (i)
CoreSec—Classical | Attack Graphs CyberSecurity
(Lucangeli etal. 2010) | e.g. (Amman etal. 2002) |  (Boddy et al. 2005)
Explicit Monotonic Actions General Actions
Network Graph

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =

(B) Action Model
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The 3rd Dimension

Three major dimensions for simulated pentesting models:

(A) Uncertainty Model.
(B) Action Model.

(C) Optimization objective: What is the atttacker trying to achieve?

Jorg Hoffmann Simulated Penetration Testing 41/49



Taxonomy
0®000000

The 3rd Dimension

Three major dimensions for simulated pentesting models:

(A) Uncertainty Model.

(B) Action Model.

(C) Optimization objective: What is the atttacker trying to achieve?

Options:

@ Finite-horizon: Ok. But: Offline problem, horizon not meaningful
unless for overall attack (see below).

@ Maximize discounted reward: Ok. But: Discounting unintuitive.
And who's to set the rewards?
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(B) Action Model.

(C) Optimization objective: What is the atttacker trying to achieve?

Options:
@ Finite-horizon: Ok. But: Offline problem, horizon not meaningful

unless for overall attack (see below).

@ Maximize discounted reward: Ok. But: Discounting unintuitive.
And who's to set the rewards?

@ Minimize non-discounted expected cost-to-goal (SSP): Seems good.
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The 3rd Dimension

Three major dimensions for simulated pentesting models:

(A) Uncertainty Model.

(B) Action Model.

(C) Optimization objective: What is the atttacker trying to achieve?

Options:

@ Finite-horizon: Ok. But: Offline problem, horizon not meaningful
unless for overall attack (see below).

@ Maximize discounted reward: Ok. But: Discounting unintuitive.
And who's to set the rewards?

@ Minimize non-discounted expected cost-to-goal (SSP): Seems good.
Non-0 action costs, give-up action. But: Give-up cost?

@ Limited-budget goal probability maximization (MAXPROP): My
favorite. Non-0 action costs, give-up action, hence finite-runs SSP.
No “but” | can think of.

Jorg Hoffmann Simulated Penetration Testing 41/49
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The Interesting Sub-Classes

3 Attack—Asset
v PO-CHP POMDP |
bog () (i) — (vii) | () (i) (iv) (vi) = (viii) |
Eé CoreSec-POMDP ‘ ‘
E =3 Canadian Hacker Attack—Asset
21 -3 g Problem (CHP) MDP ‘
‘= O ! !
g < %‘) (1) (iii) — (viii) b () (id) (iv) (vi) — (viii) |
g1 O | |
S CoreSec—-MDP | (Durkota and Lisy 2014)
<
Explicit Monotonic Actions
Network Graph

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =

(B) Action Model
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The Interesting Sub-Classes we will Discuss

A
o |
Lol

=N
= | =8
>
- ]
£ SE
3 33
51 <5
o | o
<8
o
~
<
V\

Jorg Hoffmann

Canadian Hacker Attack—Asset
Problem (CHP) MDP |
(i) (iii) — (viii) L (i) (i) (iv) (Vi) — (viii) |
CoreSec—MDP (Durkota and Lisy 2014) ‘

Explicit Monotonic Actions

Network Graph

(B) Action Model

Simulated Penetration Testing
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We Start With:

A
of
Ll
EO ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
> = & | Canadian Hacker
2 2§ Problem (CHP)
R
5 <35 (i) (i) — (viii)
g ©
D! CoreSec—MDP
<
Explicit
Network Graph

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =

(B) Action Model

Jorg Hoffmann Simulated Penetration Testing 42/49



Taxonomy
[e]eleY Yololele}

The Canadian Traveller Problem

E %.3° -
3 at T— o5
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The Canadian Hacker Problem

] ) Assumption (v): _|_
%] ] Actions = network hops|
exC>
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] ) Assumption (v): _|_
%] o ] & Actions = network hops
ex

action-outcome uncertainty =
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The Canadian Hacker Problem
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The Canadian Hacker Problem

exA 4
l Assumption (v): _|_
’ » Actions = network hops
e"’g ]exc z*o p

action-outcome uncertainty =

ol: Assumption (viii):
—|— TofE é 1 Apply-once constraint p—
exploi s (benign) _—
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The Canadian Hacker Problem

Assumption (v): _|_
B ] ] Actions = network hops
exC>

action-outcome uncertainty =

ol: Assumption (viii):
—|— TofE é 1 Apply-once constraint f—
exploi s (benign) _—

Aidal
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The Canadian Hacker Problem: And Now?

Wrap-up: Variant of Canadian Traveller Problem where we “have” a
monotonically growing set of nodes (“no need to drive back”).

Jorg Hoffmann Simulated Penetration Testing 45/49



Taxonomy
00000800

The Canadian Hacker Problem: And Now?

Wrap-up: Variant of Canadian Traveller Problem where we “have” a
monotonically growing set of nodes (“no need to drive back”).

Research Challenges/Opportunities:

Jorg Hoffmann Simulated Penetration Testing 45/49



Taxonomy
00000800

The Canadian Hacker Problem: And Now?

Wrap-up: Variant of Canadian Traveller Problem where we “have” a
monotonically growing set of nodes (“no need to drive back”).

