
Model Checking ω-Regular Properties
with Decoupled Search

Daniel Gnad1?, Jan Eisenhut1, Alberto Lluch Lafuente2, and Jörg Hoffmann1

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{gnad,hoffmann}@cs.uni-saarland.de;

s8jaeise@stud.uni-saarland.de
2 Technical University of Denmark, Kongens Lyngby, Denmark

albl@dtu.dk

Abstract. Decoupled search is a state space search method originally introduced
in AI Planning. Similar to partial-order reduction methods, decoupled search ex-
ploits the independence of components to tackle the state explosion problem.
Similar to symbolic representations, it does not construct the explicit state space,
but sets of states are represented in a compact manner, exploiting component
independence. Given the success of both partial-order reduction and symbolic
representations when model checking liveness properties, our goal is to add de-
coupled search to the toolset of liveness checking methods. Specifically, we show
how decoupled search can be applied to liveness verification for composed Büchi
automata by adapting, and showing correct, a standard algorithm for detecting
lassos (i.e., infinite accepting runs), namely nested depth-first search. We evalu-
ate our approach using a prototype implementation.

1 Introduction

Model checking is a well-known problem in formal verification. Given a formal de-
scription of a systemM, the model checking problem is to decide whether the system
satisfies a property φ. In contrast to safety properties, which can only express whether
there exists a finite run of the system that reaches a state with certain (bad) proper-
ties, liveness properties can express good behaviours of the system that should occur
repeatedly, i.e., infinite runs in which something good happens infinitely often.

In this work, we consider a liveness verification problem that arises when compos-
ing a setA1, . . . ,An of non-deterministic Büchi automata (NBA), each with its own ac-
ceptance condition. We recall that an accepting run for a single NBA is a lasso ρp(ρc)ω

with a prefix ρp and a cycle ρc that visits an accepting state. For the composition of
a set of NBAs into an NBA we consider the following liveness property: a composed
run is accepting if there is a cycle visiting a state that is accepting for all components.
Such a general problem captures standard liveness verification problems related to ω-
regular properties. An archetypal example is automata-based LTL checking, where sys-
tem components are represented as NBAs and are composed with a property monitor,
represented as a Büchi automaton (often the negation of an LTL property). In this case
an accepting composed run witnesses a violation of a linear-time property.
? Corresponding author.

The predominant approach to address such verification problems using explicit state
space search is to use nested depth-first search (NDFS) algorithms [5, 22, 32], also
called double depth-first search, which perform on-the-fly checking of liveness prop-
erties while composing the NBAs. NDFS, like all state space search methods, suffers
from the state explosion problem. Various methods, such as partial-order reduction [34,
27, 19, 10, 30], symbolic representations [2, 28], symmetry reduction [7, 23], or Petri-
net unfolding [8, 9] have been proposed to alleviate the state explosion problem. Here,
we add decoupled state space search [14], shortly decoupled search, as a new method
for model checking liveness properties, complementary to the existing approaches. In-
deed, as Gnad and Hoffmann [14, 15] have shown, decoupled search complements these
techniques in the sense that there exist cases where it yields exponentially stronger re-
ductions. It has also been shown that decoupled search can be fruitfully combined with
partial-order reduction [16], symmetry reduction [18], and symbolic search [17].

Decoupled search has recently been introduced in AI planning [14], addressing goal
reachability problems. Its applicability to model checking of safety properties has been
shown in [12], where it was effectively introduced into the SPIN model checker [20].
However, the extension of decoupled search to cycle detection problems inherent to
liveness model checking and NDFS algorithms has not yet been investigated. This paper
addresses that investigation for the first time.

Decoupled search exploits the independence of system components, similar to partial-
order reduction techniques, by not enumerating all interleavings of transitions across
components. Similar to symbolic representations, decoupled search does not construct
the explicit state space of the product. Instead, search nodes, called decoupled states,
symbolically represent sets of states. Each decoupled state compactly represents many
global states and their closure up to internal transitions of individual components. Simi-
lar to partial-order reduction or symbolic search, decoupled search can be exponentially
more efficient than explicit search of the state space, as shown for reachability problems
in the domains of AI planning [14] and model checking [12].

The main contribution of our paper is to extend the scope of decoupled search from
safety properties, as done in [12], to liveness properties. In particular, we adapt a stan-
dard NDFS algorithm to the decoupled state representation. The resulting algorithms
are able to solve the verification problem mentioned above, namely checking accep-
tance of composed NBAs. The main technical challenge for the correctness of our algo-
rithms was to identify the conditions that imply existence of accepting runs in decoupled
search and to show how such runs can be constructed efficiently.

We evaluate our decoupled NDFS algorithm using a prototype implementation on
two showcase examples similar to the dining philosophers problem, and a set of ran-
domly generated models. We compare to established tools, namely the SPIN model
checker [20], and Petri-net unfolding with Cunf [30]. The results show that, like for
safety properties, decoupled search can yield exponential advantages over state-of-the-
art methods. In particular, its advantage grows with the degree to which components act
independently of others, via internal transitions that do not affect other components.

