What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?

Simulated Penetration Testing: From "Dijkstra" to "Turing Test++"

Jörg Hoffmann

COMPUTER SCIENCE

June 26, 2015

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?

What? 000000	Classical Attack G 000000000 000		aphs POMDPs 000000000		MDPs Taxonomy 00000 0000000		And Now? O	
	INTERES	TING	INTE	RESTING	STAN	DARD		
	INTERES	TING	INTE	RESTING	STAN	DARD		
	STAND	ARD	STA	NDARD	STANI	DARD		

Details: See paper.

Details: See old town.

Details: See old town.

Taxonomy

And Now?

What?

Classical

Attack Graphs

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?

Simulated Penetration Testing: From "Dijkstra" to "Turing Test++"

Jörg Hoffmann

COMPUTER SCIENCE

June 26, 2015

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Agenda	a					

1 What is this all about?

- 2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
- 3 Attack Graphs
- Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy

7 And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
●00000	000000000	000	000000000	00000	00000000	0
Netwo	rk Hackin	g				

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
●00000	000000000	000	000000000	00000	00000000	o
Netwo	rk Hacking	р Б				

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
●00000	000000000	000	000000000	00000	00000000	o
Netwo	rk Hacking	р Б				

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?		
●00000	000000000	000	000000000	00000	00000000	0		
Network Hacking								

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 0

 Penetration Testing (Pentesting)
 000000000
 000000000
 0
 0
 0

Pentesting

Actively verifying network defenses by conducting an intrusion in the same way an **attacker** would.

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 0000000
 000000000
 000
 000000000
 000000000
 000000000
 000000000
 000000000

 Penetration Testing (Pentesting)
 000000000
 000000000
 000000000
 000000000
 000000000

Pentesting

Actively verifying network defenses by conducting an intrusion in the same way an **attacker** would.

- Well-established industry (roots back to the 60s).
- Points out specific dangerous attacks (as opposed to vulnerability scanners).

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 00000000
 0000
 0000
 000000000
 000000000
 000000000
 000000000
 000000000

 Penetration Testing (Pentesting)
 000000000
 000000000
 000000000
 000000000
 000000000

Pentesting

Actively verifying network defenses by conducting an intrusion in the same way an **attacker** would.

- Well-established industry (roots back to the 60s).
- Points out specific dangerous attacks (as opposed to vulnerability scanners).
- Pentesting tools sold by security companies, like Core Security.
 → Core IMPACT (since 2001); Immunity Canvas (since 2002); Metasploit (since 2003).
- Run security checks launching exploits.

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 000000
 000000000
 000
 000000000
 000000000
 000000000
 000000000
 000000000

 Penetration Testing (Pentesting)
 000000000
 000000000
 000000000
 000000000
 000000000

Pentesting

Actively verifying network defenses by conducting an intrusion in the same way an **attacker** would.

- Well-established industry (roots back to the 60s).
- Points out specific dangerous attacks (as opposed to vulnerability scanners).
- Pentesting tools sold by security companies, like Core Security.
 → Core IMPACT (since 2001); Immunity Canvas (since 2002); Metasploit (since 2003).
- Run security checks launching exploits.
- Core IMPACT uses Metric-FF for automation since 2010.

Jörg Hoffmann

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00●000	000000000	000	000000000	00000	00000000	0
Auton	nation					

Security teams are typically small:

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00●000	000000000	000	000000000	00000	00000000	o
Auton	nation					

Security teams are typically small:

Jörg Hoffmann

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00●000	000000000	000	000000000	00000	00000000	0
Auton	nation					

Increase testing coverage:

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00●000	000000000	000	000000000	00000	00000000	o
Auton	nation					

The security officer's "rat race":

<< prev 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 next >>

Date	D	Α		Description	Plat.	Author
1999-11-30			\$			
1999-11-30			٨			
1999-11-29			٤			
1999-11-26			٨			
1999-11-22	+		٤			
1999-11-19			٤			
1999-11-19			٤			
1999-11-18			٤			
1999-11-17	+		٨			
1999-11-16			٨			
1999-11-15			٨			
1999-11-15			٤			
1999-11-15			٨			
1999-11-14			٤			
1999-11-13			۶			

Jörg Hoffmann

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00●000	000000000	000	000000000	00000	00000000	0
Auton	nation					

The security officer's "rat race":

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00●000	000000000	000	000000000	00000	00000000	0
Autom	ation					

\implies Simulated Pentesting:

- Make a model of the network and exploits.
- Run attack planning on the model to simulate attacks.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00●000	000000000	000	000000000	00000	00000000	0
Autom	ation					

\implies Simulated Pentesting:

- Make a model of the network and exploits.
- Run attack planning on the model to simulate attacks.
- $\bullet\,$ Running the rat race \approx update the model, go drink a coffee.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000●00	000000000	000	000000000	00000	00000000	0
The T	uring Test	;				

• Yes hacking is more technical.

- Yes hacking is more technical.
- However: socio-technical attacks, e.g. social network reconnaissance.

- Yes hacking is more technical.
- However: socio-technical attacks, e.g. social network reconnaissance.
 - \rightarrow Turing Test as a sub-problem of spying on people

Ultimate vision: realistically simulate a human hacker!

- Yes hacking is more technical.
- However: socio-technical attacks, e.g. social network reconnaissance.

 \rightarrow Turing Test as a sub-problem of spying on people (e.g. [Huber *et al.* (2009)]).

Jörg Hoffmann

Simulated Penetration Testing

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
00000●	000000000	000	000000000	00000	00000000	o
Agenda	а					

- What is this all about?
- Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
- 3 Attack Graphs
- 4 Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy
 - 7 And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000		000	000000000	00000	00000000	o
Agenda	Э					

What is this all about?

2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]

3 Attack Graphs

- Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy

7 And Now?

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 000000
 000
 000
 00000000
 00000000
 00000000
 0

Simulated Pentesting at Core Security

Core IMPACT system architecture:

Core IMPACT system architecture:

 \rightarrow In practice, the attack plans are being used to point out to the security team where to look.

