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Abstract
Abstraction is a common method to compute lower bounds
in classical planning, imposing an equivalence relation on the
state space and deriving the lower bound from the quotient
system. It is a trivial and well-known fact that refined ab-
stractions can only improve the lower bound. Thus, when we
embarked on applying the same technique in the probabilis-
tic setting, our firm belief was to find the same behavior there.
We were wrong. Indeed, there are cases where every direct re-
finement step (splitting one equivalence class into two) yields
strictly worse bounds. We give a comprehensive account of
the issues involved, for two wide-spread methods to define
and use abstract MDPs.

Introduction
In classical planning, an abstraction is a mapping α from the
set of all states into a smaller set of abstract states ([s]α de-
noting the set of states t where α(t) = α(s)). This is used
to derive a lower bound hα(s) on the remaining cost of any
state s. Namely, α induces an abstract planning problem
over the abstract state space: (i) an abstract state [s]α is a
goal iff it contains at least one original goal state, and (ii)
a transition from [s]α to [s′]α exists iff there exist t ∈ [s]α
and t′ ∈ [s′]α so that the original state space has a tran-
sition from t to t′. The abstract planning problem is a re-
laxed version of the original one –or, conversely, the orig-
inal problem is more constrained– so that, given a state s,
the cost of an abstract plan starting from [s]α is at most
equal to the cost of a plan starting from s, and can thus be
used as a lower bound hα(s). Prominent examples of this
method are pattern databases (Edelkamp 2001; Haslum et al.
2007) and merge-and-shrink abstractions (Helmert, Haslum,
and Hoffmann 2007; Nissim, Hoffmann, and Helmert 2011;
Katz, Hoffmann, and Helmert 2012).

A refinement of α is an abstraction α′ resulting from α
by splitting some of the block states, i.e., for all s we have
[s]α′ ⊆ [s]α. It is commonplace that refinements can only
improve the heuristic, i.e., hα(s) ≤ hα

′
(s) for all s: If we

split block states apart, then the solution paths can only get
longer and thus more costly (assuming non-negative costs
as usual). Indeed, this observation is so simple that, to our
knowledge, no-one yet bothered to state it in a paper and its
first appearance is in Malte Helmert’s 2010 lecture slides.1

1http://www.informatik.uni-freiburg.de/

Our initial agenda in this research was to solve MDPs
using heuristic search methods like LRTDP (Bonet and
Geffner 2003), our focus being to compute heuristic func-
tions by starting with a coarse abstraction and iteratively
refining it. Against the background described above, as a
warm-up exercise we embarked on proving that the essential
property of refinements – they can only improve the heuris-
tic – is true in that setting as well. Which was all fine, except
we ended up proving the opposite.

First things first, to conduct this kind of research for
MDPs one needs to first define what the “quotient system”
and the corresponding heuristic functions are. This is non-
trivial because, in difference to the classical case where all
we are interested in is which states can transition to which
other states in principle, now we need to define transition
probabilities for the abstract MDP. To illustrate, if action a
maps s into a state from [s′]α with probability 0.9, but maps
t ∈ [s]α into a state from [s′]α with probability 0.1, which
probability should we assign for a to map [s]α into [s′]α?

A simple answer is to assign the average probability over
all states in [s]α. In the example, this would yield the tran-
sition probability 0.5. A main issue with this approach is
that the resulting heuristic function – the value function of
the abstract MDP – is neither a lower bound nor an upper
bound on the value function of the original MDP. Givan et
al. (2000) fix this by basically considering intervals of tran-
sition probabilities (in the example, the interval [0.1, 0.9]).
They derive a lower bound on the original value function
(expected reward) by selecting the probabilities pessimisti-
cally, and derive an upper bound of the original value func-
tion by selecting the probabilities optimistically.

