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Agenda

1 What is this all about?

2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]

3 Attack Graphs

4 Towards Accuracy: POMDP Models [Sarraute et al. (2012)]

5 The MDP Middle Ground

6 A Model Taxonomy

7 And Now?

Jörg Hoffmann Simulated Penetration Testing 2/49



What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now?

Network Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Jörg Hoffmann Simulated Penetration Testing 3/49



What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now?

Network Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Jörg Hoffmann Simulated Penetration Testing 3/49



What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now?

Network Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Jörg Hoffmann Simulated Penetration Testing 3/49



What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now?

Network Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Jörg Hoffmann Simulated Penetration Testing 3/49



What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now?

Penetration Testing (Pentesting)

Pentesting

Actively verifying network defenses by conducting an intrusion in the
same way an attacker would.

Well-established industry (roots back to the 60s).

Points out specific dangerous attacks (as opposed to vulnerability
scanners).

Pentesting tools sold by security companies, like Core Security.

→ Core IMPACT (since 2001); Immunity Canvas (since 2002);
Metasploit (since 2003).

Run security checks launching exploits.

Core IMPACT uses Metric-FF for automation since 2010.
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Automation

=⇒ Simulated Pentesting:

Make a model of the network and exploits.

Run attack planning on the model to simulate attacks.

Running the rat race ≈ update the model, go drink a coffee.
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The Turing Test++: “Hacking, not Talking!”

Ultimate vision: realistically simulate a human hacker!

Yes hacking is more technical.

However: socio-technical attacks, e. g. social network
reconnaissance.

→ Turing Test as a sub-problem of spying on people

(e. g. [Huber et
al. (2009)])

.
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Simulated Pentesting at Core Security

Core IMPACT system architecture:

PlannerPlan

PDDL Description

Actions

Initial conditions

Pentesting Framework

Exploits & Attack Modules

Attack Workspace

transform

transform

execution

→ In practice, the attack plans are being used to point out to the
security team where to look.
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Classical Planning

Definition

A STRIPS planning task is a tuple 〈P,A, s0, G〉:
P: set of facts (Boolean state variables).

A: set of actions a, each a tuple 〈pre(a), add(a), del(a), c(a)〉 of
precondition, add list, delete list, and non-negative cost.

s0: initial state; G: goal.

Definition

A STRIPS planning task’s state space is a tuple 〈S,A, T, s0, SG〉:
S: set of all states; A: actions as above.

T : state transitions (s, a, s′)

s0: initial state as above; SG: goal states.

→ Objective: Find cheapest path from s0 to (a state in) SG.
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Core Security Attack Planning PDDL

Actions: (:action HP OpenView Remote Buffer Overflow Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s)

(connected ?s ?t)
(has OS ?t Windows)
(has OS edition ?t Professional)
(has OS servicepack ?t Sp2)
(has OS version ?t WinXp)
(has architecture ?t I386)
(has service ?t ovtrcd))

:effect (and (compromised ?t) (increase (time) 10)))

Action cost:

Average execution time.

Success statistic against hosts with the same/similar observable
configuration parameters.
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Core Security Attack Planning PDDL, ctd.

Actions: (:action HP OpenView Remote Buffer Overflow Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s)

(connected ?s ?t)
(has OS ?t Windows)
(has OS edition ?t Professional)
(has OS servicepack ?t Sp2)
(has OS version ?t WinXp)
(has architecture ?t I386)
(has service ?t ovtrcd))

:effect (and (compromised ?t) (increase (time) 10)))

Initial state:

“connected” predicates: network graph.

“has *” predicates: host configurations.

One compromised host: models the internet.

Goal: Compromise one or several goal hosts.
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Remarks

History:

Planning domain “of this kind” (less IT-level, including also physical
actions like talking to somebody) first proposed by [Boddy et al.
(2005)]; used as benchmark in IPC’08 and IPC’11.

Presented encoding proposed by [Lucangeli et al. (2010)].

Used commercially by Core Security in Core INSIGHT since 2010,
running a variant of Metric-FF [Hoffmann (2003)].