Jörg Hoffmann

Simulated Penetration Testing

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 000000
 000
 000
 00000000
 00000000
 00000000
 0

Simulated Pentesting at Core Security

"Point out to the security team where to look"

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 000000
 000
 000
 00000000
 00000000
 00000000
 0

Simulated Pentesting at Core Security

"Point out to the security team where to look"

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	00000000	000	000000000	00000	00000000	0
Classical Planning						

Definition

A STRIPS planning task is a tuple $\langle \mathcal{P}, \mathcal{A}, s_0, G \rangle$:

- \mathcal{P} : set of facts (Boolean state variables).
- A: set of actions a, each a tuple ⟨pre(a), add(a), del(a), c(a)⟩ of precondition, add list, delete list, and non-negative cost.
- s_0 : initial state; G: goal.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	00000000	000	000000000	00000	00000000	0
Classic	al Plannir	ıg				

Definition

A STRIPS planning task is a tuple $\langle \mathcal{P}, \mathcal{A}, s_0, G \rangle$:

- \mathcal{P} : set of facts (Boolean state variables).
- A: set of actions a, each a tuple ⟨pre(a), add(a), del(a), c(a)⟩ of precondition, add list, delete list, and non-negative cost.
- s_0 : initial state; G: goal.

Definition

A STRIPS planning task's state space is a tuple $\langle S, A, T, s_0, S_G \rangle$:

- \mathcal{S} : set of all states; \mathcal{A} : actions as above.
- T: state transitions (s, a, s')
- s_0 : initial state as above; S_G : goal states.

 \rightarrow Objective: Find cheapest path from s_0 to (a state in) S_G .

Jörg Hoffmann

Simulated Penetration Testing

Core Security Attack Planning PDDL

Attack Graphs

Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

POMDPs

MDPs

Taxonomy

And Now?

What?

Classical

000000000

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 0000000
 00000000
 000
 00000000
 00000000
 00000000
 0

Core Security Attack Planning PDDL

Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10))) What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? 000000000 Core Security Attack Planning PDDL Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? 000000000 Core Security Attack Planning PDDL Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? 000000000 Core Security Attack Planning PDDL Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

Action cost:

- Average execution time.
- Success statistic against hosts with the same/similar observable configuration parameters.

What? Classical Attack Graphs POMDPs MDPs And Now? 000000000 Core Security Attack Planning PDDL, ctd. Actions: (:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

Initial state:

- "connected" predicates: network graph.
- "has_*" predicates: host configurations.
- One compromised host: models the internet.

Goal: Compromise one or several goal hosts.

Jörg Hoffmann

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Remark	(S					

Planning domain "of this kind" (less IT-level, including also physical actions like talking to somebody) first proposed by [Boddy *et al.* (2005)]; used as benchmark in IPC'08 and IPC'11.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Remark	(S					

- Planning domain "of this kind" (less IT-level, including also physical actions like talking to somebody) first proposed by [Boddy *et al.* (2005)]; used as benchmark in IPC'08 and IPC'11.
- Presented encoding proposed by [Lucangeli et al. (2010)].
- Used commercially by Core Security in Core INSIGHT since 2010, running a variant of Metric-FF [Hoffmann (2003)].

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Remark	٢S					

- Planning domain "of this kind" (less IT-level, including also physical actions like talking to somebody) first proposed by [Boddy *et al.* (2005)]; used as benchmark in IPC'08 and IPC'11.
- Presented encoding proposed by [Lucangeli et al. (2010)].
- Used commercially by Core Security in Core INSIGHT since 2010, running a variant of Metric-FF [Hoffmann (2003)].

Do Core Security's customers like this?

• I am told they do.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Remark	٢S					

- Planning domain "of this kind" (less IT-level, including also physical actions like talking to somebody) first proposed by [Boddy *et al.* (2005)]; used as benchmark in IPC'08 and IPC'11.
- Presented encoding proposed by [Lucangeli et al. (2010)].
- Used commercially by Core Security in Core INSIGHT since 2010, running a variant of Metric-FF [Hoffmann (2003)].

Do Core Security's customers like this?

- I am told they do.
- In fact, they like it so much already that Core Security is very reluctant to invest money in making this better ...

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	O
Remar	ks					

And now:

... some remarks about the model.

Jörg Hoffmann

Simulated Penetration Testing

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	O
Assum	ption (iii)					

:precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

 \rightarrow Which of the predicates are static?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	O
Assum	ption (iii)					

:precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

 \rightarrow Which of the predicates are static? All except "compromised".

:precondition (and (compromised ?s) (connected ?s ?t) (has_OS ?t Windows) (has_OS_edition ?t Professional) (has_OS_servicepack ?t Sp2) (has_OS_version ?t WinXp) (has_architecture ?t I386) (has_service ?t ovtrcd)) :effect (and (compromised ?t) (increase (time) 10)))

 \rightarrow Which of the predicates are static? All except "compromised".

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	0000000000	000	000000000	00000	00000000	o
Assum	ption (iv)					

:effect (and (compromised ?t) (increase (time) 10)))

 \rightarrow Are you missing something?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	0000000000	000	000000000	00000	00000000	o
Assum	ption (iv)					

:effect (and (compromised ?t) (increase (time) 10)))

 \rightarrow Are you missing something? There are no delete effects.

. . .

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	o
Assum	nption (iv)					

:effect (and (compromised ?t) (increase (time) 10)))

 \rightarrow Are you missing something? There are no delete effects.

- The attack is monotonic (growing set of attack assets).
- = delete-relaxed planning.

. . .

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	0000000000	000	000000000	00000	00000000	o
Assum	ption (iv)					

:effect (and (compromised ?t) (increase (time) 10)))

 \rightarrow Are you missing something? There are no delete effects.

