
Catching Label Subsets for Relaxed Bisimulation:
An Abstraction Refinement Approach

Marcel Steinmetz
Saarland University

Saarbrücken, Germany
s9mrstei@stud.uni-saarland.de

Jörg Hoffmann and Michael Katz
Saarland University

Saarbrücken, Germany
{hoffmann, katz}@cs.uni-saarland.de

Abstract
Merge-and-Shrink abstraction (M&S) is an approach for con-
structing admissible heuristic functions. A key issue in M&S
abstractions is which states are mapped to the same abstract
state: That decision directly controls the trade-off between the
accuracy of the resulting heuristic function on the one hand,
and the size of the abstract state space on the other hand. A
recent approach towards tackling this issue introduced the no-
tion of K-catching bisimulation. This class of abstractions is
a bisimulation – preserving transition behavior exactly – but
only for a subset K of the planning operators, ignoring all
others. It has been shown that this form of relaxed bisimu-
lation is invariant over the M&S process, and that choosing
K appropriately may reduce abstraction size exponentially
while still delivering a perfect heuristic. Determining those
exact operator subsets K is, however, highly intractable, and
practical approximations so far did not yield convincing re-
sults. Thus the question remains: How to select K?
We propose to answer that question by a counter-example
guided abstraction refinement (CEGAR) approach. Given a
K-catching bisimulation, we analyze its optimal solutions
and identify new operators to be added to K, ultimately ex-
cluding all spurious solutions. We design, and experiment
with, practical criteria to terminate the refinement process be-
fore that happens.

Introduction
One of the currently most successful approaches to solve
problems in optimal planning is to use the A∗ search algo-
rithm with an admissible heuristic function. Heuristic func-
tions estimate the cost of the cheapest operator sequence
that, when applied on the initial state, leads to the goal. In
addition, admissible heuristic functions give the guarantee
that this estimation is always a lower bound on the cheap-
est cost of real solutions, and the better this estimation is,
i.e., the smaller the difference to this cost, the faster will the
search algorithm find a solution for the problem. Therefore,
the main question becomes how good admissible heuris-
tic functions can be computed automatically, for any given
problem.

One approach to construct an admissible heuristic func-
tion is based on abstractions. Abstractions ignore the dif-
ference between certain states and consequently reduce the

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

total size of the state space, while preserving all operator se-
quences that are possible in the concrete state space. With
fewer states, the analysis of this abstract state space can be-
come feasible so that the heuristic value for some state can
be computed by computing the cost of the optimal solution
of its representative in the abstract version of the state space.

Currently, two methods for building an abstraction are
used in planning: Pattern databases (Haslum et al. 2007)
and Merge-and-Shrink abstractions (Helmert, Haslum, and
Hoffmann 2007), and the latter one, Merge-and-Shrink ab-
straction, strictly generalizes pattern databases. M&S builds
an abstraction by iteratively combining, called merging, and
further reducing the size of, called shrinking, basic parts
of the state space. To preserve the entire behavior of the
original state space in the abstract state space, Nissim et
al. (2011) used the well-known notion of bisimulation (Mil-
ner 1990). They observe that the bisimulation requirement
is unnecessarily strict for the purpose of computing heuris-
tic functions. This has been addressed by two different
relaxations of bisimulation: greedy bisimulation (Nissim,
Hoffmann, and Helmert 2011), and K-catching bisimula-
tion (Katz, Hoffmann, and Helmert 2012). Both are based on
the same idea, ignoring the difference between more states
by considering only a subset of transitions during the test for
the bisimulation property. Greedy bisimulation ignores tran-
sitions based on a local condition, i.e., on a per-transition
basis (abstract goal distances at the transition’s end points).
By contrast,K-catching bisimulation fixes a global criterion
throughout the M&S process, simply catching a transition if
its label – the planning operator inducing it – is contained in
a label subsetK fixed a priori. The key advantage of that cri-
terion is its invariance over the M&S construction (?), pro-
viding direct control over the final abstraction in terms of the
choice of K.

Katz et al. identify two different types of operators that,
if caught by K, lead to a perfect heuristic, while the result-
ing K-catching bisimulation can be exponentially smaller
than any general bisimulation. However, computing these
sets K exactly is highly intractable: They consist of all op-
erators that form part of an optimal solution for any state
in (part of) the state space. Katz et al. devise some simple
approximation methods, with mediocre empirical results.
Herein, we instead explore the possibility to design K via
counterexample-guided abstraction refinement (CEGAR).

CEGAR was originally introduced in the context of model
checking (Clarke et al. 2003) for the purpose of proving
(un)reachability of states in transition systems. It computes
an abstraction of a transition system by an incremental pro-
cedure that analyzes intermediate abstractions to extract in-
formation – counterexamples – that can be used to improve
the abstraction. One starts with a simple initial abstraction of
the transition system that is improved by incrementally dis-
tinguishing more states, in the so called refinement loop, as
long as certain properties are not fulfilled. CEGAR consists
of the three general components:

(1) Initial abstraction. Specification of the abstraction that
is used to start the refinement. (In our case: K-catching
bisimulation for the empty set K.)

(2) Analysis of the abstract transition system. Determining
unintended behavior of the abstract transition system of
the current abstraction. (In our case: Optimal abstract
solutions that are spurious, failing to solve the original
planning task.)

(3) Refine the abstraction. Computing a new abstraction, by
using the information obtained by (2), that excludes the
unintended behavior. (In our case: Including new opera-
tors into K.)

(2) together with (3) are called the refinement step and they
are executed as long as the abstract transition system does
not fulfill some specific criteria. In the following we show
how (1), (2) and (3) are instantiated for the purpose of build-
ing a K-catching bisimulation.

Background
A planning task is a 5-tuple Π = (V,O, c, s0, s∗). V is
a finite set of variables v, each v ∈ V associated with a
finite domainDv . A partial state over V is a function s on a
subset Vs of V , so that s(v) ∈ Dv for all v ∈ Vs; s is a state
if Vs = V . The initial state s0 is a state. The goal s∗ is a
partial state. O is a finite set of operators, each being a pair
(pre, eff) of partial states, called its precondition and effect.
Each o ∈ O is also associated with its cost c(o) ∈ R+

0 .
The state space of a planning task is given by a transition

system. Such a system is a 6-tuple Θ = (S,L, c, T, s0, S∗)
where S is a finite set of states, L is a finite set of transition
labels, each associated with a label cost c(l) ∈ R+

0 , T ⊆
S×L×S is a set of transitions, s0 ∈ S is the start state, and
S∗ ⊆ S is the set of goal states. We define the remaining
cost h∗ : S → R+

0 as the minimal cost of any path (the sum
of costs of the labels on the path), in Θ, from a given state s
to any s∗ ∈ S∗, or h∗(s) =∞ if there is no such path.