The rest of the paper is structured as follows. We start in Section 2 by recalling
the necessary background on NBAs, the verification problem we consider, and a stan-
dard NDFS algorithm typically used to solve the problem. Sections 3–5 present our

contribution: Section 3 formalizes decoupled search in terms of composed NBAs, and
shows its desired properties; Section 4 discusses some issues that would arise in a naı̈ve
attempt to (incorrectly) adapt it, and describes the (correct) adapted NDFS algorithm;
Section 5 provides its correctness proof. In Section 6 we show our experimental eval-
uation, whose code and models are publicly available at [13]. Section 7 concludes the
paper discussing related works and future research avenues.

2 Büchi Automata, Composition and Verification

This section recalls some basic notions of Büchi automata, their composition, the veri-
fication problem we consider in this paper for such composition, and its standard algo-
rithmic resolution based on NDFS.

Büchi Automata and Accepting Runs. We start with the definition of non-deterministic
Büchi automata (NBA).

Definition 1 (Non-Deterministic Büchi Automaton). A non-determinitic Büchi au-
tomaton A is a tuple 〈S,→, L, s0, A〉, where S is a finite set of states, L is a finite set
of transition labels,→⊆ S × L × S is a transition relation, s0 ∈ S is an initial state,
and A ∈ (S → B) is an acceptance function.

A run ρ of an NBA is an infinite sequence of states s0, s1, s2, · · · ∈ Sω starting from
the initial state. The i-th state of a run ρ is denoted by ρ[i] and we will use the same
notation for other lists and sequences. A run ρ is accepting if it traverses accepting
states infinitely often. Formally,

∞
∃j ∈ N : A(s[j]). We define a trace π of a run ρ =

s0, s1, s2, · · · ∈ Sω as a sequence of labels π = l0, l1, · · · ∈ Lω such that ∀i∈N :
〈si, li, si+1〉 ∈→. We will also consider finite runs ρ ∈ Sn and finite traces π ∈ Ln.

As hinted in Section 1, the existence of accepting runs is interesting for several
theoretical and practical reasons. On the theoretical side, the language of an NBA is the

set of all traces σ in Lω for which an accepting run exists such that ρ[i]
σ[i]−−→ ρ[i + 1]

for all i ∈ N. On the practical side, model checking ω-regular properties, including
LTL properties, can be reduced to checking the existence of accepting runs. Such runs,
indeed, provide witnesses or counterexamples for the properties of interest.

Composition of NBAs. From now on we assume that the set of labels L of an NBA is
partitioned into a set LI of internal labels and a set LG of global labels. The notion of
composition we use is based on (maximal) synchronisation on global labels, in words:
in every transition involving a global label, each component having the global label in
its set of labels must perform a local transition, while transitions with internal labels can
be performed independently. When composing NBAs we assume w.l.o.g. that they do
not share any internal label. Further, we assume that every global label is shared by at
least two component NBAs. Otherwise, such labels can be made internal. We will use
the following notation: for a set A1, . . . ,An of NBAs, we use superscripting to denote
the components of each Ai, i.e., we assume Ai = 〈Si,→i, Li = LiI ∪ LiG, si0, Ai〉.

Definition 2 (Composition of NBAs). The composition of n NBAs A1, . . . ,An, de-
noted by A1 ‖ . . . ‖ An, is the NBA 〈S,→, L,~s0, A〉, where S = S1 × · · · × Sn,
L =

⋃
i∈{1,...,n} L

i, ~s0 = (s10, . . . , s
n
0), A = {(s1, . . . , sn) 7→ ∧i=1,...,nA

i(si)} and
→ is the smallest set of transitions closed under the following rules for interleaving of
local transitions (1) and maximal synchronization on global labels (2):

(1)
si

lI−→ s′i lI ∈ LiI
(s1, . . . , si, . . . , sn)

lI−→ (s1, . . . , s′i, . . . , sn)

(2)
∃i∈{1,...,n} : lG ∈ LiG ∀j∈{1,...,n|lG∈Lj

G}
: sj

lG−→ s′j ∀j∈{1,...,n|lG 6∈Lj
G}

: s′j = sj

(s1, . . . , sn)
lG−→ (s′1, . . . , s

′
n)

As notation convention, we will denote component states simply by small case let-
ters, e.g. s, and composed states (s1, . . . , sn) ∈ S by ~s, i.e., as a vector, and similarly
for local runs ρ (resp. traces π) and composed runs ~ρ (composed traces ~π).

In Figure 1 we illustrate a small example of a composition of two NBAs A1,A2.
In the top of the figure, we show the local state space of the two components (A1 left,
A2 right), where the component states are S1 = {1, 2, 3}, S2 = {A,B}, and the labels
are defined as L1

G = L2
G = {l1G, l2G}, L1

I = {l1I}, L2
I = {l2I}. A local state is accepting

for A1, so A1(s) = >, iff s = 2, and similar A2(s) = > iff s = B. The initial states
are s10 = 1 and s20 = A. The transitions are as shown. In the bottom, we depict the
part of the state space of the composition A1 ‖ A2 reachable from ~s0 = (1, A) as it
would be generated by a standard DFS. Here, transitions via global labels synchronize
the components, internal transitions are executed independently. The states crossed out
would be pruned by duplicate checking, the underlined state is accepting.