We first proved that, for the average-probability approach,
there exist an MDP, a state s, an abstraction α, and refined α′
so that the error of hα

′
(s) relative to the original value func-

tion is larger than that of hα(s). This may be duly under-
stood as an accident pertaining to the sketchy nature of this
approach; indeed, as we show, the original MDP does not
have to be non-deterministic to provoke this kind of behav-
ior. However, we next proceeded to prove the same property
for Givan et al.’s approach. Worse, even: We constructed
an MDP, a state s, and α so that all direct refinements α′
(resulting from α by splitting a single block state) result in
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strictly worse bounds. More naturally than for the average-
probability approach, non-determinism is required for this,
i.e., if the original MDP is deterministic then every refine-
ment results in better bounds.

In the remainder of the paper, we first give the necessary
background definitions. We then explain our results in the
order described above.

Markov Decision Processes and Abstractions
Markov Decision Processes (MDPs) are a general frame-
work for modeling decision-making problems in stochastic
environments. We define an MDP as follows
Definition 1. A Markov Decision Process is given by a (fi-
nite) state space S, a (finite) action space A, a reward func-
tion R : S × A → R and transition probabilities p(s, a, s′)
which determine the probabilities of transition when per-
forming action a in state s.

A deterministic policy π : S → A assigns an action to
each state, and we are looking for the optimal policy π∗,
i.e., one that maximizes for all s ∈ S the return

V π(s) = Eπ

[ ∞∑
t=0

γtRt|s0 = s

]
,

where γ is the discount rate taken in [0, 1).
The related value V ∗ is the unique solution of the equation

V ∗ = TV ∗ where T is the Bellman operator defined as :

∀s, V ∗(s) = TV ∗(s)

= max
a

R(s, a) + γ
∑
s′∈S

p(s, a, s′)V ∗(s′).

Determining π∗ may be infeasible in MDPs with large state
spaces. In this paper we simplify the problem by employing
state abstractions. Abstractions provide a smaller represen-
tation Mα of the original MDP M . The image of M un-
der an abstraction α is defined on a state space Sα smaller
than S. Indeed Sα is a partition of S consisting of block
states [s]α. We assign to each block-state, given an action
a ∈ A, the reward R([s]α, a) and the transition probabilities
p([s]α, a, [s1]α) for all [s1]α ∈ Sα . The useful abstrac-
tions are the ones that induce a small error of approximation
when considering Mα instead of M . We would like to iden-
tify such abstractions by comparing a given abstraction to its
(direct) refinement, in terms of approximation error.

Abstractions’ Refinement
Definition 2. Let α and α′ be two abstractions of an MDP
M . We say that α′ is finer than α, denoted α′ � α, iff for
any states s, s′ ∈ S, α′(s) = α′(s′) implies α(s) = α(s′).
We can also say that α is coarser than α′, denoted α � α′.

We have α′ a direct refinement of α if there exist states
s1, s2 ∈ S such that [s1]α = [s2]α, [s1]α′ 6= [s2]α′ , [s1]α =
[s1]α′ ∪ [s2]α′ , and α′(s) = α(s) for all s ∈ S \ [s1]α.

We show in what follows that the error induced by α’ may
in some cases be higher than the one induced by α. But be-
fore that we have first to specify the parameters (rewards and
transition probabilities) related to the abstract representation
Mα of M .

Average MDPs
We consider in this section the abstraction α that connects
an MDP M to its average representation. In other words,
α maps an MDP M defined on S to an average MDP Mα,
defined on Sα, and admits as parameters, the averages of
rewards and transitions over all states contained in the block
state [s]α ((Ortner 2011)), i.e., we have for all a ∈ A:

R([s]α, a) =
1

|[s]α|
∑

s1∈[s]α

R(s1, a) and

p([s]α, a, [s
′]α) =

1

|[s]α|
∑

s1∈[s]α

∑
s2∈[s′]α

p(s1, a, s2).

We denote here by |[s]α| the cardinal of all states in [s]α.
We choose as approximation error Eα, the average error,

estimated by taking the average difference between the true
value V taken in a state s and the value Vα of its correspond-
ing block state [s]α,

Eα =
1

|S|
∑
s∈S
|Vα([s]α)− V (s)|.