In the state space of a planning task, S is the set of all
states. The start state s0 is the initial state of the task, and
s ∈ S∗ if s∗ ⊆ s. The transition labels L are the operators
O, and (s, (pre, eff), s′) ∈ T if s complies with pre, and
s′(v) = eff(v) for all v ∈ Veff while s′(v) = s(v) for all
v ∈ V \ Veff. The solution of a planning task, called plan,
is a path from s0 to any s∗ ∈ S∗. The plan is optimal if its
summed-up cost is equal to h∗(s0).

A heuristic is a function h : S → R+
0 ∪{∞}. The heuris-

tic is admissible if, for every s ∈ S, h(s) ≤ h∗(s); it is

consistent if, for every (s, l, s′) ∈ T , h(s) ≤ h(s′) + c(l); it
is perfect if h coincides with h∗. The A∗ algorithm expands
states by increasing value of g(s) + h(s) where g(s) is the
accumulated cost on the path to s. If h is admissible, thenA∗
returns an optimal solution. If h is consistent then A∗ does
not need to re-open any nodes.

One way of automatically constructing admissible heuris-
tics is based on abstractions. This is a function α map-
ping S to a set of abstract states Sα. The abstract state
space Θα is defined as (Sα, L, c, Tα, sα0 , S

α
∗), where Tα :=

{(α(s), l, α(s′)) | (s, l, s′) ∈ T}, sα0 := α(s0), and Sα∗ :=
{α(s∗) | s∗ ∈ S∗}. The abstraction heuristic hα maps
each s ∈ S to the remaining cost of α(s) in Θα; hα is admis-
sible and consistent. The pre-image of sα ∈ Sα under the
abstraction α is the set Preα(sα) = {s ∈ S | α(s) = sα}.
We will sometimes consider the induced equivalence rela-
tion ∼α, defined by setting s ∼α t iff α(s) = α(t).

How to construct a good α in general? Helmert et
al. (2007) propose M&S abstraction as a method allowing
fine-grained abstraction design, selecting individual pairs of
(abstract) states to aggregate. The approach builds the ab-
straction in an incremental fashion, iterating between merg-
ing and shrinking steps. In detail, an abstraction α is an
M&S abstraction over V ⊆ V if it can be constructed using
these rules:

(i) For v ∈ V , π{v} is an M&S abstraction over {v}.
(ii) If β is an M&S abstraction over V and γ is a function

on Sβ , then γ ◦ β is an M&S abstraction over V .
(iii) If α1 and α2 are M&S abstractions over disjoint sets

V1 and V2, then α1 ⊗ α2 is an M&S abstraction over
V1 ∪ V2.

Rule (i) allows to start from atomic projections. These are
simple abstractions π{v} (also written πv) mapping each
state s ∈ S to the value of one selected variable v. Rule (ii),
the shrinking step, allows to iteratively aggregate an arbi-
trary number of state pairs, in abstraction β. Formally, this
simply means to apply an additional abstraction γ to the im-
age of β. In rule (iii), the merging step, the merged abstrac-
tion α1 ⊗ α2 is defined by (α1 ⊗ α2)(s) := (α1(s), α2(s)).

To implement M&S in practice, we need a merging strat-
egy deciding which abstractions to merge in (iii), and a
shrinking strategy deciding which (and how many) states
to aggregate in (ii). Throughout this paper, we use the same
merging strategy as presented by Nissim et al. (2011). To ob-
tain an abstraction that preserves the behavior of the original
transition system, i.e., to obtain a perfect heuristic, Nissim et
al. devise a shrinking strategy that computes a bisimulation
of the state space.

Definition 1 Let Θ = (S,L, c, T, s0, S∗) be a transition
system. An equivalence relation∼ on S is a bisimulation for
Θ if for every s ∼ t holds: (1) either s, t ∈ S∗ or s, t 6∈ S∗;
(2) for every transition label l ∈ L, {[s′] | (s, l, s′) ∈ T} =
{[t′] | (t, l, t′) ∈ T}.

As usual, [s] for a state s denotes the equivalence class of
s. An abstraction α is a bisimulation iff the induced equiva-
lence relation∼α is. Nissim et al. have shown that the bisim-
ulation property is preserved throughout the merging steps:

If α1 and α2 are bisimulations for ΘπV1 and ΘπV2 , where
V1 ∩ V2 = ∅, then α1 ⊗ α2 is a bisimulation for ΘπV1∪V2 .
Therefore, if α is constructed such that, in every application
of (ii), γ is a bisimulation for Θβ , then the overall M&S
abstraction α will be a bisimulation for ΘπV (Nissim, Hoff-
mann, and Helmert 2011).

Unfortunately, bisimulations are exponentially big even in
trivial examples. Katz et al. (2012) address this by the notion
of K-catching bisimulation. This relaxes the definition of
bisimulation by applying constraint (2) of Definition 1 to
only a subset of the transitions in T , selected by a subset of
transition labels K:

Definition 2 Let Θ = (S,L, c, T, s0, S∗) be a transition
system and K ⊆ L. An equivalence relation ∼ on S is a
K-catching bisimulation for Θ if it is a bisimulation for
the transition system (S,K, c, TK , s0, S∗), where TK =
{(s, l, t) | (s, l, t) ∈ T, l ∈ K}.

Katz et al. (2012) identify two theoretical classes of such
label subsets that, when considered in a K-catching bisim-
ulation, lead to abstract transition systems that still provide
strong properties. First, if the label subset contains (at least)
each label that is used in some optimal path from any state
to a goal state, then the resulting abstraction heuristic will
still be perfect, while possibly obtaining an abstract transi-
tion system that is exponentially smaller than the abstract
transition system of any general bisimulation. Such labels
are called globally relevant, i.e., a label l ∈ L is called glob-
ally relevant if there is a transition (s, l, s′) ∈ T such that
h∗(s) = h∗(s′) + c(l).

Second, K does not even have to contain all globally rel-
evant labels. If K contains each label that is used in some
optimal solution for any state with cost less or equal than
the remaining cost of the initial state, then A∗, using the ab-
straction heuristic, will still only expand a number of states
linear in the length of the plan returned (under the assump-
tion that the planning task does not contain 0-cost operators).
Such labels are called h∗(s0)-relevant, i.e., a label l ∈ L is
called R-relevant if there is a transition (s, l, s′) ∈ T such
that h∗(s) ≤ R and h∗(s) = h∗(s′) + c(l).

Unfortunately, computing either of these label subsets K
involves solving the problem in first place. We now intro-
duce a method to select K based on counterexample guided
abstraction refinement.