1

2 3

l1I
l1G

l2G

A B

l1G

l2I

l2G (1, A) (2, A) (3, A) (1, B)

(2, B)

(1, A)

(2, A)l1I l2G l1G
l1I

l2I

l2I

Fig. 1. Example of two NBAs, A1 and A2, and the state space of their composition A1 ‖ A2.

Verification problem and its resolution with NDFS. The verification problem we ad-
dress in this paper is the existence of accepting runs in the composed NBA A1 ‖ . . . ‖
An. In words, we look for runs in A1 ‖ . . . ‖ An that infinitely often traverse states in
which all component NBAs are in an accepting state. We discuss alternative acceptance
conditions in Section 7.

Determining the existence of accepting runs in an NBA can be boiled down to the
existence of so-called lassos, i.e., finite sequences of states in the NBA of the form ~ρp~ρc

CheckEmptiness(A1 ‖ . . . ‖ An):
Stack← 〈~s0〉
V ← ∅
V ′ ← ∅
DFS(~s0)
return empty

NestedDFS(~s):
for all ~t s.t. ~s→ ~t do

if ~t ∈ V ′ then continue
if ~t ∈ Stack then return cycle
V ′ = V ′ ∪ {~t}
NestedDFS(~t)

DFS(~s):
V = V ∪ {~s}
for all ~t s.t. ~s→ ~t do

if ~t ∈ V then continue
push(Stack, ~t)
DFS(~t)
pop(Stack)

if A(~s) then
NestedDFS(~s)
V ′ = V ′ ∪ {~s}

Fig. 2. A standard NDFS algorithm for lasso search in composed NBAs.

where ~ρp is the prefix of the lasso and ~ρc is the cycle of the lasso, which contains at least
one accepting state and closes the cycle (i.e., ~ρp[|~ρp| − 1] = ~ρc[|~ρc| − 1]. Such a finite
sequence of states represents an accepting run ~ρp(~ρc)ω .

Several algorithms can be used to check the existence of lassos. The predominant
family of algorithms are the variants of NDFS, originally introduced in [5]. Figure 2
shows the pseudo-code for one such variant, based on NDFS as presented in [4]. The
algorithm is based on an ordinary depth-first search algorithm (DFS) that works as
usual: a set V is used to record already visited states, and recursion enforces the depth-
first exploration order of the state space. Moreover, a stack Stack is used to keep track of
the states on the current initial trace being explored. The main difference w.r.t. ordinary
DFS is that a second, nested, depth-first search algorithm (NestedDFS) is invoked from
accepting states on backtracking, i.e., after the recursive call to DFS. The idea is that, if
this second depth-first search finds a state that is on Stack , then it is guaranteed that a
cycle has been found, which contains at least one accepting state. That is, one finds the
(un)desired lasso. The algorithm is also complete: no accepting cycle is missed.

(1, A) (2, A) (3, A) (1, B) (2, B) (2, A)

(2, B) (2, A)

l1I l2G l1G l1I l2I

l2I

Fig. 3. Example run of CheckEmptiness. The wavy arrow indicates the invocation of
NestedDFS((2, B)); the dashed arrow indicates how the cycle is closed.

In Figure 3, we illustrate an example run of the CheckEmptiness algorithm on our
example. When DFS backtracks from (2, B), NestedDFS is invoked, illustrated by the
wavy arrow. NestedDFS generates the successor (2, A), which is on Stack, so a cycle
is reported. We can construct an accepting run ~ρp(~ρc)ω with prefix ~ρp induced by the
trace l1I and cycle ~ρc induced by the trace l2G, l

1
G, l

1
I , l

2
I .

3 The Decoupled State Space for Composed NBAs

As previously stated, decoupled state space search was recently developed in AI plan-
ning [14], and adapted to model checking of safety properties later on [12]. It is de-
signed to tackle the state explosion problem inherent in search problems that result
from compactly represented systems with exponentially large state spaces. In AI plan-
ning, where decoupled search was originally introduced, such systems are modelled
through state variables and a set of transition rules (called “actions”). The adaptation of
decoupled search to reachability checking in SPIN presented in [12] devised decoupled
search for automata models, but informally only. Here, we introduce decoupled search
formally for NBA models. We define the decoupled state space for composed NBAs, as
the result from the composition of a set of NBAs.

3.1 Decoupled Composition of NBAs

In contrast to the explicit construction of the state space, where all reachable states are
generated by searching over all traces of enabled transitions, decoupled search only
searches over traces of global transitions, the ones that synchronize the component
NBAs. In decoupled search, a decoupled state sD compactly represents a set of states
closed by internal steps. This is done in terms of the sequence of global labels used
to reach these states, plus a set of reached states for each component. Definition 3 for-
malizes this through the operation decoupled composition of NBAs, which adapts the
composition operation provided in Definition 2 to decoupled state space search.