This approximation error may increase when we refine the
abstraction α. We illustrate in Figure 1 an example in which
the number of states where the (local) error increases-after
a refinement-is greater than the one where the (local) error
decreases, causing the increase of the average error.
Proposition 1. There exists a deterministic MDPM , an ab-
straction α and a refinement α′ of α such that Eα < Eα′ .

Proof. Consider the MDPM in Figure 1 with a single action
{a} and a discount rate γ = 1 (the result would not change
for γ < 1 but close enough to 1). The states in {2, ..., k}
(k > 2) are similar: they admit the same rewards (R = 0)
and have the same dynamics : they reach the neighboring
state with probability one. The states in {k + 1, ..., n} are
also similar: they all reach the goal G with probability one
and they admit a non-negative reward R2. The state 1 ad-
mits a reward R(1) = R1 � R2 and reaches the goal with
probability one.

Taking V (G) = 0, we then have V (1) = R1, and V (i) =
R2 forall i in {2, ..., n}.

Based on those similarities one can construct a perfectly
suitable abstraction α0 (Eα0

= 0) which aggregates sim-
ilar states in the same block, i.e., in our case α0 : S →
1, {2, ..., k}, {k + 1, ..., n}, G.

Consider now the abstraction α1 : S → {1, ..., k}, {k +
1, ..., n}, G, where the states 1 and {2, ..., k} are in the same
block (Figure 1). The similarity will be then broken resulting
in a strictly positive error Eα. The related values are

Vα1
({k + 1, ..., n}) =

(n− k)R2

n− k
= R2 and

Vα1
({1, ..., k}) =

R1

k
+
k − 2

k
Vα1

({1, ..., k})+

1

k
Vα1({k + 1, ..., n})

=
R1 +R2

2
6= R2.



And the induced error is

Eα1
=

1

n

k∑
i=1

|V (i)− Vα1
({1, ..., k})| ∼ kR2

2n
for R1 � R2.

Let α2 : S → {1, ..., n}, G be the abstraction which
aggregates states 1, 2, ..., n together (Figure 1), the value
Vα2({1, ..., n}) is equal to

Vα2({1, ..., n}) =
R1 + (n− k)R2

n
+
k − 1

n
Vα2({1, ..., n})

∼ R2 for k � n

and hence

Eα2
∼ 1

n
|V (1)− Vα2

({1, ..., n})| ∼ 1

n
R2.

We can see that the error Eα1
is strictly larger than Eα2

for
a number of states k strictly greater than 2.

1 2 . . . k k + 1 . . . n− 1 n G
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k
)
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k
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Figure 1: From the top to the bottom: The MDP M , the
abstraction α1 and the abstraction α2 (α0 is not shown). The
parentheses denote the reward (on the left) and the transition
probabilities (on the right).

Bounded-parameter MDPs
Rather than approaching V ∗ with fixed values Vα, it is possi-
ble to establish bounds on the MDP’s parameters so as to get
bounds on V ∗. So we considered the abstraction α that as-
sociates, for each (action) a in A, each block state [s]α with

the intervals’ parameters ((Givan, Leach, and Dean 2000)):

Rl([s]α, a) =[ min
s∈[s]α

R(s, a), max
s∈[s]α

R(s, a)]

pl([s]α, a, [s
′]α) =[ min

s1∈[s]α

∑
s2∈[s′]α

p(s1, a, s2),

max
s1∈[s]α

∑
s2∈[s′]α

p(s1, a, s2)].

We get hence what we call a a bounded parameter
Markov Decision process (BMDP) more commonly defined
as:
Definition 3. A Bounded parameter Markov Decision Pro-
cess is given by a (finite) state space Σ, a (finite) action
space A, an interval of rewards Rl(σ, a), ∀σ ∈ Σ, a ∈
A, and an interval of transition probabilities pl(σ, a, σ′),
∀σ, σ′ ∈ Σ, a ∈ A.