Abstraction Refinement
The general algorithm is depicted in Figure 1. The whole re-
finement procedure is based on a current label subset. This
label subset is initially empty. For the purpose of refining
the K-catching bisimulation, we add new labels to this la-
bel subset and recompute the K-catching bisimulation with
the updated label set. To catch the right labels, we compare
the optimal solutions of the abstract transition system with
solutions of the original transition system. If these abstract
solutions are spurious, i.e., they do not correspond to solu-
tions of the original transition system, then we extract labels
to be added to the label subset, which will eliminate these
solutions from the abstract transition system.

K ← ∅
α← K-catching bisimulation for Θ
Θα ← Abstract transition system of α
while the given criterion is not satisfied do
K ′ ← analyze(Π, Θα)
K ← K ∪K ′
α← K-catching bisimulation for Θ
Θα ← Abstract transition system of α

endwhile
return α
Figure 1: General abstraction refinement procedure for com-
puting K-catching bisimulations, based on a given termina-
tion criterion.

This step is repeated until the abstract transition system
fulfills certain constraints. As an example, one could require
that every optimal solution of the abstract transition system
is a solution of the original transition system.

In the following sections we show how the abstract tran-
sition system is analyzed, that is how spurious solutions are
identified, and which labels have to be considered to exclude
these paths from the abstract transition system.

Refinement Step
We distinguish between forward propagation, where op-
timal solutions of the abstract transition system are com-
pared to paths in the original transitions system, and back-
ward propagation, where backward optimal solutions, i.e.
the cheapest paths from some abstract goal state to the ab-
stract initial state, obtained by inverting all transitions of the
abstract transition system, are considered.

Depending on the termination criterion, the abstract solu-
tions should only partially correspond to paths of the orig-
inal transition system. Therefore, the distinction between
these two cases allows to determine whether the abstraction
should be more precise around the initial state, or more pre-
cise around the goal states, i.e., whether the labels added to
the label subset should be closer to the initial state, or closer
to the goal states.

Forward Propagation
Forward propagation analyzes the abstract transition system
by finding, for each optimal solution, an equivalent path in
the original transition system that starts in the initial state
and which is labeled with the same label sequence. There-
fore, we say that a label sequence is forward-applicable in
a state s if there is a path in the transition system that starts
in s and contains the given labels. Formally it is defined as
follows:

Definition 3 Let Θ = (S,L, c, T, s0, S∗) be a transition
system, ~a = 〈a1, . . . , an〉 ∈ Ln be a label sequence.
Then ~a is forward-applicable in t0 ∈ S if there are states
t1, . . . , tn ∈ S so that (ti−1, ai, ti) ∈ T , for all 1 ≤ i ≤ n.
Moreover, tn is called the end-state. If it further holds that
for all t′i ∈ S \ {ti}, (ti−1, ai, t

′
i) 6∈ T , for every 1 ≤ i ≤ n,

then ~a is called deterministic forward-applicable in t0.

A solution of the abstract transition system
sα0 , a1, s

α
1 , . . . , an, s

α
n is called spurious, if its label

sequence 〈a1, . . . , an〉 is not forward-applicable in s0,
or if it is forward-applicable in s0, leading to the path
s0, a1, s1, . . . , an, sn, but sn is not a goal state, sn 6∈ S∗.

We distinguish between three different classes of spurious
solutions in order to find the label that must be added to the
current label subset to remove the considered path from the
abstract transition system.

If the label sequence of a spurious solution is determin-
istic forward-applicable in the abstract initial state, but it is
not forward-applicable in the initial state of the original tran-
sition system, then it is enough to add only one label to the
label subset in order to remove the considered path from the
abstract transition system:

Theorem 1 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and let α be a K-catching bisimulation for Θ, with
abstract transition system Θα = (Sα, L, c, Tα, sα0 , S

α
∗).

Then it holds for any state t0 ∈ S and for any action se-
quence 〈a1, . . . , an〉 ∈ Ln so that 〈a1, . . . , an−1〉 is de-
terministic forward-applicable in α(t0): If 〈a1, a2, . . . , an〉
is forward-applicable in α(t0), and 〈a1, a2, . . . , an−1〉
is forward-applicable in t0, but 〈a1, a2, . . . , an〉 is not
forward-applicable in t0, then an 6∈ K.

Proof: Assume for contradiction that an ∈ K. Because
〈a1, a2, . . . , an−1〉 is forward-applicable in t0 in Θ, there
must be states t1, . . . , tn−1 ∈ S, s.t. (ti−1, ai, ti) ∈ T ,
for all 1 ≤ i < n. Then it follows by the definition of
the abstract transition system, for the states tα0 = α(t0),
tαi := α(ti), that (tαi−1, ai, t

α
i) ∈ Tα, for all 1 ≤ i <

n. By assumption 〈a1, . . . , an−1〉 is deterministic forward-
applicable in tα0 , implying that tα0 , a1, . . . , an−1, t

α
n−1 is the

only path in Θα with this label sequence and starting in
tα0 . Now, we know that 〈a1, . . . , an〉 is forward-applicable
in tα0 . As tα0 , a1, . . . , an−1, t

α
n−1 is the only path match-

ing the prefix 〈a1, . . . , an−1〉, we must have a transition
(tαn−1, an, t

α
n) ∈ Tα, for some abstract state tαn ∈ Sα. We

can conclude by definition of Θα that there must be states
t′n−1, t

′
n ∈ S with α(t′n−1) = tαn−1, α(t′n) = tαn and

(t′n−1, an, t
′
n) ∈ T . Since α is a K-catching bisimulation

for Θ and an ∈ K, it follows from (2) of Definition 1 that
for every t ∈ S with α(t) = tαn−1, there is a state t′ ∈ S with
α(t′) = tαn such that (t, an, t

′) ∈ T . So in particular there is
a state tn ∈ S with α(tn) = tαn such that (tn−1, an, tn) ∈ T .
Therefore 〈a1, a2, . . . , an〉 is actually forward-applicable in
t0 in Θ, which contradicts the assumption. It follows that an
cannot be contained in K. So an 6∈ K.

Let sα0 , a1, . . . , am, s
α
m be a spurious solution whose la-

bel sequence 〈a1, . . . , am〉 is not forward-applicable in the
initial state of the original transition system. To refine the
current label subset based on this path, we find the index
1 ≤ n ≤ m such that the sub-sequence 〈a1, . . . , an−1〉
is forward-applicable in s0, but 〈a1, . . . , an〉 is not. Under
the assumption that 〈a1, . . . , an−1〉 is deterministic forward-
applicable in sα0 , Theorem 1 implies that adding an to the
current label subset will either remove the entire path from
the abstract transition system, or it will at least destroy the
deterministic forward-applicability of 〈a1, . . . , an−1〉 in sα0 .