Definition 3 (Decoupled composition of NBAs). The decoupled composition of n
NBAs A1, . . . ,An, denoted by A1 ‖D . . . ‖D An, is a tuple 〈SD,→D,LG, sD0 , AD〉
defined as follows:

– SD = P+(S1)× · · · × P+(Sn), with P+(S) := 2S \ ∅.
– sD0 = 〈iclose(s10), . . . , iclose(sn0)〉, with iclose(s) being the set of states s′ that are

reachable from s in Ai using only Ai’s internal transitions LiI :

iclose(s) = {s′ | s lI∈L
i
I−−−−−−→
∗s′} and iclose(S) =

⋃
s∈S iclose(s).

– AD(sD) = ∀i∈{1,...,n} : ∃si ∈ Si : Ai(si), where sD = 〈S1, . . . , Sn〉.
– →D is the smallest set of transitions closed under the following rule:

lG ∈ LG ∀i∈{1,...n} : S′i = {s′i | ~s ∈ sD : ~s
lG−→ (s′1, . . . , s

′
i, . . . , s

′
n)} S′i 6= ∅

sD
lG−→D 〈iclose(S′1), . . . , iclose(S′n)〉

where, abusing notation, we write ~s∈sD if sD=〈S1, . . . , Sn〉 and ~s ∈ S1×. . .×Sn.

In the decoupled composition A1 ‖D . . . ‖D An a decoupled state sD is defined
by a tuple 〈sD[A1], . . . , sD[An]〉, consisting of a non-empty set of component states
sD[Ai] for each Ai. A decoupled state represents exponentially many member states,
namely all composed states ~s = (s1, . . . , sn) such that ~s ∈ sD[A1]×· · ·× sD[An]. We
will always use a superscript D to denote decoupled states sD.

We overload the subset operation⊆ for decoupled states sD by doing it component-
wise on the sets of reached local states, namely sD ⊆ tD ⇔ ∀Ai : sD[Ai] ⊆ tD[Ai].

During a search in the decoupled composition we define the global trace of a de-
coupled state sD, denoted πG(sD), as the sequence of global transitions on which sD

was reached from sD0 . For DFS, as considered in this work, this is well-defined.
In explicit state search, states that have been visited before – duplicates – are pruned

to avoid repeating the search effort unnecessarily. The corresponding operation in de-
coupled search is dominance pruning [14]. A newly generated decoupled state tD is
pruned if there exists a previously seen decoupled state sD that dominates tD, i.e.,
where tD ⊆ sD. With the correctness result given below, this is safe. One can make
the representation of decoupled states, and thereby also the dominance checking, more
efficient by representing the state sets sD[Ai] symbolically [17].

The initial decoupled state is obtained by closing each local state with internal steps
(iclose), and decoupled transitions generate decoupled states whose local states are also
closed under internal steps. This maximally preserves the decomposition afforded by
the decoupled representation. Namely, as we will prove in what follows, a decoupled
state sD compactly represents all explicit states that are reachable via traces that extend
the global trace πG(sD) = l1G, l

2
G, . . . , l

k
G with local transition labels. That is, for every

component Ai, sD contains the non-empty subset of its local states sD[Ai] ⊆ Si that
can be reached with traces πi = l1, l2, . . . , ln such that there exist indices j1 < j2 <
· · · < jk where ljt = πG(sD)[jt] for all 1 ≤ t ≤ k. In words, after every global label
on πG(sD), arbitrary enabled sequences of internal transitions are allowed.

We remark that the decoupled composition of a set of NBAs is always deterministic.
For every pair of decoupled state sD and global label lG, there is a unique successor
tD. This is easy to see, since if there is a composed state ~s contained in sD that has
multiple outgoing transitions labelled with lG, all of the composed successor states are
contained in tD. This increases the possible state space reduction compared to standard
search, which needs to branch over all these successors. Note that this is different from
the determinization of NBA, which comes with a blow-up [31]. The determinism is
a consequence of the compact representation where all possible outcome states of a
non-deterministic transition are contained in the decoupled successor state.

3.2 Correctness of Decoupled Composition

In this section we show that decoupled search, as presented here, is sound and complete
w.r.t. reachability properties. We adapt the corresponding result from AI planning [14].

We require some additional notation. For a trace ~π, by πG(~π) we denote the subse-
quence of ~π that is obtained by projecting onto the global labels LG.

As previously stated, the decoupled state space captures reachability of the com-
posed system exactly. The proof is an adaptation of previous results from AI Plan-
ning [14] to composed NBAs as considered here.

Theorem 1. A state ~t of a composition of NBAs A1 ‖ . . . ‖ An is reachable from a
state ~s via a trace ~π, iff there exist decoupled states sD, tD in the decoupled composition
A1 ‖D . . . ‖D An, such that ~s ∈ sD, ~t ∈ tD, and tD is reachable from sD via πG(~π).

Ai Bi

la,iG

lb,jG

AiBi Ci

lG lG

Fig. 4. Illustration of the exponential separations to ample sets (left) and unfolding (right).