- The attack is monotonic (growing set of attack assets).
- delete-relaxed planning.
- Metric-FF solves this once in every search state
- Generating an attack is polynomial-time. Generating an optimal attack is NP-complete.

Jörg Hoffmann

Simulated Penetration Testing

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Assum	ption (v)					

 \rightarrow Which preconditions are not static?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Assum	ption (v)					

 \rightarrow Which preconditions are not static? Just 1: "(compromised ?s)".

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0
Assum	ption (v)					

 \rightarrow Which preconditions are not static? Just 1: "(compromised ?s)".

• 1 positive precondition, 1 positive effect.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	0000000●0	000	000000000	00000	00000000	o
Assum	ption (v)					

 \rightarrow Which preconditions are not static? Just 1: "(compromised ?s)".

- 1 positive precondition, 1 positive effect.
- Optimal attack planning for single goal host = Dijkstra.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	o
Assum	ption (v)					

 \rightarrow Which preconditions are not static? Just 1: "(compromised ?s)".

- 1 positive precondition, 1 positive effect.
- Optimal attack planning for single goal host = Dijkstra.
 Fixed # goal hosts polynomial-time [Bylander (1994)].
 Scaling # goal hosts = Steiner tree [Keyder and Geffner (2009)].

Jörg Hoffmann

Simulated Penetration Testing

 \approx

Dijkstra in the graph over network hosts where weighted edges are defined as a function of configuration parameters and available exploits.

 \approx

Dijkstra in the graph over network hosts where weighted edges are defined as a function of configuration parameters and available exploits.

Why they use planning & Metric-FF anyway:

 \approx

Dijkstra in the graph over network hosts where weighted edges are defined as a function of configuration parameters and available exploits.

Why they use planning & Metric-FF anyway:

• Extensibility to more fine-grained models of exploits, socio-technical aspects, detrimental side effects.

 \approx

Dijkstra in the graph over network hosts where weighted edges are defined as a function of configuration parameters and available exploits.

Why they use planning & Metric-FF anyway:

- Extensibility to more fine-grained models of exploits, socio-technical aspects, detrimental side effects.
- Bounded sub-optimal search to suggest several solutions not just a single "optimal" one.

Simulated Pentesting at Core Security

 \approx

Dijkstra in the graph over network hosts where weighted edges are defined as a function of configuration parameters and available exploits.

Why they use planning & Metric-FF anyway:

- Extensibility to more fine-grained models of exploits, socio-technical aspects, detrimental side effects.
- Bounded sub-optimal search to suggest several solutions not just a single "optimal" one.
- Quicker & cheaper than building a proprietary solver.

000000 A	00000000	000	00000000	00000	0000000	0
Agenda]					

- What is this all about?
- 2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
- 3 Attack Graphs
- Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy
- 7 And Now?

Community: Application-oriented security.

Approach: Describe attack actions by preconditions and effects. Identify/give overview of dangerous action combinations.

Community: Application-oriented security.

Approach: Describe attack actions by preconditions and effects. Identify/give overview of dangerous action combinations.

Example model:

```
RSH_Connection_Spoofing:
    requires
                                          with
                                          TP.service is RSH:
       Trusted_Partner: TP:
       Service Active: SA:
                                          SA.service is RSH:
        . . .
                                          . . .
    provides
                                          with
       push_channel: PSC;
                                          PSC_using := RSH;
       remote_execution: REX;
                                          REX.using := RSH;
        . . .
                                          . . .
```

What? 000000	Classical 000000000	Attack Graphs 0●0	POMDPs 000000000	MDPs 00000	Taxonomy 00000000	And Now? o
Attack	Graphs in	n a Nutshe	ell, ctd.			
Brief c	overview of	variants:				

Who and When? What? Terminology	
---------------------------------	--

Who and When?	What?	Terminology
Schneier (1999); Templeton and Levitt (2000)	STRIPS actions	"attack graph" = action descriptions

Who and When?	What?	Terminology	
Schneier (1999); Templeton and Levitt (2000)	STRIPS actions	"attack graph" = action descriptions	
Ritchey and Ammann (2000)	BDD model checking	"attack graph" = state space	

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 Attack Graphs in a Nutshell, ctd.
 Attack
 Graphs
 And Now?
 O
 O
 O
 O

Who and When?	What?	Terminology
Schneier (1999); Templeton and Levitt (2000)	STRIPS actions	"attack graph" = action descriptions
Ritchey and Ammann (2000)	BDD model checking	"attack graph" = state space
Ammann <i>et al.</i> (2002)	"Attacks are monotonic!"	

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 Attack Graphs in a Nutshell, ctd.
 Attack Graphs
 Attack
 Attack
 Attack
 Attack

Who and When?	What?	Terminology
Schneier (1999); Templeton and Levitt (2000)	STRIPS actions	"attack graph" = action descriptions
Ritchey and Ammann (2000)	BDD model checking	"attack graph" = state space
Ammann <i>et al.</i> (2002)	"Attacks are monotonic!"	
Since then, e. g. Ammann <i>et al.</i> (2002); Noel <i>et al.</i> (2009)	Relaxed planning	"attack graph" = relaxed planning graph

Brief overview of variants:

Who and When?	What?	Terminology
Schneier (1999); Templeton and Levitt (2000)	STRIPS actions	"attack graph" = action descriptions
Ritchey and Ammann (2000)	BDD model checking	"attack graph" = state space
Ammann <i>et al.</i> (2002)	"Attacks are monotonic!"	
Since then, e. g. Ammann <i>et al.</i> (2002); Noel <i>et al.</i> (2009)	Relaxed planning	"attack graph" = relaxed planning graph

 \to Attack graphs \approx practical security-analysis tools based on variants of, and analyses on, relaxed planning graphs.

 \rightarrow "AI \Leftrightarrow attack graphs" community bridge could be quite useful \ldots

Jörg Hoffmann

Two major dimensions for simulated pentesting models:

- (A) Uncertainty Model: Up next.
- (B) Action Model: Degree of interaction between individual attack components.