If the label sequence of the spurious path is actually
forward-applicable in the initial state of the original tran-
sition system, then it can only be spurious if its execution in
the original transition system does not end in a goal state.

Theorem 2 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and let α be a K-catching bisimulation for Θ, with
abstract transition system Θα = (Sα, L, c, Tα, sα0 , S

α
∗).

It holds for any state t0 ∈ S and for any action se-
quence 〈a1, . . . , an〉 ∈ Ln, such that 〈a1, . . . , an−1〉 is de-
terministic forward-applicable in α(t0): If 〈a1, . . . , an〉 is
forward-applicable in α(t0) with end-state tαn ∈ Sα∗ , and
〈a1, a2, . . . , an〉 is forward-applicable in t0, but for all pos-
sible end-states tn 6∈ S∗, then an 6∈ K.

Proof: Let t1, . . . , tn ∈ S be states so that (ti−1, ai, ti) ∈
T , for all 1 ≤ i ≤ n. Such states must ex-
ist since 〈a1, a2, . . . , an〉 is applicable in t0. By defi-
nition of Θα follows that (α(ti−1), ai, α(ti)) ∈ Tα,
for all 1 ≤ i ≤ n. By assumption 〈a1, . . . , an−1〉
is deterministic forward-applicable in α(t0), implying
that α(t0), a1, . . . , an−1, α(tn−1) is the only path in Θα

with this label sequence and starting in α(t0). But this
means that tαn can only be an end-state of a forward-
application of 〈a1, . . . , an〉 in α(t0) if there is a transition
(α(tn−1), an, t

α
n) ∈ Tα. By definition of Θα follows that

there are states t′n−1, t
′
n ∈ S with α(t′n−1) = α(tn−1) and

α(t′n) = tαn such that (t′n−1, an, t
′
n) ∈ T . Rule (1) of Defi-

nition 1, together with tαn ∈ Sα∗ imply that t′n ∈ S∗, which
by assumption means that t′n−1 6= tn−1. Moreover, this rule
implies that α(tn) 6= tαn = α(t′n). Therefore, we have found
two states tn−1, t′n−1 with α(tn−1) = α(t′n−1) such that
there is a transition (t′n−1, an, t

′
n) ∈ T , but for all transition

(tn−1, an, tn) ∈ T holds that α(tn) 6= α(t′n). Now, rule (2)
of Definition 1 implies that an 6∈ K.

Let sα0 , a1, s
α
1 , am, s

α
m be a spurious solution such

that 〈a1, . . . , am〉 is forward applicable in s0, meaning that
the execution of this label sequence in s0 does not end in a
goal state. Under the assumption that 〈a1, . . . , am−1〉 is de-
terministic forward-applicable in sα0 , we can conclude with
Theorem 2 that adding am to the current label subset will
either remove the entire path from the abstract transition
system, or it will at least destroy the deterministic forward-
applicability of 〈a1, . . . , an−1〉 in sα0 .

Finally, if the label sequence of a spurious path is
not deterministic forward-applicable in the initial state of
the abstract transition system, then we remove the non-
deterministic choice along the execution of the considered
label sequence in the abstract transition system.

Definition 4 Let Θ = (S,L, c, T, s0, S∗) be a transition
system and let l ∈ L. Θ is non-deterministic in l if there are
transitions (s, l, t) ∈ T and (s, l, t′) ∈ T , for some states
s, t, t′ ∈ S, such that t 6= t′.

If the label sequence of the considered spurious solution
is not deterministic forward-applicable in the abstract ini-
tial state, then the abstract transition system must be non-
deterministic in at least one label, contained in this sequence.
If such a label has been identified, then it is enough to add

it to the current label subset, in order to remove the non-
determinism from the abstract transition system:

Theorem 3 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and let α be a K-catching bisimulation for Θ with ab-
stract transition system Θα = (Sα, L, c, Tα, sα0 , S

α
∗). If Θα

is non-deterministic in l ∈ L, but Θ is not, then l 6∈ K.

Proof: Because of Θα is non-deterministic in l, there must
be states sα, tα0 , t

α
1 ∈ Sα with tα0 6= tα1 and (sα, l, tα0) ∈ Tα,

(sα, l, tα1) ∈ Tα. By definition of Θα follows that there are
states s, s′, t0, t1 ∈ S with α(s) = α(s′) = sα, α(t0) = tα0 ,
α(t1) = tα1 and (s, l, t0) ∈ T , (s′, l, t1) ∈ T . By assumption
Θ is deterministic in l, so s = s′ cannot hold, since t0 6= t1.
Therefore there are transitions (s, l, t) ∈ T and (s′, l, t′) ∈
T for s 6= s′, but α(s) = α(s′) and α(t) 6= α(t′). This
means that l 6∈ K, otherwise α would not be a K-catching
bisimulation.

Let sα0 , a1, s
α
1 , am, s

α
m be a spurious solution such

that the label sequence 〈a1, . . . , am〉 is not deterministic
forward-applicable in sα0 . We find the first index 1 ≤ n ≤ m,
so that Θα is non-deterministic in an, and add this label an
to the current label subset. Since the state space of a planning
task is by definition deterministic, it follows by Theorem 3
that adding an to the label subset is sufficient to exclude the
non-determinism of an from the abstract transition system.

Backward Propagation
Backward propagation analyzes the abstract transition sys-
tem in a similar way as forward propagation. It considers
also the optimal solutions of the abstract transition system,
but instead of starting with the initial state and testing for
the forward-applicability of the labels, backward propaga-
tion starts with the goal states of the original transition sys-
tem and tries to regress these states with the label sequences
of the solutions, until the initial state has been reached. For-
mally, regression is defined as follows:

Definition 5 Let Θ = (S,L, c, T, s0, S∗) be a transition
system, S′ ⊆ S be a set of states, and l ∈ L be a la-
bel. Then regressing S′ with l is defined by regr(S′, l) =
{s ∈ S | (s, l, s′) ∈ T, s′ ∈ S′}. For a la-
bel sequence ~a = 〈a1, . . . , an〉 ∈ Ln, regr(S′,~a) =
regr(regr(. . . .(regr(S′, an), . . .), a1). Moreover, ~a is
called reverse-applicable in S′ if regr(S′,~a) 6= ∅.

For S′ = {s} we often write regr(s, l) instead of
regr(S′, l). Then a solution sα0 , a1, s

α
1 , . . . , an, s

α
n of the

abstract transition system is called spurious if s0 6∈
regr(S∗, 〈a1, . . . , an〉).