Proof. Let πG(~π) = l1G, . . . , l
k
G, and sDi

li+1
G−−→D sDi+1 for all 1 ≤ i < k. We prove the

claim by induction over the length of πG(~π). For the base case |πG(~π)| = 0, the claim
trivially holds, since, by the definition of iclose(), sD contains all composed states ~t
that are reachable from any ~s ∈ sD via only internal transitions.

Assume a decoupled state sDi is reachable from sD via l1G, . . . , l
i
G. Then, by the

definition of decoupled transitions and iclose(), the state sDi+1 contains all composed
states ~si+1 that are reachable from a state ~si ∈ sDi via a trace πi→i+1 that consists
of only internal transitions and li+1

G . By hypothesis, we can extend the traces reaching
every such ~si from a ~s ∈ sD by πi→i+1 and obtain a trace reaching ~si+1 from ~s with
global sub-trace l1G, . . . , l

i
G, l

i+1
G .

For the other direction, if a composed state ~si is reached in a decoupled state sDi
and can reach a state ~si+1 via a trace πi→i+1 that consists of internal labels and li+1

G ,

then there exists a decoupled transition sDi
li+1
G−−→D sDi+1 and, again by the definition of

decoupled transitions and iclose(), sDi+1 contains ~si+1. By hypothesis sDi is reachable
from sD, where ~si is reachable from ~s ∈ sD. Thus, sDi+1 is reachable from sD via
l1G, . . . , l

i
G, l

i+1
G . ut

3.3 Relation to other State-Space Reduction Methods

Prior work has investigated the relation of decoupled search to other state-space re-
duction methods in the context of AI planning [14, 15], in particular to strong stub-
born sets [34], Petri-net unfolding [8, 9], and symbolic representations using BDDs [2,
28]. For all these techniques, there exist families of scaling examples where decoupled
search is exponentially more efficient.

We capture this formally in terms of exponential separations. A search method X
is exponentially separated from decoupled search if there exists a family of models
{Mn=A1, . . . ,Am | n ∈ N} of size polynomially related to n such that (1) the number
of reachable decoupled states in A1 ‖D . . . ‖D Am is bounded by a polynomial in n,
and (2) the state space representation of A1 ‖ . . . ‖ Am under X is exponential in n.

We next describe two scaling models showing that the ample sets variant of SPIN [21,
29], as a representative for partial-order reduction in explicit-state search, and Petri-net
unfolding are exponentially separated from decoupled search. For symbolic search with
BDDs, the reduction achieved by both methods is in general incomparable.

For ample sets, a simple model family looks as follows: there are n components,
each with the same state space: two local states Ai, Bi, initial state Ai, two global tran-
sitions la,iG , lb,jG , one internal transition. A component and the transitions are depicted in

the left of Figure 4 (the dashed transition is internal). The global transitions synchronize
components pairwise; our argument holds for every possible such synchronization.

Under ample set pruning, no reduction is achieved (no state is pruned) because there
is a global transition enabled in every state. Thus, there exists no state where only safe
(i.e. internal) transitions are enabled, and the search always branches over all enabled
transitions of all components. The decoupled state space, in contrast, only has a single
decoupled state, where both local states are reached in each component. All decoupled
successor states are dominated and will be pruned.

Similar to decoupled search, Petri-net unfolding exploits component independence
by a special representation. Instead of searching over composed states and pruning tran-
sitions, the states of individual components are maintained separately.3

A scaling model showing that unfolding is exponentially separated from decoupled
search is illustrated in the right of Figure 4. There are n components, each with the same
state space with three local states Ai, Bi, Ci, a global label lG, and transitions as shown
in the figure. In a Petri net, this model is encoded with 3n places and 2n transitions, one
for every combination of one output place in each of the components. In the unfolding,
this results in an event (the equivalent of a state) for every net transition. The decoupled
state space has only two decoupled states: the initial state where {Ai} is reached for all
components, and its lG-successor where {Bi, Ci} is reached in every component.

4 NDFS for Decoupled Search

We now adapt NDFS to decoupled search. We start by discussing the deficiencies of
a naı̈ve adaptation. We will then introduce the key concepts in our fixed algorithm in
Section 4.2, and present the algorithm itself in Section 4.3. We close this section by
showing that the exponential separations to partial-order reduction and unfolding from
Section 3.3 carry over to liveness checking by simple modifications of the models.

4.1 Issues with a Naı̈ve Adaptation of NDFS

In a naı̈ve adaptation of NDFS to decoupled search, the only thing that changes is the
treatment of decoupled states, which represent sets of composed states, compared to
single states in the standard variant. This leads to three mostly minor changes: (1) in-
stead of duplicate checking we perform dominance pruning; (2) checking if a decoupled
state is accepting boils down to checking if it contains an accepting member state; and
(3) to see if a state ~t contained in a state tD generated in NestedDFS is on the stack, we
need to check if tD has a non-empty intersection with a state on Stack .