Research Challenges/Opportunities:
@ 1001 CTP papers to be adapted to this ...
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Attack-Asset MDPs

A
of

-

=)

E | @ - o Q

> =29 Attack—Asset

= 2§ MDP

‘5! 983 ; !
 <g Q) (i) (iv) (vi) —— (vii) |
2 © 1 | 1
N 3 (Durkota and Lisy 2014)
<! ’

Monotonic Actions

(B) Action Model
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An Attack-Asset MDP is a tuple (P, A, so,G):

@ P: set of facts (Boolean state variables).

o A: set of actions a, each a tuple (pre(a), add(a),p(a), c(a)) of
precondition, add list, success probability, and non-negative cost.

@ so: initial state; G: goal.

The probabilistic transitions 1" arise from these rules:

@ States: STRIPS s, available actions A C A.

@ a is applicable to (s, A) if pre(a) C s and a € A.

e With probability p(a) we obtain s = s U add(a), and with
probability 1 — p(a) we obtain s’ = s.

@ In both cases, we pay cost ¢(a), and remove a from A.
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Attack-Asset MDPs: And Now?

Worap-up: Probabilistic delete-free STRIPS with success probabilities, no
effect in case of failure, each action at most once.

Research Challenges/Opportunities: E.g. determinization.

@ Only two outcomes, of which one is “nothing happens”.
@ Every probabilistic action yields a single deterministic action.
@ These deterministic actions have no delete effects.

@ Weak plans and determinization heuristics = standard delete
relaxation heuristics.

@ “Landmark action outcomes” = deterministic delete-relaxation
landmarks.

@ Limited-budget goal probability maximization: landmarks reduce
budget a la [Mirkis and Domshlak (2014)].

Jorg Hoffmann Simulated Penetration Testing 47/49



And Now?

@ And Now?

Jorg Hoffmann Simulated Penetration Testing 48/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

‘‘‘‘‘‘

SENSITIVE USERS |

Jorg Hoffmann Simulated Penetration Testing 49/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

‘‘‘‘‘‘

SENSITIVE USERS |

@ Model and algorithm design in wide space of relevant
complexity /accuracy trade-offs.

Jorg Hoffmann Simulated Penetration Testing 49/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

@ Model and algorithm design in wide space of relevant
complexity /accuracy trade-offs.

(Sorry Scott — best modeled in PPDDL, at least the MDP variants.)

Jorg Hoffmann Simulated Penetration Testing 49/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

@ Model and algorithm design in wide space of relevant
complexity /accuracy trade-offs.

(Sorry Scott — best modeled in PPDDL, at least the MDP variants.)
@ Diverse attacks,

Jorg Hoffmann Simulated Penetration Testing 49/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

@ Model and algorithm design in wide space of relevant
complexity /accuracy trade-offs.

(Sorry Scott — best modeled in PPDDL, at least the MDP variants.)
@ Diverse attacks, meta-criteria,

Jorg Hoffmann Simulated Penetration Testing 49/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

@ Model and algorithm design in wide space of relevant
complexity /accuracy trade-offs.

(Sorry Scott — best modeled in PPDDL, at least the MDP variants.)
@ Diverse attacks, meta-criteria, situation report,

Jorg Hoffmann Simulated Penetration Testing 49/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

@ Model and algorithm design in wide space of relevant
complexity /accuracy trade-offs.

(Sorry Scott — best modeled in PPDDL, at least the MDP variants.)
@ Diverse attacks, meta-criteria, situation report, suggest fixes.

Jorg Hoffmann Simulated Penetration Testing 49/49



And Now?
°

An Al (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

@ Model and algorithm design in wide space of relevant
complexity /accuracy trade-offs.

(Sorry Scott — best modeled in PPDDL, at least the MDP variants.)
@ Diverse attacks, meta-criteria, situation report, suggest fixes.
@ Ultimately, an Al-complete problem.
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Thanks for Your Attention!

and enjoy the old city tour.
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Community: Application-oriented security, some academic research.

Approach: “Graphical Security Models”. Organize known possible
attacks by top-down refinement over attack actions and sub-actions.
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On the side: Many attack tree models are equivalent to Al “formula
evaluation” [e.g. Greiner (1991); Greiner et al. (2006)]. Apparently
unnoticed by both communities; pointed out by Lisy and Pibil (2013).
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Dimension (B) Assumptions: Overview

Explicit Network Graph: Actions = "hops from 7s to 7t".

Assumption (v):
N ] l Actions = network hops

Relax: More general attack assets (software/passwords ... ).

Monotonic actions: Attacker can only gain new attack assests.

kk%***\ PPPL s

Relax: E.g. detrimental side effects, crashing the host.

Static network: Host connections & configurations not affected.

’ ] Assumption (iii):
Static network
]_]/ (benign)

Relax: E.g. detrimental side effects, crashing the host.
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My 5 cents:

@ How to get realistic models? |s a network intrusion actually a game?
— Typically mentioned, if at all, as “detection risk” as in “potential
detrimental side effect of an attack action”.

o GameSec series http://www.gamesec-conf.org/
Bohme and Félegyhdzi (2010) introduce a model of the entire
pentesting life cycle, and prove that pentesting pays off.
Attack-defense trees [Kordy et al. (2010, 2013)].

@ Security games (e.g. Tambe (2011)): Completely different
application.


http://www.gamesec-conf.org/
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