First, observe that if all labels of a label sequence are con-
tained in the label subset, then regressing an abstract state tα
is actually equivalent to regressing the states t of the original
transition system, with α(t) = tα:

Lemma 1 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem, and α be aK-catching bisimulation for Θ with abstract
transition system Θα = (Sα, L, c, Tα, sα0 , S

α
∗). Moreover,

let tα ∈ Sα be an abstract state, and l ∈ K be label. If
sα ∈ regrα(tα, l), then for every state s ∈ Preα(sα), there
is a state t ∈ Preα(tα) with s ∈ regr(t, l).

Proof: Let sα ∈ regrα(tα, l). By definition of regrα, there
is a transition (sα, l, tα) ∈ Tα. Then, by definition of Θα

follows that there are states s, t ∈ S with α(s) = sα and
α(t) = tα, so that (s, l, t) ∈ T . Since α is a K-catching
bisimulation for Θ and l ∈ K, it holds for all s′ ∈ S, such
that α(s′) = α(s), that there is a state t′ ∈ S with α(t′) =
α(t) so that (s′, l, t′) ∈ T , and therefore s′ ∈ regr(t′, l). So
for every state s ∈ Preα(sα), there is a state t ∈ Preα(tα)
with s ∈ regr(t, l).

Lemma 1 implies that if no goal state of the original tran-
sition system can be regressed with the label sequence of
a spurious path, then there must be some label on this se-
quence that is not contained in the current label subset.

Theorem 4 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and α be a K-catching bisimulation for Θ with ab-
stract transition system Θα = (Sα, L, c, Tα, sα0 , S

α
∗). Then

for any 〈a1, . . . , an〉 ∈ Ln and state tα ∈ Sα holds: If
〈a1, . . . , an〉 is reverse-applicable in tα, and 〈a2, . . . , an〉 is
reverse-applicable in some t ∈ Preα(tα), but 〈a1, . . . , an〉
is not reverse-applicable in any t ∈ Preα(tα), then there
must be a label ai with ai 6∈ K, for some 1 < i ≤ n.

Proof: Assume for contradiction that all ai are already con-
tained in K, i.e. ai ∈ K, for all 1 < i ≤ n. Let rα ∈
regrα(tα, 〈a1, . . . , an〉). Such an abstract state must exist
because this label sequence is reverse-applicable in tα. By
definition of regrα, there must be a transition (rα, a1, s

α) ∈
Tα, for some state sα ∈ regrα(tα, 〈a2, . . . , an〉). By defini-
tion of Θα, there must be states r, s ∈ S, α(r) = rα, α(s) =
sα, so that (r, a1, s) ∈ T . Now, when recursively applying
Lemma 1, then it follows by sα ∈ regr(tα, 〈a2, . . . , an〉)
that there is a state t ∈ Preα(tα) such that s ∈
regr(t, 〈a2, . . . , an〉). Therefore, r ∈ regr(t, 〈a1, . . . , an〉)
which contradicts the assumption that 〈a1, . . . , an〉 is not
reverse-applicable in t. Hence, there must be at least one
1 < i ≤ n, such that si 6∈ K.

Let sα0 , a1, s
α
1 , . . . , an, s

α
n be a spurious solution such that

the label sequence 〈a1, . . . , an〉 is not reverse-applicable in
all goal states s∗ ∈ S∗. We find the index 1 ≤ i < n, so that
〈ai+1, . . . , an〉 is reverse-applicable in some s∗ ∈ S∗, but
〈ai, . . . , an〉 is not reverse-applicable in any s∗ ∈ S∗. The-
orem 5 implies that adding the labels ai+1, . . . , an to the
current label subset is sufficient to exclude the considered
spurious solution from the abstract transition system.
Moreover, for spurious paths whose label sequences are ac-
tually reverse-applicable in some goal state of the original
transition system, but the regression does not end in the ini-
tial state, it follows immediately by Lemma 1 that there must
be at least one label in this sequence that is not already con-
tained in the current label subset.

Theorem 5 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and α be a K-catching bisimulation for Θ with abstract
transition system Θα = (Sα, L, c, Tα, sα0 , S

α
∗). Then for

any state tα ∈ Sα and 〈a1, . . . , an〉 ∈ Ln holds: If sα0 ∈
regrα(tα, 〈a1, . . . , an〉), and s0 6∈ regr(t, 〈a1, . . . , an〉),
for any t ∈ Preα(tα), then there must be an action ai with
ai 6∈ K, for some 1 ≤ i ≤ n.

procedure analyze(Π, Θα)
P ← compute the first S optimal solutions of Θα

labels← ∅
for p ∈ P do

if p is spurious then
labels← labels ∪ exclude(p)

endif
done
return labels

Figure 2: Analyze procedure, as called by the abstraction
refinement procedure (Figure 1) within each refinement step.

Proof: Assume for contradiction that ai ∈ K, for all
1 ≤ i ≤ n. Since sα0 ∈ regrα(tα, 〈a1, . . . , an〉) and
α(s0) = sα0 , by definition of Θα, it follows by recursively
applying Lemma 1 that s0 ∈ regr(t, 〈a1, . . . , an〉), for some
t ∈ Preα(tα). But this contradicts the assumption. There-
fore, it must hold ai 6∈ K, for at least one 1 ≤ i ≤ n.

Let sα0 , a1, s
α
1 , . . . , an, s

α
n be a spurious solution such that

the label sequence ~a = 〈a1, . . . , an〉 is reverse-applicable in
some goal state s∗ ∈ S∗. This means that s0 6∈ regr(s∗,~a)
for all s∗ ∈ S∗, and it follows from Theorem 5 that adding
the labels a1, . . . , an to the current label subset is sufficient
to remove the considered spurious solution from the abstract
transition system.

A trivial consequence of our results is that, if we keep run-
ning abstraction refinement and adding labels as described,
then eventually all abstract solutions will actually be plans
for the original planning task. Of course, we can stop as soon
as that is the case for at least one abstract solution. As one
would expect, such a stopping criterion is impractical: The
abstractions required for it to occur are, in most cases, infea-
sibly large. In our implementation, described next, we use
earlier cut-offs.

Implementation
Our techniques are implemented in Fast Down-
ward (Helmert 2006), as an extension of the M&S
approach. The overall refinement procedure was already
depicted in Figure 1. It has 4 input parameters: (1) forward
vs. backward propagation; (2) the termination criterion;
(3) the number S of abstract solutions considered in any
refinemrnt step; and (4) a size limit L on the abstract
transition system. Parameters (1) and (3) are used in the
analyze function, described next. Parameters (2) and (4) are
used in the termination criterion.