As we will show next, it turns out that this naı̈ve adaptation can miss cycles due to
pruning. Revisiting a composed state in NestedDFS does actually not imply a cycle,
because reaching tD from sD entails only that every member state of tD can be reached
from at least one member state of sD, not from all of them. The critical point is that
pruning does not take into account from where states are reachable.

3 A general difference between the methods is that checking reachability of a conjunctive prop-
erty is linear in the number of decoupled states, but NP-complete for an unfolding prefix [27].

1

2 3 4

l1G, l
2
G

l1I l2I l3I
l1G

l2G
l2G

sD0 [A1] = {1, 2, 3, 4}

sD1 [A1] = {1, 2, 3, 4} sD2 [A1] = {1, 2, 3, 4}sD0,A[A1] = {2, 4}

sD1,A[A1] = {3}

sD2,A[A1] = {2}

sD3,A[A1] = {3}

sD4,A[A1] = {3}

sD1 = sD0 sD2 = sD0

sD3,A = sD1,A

sD4,A = sD1,A

l1G l2G

l2G

l2G

l1G

l1G

Fig. 5. Counterexample showing that a naı̈ve adaptation of the NDFS algorithm is incomplete.
The (only) component NBA A1 is depicted on the left. The search tree on the right shows the
entire reachable decoupled state space, where pruned states are crossed out; the wavy arrow
depicts the invocation of NestedDFS on the acceptance restriction sD0,A of sD0 .

Consider the example in Figure 5. The left part of the figure shows the local state
space of component NBAA1. For simplicity, we only show a single component, which
is sufficient to illustrate the issue. Here, A1 is defined as follows: S1 = {1, 2, 3, 4},
L1
G = {l1G, l2G}, L1

I = {l1I , l2I , l3I}, A1(s) = > iff s ∈ {2, 4}, and s10 = 1. The transi-
tions are as shown in the left of the figure. The decoupled search space generated using
NDFS is depicted in the right of the figure. Pruned states are crossed out.

NestedDFS is launched (indicated by the wavy arrow) on the accepting initial state
sD0 . Before explaining the main issue, we remark that, to ensure that a cycle through an
accepting member state of sD0 is found, not a cycle through a non-accepting one, we
need to restrict the set of reached local states to those that are accepting, and the states
internally reachable from those via iclose(). Thus, NestedDFS starts in what we call the
acceptance-restriction sD0,A of sD0 , where sD0,A[A1] = {2, 4}. Now, the issue results from
the fact that sD0,A contains two accepting member states, only one of which, namely
state 2, is on a cycle. Assuming that the decoupled states are generated in order of
increasing subscripts, so sD1 before sD2 and so on, state 2 is first reached in NestedDFS
as a member state of sD2,A, but via the transition labelled with l2G from state 3, so the
cycle cannot be closed. When generating the l1G successor sD4,A of sD0,A, its only member
state 3 has already been reached in sD1,A, so sD4,A is pruned and the cycle of state 2 via
l1G, l

2
G is missed. In the next Section we show how to fix this, through an extended state

representation that keeps track of reachability from a set of reference states.
Another minor issue are lassos ~ρp(~ρc)ω whose cycle ~ρc is induced by internal la-

bels only. These will not be detected, because NestedDFS only considers traces via
global labels. We fix this by checking for LI -cycles in every accepting decoupled state
generated during DFS, to see if there exists a component that can reach such a state.

4.2 Reference-State Splits

The problem underlying the issue described in the previous section is that pruning is
done regardless of the accepting states in the root node of NestedDFS. We now intro-
duce an operation on decoupled states splitting them with respect to the set of reached

local accepting states for each component. In our algorithm, this will serve to distin-
guish the different accepting states, and thus force dominance pruning to distinguish
reachability from these. Formally, we define the restriction to accepting local states as
a new transition with a global label lAG that is a self-loop for all accepting states:

Definition 4 (Acceptance-Split Transition). Let 〈SD,→D,L, sD0 , AD〉 be the decou-
pled composition of A1, . . . ,An. Let sD be an accepting decoupled state, and for
1 ≤ i ≤ n let 〈si1, . . . , sici〉 ⊆ sD[Ai] be the list of reached accepting states of Ai,
where for all 1 ≤ j ≤ ci : Ai(sij) = >. Then the acceptance-split transition lAG in sD is
defined as follows:

AD(sD) = > ∀i ∈ {1, . . . n}, j ∈ {1, . . . , ci} : sij ∈ sD[Ai] ∧Ai(sij) = >

sD
lAG−→D 〈〈iclose(s11), . . . , iclose(s1c1)〉, . . . , 〈iclose(s

n
1), . . . , iclose(s

n
cn)〉〉

The outcome state sDA of an acceptance-split transition is a split decoupled state. The
set of reference states of sDA is R(sDA) := {s | ∃Ai : s ∈ sD[Ai] ∧Ai(s) = >}.

In words, the operation splits up the single set of reached component states sD[Ai]
of Ai into a list of state sets, where each such set sDA [Ai]s contains the states that can
be reached via internal transitions from the respective accepting state s ∈ sD[Ai].