Two major dimensions for simulated pentesting models:

- (A) Uncertainty Model: Up next.
- (B) **Action Model:** Degree of interaction between individual attack components.

Dimension (B) distinction lines:

- Explicit Network Graph: Actions = "hops from ?s to ?t". 1 positive precond, 1 positive effect. Subset of compromised hosts.
- Monotonic actions: Attacker can only gain new attack assests. Installed software, access rights, knowledge (e.g. passwords) etc.
- General actions: No restrictions (STRIPS, in simplest case). Can model detrimental side effects.

Jörg Hoffmann

Agenda)					
What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	0

- 1) What is this all about?
- 2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
- 3 Attack Graphs
- Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy

7 And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?	
000000	000000000	000	●ooooooooo	00000	00000000	0	

An Additional Assumption

Known network graph: No uncertainty about network graph topology.

Known host configurations: No uncertainty about host configurations.

Uncertainty Model, Dimension (A):

• None: Classical planning.

 \rightarrow CoreSec-Classical: Core Security's model, as seen. Assumptions (i)–(v).

• Uncertainty of action outcomes: MDPs.

 \rightarrow CoreSec-MDP: Minimal extension of CoreSec-Classical. Assumptions (ii)–(viii).

• Uncertainty of state: POMDPs.

 \rightarrow CoreSec-POMDP: Minimal extension of CoreSec-Classical. Assumptions (ii)–(vii).

Definition

A POMDP is a tuple $\langle S, A, T, O, O, b_0 \rangle$:

- ${\mathcal S}$ states, ${\mathcal A}$ actions, ${\mathcal O}$ observations.
- T(s, a, s'): probability of coming to state s' when executing action a in state s.
- O(s, a, o): probability of making observation o when executing action a in state s.
- b_0 : initial belief, probability distribution over S.

Respectively, some (possibly factored) description thereof.

Definition

A POMDP is a tuple $\langle S, A, T, O, O, b_0 \rangle$:

- ${\mathcal S}$ states, ${\mathcal A}$ actions, ${\mathcal O}$ observations.
- T(s, a, s'): probability of coming to state s' when executing action a in state s.
- O(s, a, o): probability of making observation o when executing action a in state s.
- b_0 : initial belief, probability distribution over S.

Respectively, some (possibly factored) description thereof.

 \rightarrow I'll discuss optimization objectives later on.

For now, assume observable goal states S_g , minimizing undiscounted expected cost-to-goal in a Stochastic Shortest Path (SSP) formulation.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000●00000	00000	00000000	0
The B	asic Prob	lem				

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 The Basic Idea [Sarraute et al. (2012)]

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	oooo●oooo	00000	00000000	O
States						

H0-win2000 H0-win2000-p445 H0-win2000-p445-SMB H0-win2000-p445-SMB-vuln H0-win2000-p445-SMB-agent HO-winXPsp2 HO-winXPsp2-p445 HO-winXPsp2-p445-SMB HO-winXPsp2-p445-SMB-vuln HO-winXPsp2-p445-SMB-agent

H0-win2003 H0-win2003-p445 H0-win2003-p445-SMB H0-win2003-p445-SMB-vuln H0-win2003-p445-SMB-agent terminal

"H0": the host. "winXXX": OS. "p445": is port 445 open?
"SMB": if so, SAMBA server?
"vuln": SAMBA server vulnerable?
"agent": has attacker exploited that vulnerability yet?
"terminal": attacker has given up.

Jörg Hoffmann

What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? Assumptions (vi) and (vii) And (vii) And (vii) And (vii) And (vii) And (vii)

Succeed-or-nothing: Exploits have only two possible outcomes, succeed or fail. Fail has an empty effect.

 \rightarrow Abstraction mainly regarding detrimental side effects.

 What?
 Classical
 Attack Graphs
 POMDPs
 MDPs
 Taxonomy
 And Now?

 Assumptions (vi) and (vii)
 And (vii)
 And (vii)
 And (vii)
 And (vii)
 And (vii)

Succeed-or-nothing: Exploits have only two possible outcomes, succeed or fail. Fail has an empty effect.

 \rightarrow Abstraction mainly regarding detrimental side effects.

Configuration-deterministic actions: Action outcome depends deterministically on network configuration.

 \rightarrow Abstraction only in case of more fine-grained dependencies.

Jörg Hoffmann

What? 000000	Classical 000000000	Attack Graphs 000	POMDPs oooooo●oo	MDPs 00000	Taxonomy 00000000	And Now? o
Exploi	t Actions					
Same	syntax:	(:action HP_Ope :parameters (:precondition (connecte (has_OS_ (has_OS_ (has_OS_ (has_OS_ (has_oS_ (has_ervi :effect (and (nView_Remote_E (?s - host ?t - ho (and (compromi ed ?s ?t) ?t Windows) edition ?t Profes servicepack ?t Sp version ?t WinXp itecture ?t 1386) ice ?t ovtrcd)) compromised ?t	Buffer_Overfl ist) ised ?s) sional) p2) p) (increase (ow_Exploit time) 10)))	

What? 000000	Classical 000000000	Attack Graphs 000	POMDPs 000000●00	MDPs 00000	Taxonomy 00000000	And Now? O
Exploi	t Actions					
Same	syntax:	(:action HP_Oper :parameters (:precondition (connecte (has_OS_s (has_OS_s (has_OS_s (has_OS_s) (has_acrhi (has_acrhi (has_servi :effect (and (nView_Remote_B ?s - host ?t - host (and (compromi d ?s ?t) ?t Windows) edition ?t Profess servicepack ?t Sp version ?t WinXp tecture ?t 1386) ce ?t ovtrcd)) compromised ?t)	uffer_Overfl st) sed ?s) sional) (2)) (increase (ow_Exploit time) 10)))	
bu	t with a dif	fferent semar	ntics: Consid	er $s \xrightarrow{a} s$	/	
		(1	$s \models pre(a), s'$	= appl(s)	<i>. a</i>)	

$$T(s, a, s') = \begin{cases} 1 & s \models pre(a), s = appl(s, a) \\ 1 & s \not\models pre(a), s' = s \\ 0 & \text{otherwise} \end{cases}$$
$$(1 & s \models pre(a), s' = appl(s, a), o = \text{``success''}$$

$$O(s, a, o) = \begin{cases} 1 & s \models pre(a), s' = appl(s, a), o = \text{ success} \\ 1 & s \not\models pre(a), s' = s, o = \text{``fail''} \\ 0 & \text{otherwise} \end{cases}$$