Analysis Procedure
The analyze function is depicted in Figure 2. It computes
the labels that will be added to K, in order to refine the
K-catching bisimulation. Our current code is optimized for
readability rather than efficiency, storing the entire set of op-
timal abstract solutions in memory, prior to analyzing them
(instead, one could generate and analyze each solution one-
by-one). As there can be a huge number of such solutions,
this can cause serious memory issues. For the moment, we

control this via the parameter S: As soon as S abstract solu-
tions have been generated, we stop and proceed to the anal-
ysis step.

During the analysis each abstract solution is analyzed in
either forward or backward manner, as specified by param-
eter (1). Whenever the considered solution is spurious, then
exclude will apply the theorems shown above and returns the
corresponding labels.

Termination Criteria
A practical termination criterion cannot require that an op-
timal solution of the abstract transition system matches ex-
actly to a solution of the original transition system. How-
ever, to still obtain a useful abstraction heuristic, one has to
require that the abstract optimal solutions correspond at least
somewhat to paths of the original transition system. We ex-
perimented with 3 different kinds of termination criteria:
• All. This criterion is satisfied if none of the extracted op-

timal abstract solutions is spurious. This extreme crite-
rion just serves to illustrate what happens when putting
all computational effort into the abstraction.

• Lower Bounding (LB). This criterion requires a lower
bound on the solution cost hmin, i.e., hmin ≤ h∗(s0).
When the cost of the optimal abstract solution is greater
or equal than this value, then the refinement loop will be
terminated. In other words, as soon as for the current K-
catching bisimulation α holds that hα(s0) ≥ hmin, the
refinement loop will be stopped.

• Cost Increase Threshold (CIT). This criterion requires
a threshold β ∈ [1,∞). It essentially tests whether the
increase of the estimated goal distance between the K-
catching bisimulation αi, and the K ′-catching bisimula-
tion αi+1 of two consecutive refinement steps i and i+ 1
is higher than the minimum allowed increase. In other
words, the refinement of the abstraction will be stopped
as soon as the quotient hαi+1(s0)/hαi(s0) is less than the
given β.

Empirical Evaluation
We ran a total of 32 different variants of our abstraction re-
finement approach, 7 other M&S configurations, two com-
peting heuristics, and a blind search instance on a total of
280 instances of the 14 benchmarks from the track of opti-
mal planners at IPC’11. The experiments are performed on
an Intel Core i7-3770K processor, limiting the run time to 5
minutes and the memory usage to 2 GB.

We ran the abstraction refinement procedure with both
forward propagation and backward propagation. The ter-
mination criterion is set to either All, or LB with hmin =
h1(s0) (Haslum and Geffner 2000), or CIT with β ∈
{1.40, 2.0}. For (3), we extract a maximum of either S =
∞, or S = 10K optimal solutions from the abstract transi-
tion system. For (4), we set a bound on the number of states
of the abstract transition system: L = 100K, or L =∞.

We ran also BJOLP (Domshlak et al. 2011) and LM-
cut (Helmert and Domshlak 2009), two methods that were
used in the portfolio winning the 1st prize in the track of
optimal planners at IPC 11.

Refinement Backward propagation
Termination CIT β = 1.4 CIT β = 2.0 LB h1 All
L ∞ 100K ∞ 100K ∞ 100K ∞ 100K

barman
AM=4, SM=8, AM=4, SM=8, AM=4, SM=8, AM=4, SM=8, AM=12, AT=7, AM=12, AT=7

AM=12, AT=8 AM=12, AT=8
AT=8 AT=8 AT=5, ST=3 AT=5, ST=3 ST=1 ST=1

elevators
C=10, AM=5, C=10, AM=5, C=10, AM=5, C=10, AM=5,

C=7, AM=13
C=8, AM=9,

C=3, AM=17
C=8, AM=9,

SM=5 SM=5 SM=5 SM=5 SM=3 SM=3
floortile C=2, AM=18 C=2, AM=18 C=2, AM=18 C=2, AM=18 C=2, SM=18 C=2, SM=18 C=2, AM=18 C=2, AM=18

nomystery C=18, SM=2 C=18, SM=2 C=18, SM=2 C=18, SM=2 C=12, SM=8 C=12, SM=8 C=8, AM=12
C=14, AM=4,

SM=2

openstacks
C=0, AM=15, C=3, AM=15, C=0, AM=15, C=3, AM=14, C=3, AM=14, C=3, AM=15, C=0, AM=15, C=3, AM=14,

AT=5 AT=2 AT=5 AT=3 AT=3 AT=2 AT=5 AT=3

parcprinter
C=10, AM=9, C=10, AM=9, C=10, AM=9, C=10, AM=9,

C=11, SM=9 C=11, SM=9
C=6, AM=10, C=9, AM=9,

SM=1 SM=1 SM=1 SM=1 AT=4 SM=1, AT=1

parking
C=1, AM=7, C=1, AM=7, C=1, AM=7, C=1, AM=7,

C=6, SM=14 C=6, SM=14 C=0, AM=20 C=0, AM=20
SM=9, ST=3 SM=8, ST=4 SM=8, ST=4 SM=8, ST=4

pegsol
C=1, AM=14, C=4, AM=14, C=3, AM=15, C=4, AM=14, C=9, AM=9, C=9, AM=9, C=1, AM=15, C=4, AM=14,

AT=5 SM=2 AT=2 SM=2 SM=2 SM=2 AT=4 SM=2

scanalyzer C=4, AM=15 C=4, AM=15 C=4, AM=15 C=4, AM=15
C=9, AM=3, C=9, AM=3,

C=3, AM=16 C=3, AM=16
SM=7 SM=7

sokoban C=9, AM=11 C=9, AM=11 C=9, AM=11 C=9, AM=11 C=6, AM=14 C=6, AM=14 C=0, AM=20 C=0, AM=20

tidybot C=1, AM=19 C=1, AM=19
C=11, AM=6, C=10, AM=6,

C=3, AM=17 C=3, AM=17 C=1, AM=19 C=1, AM=19
ST=3 ST=4

transport C=6, SM=14 C=6, SM=14 C=6, SM=14 C=6, SM=14
C=5, AM=14, C=6, AM=9, C=4, AM=14, C=6, AM=9,

SM=1 SM=5 AT=2 SM=5

visitall
C=8, AM=3, C=8, AM=3, C=8, AM=3, C=8, AM=3,

C=16, SM=4 C=16, SM=4
C=8, AM=2, C=8, AM=3,

AT=9 AT=9 AT=9 AT=9 AT=10 AT=9

woodworking
C=2, AM=17, C=3, AM=16, C=3, AM=16, C=3, AM=16,

C=5, SM=15 C=5, SM=15 C=2, AM=18 C=3, AM=17
SM=1 SM=1 SM=1 SM=1

∑ C=72, AM=137, C=79, AM=136, C=85, AM=124, C=88, AM=122, C=94, AM=96, C=96, AM=88, C=38, AM=208, C=61, AM=184,
SM=40, AT=27, SM=41, AT=19, SM=39, AT=21, SM=41, AT=17, SM=78, AT=10, SM=85, AT=9, AT=33 SM=13, AT=21

ST=3 ST=4 ST=10 ST=11 ST=1 ST=1

Table 1: Experiment data for the abstraction refinement variants. S is always set to 10K. C represents the number of completed
tasks. The other values represent the number of violations of the requirements, split into violations of the memory requirement
(during refinement process: AM, during the search: SM), and into violations of the run time requirement (during the refinement
process: AT, during the search: ST). The highest amount of solved task per domain is highlighted in bold.