Our search algorithm will use the acceptance-split transition to generate the root
node sDA of NestedDFS from an accepting state sD backtracked from in DFS. Hence
NestedDFS will search in the space of split decoupled states. The transitions over these
behind an sDA are defined as follows:

Definition 5 (Split Transitions). Let 〈SD,→D,L, sD0 , AD〉 be the decoupled composi-

tion of A1, . . . ,An. Let sD and tD be decoupled states, with a transition sD lG−→D tD.
Let 〈si1, . . . , sici〉 ⊆ Si be reference states for Ai. Then the split transition sDR

lG−→D tDR
is defined such that for every Ai and every 1 ≤ j ≤ ci we have:

tDR [Ai]sij =

{
iclose({s′ ∈ tD[Ai] | ∃s ∈ sDR [Ai]sij : s

lG−→is′}) lG ∈ LiG
sDR [Ai]sij lG 6∈ LiG

The list of reference states for an Ai does not change along a trace of split transi-

tions. Let sDA be a decoupled state generated by an acceptance-split transition sD
lAG−→D

sDA , then for all successor states tD of sDA , the set of reference states is R(tD) = R(sDA).
We extend set operations to the split representation as follows. A split decoupled

state sDR dominates a split decoupled state tDR , denoted tDR ⊆R sDR , if R(tDR) ⊆ R(sDR)
and for all components Ai and reference states s ∈ R(tDR) ∩ Si we have tDR [Ai]s ⊆
sDR [Ai]s. In contrast, state membership is defined in a global manner, across reference
states. Namely, the set of local states of an Ai reached in a split decoupled state sDR is
defined as sDR [Ai] :=

⋃
s∈R(sDR)∩Si sDR [Ai]s. Composed state membership is defined

relative to these sDR [Ai] as before.
An important property of the splitting is that it preserves reachability of member

states. Concretely, for a split-transition sDR
lG−→D tDR induced by a transition sD lG−→D tD

for all Ai it holds that if sDR [Ai] = sD[Ai], then tDR [Ai] = tD[Ai].

sD1,A[A1] = 〈{2}2, {4}4〉

sD1,R[A1] = 〈{}2, {3}4〉 sD2,R[A1] = 〈{}2, {2}4〉 sD3,R[A1] = 〈{}2, {3}4〉

sD4,R[A1] = 〈{3}2, {}4〉 sD5,R[A1] = 〈{2}2, {}4〉

sD3,R ⊆R sD1,Rl2G

l2G l1G

l1G

l2G

Fig. 6. With acceptance-splitting, NestedDFS invoked on the lAG-successor sD1,A of sD0 of the
example in Figure 5 correctly detects the cycle of state 2 induced by the trace l1G, l

2
G.

As a notation convention, we will always denote split states sDR by a subscript R,
and the direct outcome of an acceptance-split transition by sDA , with a subscript A.

Considering our example again, Figure 6 illustrates how, on split decoupled states,

the cycle 2
l1G−→ 3

l2G−→ 2 is not pruned. The state sD3,R is still pruned, as it contains
only component states reached from state 4. In sD4,R and sD5,R, the decoupled state keeps
track of the traces from the origin state 2, so none of the two is pruned, since they are
not dominated by any state sDi,R (the root node sD1,A of NestedDFS is not yet visited).

As indicated before, in our emptiness checking algorithm we will use split decou-
pled states only within NestedDFS. The seed state sDA of NestedDFS will always be the
lAG-successor of an accepting state sD backtracked from in DFS. Every member state of
sDA is accepting, or can be reached with LI -transitions from an accepting state.

4.3 Putting Things Together: Decoupled NDFS

We are now ready to describe our adaptation of the standard NDFS algorithm to de-
coupled compositions. The pseudo-code is shown in Figure 7. The differences w.r.t the
standard algorithm (Figure 2) are highlighted in blue. The basic structure of the algo-
rithm is preserved. It starts by putting the decoupled initial state sD0 onto the Stack in
CheckEmptiness, and launches the main DFS from it.

In DFS, the control flow does not change, decoupled states are generated in depth-
first order by recursion, updating the stack accordingly. There are however three differ-
ences to the standard variant:

1. Before generating the successors, we call CheckLocalAccept on each accepting
decoupled state sD. This detects cycles resulting from LI -transitions, i.e., cycles
that occur “within” a decoupled state. To this end, we check whether there exists a
component Ai for which an accepting local state sia is reached that can reach itself
using only internal labels LiI (the set of such local states can be precomputed, so
that the check becomes a lookup operation). We can then construct an accepting
run for the composed system by appending the LiI -cycle to the sequence of states
that reaches sia in sD for Ai. Note that it suffices if a single component moves and
all other components remain in a reached accepting state.

2. Instead of doing duplicate checking, the algorithm performs dominance pruning,
pruning a new decoupled state tD if all its member states have been reached in an
already visited decoupled state rD.