Jörg Hoffmann

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	oooooooooo	00000	00000000	O
Sensing						

Example: (:action OS_Detect

:parameters (?s - host ?t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:observe (and
 (when (has_OS ?t Windows2000) ("win"))
 (when (has_OS ?t Windows2003) ("win"))
 (when (has_OS ?t WindowsXPsp2) ("winXP"))
 (when (has_OS ?t WindowsXPsp3) ("winXP")))

Example: (:action OS_Detect :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t)) :observe (and (when (has_OS ?t Windows2000) ("win")) (when (has_OS ?t Windows2003) ("win")) (when (has_OS ?t WindowsXPsp2) ("winXP"))) (when (has_OS ?t WindowsXPsp3) ("winXP")))

Network reconnaissance also satisfies the benign assumption:

 \rightarrow Non-injective but deterministic function of configuration.

Jörg Hoffmann

So, we	're done,	right?				
What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	oooooooo●	00000	00000000	0

So, we'	're done, i	right?				
What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	oooooooo●	00000	00000000	0

Computation!

So, we're done, right?								
What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?		
000000	000000000	000	00000000	00000	00000000	0		

Computation!

But: Can use single-machine case + decomposition.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?			
000000	000000000	000	00000000●	00000	00000000	O			
So, we	So, we're done, right?								

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?			
000000	000000000	000	00000000●	00000	00000000	O			
So, we	So, we're done, right?								

But: Can use outcome of standard scanning scripts?

Jörg Hoffmann

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	o
Agend	а					

- 1) What is this all about?
- 2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
- 3 Attack Graphs
- Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy

7 And Now?

Definition

```
An MDP is a tuple \langle S, A, T, s_0 \rangle:
```

- $\bullet \ \mathcal S$ states, $\mathcal A$ actions.
- T(s, a, s'): probability of coming to state s' when executing action a in state s.
- s₀: initial state.

Respectively, some (possibly factored) description thereof.

 \rightarrow I'll discuss optimization objectives later on.

For now, assume goal states S_g , minimizing undiscounted expected cost-to-goal in a Stochastic Shortest Path (SSP) formulation.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?	
000000	000000000	000	000000000	o●ooo	00000000	O	
The Basic Idea							

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t)) :effect (and (probabilistic 0.3 (compromised ?t)) (increase (time) 10)))

Jörg Hoffmann

 \implies outcome probability $\approx P(\phi(\text{host configurations}), b_0)$

Jörg Hoffmann

Jörg Hoffmann

Simulated Penetration Testing

36/49

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	ooo●o	00000000	0
MDP	vs. POMD	P				

 \implies outcome prob $\approx P(\phi(\text{host configs}), b_0)$

 $\rightarrow b_0$ just captures the attacker's *initial knowledge*.

 \implies outcome prob $\approx P(\phi(\text{host configs}), b_0)$

 $\rightarrow b_0$ just captures the attacker's *initial knowledge*.

Hence: Inability to learn. Success probabilities develop with knowledge in the POMDP, but remain constant in the MDP.

 \implies outcome prob $\approx P(\phi(\text{host configs}), b_0)$

 $\rightarrow b_0$ just captures the attacker's *initial knowledge*.

Hence: Inability to learn. Success probabilities develop with knowledge in the POMDP, but remain constant in the MDP.

(But: Maintain flags for partial belief-tracking in the MDP?)

Jörg Hoffmann

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	oooo●	00000000	0
Assum	ption (viii))				

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t)) :effect (and (probabilistic 0.3 (compromised ?t)) (increase (time) 10)))

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	oooo●	00000000	0
Assum	ption (viii))				

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t)) :effect (and (probabilistic 0.3 (compromised ?t)) (increase (time) 10)))

 \rightarrow The probability of breaking into ?t eventually is

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	oooo●	00000000	0
Assum	ption (viii))				

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t)) :effect (and (probabilistic 0.3 (compromised ?t)) (increase (time) 10)))

 \rightarrow The probability of breaking into ?t eventually is 1.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	oooo●	00000000	0
Assum	ption (viii))				

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t)) :effect (and (probabilistic 0.3 (compromised ?t)) (increase (time) 10)))

 \rightarrow The probability of breaking into ?t eventually is 1.

This contradicts our benign assumptions (iii) and (vii).

Assume that ?t doesn't have the required configuration:

(:action HP_OpenView_Remote_Buffer_Overflow_Exploit :parameters (?s - host ?t - host) :precondition (and (compromised ?s) (connected ?s ?t)) :effect (and (probabilistic 0.3 (compromised ?t)) (increase (time) 10)))

 \rightarrow The probability of breaking into ?t eventually is 1.

This contradicts our benign assumptions (iii) and (vii). Hence:

Apply-once constraint: Allow to apply each exploit, on each target host, at most once.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	00000000	o
Agend	а					

- 1) What is this all about?
- 2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
- 3 Attack Graphs
- Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy
- 7 And Now?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	00000000	000	000000000	00000	●0000000	0

000000	000000000	000	000000000	00000	0000000	0		
Remember?								