Do Core Security’s customers like this?

I am told they do.

In fact, they like it so much already that Core Security is very
reluctant to invest money in making this better . . .
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Remarks

And now:

. . . some remarks about the model.
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Assumption (iii)

:precondition (and (compromised ?s)
(connected ?s ?t)
(has OS ?t Windows)
(has OS edition ?t Professional)
(has OS servicepack ?t Sp2)
(has OS version ?t WinXp)
(has architecture ?t I386)
(has service ?t ovtrcd))

:effect (and (compromised ?t) (increase (time) 10)))

→ Which of the predicates are static?

All except “compromised”.
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Assumption (iv)

(:action HP OpenView Remote Buffer Overflow Exploit
:parameters (?s - host ?t - host)
. . .
:effect (and (compromised ?t) (increase (time) 10)))

→ Are you missing something?

There are no delete effects.

The attack is monotonic (growing set of attack assets).

= delete-relaxed planning.

Metric-FF solves this once in every search state . . .

Generating an attack is polynomial-time. Generating an optimal
attack is NP-complete.
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Assumption (v)

:precondition (and (compromised ?s) (connected ?s ?t)
(has OS ?t Windows) (has OS edition ?t Professional)
(has OS servicepack ?t Sp2) (has OS version ?t WinXp)
(has architecture ?t I386) (has service ?t ovtrcd))

→ Which preconditions are not static?

Just 1: “(compromised ?s)”.

1 positive precondition, 1 positive effect.

Optimal attack planning for single goal host = Dijkstra.

Fixed # goal hosts polynomial-time [Bylander (1994)].
Scaling # goal hosts = Steiner tree [Keyder and Geffner (2009)].
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Concluding Remarks?

Simulated Pentesting at Core Security

≈

Dijkstra in the graph over network hosts where weighted edges are
defined as a function of configuration parameters and available exploits.

Why they use planning & Metric-FF anyway:

Extensibility to more fine-grained models of exploits, socio-technical
aspects, detrimental side effects.

Bounded sub-optimal search to suggest several solutions not just a
single “optimal” one.

Quicker & cheaper than building a proprietary solver.
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Attack Graphs in a Nutshell

Community: Application-oriented security.

Approach: Describe attack actions by preconditions and effects.
Identify/give overview of dangerous action combinations.

Example model:

RSH Connection Spoofing:
requires with

Trusted Partner: TP; TP.service is RSH;
Service Active: SA; SA.service is RSH;
. . . . . .

provides with
push channel: PSC; PSC using := RSH;
remote execution: REX; REX.using := RSH;
. . . . . .
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Attack Graphs in a Nutshell, ctd.

Brief overview of variants:

Who and When? What? Terminology

Schneier (1999); Templeton
and Levitt (2000)

STRIPS actions
“attack graph” =
action descriptions

Ritchey and Ammann (2000) BDD model checking
“attack graph” =
state space

Ammann et al. (2002) “Attacks are monotonic!”

Since then, e. g. Ammann et
al. (2002); Noel et al. (2009)

Relaxed planning
“attack graph” =
relaxed planning
graph

→ Attack graphs ≈ practical security-analysis tools based on variants of,
and analyses on, relaxed planning graphs.

→ “AI ⇔ attack graphs” community bridge could be quite useful . . .
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Dimension (B): Action Model

Two major dimensions for simulated pentesting models:

(A) Uncertainty Model: Up next.

(B) Action Model: Degree of interaction between individual attack
components.

Dimension (B) distinction lines:

Explicit Network Graph: Actions = “hops from ?s to ?t”.
1 positive precond, 1 positive effect. Subset of compromised hosts.

Monotonic actions: Attacker can only gain new attack assests.
Installed software, access rights, knowledge (e. g. passwords) etc.

General actions: No restrictions (STRIPS, in simplest case).
Can model detrimental side effects.
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An Additional Assumption . . .
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Assumptions (i) and (ii)

Known network graph: No uncertainty about network graph topology.

Known host configurations: No uncertainty about host configurations.
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An Overview Before We Begin . . .