Each state of the BMDP has a range of values depending
on R and p. We can assign to each state a closed interval of
value functions [V −(σ), V +(σ)] where V − corresponds to
the pessimistic bound and V + to the optimistic one.

Our abstract representation Mα is then a BMDP where
the state space Σ coincides with state space Sα. We would
like to estimate the value bounds V +

α ans V −α related to Mα.
Givan et al. have proposed an algorithm, the interval value
iteration IVI, to do so. To make explicit the two Bellman’s
operators hidden behind this algorithm (T+ and T−), we
first need to introduce the notion of compatibility with re-
spect to an abstraction.
Definition 4. An MDPN is compatible withM with respect
to the abstraction α if for all s, and for all a, RN (s, a) ∈
R
l
M ([s]α, a) and for all s, s′, a,

∑
s1∈[s′]α pN (s, a, s1) ∈

p
l
M ([s]α, a, [s

′]α).
The set of all MDPs compatible with M with respect to α is
denoted [M ]α.

Figure 2 gives an example of an MDP N compatible with
an MDP M with respect to the abstraction α : 1, 2, 3 →
{1, 2}, 3.

We claim that the Bellman operators T+ and T− used to
estimate V +

α and V −α can be written in this way, for all s:

T+[V ](s) = max
a∈A

max
N∈[M ]α

RN (s, a) + γ
∑
s′∈S

pN (s, a, s′)V (s′),

T−[V ](s) = max
a∈A

min
N∈[M ]α

RN (s, a) + γ
∑
s′∈S

pN (s, a, s′)V (s′).

By taking iteratively the max (resp the min) on the set of
compatible MDPs and by choosing the optimal policy, we
can see that those two operators converge to fixed values.
Indeed T+ and T− are γ-contracting so, by the Banach
fixed point Theorem, they admit unique fixed points V +

α
and V −α (which are constant per block), i.e., T+V +

α = V +
α

and T−V −α = V −α . There exists an optimistic MDP Mopt

(respectively a pessimistic MDP Mpes) and a correspond-
ing optimal (optimistic) policy πopt (respectively an optimal
(pessimistic) policy πpes) for which the value V +

α (resp V −α )
is reached. The MDPs Mopt and Mpes belong to [M ]α.
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Figure 2: From left to right, the MDP M , the BMDP Mα,
α : 1, 2, 3 → {1, 2}, 3 and the MDP N compatible with M
with respect to α.The parenthesis denote the reward (on the
left) and the transitions (on the right).

Before proceeding to the next step –the choice of the ab-
straction that would ensure better bounds–, we first show
that these values are indeed bounds on V ∗. This is precisely
what is stated in this following theorem.

Theorem 1. (Givan, Leach, and Dean 1997) For any MDP
M and abstraction α of the states of M , bounds on the
BMDP Mα apply also to M , i.e., ∀s ∈ S, V ∗(s) ∈
[V −α ([s]α), V +

α ([s]α)].

Proof. 2 The proof is done using Value Iteration. With initial
value V 0 = V +

α we have, for all s,

V 1(s) = max
a

RM (s, a) + γ
∑
s′∈S

pM (s, a, s′)V +
α ([s′]α).

Since V +
α is a fixed point of T+ and M ∈ [M ]α, we can see

that

V 1(s) ≤ max
a∈A

max
N∈[M ]α

RN (s, a) + γ
∑
s′∈S

pN (s, a, s′)V +
α ([s′]α)

≤ V +
α ([s]α) = V 0(s).

The Bellman operator T is monotone, so that we have
TnV 1 ≤ TnV 0 = V 0. By taking the limit, we get
V ∗(s) ≤ V +

α ([s]α). A similar proof may be applied to the
pessimistic bound.

2This proof does not appear in (Givan, Leach, and Dean 1997)
but it has been established thanks to a correspondence with R. Gi-
van.