What? 000000	Classi 0000	cal 000000	Attack Graphs 000	POMDPs N 000000000 C	/IDPs Doooo	Taxonomy ●0000000	And Now? 0
A Mo	del T	axono	omy				
odel	States	(i) (ii CoreSe	D-CHP i) (viii) ec-POMDP	Attack–Asset POMDP (i) (iii) (iv) (vi) (viii	i) (i) (Curren (Sau	ored POMDP (iii) (vii) (viii) nt POMDP Mode rraute et al. 2012)	1
Jncertainty Mc Action	Action Outcomes	Canac Prob (i) (ii Cores	lian Hacker lem (CHP) i) (viii) Sec-MDP	Attack–Asset MDP (i) (iii) (iv) (vi) –– (viii (Durkota and Lisy 2014)	Fac i) (i) ((iii) (vii) (viii)	
(A)	None	Graph (i)	Distance (v)	Delete–Relaxed Classical Planning (i) –– (iv) Attack Graphs	Clas	(i) (iii)	
		(Lucange Ex Netwo	eli et al. 2010) xplicit ork Graph	e.g. (Amman et al. 2002) Monotonic Actions	(Bo s Gen	ddy et al. 2005) eral Actions	>

(B) Action Model

Jörg Hoffmann

- (A) Uncertainty Model.
- (B) Action Model.
- (C) Optimization objective: What is the atttacker trying to achieve?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	0●000000	0
The 3	rd Dimens	sion				

- (A) Uncertainty Model.
- (B) Action Model.
- (C) Optimization objective: What is the atttacker trying to achieve?

Options:

- Finite-horizon: Ok. But: Offline problem, horizon not meaningful unless for overall attack (see below).
- Maximize discounted reward: Ok. But: Discounting unintuitive. And who's to set the rewards?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	0●000000	0
The 3	rd Dimens	sion				

- (A) Uncertainty Model.
- (B) Action Model.
- (C) Optimization objective: What is the atttacker trying to achieve?

Options:

- Finite-horizon: Ok. But: Offline problem, horizon not meaningful unless for overall attack (see below).
- Maximize discounted reward: Ok. But: Discounting unintuitive. And who's to set the rewards?
- Minimize non-discounted expected cost-to-goal (SSP): Seems good. Non-0 action costs, give-up action. **But:** Give-up cost?

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?
000000	000000000	000	000000000	00000	0●000000	0
The 3	rd Dimens	sion				

- (A) Uncertainty Model.
- (B) Action Model.
- (C) Optimization objective: What is the atttacker trying to achieve?

Options:

- Finite-horizon: Ok. But: Offline problem, horizon not meaningful unless for overall attack (see below).
- Maximize discounted reward: Ok. But: Discounting unintuitive. And who's to set the rewards?
- Minimize non-discounted expected cost-to-goal (SSP): Seems good. Non-0 action costs, give-up action. **But:** Give-up cost?
- Limited-budget goal probability maximization (MAXPROP): My favorite. Non-0 action costs, give-up action, hence finite-runs SSP. No "but" I can think of.

Jörg Hoffmann

The Interesting Sub-Classes

Jörg Hoffmann

Jörg Hoffmann

Jörg Hoffmann

What? 000000	Classical 000000000	Attack Graphs 000	POMDPs 000000000	MDPs 00000	Taxonomy 0000●000	And Now? 0
The Canadian Hacker Problem						
		exA :	Assum Actions =	ption (v): network	hops	

action-outcome uncertainty =

action-outcome uncertainty =

Jörg Hoffmann

The Canadian Hacker Problem

What?
Classical
Attack Graphs
POMDPs
MDPs
Taxonomy
And Now?

000000
000
00000000
00000
00000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
<t

The Canadian Hacker Problem

The Canadian Hacker Problem

The Canadian Hacker Problem

The Canadian Hacker Problem

Wrap-up: Variant of Canadian Traveller Problem where we "have" a monotonically growing set of nodes ("no need to drive back").

Wrap-up: Variant of Canadian Traveller Problem where we "have" a monotonically growing set of nodes ("no need to drive back").

Research Challenges/Opportunities:

Wrap-up: Variant of Canadian Traveller Problem where we "have" a monotonically growing set of nodes ("no need to drive back").

Research Challenges/Opportunities:

• 1001 CTP papers to be adapted to this

(B) Action Model →

Simulated Penetration Testing

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?	
000000	000000000	000	000000000	00000	000000●0	0	
Attack-Asset MDPs							

Definition

An Attack-Asset MDP is a tuple $\langle \mathcal{P}, \mathcal{A}, s_0, G \rangle$:

- \mathcal{P} : set of facts (Boolean state variables).
- A: set of actions a, each a tuple (pre(a), add(a), p(a), c(a)) of precondition, add list, success probability, and non-negative cost.
- s_0 : initial state; G: goal.

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?	
000000	000000000	000	000000000	00000	000000●0	0	
Attack-Asset MDPs							

Definition

An Attack-Asset MDP is a tuple $\langle \mathcal{P}, \mathcal{A}, s_0, G \rangle$:

- \mathcal{P} : set of facts (Boolean state variables).
- A: set of actions a, each a tuple (pre(a), add(a), p(a), c(a)) of precondition, add list, success probability, and non-negative cost.
- s_0 : initial state; G: goal.

The probabilistic transitions T arise from these rules:

- States: STRIPS s, available actions $A \subseteq \mathcal{A}$.
- a is applicable to (s, A) if $pre(a) \subseteq s$ and $a \in A$.

Att	Attack-Asset MDPs							
What? 0000	Classical	Attack Graphs	POMDPs 000000000	MDPs 00000	Taxonomy 000000●0	And Now? o		

Definition

An Attack-Asset MDP is a tuple $\langle \mathcal{P}, \mathcal{A}, s_0, G \rangle$:

- \mathcal{P} : set of facts (Boolean state variables).
- A: set of actions a, each a tuple (pre(a), add(a), p(a), c(a)) of precondition, add list, success probability, and non-negative cost.
- s_0 : initial state; G: goal.