Uncertainty Model, Dimension (A):

None: Classical planning.

→ CoreSec-Classical: Core Security’s model, as seen.
Assumptions (i)–(v).

Uncertainty of action outcomes: MDPs.

→ CoreSec-MDP: Minimal extension of CoreSec-Classical.
Assumptions (ii)–(viii).

Uncertainty of state: POMDPs.

→ CoreSec-POMDP: Minimal extension of CoreSec-Classical.
Assumptions (ii)–(vii).
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Partially Observable MDP (POMDP)

Definition

A POMDP is a tuple 〈S,A, T,O, O, b0〉:
S states, A actions, O observations.

T (s, a, s′): probability of coming to state s′ when executing action a
in state s.

O(s, a, o): probability of making observation o when executing
action a in state s.

b0: initial belief, probability distribution over S.

Respectively, some (possibly factored) description thereof.

→ I’ll discuss optimization objectives later on.

For now, assume observable goal states Sg, minimizing undiscounted
expected cost-to-goal in a Stochastic Shortest Path (SSP) formulation.
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The Basic Problem
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The Basic Idea [Sarraute et al. (2012)]
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States

H0-win2000

H0-win2000-p445

H0-win2000-p445-SMB

H0-win2000-p445-SMB-vuln

H0-win2000-p445-SMB-agent

H0-win2003

H0-win2003-p445

H0-win2003-p445-SMB

H0-win2003-p445-SMB-vuln

H0-win2003-p445-SMB-agent

H0-winXPsp2

H0-winXPsp2-p445

H0-winXPsp2-p445-SMB

H0-winXPsp2-p445-SMB-vuln

H0-winXPsp2-p445-SMB-agent

terminal

”H0”: the host. “winXXX”: OS. “p445”: is port 445 open?
“SMB”: if so, SAMBA server?
“vuln”: SAMBA server vulnerable?
“agent”: has attacker exploited that vulnerability yet?
“terminal”: attacker has given up.
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Assumptions (vi) and (vii)

Succeed-or-nothing: Exploits have only two possible outcomes, succeed
or fail. Fail has an empty effect.

→ Abstraction mainly regarding detrimental side effects.

Configuration-deterministic actions: Action outcome depends
deterministically on network configuration.

→ Abstraction only in case of more fine-grained dependencies.
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Exploit Actions

Same syntax: (:action HP OpenView Remote Buffer Overflow Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s)

(connected ?s ?t)
(has OS ?t Windows)
(has OS edition ?t Professional)
(has OS servicepack ?t Sp2)
(has OS version ?t WinXp)
(has architecture ?t I386)
(has service ?t ovtrcd))

:effect (and (compromised ?t) (increase (time) 10)))

. . . but with a different semantics: Consider s
a−→ s′

T (s, a, s′) =

 1 s |= pre(a), s′ = appl(s, a)
1 s 6|= pre(a), s′ = s
0 otherwise

O(s, a, o) =

 1 s |= pre(a), s′ = appl(s, a), o = “success”
1 s 6|= pre(a), s′ = s, o = “fail”
0 otherwise
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Sensing Actions

Example: (:action OS Detect
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:observe (and

(when (has OS ?t Windows2000) (“win”))
(when (has OS ?t Windows2003) (“win”))
(when (has OS ?t WindowsXPsp2) (“winXP”))
(when (has OS ?t WindowsXPsp3) (“winXP”)))

Network reconnaissance also satisfies the benign assumption:

→ Non-injective but deterministic function of configuration.
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So, we’re done, right?
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So, we’re done, right?

Computation!

But: Can use single-machine case + decomposition.
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So, we’re done, right?

Modeling!

But: Can use outcome of standard scanning scripts?
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Markov Decision Process (MDP)

Definition

An MDP is a tuple 〈S,A, T, s0〉:
S states, A actions.

T (s, a, s′): probability of coming to state s′ when executing action a
in state s.

s0: initial state.

Respectively, some (possibly factored) description thereof.

→ I’ll discuss optimization objectives later on.