We ran 4 M&S configurations based on K-catching
bisimulations. The label subset is either computed by the ap-
proximation technique Backward h1, or by the approxima-
tion technique IntAbs (Katz, Hoffmann, and Helmert 2012),
and the size limit is set to either N = 100K, or N = ∞.
Additionally, we ran 2 variants of greedy-bisimulation (Nis-
sim, Hoffmann, and Helmert 2011), one with size limit
N = 100K, and the other one with N = ∞. Finally, we
ran another M&S instance using full bisimulation, without
using a size limit (N =∞).

The size limit N influences the size of the abstract transi-
tion system in a different way than L does. If the amount of
states of the abstract transition system reaches this boundN ,
then the shrinking strategy of the M&S abstraction is forced
to aggregate more states by dropping the bisimulation re-
quirement. In contrast, whether the size limit L is exceeded
is only tested between the refinement steps. If it is, then the
refinement process is aborted, so one catches less labels in-
stead of dropping the bisimulation requirement.

Backward h1 computes the label subset by collecting all
labels that occur within the radius, given by the product of
h1(s0) and some parameter β ∈ [0, 1], around the goal states
of the actual state space, i. e. all labels that are used in an op-

timal path to some goal state, with cost less or equal than this
radius. If β = 0, then the smallest β is considered that leads
a non-empty label subset. IntAbs computes the label sub-
set by computing the standard bisimulation until some size
limit M is reached. Afterwards, the exact label subset in the
resulting abstract transition system, i. e. either all globally
relevant, or all hα(s0)-relevant labels, is computed. Greedy
bisimulation relaxes the bisimulation criterion by ignoring
all transitions (s, l, t) with h∗(s) < h∗(t) + c(l), i.e., transi-
tions that are not used in any optimal solution.

The number of solved tasks, as well as the number of vio-
lations of the run time and memory requirement for selected
abstraction refinement variants are shown in Table 1. We
show data only for backward refinement and for S = 10K,
as the respective other settings are dominated consistently
(S = ∞, resulted, in most of the cases, in a violation of the
memory requirement within the first few refinement steps).
In Table 2, we show the average ratio of considered labels
for solved tasks, as well as the average amount of refinement
steps for solved tasks.

No variant of abstraction refinement could solved any task
of barman. The backward propagation variant, using All and
L = ∞, shows that excluding all (extracted) spurious so-

Refinement Backward propagation
Termination CIT β = 1.4 CIT β = 2.0 LB h1 All
L ∞ 100K ∞ 100K ∞ 100K ∞ 100K

elevators 9.4, 2.1 9.4, 2.1 9.4, 2.1 9.4, 2.1 15.4, 2.9 12.1, 2.5 49.0, 12.3 17.0, 3.2
floortile 25.0, 1.0 25.0, 1.0 25.0, 1.0 25.0, 1.0 0.0, 0.0 0.0, 0.0 50.7, 2.0 50.7, 2.0
nomystery 14.4, 1.2 14.4, 1.2 1.8, 1.0 1.8, 1.0 0.0, 0.0 0.0, 0.0 51.1, 3.4 30.7, 2.6
openstacks – 57.3, 1.3 – 57.3, 1.3 45.8, 1.0 45.8, 1.0 – 57.3, 1.3
parcprinter 11.3, 1.0 11.3, 1.0 11.3, 1.0 11.3, 1.0 0.0, 0.0 0.0, 0.0 37.3, 14.8 26.7, 8.0
parking 0.3, 1.0 0.3, 1.0 0.3, 1.0 0.3, 1.0 0.0, 0.0 0.0, 0.0 – –
pegsol 55.1, 4.0 10.8, 2.0 48.6, 3.0 10.8, 2.0 2.8, 1.1 2.8, 1.1 55.1, 4.0 10.8, 2.0
scanalyzer 29.6, 1.2 29.6, 1.2 20.1, 1.0 20.1, 1.0 0.0, 0.0 0.0, 0.0 58.5, 2.0 39.6, 1.7
sokoban 5.7, 1.1 5.7, 1.1 5.7, 1.1 5.7, 1.1 0.0, 0.2 0.0, 0.2 – –
tidybot 0.1, 1.0 0.1, 1.0 0.1, 1.0 0.1, 1.0 0.0, 0.7 0.0, 0.7 0.1, 1.0 0.1, 1.0
transport 9.3, 2.3 9.3, 2.3 7.4, 2.0 7.4, 2.0 16.7, 7.4 14.9, 5.2 26.5, 15.0 16.5, 5.8
visitall 60.8, 1.1 60.8, 1.1 53.5, 1.0 53.5, 1.0 0.0, 0.0 0.0, 0.0 81.9, 2.4 76.0, 1.6
woodworking 24.2, 1.0 20.1, 1.0 20.1, 1.0 20.1, 1.0 0.0, 0.0 0.0, 0.0 38.1, 3.0 25.8, 1.3
∅ 20.4, 1.5 19.5, 1.3 16.9, 1.4 17.1, 1.3 6.2, 1.0 5.8, 0.8 44.8, 6.0 31.9, 2.8

Table 2: Results for backward propagation. S is always set to 10K. The first value is the average ratio of caught labels (%), for
solved tasks. The last value is the average amount of refinement steps, for solved tasks.

lutions from the abstract transition system is not feasible
in practice. It can only solve 38 instances within the given
memory and run time limits. The main reason for not finish-
ing a task was the violation of the memory requirement dur-
ing the construction of the abstractions. This implies that the
resulting abstract transition systems are too big to store in
memory. Bounding the size of the abstract transition system,
i.e., L = 100K, improves the performance of All, while re-
ducing the number of violations of the memory, and run time
constraints (during the refinement process). Overall, it can
solve 23 tasks more than the version without size limit. As
can be observed in Table 2, bounding the size of the abstract
transition system for All reduces the average amount of re-
finement steps, and consequently reduces the overall amount
of caught labels. This does generally hold, independent of
the used termination criterion. However, the difference be-
tween L = 100K and L = ∞ for the other termination
criteria is not as big as for All. This implies that the termi-
nation criteria CIT (β ∈ {1.4, 2.0}), and LB h1 are often
fulfilled even before the size limit is reached.