The probabilistic transitions T arise from these rules:

- States: STRIPS s, available actions $A \subseteq \mathcal{A}$.
- a is applicable to (s, A) if $pre(a) \subseteq s$ and $a \in A$.
- With probability p(a) we obtain $s' = s \cup add(a)$, and with probability 1 p(a) we obtain s' = s.
- In both cases, we pay cost c(a), and remove a from A.

Jörg Hoffmann

Simulated Penetration Testing

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

Research Challenges/Opportunities:

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

Research Challenges/Opportunities: E.g. determinization.

• Only two outcomes, of which one is "nothing happens".

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

- Only two outcomes, of which one is "nothing happens".
- Every probabilistic action yields a single deterministic action.

What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? 0000000 000 000 00000000 0000 00000000 0 Attack-Asset MDPs: And Now?

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

- Only two outcomes, of which one is "nothing happens".
- Every probabilistic action yields a single deterministic action.
- These deterministic actions have no delete effects.

What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? Occorrection Occorrection Occorrection Occorrection Occorrection Occorrection Occorrection Attack-Asset MDPs: And Now? Occorrection Occorrection Occorrection Occorrection

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

- Only two outcomes, of which one is "nothing happens".
- Every probabilistic action yields a single deterministic action.
- These deterministic actions have no delete effects.
- Weak plans and determinization heuristics = standard delete relaxation heuristics.

What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? oococococo oococococo oococococo oococococo oococococo oococococo oococococo Attack-Asset MDPs: And Now? oococococo oococococo oococococo oococococo

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

- Only two outcomes, of which one is "nothing happens".
- Every probabilistic action yields a single deterministic action.
- These deterministic actions have no delete effects.
- Weak plans and determinization heuristics = standard delete relaxation heuristics.
- "Landmark action outcomes" = deterministic delete-relaxation landmarks.

What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now? Occorrectory Occorrector

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no effect in case of failure, each action at most once.

- Only two outcomes, of which one is "nothing happens".
- Every probabilistic action yields a single deterministic action.
- These deterministic actions have no delete effects.
- Weak plans and determinization heuristics = standard delete relaxation heuristics.
- "Landmark action outcomes" = deterministic delete-relaxation landmarks.
- Limited-budget goal probability maximization: landmarks reduce budget à la [Mirkis and Domshlak (2014)].

What?	Classical	Attack Graphs	POMDPs	MDPs	Taxonomy	And Now?	
000000	000000000	000	000000000	00000	00000000	○	
Agenda							

- 1) What is this all about?
- 2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]
- 3 Attack Graphs
- Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
- 5 The MDP Middle Ground
- 6 A Model Taxonomy
- 7 And Now?

 Model and algorithm design in wide space of relevant complexity/accuracy trade-offs.

 Model and algorithm design in wide space of relevant complexity/accuracy trade-offs.

(Sorry Scott - best modeled in PPDDL, at least the MDP variants.)

 Model and algorithm design in wide space of relevant complexity/accuracy trade-offs.

(Sorry Scott - best modeled in PPDDL, at least the MDP variants.)

• Diverse attacks,

 Model and algorithm design in wide space of relevant complexity/accuracy trade-offs.

(Sorry Scott - best modeled in PPDDL, at least the MDP variants.)

• Diverse attacks, meta-criteria,

 Model and algorithm design in wide space of relevant complexity/accuracy trade-offs.

(Sorry Scott - best modeled in PPDDL, at least the MDP variants.)

• Diverse attacks, meta-criteria, situation report,

 Model and algorithm design in wide space of relevant complexity/accuracy trade-offs.

(Sorry Scott - best modeled in PPDDL, at least the MDP variants.)

• Diverse attacks, meta-criteria, situation report, suggest fixes.

 Model and algorithm design in wide space of relevant complexity/accuracy trade-offs.

(Sorry Scott - best modeled in PPDDL, at least the MDP variants.)

- Diverse attacks, meta-criteria, situation report, suggest fixes.
- Ultimately, an Al-complete problem.

Jörg Hoffmann

Simulated Penetration Testing

Thanks for Your Attention!

... and enjoy the old city tour.

References I

- Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network vulnerability analysis. In ACM Conference on Computer and Communications Security, pages 217–224, 2002.
- Mark Boddy, Jonathan Gohde, Tom Haigh, and Steven Harp. Course of action generation for cyber security using classical planning. In Susanne Biundo, Karen Myers, and Kanna Rajan, editors, *Proceedings of the 15th International Conference on Automated Planning and Scheduling (ICAPS-05)*, pages 12–21, Monterey, CA, USA, 2005. Morgan Kaufmann.
- Rainer Böhme and Márk Félegyházi. Optimal information security investment with penetration testing. In *Proceedings of the 1st International Conference on Decision and Game Theory for Security (GameSec'10)*, pages 21–37, 2010.
- Tom Bylander. The computational complexity of propositional STRIPS planning. *Artificial Intelligence*, 69(1–2):165–204, 1994.
- Russell Greiner, Ryan Hayward, Magdalena Jankowska, and Michael Molloy. Finding optimal satisficing strategies for and-or trees. *Artificial Intelligence*, 170(1):19–58, 2006.

References II

- Russell Greiner. Finding optimal derivation strategies in redundant knowledge bases. *Artificial Intelligence*, 50(1):95–115, 1991.
- Jörg Hoffmann. The Metric-FF planning system: Translating "ignoring delete lists" to numeric state variables. *Journal of Artificial Intelligence Research*, 20:291–341, 2003.
- Markus Huber, Stewart Kowalski, Marcus Nohlberg, and Simon Tjoa. Towards automating social engineering using social networking sites. In *Proceedings of the* 12th IEEE International Conference on Computational Science and Engineering (CSE'09), pages 117–124. IEEE Computer Society, 2009.
- Emil Keyder and Hector Geffner. Trees of shortest paths vs. Steiner trees: Understanding and improving delete relaxation heuristics. In C. Boutilier, editor, *Proceedings of the 21st International Joint Conference on Artificial Intelligence* (*IJCAI 2009*), pages 1734–1739, Pasadena, California, USA, July 2009. Morgan Kaufmann.
- Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick Schweitzer. Foundations of attack-defense trees. In *Proceedings of the 7th International Workshop on Formal Aspects in Security and Trust (FAST'10)*, pages 80–95, 2010.