Value Bounds using finer abstractions
As previously done for the average model, we will compare
the two errors Gα and Gα′ induced by the BMDP Mα and
its direct refinement Mα′ , where, for an abstraction α, Gα
measures the gap between the two bounds in each state, for
all s:

Gα(s) =
(
V +
α ([s]α)− V −α ([s]α)

)
.

The proposition below states a sufficient condition under
which the finer abstractionα′ yields better value bounds than
α and therefore decreases the error Gα. Indeed, if the set of
MDPs compatible with M with respect to the finer abstrac-
tion are also compatible with M with respect to the coarser
abstraction, then we get the inclusion of the value function
intervals.
Proposition 2. Given an MDP M and two abstractions α
and α′ s.t. α′ � α and [M ]α′ ⊆ [M ]α then, for all s ∈ S,

[V −α′ ([s]α′), V
+
α′ ([s]α′)] ⊆ [V −α ([s]α), V +

α ([s]α)].

Proof. Value Bounds computation can be considered as a
case of an alternating two players stochastic game where one
choose the optimal policy while the other choose the optimal
MDP. For the upper bound, we can then invert the two max
in the Bellman operators’ expressions ((Givan, Leach, and
Dean 2000)). This would not change the final result, so we
have

V +
α ([s]α) = max

N∈[M ]α
V ∗N (s).

For the lower bound, more detailed arguments have been
established in (Bertsekas and Tsitsiklis 1996) to set the in-
version of the max and the min terms, so we get:

V −α ([s]α) = min
N∈[M ]α

V ∗N (s).

Given that [M ]α′ is included in [M ]α, then by taking the
max, (respectively the min) the result follows.

We will study next two cases : the deterministic case,
where the sufficient condition is always satisfied, and the
stochastic case, where it is not necessarily satisfied, for
which we will give an example.

Deterministic case: probabilities in {0, 1}
Corollary 1. If we consider a deterministic MDP and two
abstractions α and α′, where α′ is a direct refinement of α,
then for all s ∈ S,

[V −α′ ([s]α′), V
+
α′ ([s]α′)] ⊆ [V −α ([s]α), V +

α ([s]α)].

Proof. Let us consider an MDP N compatible with M un-
der α′. We will show that the sufficient condition of Propo-
sition 2 is satisfied: N is also compatible with M under
α. Note that having N compatible with M with respect
to an abstraction α, according to Definition 4, is equivalent
to having the inclusion of the parameter intervals i.e., for
all s, and for all a, RlN ([s]α, a) ⊆ R

l
M ([s]α, a) and for all

s, s′, a, plN ([s]α, a, [s
′]α) ⊆ p

l
M ([s]α, a, [s

′]α). Let [s1]α be
the state block in Sα that we split into two blocks [s2]α′ and
[s3]α′ (i.e., we have [s2]α′ ∪ [s3]α′ = [s1]α). It is easy to



check the inclusion of reward intervals under α as for each
action a:

min
s∈[s1]α

RN (s, a) = min( min
s∈[s2]α′

RN (s, a), min
s∈[s3]α′

RN (s, a)).

Also, using the α′ compatibility hypothesis we have

min
s∈[si]α′

RN (s, a) ≥ min
s∈[si]α′

RM (s, a) for i in {2, 3}

then
min
s∈[s1]α

RN (s, a) ≥ min
s∈[s1]α

RM (s, a).

By reasoning in a similar way for the upper bound, we get
the inclusion of the reward intervals. The same arguments
may be employed to state the inclusion of outgoing transi-
tion probabilities p([s1]α, a, [s4]α) for all s4 in S and a inA.
So we will mainly focus on ingoing transition probabilities
p([s5]α, a, [s1]α) for all s5 in S and we will show that

min pN ([s5]α, a, [s1]α) ≥ min pM ([s5]α, a, [s1]α). (1)

Since we work in a deterministic environment, probabili-
ties can only take the values 0 or 1. For the case where
min pN ([s5]α, a, [s1]α) = 1, inequality (1) is always veri-
fied. Now, min pN ([s5]α, a, [s1]α) = 0 implies that there
exist a state s′ in [s5]α and a block state [s6]α distinct from
[s1]α such that pN (s′, a, [s6]α) = 1. So we can find a state
s′′ in [s5]α such that pM (s′′, a, [s6]α) = 1 as N is compat-
ible with M under α′. We then have Equation (1) and by
Proposition 2 the final result follows.