For now, assume goal states Sg, minimizing undiscounted expected
cost-to-goal in a Stochastic Shortest Path (SSP) formulation.
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The Basic Idea

(:action HP OpenView Remote Buffer Overflow Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s) (connected ?s ?t)

(has OS ?t Windows)
(has OS edition ?t Professional)
(has OS servicepack ?t Sp2)
(has OS version ?t WinXp)
(has architecture ?t I386)
(has service ?t ovtrcd))

:effect (and (compromised ?t)
(increase (time) 10)))

⇓
(:action HP OpenView Remote Buffer Overflow Exploit

:parameters (?s - host ?t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:effect (and (probabilistic 0.3 (compromised ?t))

(increase (time) 10)))
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How to Obtain Action Outcome Probabilities?

=⇒ outcome occurs iff φ(host configurations)

=⇒ outcome probability ≈ P (φ(host configurations), b0)

=⇒ just need success probability as function of host configurations in b0

=⇒ Use Core Security success statistics as success probabilities.
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MDP vs. POMDP

Where did we cheat on the previous slide?

=⇒ outcome prob ≈ P (φ(host configs), b0)

→ b0 just captures the attacker’s initial knowledge.

Hence: Inability to learn. Success probabilities develop with knowledge
in the POMDP, but remain constant in the MDP.

(But: Maintain flags for partial belief-tracking in the MDP?)
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Assumption (viii)

Assume that ?t doesn’t have the required configuration:

(:action HP OpenView Remote Buffer Overflow Exploit
:parameters (?s - host ?t - host)
:precondition (and (compromised ?s) (connected ?s ?t))
:effect (and (probabilistic 0.3 (compromised ?t))

(increase (time) 10)))

→ The probability of breaking into ?t eventually is 1.

This contradicts our benign assumptions (iii) and (vii). Hence:

Apply-once constraint: Allow to apply each exploit, on each target
host, at most once.
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Agenda

1 What is this all about?

2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]

3 Attack Graphs

4 Towards Accuracy: POMDP Models [Sarraute et al. (2012)]

5 The MDP Middle Ground

6 A Model Taxonomy

7 And Now?
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A Model Taxonomy

(Lucangeli et al. 2010)

CoreSec−Classical
e.g. (Amman et al. 2002)

Attack Graphs
(Boddy et al. 2005)

CyberSecurity

Current POMDP Model
(Sarraute et al. 2012)

CoreSec−MDP (Durkota and Lisy 2014)

CoreSec−POMDP

PO−CHP
Attack−Asset

POMDP

Attack−Asset
MDPProblem (CHP)

Canadian Hacker

Factored POMDP

Factored MDP

Classical Planning
Classical Planning
Delete−Relaxed

Graph Distance

(i) −− (v) (i) −− (iv)

(i) (iii) (vii) (viii)(i) (iii) −− (viii)

(i) (iii) −− (viii)
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Network Graph
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(i) −− (iii)
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The 3rd Dimension

Three major dimensions for simulated pentesting models:

(A) Uncertainty Model.

(B) Action Model.

(C) Optimization objective: What is the atttacker trying to achieve?

Options:

Finite-horizon: Ok. But: Offline problem, horizon not meaningful
unless for overall attack (see below).

Maximize discounted reward: Ok. But: Discounting unintuitive.
And who’s to set the rewards?

Minimize non-discounted expected cost-to-goal (SSP): Seems good.
Non-0 action costs, give-up action. But: Give-up cost?

Limited-budget goal probability maximization (MAXPROP): My
favorite. Non-0 action costs, give-up action, hence finite-runs SSP.
No “but” I can think of.
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The Interesting Sub-Classes

CoreSec−MDP (Durkota and Lisy 2014)
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We Start With:

CoreSec−MDP

Problem (CHP)
Canadian Hacker

(i) (iii) −− (viii)
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The Canadian Traveller Problem
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The Canadian Hacker Problem

+

action-outcome uncertainty =
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The Canadian Hacker Problem: And Now?