References III

- Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer. ADTool: security analysis with attack-defense trees. In *Proceedings of the 10th International Conference on Quantitative Evaluation of Systems (QEST'13)*, pages 173–176, 2013.
- Viliam Lisý and Radek Píbil. Computing optimal attack strategies using unconstrained influence diagrams. In *Pacific Asia Workshop on Intelligence and Security Informatics*, pages 38–46, 2013.
- Jorge Lucangeli, Carlos Sarraute, and Gerardo Richarte. Attack planning in the real world. In *Proceedings of the 2nd Workshop on Intelligent Security (SecArt'10)*, 2010.
- Vitaly Mirkis and Carmel Domshlak. Landmarks in oversubscription planning. In Thorsten Schaub, editor, *Proceedings of the 21st European Conference on Artificial Intelligence (ECAI'14)*, pages 633–638, Prague, Czech Republic, August 2014. IOS Press.
- Steven Noel, Matthew Elder, Sushil Jajodia, Pramod Kalapa, Scott O'Hare, and Kenneth Prole. Advances in topological vulnerability analysis. In Proceedings of the 2009 Cybersecurity Applications & Technology Conference for Homeland Security (CATCH'09), pages 124–129, 2009.

References IV

- Ronald W. Ritchey and Paul Ammann. Using model checking to analyze network vulnerabilities. In *IEEE Symposium on Security and Privacy*, pages 156–165, 2000.
- Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. POMDPs make better hackers: Accounting for uncertainty in penetration testing. In Jörg Hoffmann and Bart Selman, editors, *Proceedings of the 26th AAAI Conference on Artificial Intelligence* (AAAI'12), pages 1816–1824, Toronto, ON, Canada, July 2012. AAAI Press.
- B. Schneier. Attack trees. Dr. Dobbs Journal, 1999.
- Milind Tambe. Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, 2011.
- Steven J. Templeton and Karl E. Levitt. A requires/provides model for computer attacks. In Proceedings of the Workshop on New Security Paradigms (NSPW'00), pages 31–38, 2000.

Attack Trees

Community: Application-oriented security, some academic research.

Approach: "Graphical Security Models". Organize known possible attacks by top-down refinement over attack actions and sub-actions.

Attack Trees

Community: Application-oriented security, some academic research.

Approach: "Graphical Security Models". Organize known possible attacks by top-down refinement over attack actions and sub-actions.

On the side: Many attack tree models are equivalent to AI "formula evaluation" [e. g. Greiner (1991); Greiner *et al.* (2006)]. Apparently unnoticed by both communities; pointed out by Lisý and Píbil (2013).

Dimension (B): In Other Words

Explicit Network Graph: Actions = "hops from ?s to ?t".

Monotonic actions: Attacker can only gain new attack assests.

General actions: No restrictions.

Dimension (B): In Other Words

Explicit Network Graph: Actions = "hops from ?s to ?t".

Monotonic actions: Attacker can only gain new attack assests.

General actions: No restrictions.

 \rightarrow Note that (v) implies (iv).

Dimension (B): In Other Words

Explicit Network Graph: Actions = "hops from ?s to ?t".

Monotonic actions: Attacker can only gain new attack assests.

General actions: No restrictions.

 \rightarrow Note that (v) implies (iv). And each of (iv) and (v) implies (iii):

Dimension (B) Assumptions: Overview

Explicit Network Graph: Actions = "hops from ?s to ?t".

Relax: More general attack assets (software/passwords ...).

Monotonic actions: Attacker can only gain new attack assests.

Relax: E.g. detrimental side effects, crashing the host.

Static network: Host connections & configurations not affected.

Relax: E.g. detrimental side effects, crashing the host.

References

Game-Theoretic Models

What about modeling the defender?

Game-Theoretic Models

What about modeling the defender?

My 5 cents:

How to get realistic models? Is a network intrusion actually a game?
 → Typically mentioned, if at all, as "detection risk" as in "potential detrimental side effect of an attack action".
What about modeling the defender?

My 5 cents:

How to get realistic models? Is a network intrusion actually a game?
 → Typically mentioned, if at all, as "detection risk" as in "potential detrimental side effect of an attack action".

• GameSec series http://www.gamesec-conf.org/

What about modeling the defender?

My 5 cents:

- How to get realistic models? Is a network intrusion actually a game?
 → Typically mentioned, if at all, as "detection risk" as in "potential detrimental side effect of an attack action".
- GameSec series http://www.gamesec-conf.org/ Böhme and Félegyházi (2010) introduce a model of the entire pentesting life cycle, and prove that pentesting pays off.

What about modeling the defender?

My 5 cents:

- How to get realistic models? Is a network intrusion actually a game?
 → Typically mentioned, if at all, as "detection risk" as in "potential detrimental side effect of an attack action".
- GameSec series http://www.gamesec-conf.org/
 Böhme and Félegyházi (2010) introduce a model of the entire pentesting life cycle, and prove that pentesting pays off.
 Attack-defense trees [Kordy *et al.* (2010, 2013)].

What about modeling the defender?

My 5 cents:

- How to get realistic models? Is a network intrusion actually a game?
 → Typically mentioned, if at all, as "detection risk" as in "potential detrimental side effect of an attack action".
- GameSec series http://www.gamesec-conf.org/
 Böhme and Félegyházi (2010) introduce a model of the entire pentesting life cycle, and prove that pentesting pays off.
 Attack-defense trees [Kordy *et al.* (2010, 2013)].
- Security games (e.g. Tambe (2011)): Completely different application.