Stochastic case We would like to have an equivalent of
Proposition 2 for the stochastic case but it turns out that in
general the sufficient condition is no more fulfilled. In fact
when we move to stochastic transitions, the sufficient condi-
tion in Proposition 2 becomes harder to satisfy. The success-
ful MDP M has to verify specific conditions that depend on
the choice of the abstractions α and α′. In other words, given
an MDP M and an abstraction α there does not always ex-
ists a refined abstraction α′ such that the sufficient condition
is satisfied. Figure 3 shows a model of MDP in which we
can not find the appropriate direct refinement α′.Three states
which admit the same rewards R(1) = R(2) = R(3) = 1
and behave identically in the block {1, 2, 3} (the same prob-
abilities in regards to the block {1, 2, 3}, p(1, {1, 2, 3}) =
p(2, {1, 2, 3}) = p(3, {1, 2, 3}) = 0.7). States 4 and 5 are
goal states (V (4) = V (5) = 0). We can find an MDP
N compatible with M with respect to the abstraction α′

(S → {1, 2}, 3, 4, 5) but not compatible with M with re-
spect to the abstraction α (S → {1, 2}, 3, 4, 5). It suffices to
take an MDP N whose parameter intervals are included in
M ’s parameter intervals under α′ but admits real intervals
rather than fixed real values under α.

The condition stated in Proposition 2 is a sufficient con-
dition, we can not a priori conclude about the existence of a
refinement that would make the error of approximation de-
crease. Nevertheless, we have identified models of MDPs
where every direct refinement strictly increases the error.

Proposition 3. There exists an MDP M and an abstraction
α such that, for any direct refinement α′ of α, we have: (1)
for all s in S, Gα′(s) ≥ Gα(s), and (2) there exists s in S
where Gα′(s) > Gα(s).

Proof. The MDP shown in Figure 3 is an example of such a
model. The value Vα({1, 2, 3}) related to the block {1, 2, 3}
is a perfect heuristic for the states 1, 2 and 3. In fact
we can see (for γ = 1), using Theorem 1, that the opti-
mistic and pessimistic bounds coincide: V −α ({1, 2, 3}) =
V +
α ({1, 2, 3}) = V (1) = V (2) = V (3) = 3.33. If we re-

fine the block {1, 2, 3} by splitting the block {1, 2, 3} into
{1, 2} and {3}, then the error of approximation will strictly
increase and we will obtain an interval of values rather than a
precise value given by the coarser abstraction (we got those
values by using Givan et al.’s algorithm). The approximation
error Gα equals to 0 for all the states while the approxima-
tion error Gα′ is:

Gα′(1) = Gα′(2) ' 1 > 0 = Gα(1) = Gα(2) and
Gα′(3) ' 1 > Gα(3) = 0.

Only one of all the possible refinements is detailed here
but the same happens for the two other direct refinements:

• For the abstraction

α′ : 1, 2, 3, 4, 5→ {1, 3}, {2}, {4}, {5}

we have V ±α′ ({1, 3}) = [2.5, 4.78] and V ±α′ ({2}) =
[2.75, 4.34].
• For the abstraction

α′ : 1, 2, 3, 4, 5→ {1}, {2, 3}, {4}, {5}

we have V ±α′ ({2, 3}) = [2.25, 5.29] and V ±α′ ({1}) =
[2.9, 4.11].

We can even have a model inspired from the one above
where the error strictly increases in each state. Indeed by
taking γ = 0.9 and by changing the transition probabilities
in the initial model M to p(4, 4) = p(5, 5) = 0.9 and
p(4, 1) = p(5, 1) = 0.1 (we keep the same rewards
R(4) = R(5) = 0), we can see that the gap Gα′ is strictly
higher than Gα = 0 for each direct refinement α′.