Wrap-up: Variant of Canadian Traveller Problem where we “have” a
monotonically growing set of nodes (“no need to drive back”).

Research Challenges/Opportunities:

1001 CTP papers to be adapted to this . . .
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Attack-Asset MDPs

(Durkota and Lisy 2014)

Attack−Asset
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(B) Action Model
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Attack-Asset MDPs

Definition

An Attack-Asset MDP is a tuple 〈P,A, s0, G〉:
P: set of facts (Boolean state variables).

A: set of actions a, each a tuple 〈pre(a), add(a), p(a), c(a)〉 of
precondition, add list, success probability, and non-negative cost.

s0: initial state; G: goal.

The probabilistic transitions T arise from these rules:

States: STRIPS s, available actions A ⊆ A.

a is applicable to (s,A) if pre(a) ⊆ s and a ∈ A.

With probability p(a) we obtain s′ = s ∪ add(a), and with
probability 1− p(a) we obtain s′ = s.

In both cases, we pay cost c(a), and remove a from A.
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Attack-Asset MDPs: And Now?

Wrap-up: Probabilistic delete-free STRIPS with success probabilities, no
effect in case of failure, each action at most once.

Research Challenges/Opportunities: E.g. determinization.

Only two outcomes, of which one is “nothing happens”.

Every probabilistic action yields a single deterministic action.

These deterministic actions have no delete effects.

Weak plans and determinization heuristics = standard delete
relaxation heuristics.

“Landmark action outcomes” = deterministic delete-relaxation
landmarks.

Limited-budget goal probability maximization: landmarks reduce
budget à la [Mirkis and Domshlak (2014)].
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budget à la [Mirkis and Domshlak (2014)].

Jörg Hoffmann Simulated Penetration Testing 47/49



What? Classical Attack Graphs POMDPs MDPs Taxonomy And Now?
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1 What is this all about?

2 Classical Planning: The Core Security Model [Lucangeli et al. (2010)]

3 Attack Graphs

4 Towards Accuracy: POMDP Models [Sarraute et al. (2012)]
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6 A Model Taxonomy

7 And Now?
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An AI (Sequential Decision Making) Challenge

Realistically simulate a human hacker!

Model and algorithm design in wide space of relevant
complexity/accuracy trade-offs.

(Sorry Scott – best modeled in PPDDL, at least the MDP variants.)

Diverse attacks, meta-criteria, situation report, suggest fixes.

Ultimately, an AI-complete problem.
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References

Thanks for Your Attention!

. . . and enjoy the old city tour.
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attacks by top-down refinement over attack actions and sub-actions.

On the side: Many attack tree models are equivalent to AI “formula
evaluation” [e. g. Greiner (1991); Greiner et al. (2006)]. Apparently
unnoticed by both communities; pointed out by Lisý and Ṕıbil (2013).
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References

Dimension (B): In Other Words

Explicit Network Graph: Actions = “hops from ?s to ?t”.

Monotonic actions: Attacker can only gain new attack assests.

General actions: No restrictions.

→ Note that (v) implies (iv). And each of (iv) and (v) implies (iii):
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Dimension (B) Assumptions: Overview

Explicit Network Graph: Actions = “hops from ?s to ?t”.

Relax: More general attack assets (software/passwords . . . ).

Monotonic actions: Attacker can only gain new attack assests.

Relax: E.g. detrimental side effects, crashing the host.

Static network: Host connections & configurations not affected.

Relax: E.g. detrimental side effects, crashing the host.
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Game-Theoretic Models

What about modeling the defender?

My 5 cents:

How to get realistic models? Is a network intrusion actually a game?
→ Typically mentioned, if at all, as “detection risk” as in “potential
detrimental side effect of an attack action”.

GameSec series http://www.gamesec-conf.org/

Böhme and Félegyházi (2010) introduce a model of the entire
pentesting life cycle, and prove that pentesting pays off.
Attack-defense trees [Kordy et al. (2010, 2013)].

Security games (e. g. Tambe (2011)): Completely different
application.

http://www.gamesec-conf.org/
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