Comparing β = 1.4 and β = 2.0 for the termination cri-
terion CIT, the latter is considerably better. For L =∞, CIT
with β = 2.0 is equally good in 11 domains, and it is bet-
ter in 3 domains. Overall, it can solve 13 tasks more than
CIT with β = 1.4, while reducing the number of violations
of the memory requirement during the refinement process.
When using β = 2.0, one terminates also slightly faster, i.e.,
one catches less labels, than when using β = 1.4.

Consider the termination criterion LB h1. Surprisingly,
many entries of Table 2 are 0. This implies that the first ab-
stract transition system, i.e., the abstract transition system of
a K-catching bisimulation with empty K, does already ful-
fill the termination criterion LB h1 in many cases; evidently,
in these cases h1(s0) is very small. But if the termination
criterion holds initially, then there is actually no refinement
step executed, which results in an empty label subset. How-
ever, in our experiments, using backward propagation, LB h1
and L = 100K was the best abstraction refinement variant.

Comparing the per domain results of LB h1 and CIT with

β = 2.0, without a size limit, the former one can solve more
tasks in 7 domains, is equally good in 2 domains, and worse
in 5 domains. The comparison of the reasons for not com-
pleting a task shows that the CIT variant mainly fails due to
a violation of the memory, or run time constraint during the
refinement process, whereas LB h1 often fails due to a viola-
tion of the memory constraint during the search. That is only
logical: A ∅-catching bisimulation is very cheap to compute
– it only distinguishes non-goal states from goal states – but
does not provide a lot of search guidance.1

Table 3 compares the coverage data of the best abstraction
refinement variant with the results of the non abstraction-
refinement configurations.

In general, for all other M&S variants, using the size limit
N = 100K can solve more tasks than the equivalent vari-
ants without a size limit. Greedy bisimulation with bounded
size is almost identical to Backward h1 with bounded size.
Moreover, comparing IntAbs and Backward h1, both with
N = 100K, the former one can solve slightly more tasks.

Comparing the best abstraction refinement variant, i.e.,
using backward propagation with the termination criterion
LB h1, L = 100K, and S = 10K, with IntAbs, using
N = 100K, and M = 10K, then the abstraction refine-
ment approach is better in 1 domain, equally good in 4 do-
mains, and worse in 9 domains. It gives almost identical re-
sults in 3 domains. Overall, the best configuration of this
experiment is LM-cut. Comparing it to the best M&S con-
figuration, IntAbs with N = 100K and M = 10K, LM-cut
can solve more tasks in 9 domains, it is equally good in 4
domains, and worse in 1 domain.

Conclusions
In theory, abstraction refinement appears to be a suitable way
to extract meaningful label subsets for K-catching bisimu-
lations. Practical results, thus far, are disappointing. Despite
this, we believe the approach is not without hope. As our
empirical data vividly demonstrates, our current strategies

1Note that the failures during abstraction, for LB, are almost
exclusively due to domains where K is not empty.

Approach
Abstraction Refinement

IntAbs Backward h1 Greedy bisim. Full bisim.
LM-cut BJOLP Blind

Backward, LB h1

L/N ∞ 100K ∞ 100K ∞ 100K ∞ 100K ∞
S/M /β/M 10K 10K 10K 10K 0 0.25 ∞ 100K ∞
barman 0 0 4 4 4 4 0 4 0 4 4 4
elevators 7 8 9 11 9 11 4 11 4 15 14 9
floortile 2 2 2 2 2 2 2 2 2 6 2 2
nomystery 12 12 15 14 13 20 12 20 12 14 20 8
openstacks 3 3 14 14 0 14 3 14 3 12 11 14
parcprinter 11 11 12 12 11 12 8 12 8 13 10 6
parking 6 6 5 6 0 0 0 0 0 1 1 0
pegsol 9 9 17 17 13 17 15 17 14 17 17 17
scanalyzer 9 9 9 9 3 8 3 8 3 10 3 9
sokoban 6 6 19 19 17 20 4 19 5 20 20 17
tidybot 3 3 5 5 8 0 0 0 0 13 14 6
transport 5 6 6 6 6 6 4 6 4 6 6 6
visitall 16 16 9 9 8 9 8 9 8 10 10 9
woodworking 5 5 6 6 5 6 3 7 4 10 9 2∑

94 96 132 134 99 129 66 129 67 151 141 109

Table 3: Comparison of solved tasks over the selected domains. Best results are highlighted in bold.

spend way too much time and memory in the abstraction
process. There are many possibilities to control the practical
CEGAR process differently, reducing that overhead.

A major point regards greedier termination criteria. We
have already seen that setting β in CIT to 2 rather than 1.4
reduces abstraction effort considerably. A first step thus sim-
ply is to systematically experiment with largr values of β.
For LB, following one of the methods proposed by Katz et
al., one could also introduce a β parameter and terminate as
soon as the heuristic value has reached h1(s0) ∗ β.

Another issue is the amount of abstract solutions consid-
ered, which was huge in many cases. It appears that many
spurious solutions share the same error label, and therefore
it would be enough to consider only a subset of represen-
tative solutions in the refinement process. How to find such
good subsets efficiently is an interesting open question.

Finally, label reduction has not been covered in this work,
but in some cases can reduce the size of the abstract tran-
sition system drastically. It remains to investigate how label
reduction can be integrated into our approach.

Acknowledgments. We thank the anonymous HSDIP’13 re-
viewers, whose comments helped to improve the paper.

References
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2003. Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the Association for
Computing Machinery 50(5):752–794.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The big joint optimal landmarks planner. In IPC 2011 plan-
ner abstracts, 91–95.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Howe, A.,
and Holte, R. C., eds., Proceedings of the 22nd National
Conference of the American Association for Artificial In-
telligence (AAAI-07), 1007–1012. Vancouver, BC, Canada:
AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the 19th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2009), 162–169.
AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiebaux, S., eds., Proceedings of
the 17th International Conference on Automated Planning
and Scheduling (ICAPS-07), 176–183. Providence, Rhode
Island, USA: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to
relax a bisimulation? In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012). AAAI Press.
Milner, R. 1990. Operational and algebraic semantics of
concurrent processes. In van Leeuwen, J., ed., Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Sematics. Elsevier and MIT Press. 1201–1242.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Com-
puting perfect heuristics in polynomial time: On bisimu-
lation and merge-and-shrink abstraction in optimal plan-
ning. In Walsh, T., ed., Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’11),
1983–1990. AAAI Press/IJCAI.