Related Work
Our work shows the limitations of some abstractions (state
abstractions) in which refining an abstraction may increase
the approximation error. This has already been observed
in (Waugh et al. 2009) in the case of an i-player poker
game (i greater than 2). They looked at the exploitabil-
ity3 of each player’s strategy with respect to each abstraction
and they showed that it may increase while considering finer
card abstractions. The same phenomenon has been observed

3The exploitability is a metric connected to the Nash equilib-
rium strategy. It is equal to 0 in the case of a two-player extensive
game.



when they considered betting abstractions – by restricting
the number of betting options in each sequence of the game.
Lately another example about ”action abstractions” patholo-
gies has been provided in (Sandholm and Singh 2012).

It is important to notice here that, contrary to what has
been done in those works, this paper deals with single action
and player models. This suggests that, in some abstractions,
notably BMDP abstraction, stochasticity alone can explain
this pathological behavior, and that we do not need to con-
sider the more general case of two-player game: the issues
appear even in the case of a one-player game (MDP). In-
deed, our counter-examples do not even contain any actual
action choice, thus identifying this kind of pathology in a
very canonical framework.

Interestingly, Kattenbelt et al. (2010) introduce a vari-
ant of abstraction for MDPs that, according to their results,
does not exhibit said pathology: Every abstraction refine-
ment step results in an improved bound. An interesting open
question is how exactly their framework relates to BMDP
abstraction.

Conclusions
Somewhat surprisingly, refining an abstraction does not
guarantee, in the MDP setting, a refined, i.e., better, approx-
imation of the value function. From a practical perspective,
this observation might be reasonably classified as “odd but
not crucial” – the loss of this guarantee is not per se an argu-
ment against trying to apply abstraction techniques for the
computation of heuristic functions, as known from classical
planning. The observation might be relevant to the practical
effectiveness of such methods, where paying a higher price
for the abstraction may result in less accuracy. But it remains
to be seen whether that is of practical importance.

From a theoretical perspective, we believe that our obser-
vations could be of importance for a better understanding
of the methods involved. In that regard, our investigation is
but a small start into the subject matter. In particular, our vi-
sion was and is to identify sufficient criteria, in the bounded-
parameter MDP setting, for the error to not increase. If such
a criterion is efficiently testable, or can at least be reasonably
well approximated, then it could serve as a well-informed
guidance during the abstraction refinement process. For the
moment, we don’t know how such a criterion could be de-
signed. An interesting observation in this context is that
our counter-example refines an abstraction that already is a
bisimulation.4 Does that tell us something about the general
case? Another question is whether increasing the “extent”
of the per-step refinement helps (instead of splitting a sin-
gle block-state, split 2, 3, . . . block-states). Does there exist
a non-trivial method (not refining all the way to the original
MDP) that guarantees, for any MDP and abstraction thereof,
the existence of a refinement step reducing the error? And

4If we aggregate the states 4 and 5 together, in the abstract rep-
resentation α, we get a bisimulation: all the states behave sim-
ilarly in regards to each block of the partition {1, 2, 3}, {4, 5}.
We have R(1) = R(2) = R(3) = 1, p(1, {1, 2, 3}) =
p(2, {1, 2, 3}) = p(3, {1, 2, 3}) = 0.7 and p(1, {4, 5}) =
p(2, {4, 5}) = p(3, {4, 5}) = 0.3, states 4 and 5 are goal states.
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Figure 3: From top to bottom: the MDP M , the abstrac-
tion α′, the abstraction α.Edges are annotated with transi-
tion probabilities. The reward is: R(1) = R(2) = R(3) =
1(= R({1, 2}) = R({1, 2, 3})), and R(4) = R(5) = 0.



can that method be made practical? We believe these are
interesting questions for future research, and hope other re-
searchers might join us in exploring them.
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