CheckEmptiness(A1 ‖D . . . ‖D An):
Stack← 〈sD0 〉
V ← ∅
V ′ ← ∅
DFS(sD0)
return empty

NestedDFS(sDR):
for all tDR s.t. sDR →D tDR do

if ∃rDR ∈ V ′ s.t. tDR ⊆R rDR then
continue

if ∀Ai : ∃s : s ∈ tDR [Ai]s then
return cycle

if ∃rD ∈ Stack s.t. rD ⊆ tDR then
return cycle

V ′ = V ′ ∪ {tDR}
NestedDFS(tDR)

DFS(sD):
V = V ∪ {sD}
if AD(sD) then

CheckLocalAccept(sD)
for all tD s.t. sD →D tD do

if ∃rD ∈ V s.t. tD ⊆ rD then
continue

push(Stack, tD)
DFS(tD)
pop(Stack)

if AD(sD) then

Let sDA s.t. sD
lAG−→D sDA .

NestedDFS(sDA)
V ′ = V ′ ∪ {sDA}

CheckLocalAccept(sD):

if ∃Ai, s ∈ sD[Ai] : Ai(s) ∧ s
lI∈Li

I−−−−→+s
then return cycle

Fig. 7. Adaptation of a standard NestedDFS for lasso search in decoupled compositions of NBA.

3. As discussed in Section 4.2, when we launch NestedDFS at a decoupled state sD,
we do so on the acceptance-split lAG-successor sDA of sD.

NestedDFS now starts in the acceptance-split sDA , and traverses split transitions
as per Definition 5. On generation of a new state tDR , we perform dominance pruning
against the decoupled states visited during all prior calls to NestedDFS. If in an tDR for
every component Ai there exists a reference state s ∈ Si that is reachable from itself,
so s ∈ tD[Ai]s, then we can construct a cycle. As we will show in Theorem 4, this test
is guaranteed to find all cycles that start from an accepting state ~sA ∈ sDA .

Note that we cannot check for a non-empty intersection with states rD on Stack ,
since these are not split relative to the reference states of sDA . Thus, since we do not
know from which local state in rD the state in the intersection was reached, such a
non-empty intersection would not imply a cycle. What we can do, however, is check for
dominance instead, as an algorithm optimization inspired by [22]. The pseudo-code in
Figure 7 does so by checking whether tDR ⊇ rD, where the⊇ relation between a split vs.
non-split state is simply evaluated based on the overall sets tDR [Ai] vs. rD[Ai] of reached
components states. If this domination relation holds true, then the reachability issue
mentioned in the previous section is resolved because all~t ∈ rD are then reachable from
sDA – including those ~t from which an accepting state ~s ∈ sDA is reachable. Lemma 1 in
the next section will spell out this argument as part of our correctness proof.

Observe that splitting a decoupled state incurs an increase in the size of the state
representation, as the same local state may be reached from several reference states.
More importantly, as dominance pruning is weaker on split states (which after all is
the purpose of the split operation) the size of the search space may increase. As shown
by the example in Figure 5, though, there is no easy way around the splitting, since

A1: AB

C

D

E

F

G

H

l1G

l4G

lI

l2G

l5G

l6G

lIl3Gl7G

A2: 1 l1−7
G

Fig. 8. Illustration of the component NBAs used in Example 1.

the algorithm has to be able to know from which component state the successors states
are reached. Assuming a component has M accepting states, then in the worst case all
local successor states that are shared between these accepting states can be visited M
times across all NestedDFS invocations. Unless some of the decoupled states revisiting
the same member state are pruned by dominance pruning, it can actually happen that
the revisits multiply across the components, so the size of the decoupled state space in
NestedDFS can potentially be exponentially larger than the standard state space. As we
shall see in our experimental evaluation, typically such blow-ups do not seem to occur.

In case we want to construct a lasso, we need to store a pointer to the predecessor
of each decoupled state and the label of the generating transition. With this, we can,
for each component Ai separately, reconstruct a trace ~π of a state ~t ∈ tD reached from
a state ~s ∈ sD where πG(sD, tD) = πG(~π). Here, for a decoupled state tD that was
reached from another decoupled state sD, by πG(sD, tD) we denote the global trace via
which tD was reached from sD. This can be done in time polynomial in the size of the
component and linear in the length of πG(sD, tD). Since the traces for all components
are synchronized via πG(~π), we add the required internal labels for each component in
between every pair of global labels. We remark that, to decide if a lasso exists, we do
not need to store any predecessor or generating label pointers.

We next show on an example how our algorithm works.

Example 1. The model has two component NBAs A1,A2 illustrated in Figure 8. It is a
variant of an example from [26]. The Figure should be self-explanatory, we remark that
all global transitions l1G, . . . l

7
G induce a self loop in the only state 1 of A2.

CheckEmptiness starts by putting sD0 onto Stack and enters DFS(sD0). Let sD1 =
〈{B,D}, {1}〉, sD2 = 〈{E,F}, {1}〉, and sD3 = 〈{D}, {1}〉 be the successors generated
along the trace l1G, l

2
G, l

3
G in DFS. Since sD3 ⊆ sD1 ∈ V , sD3 is pruned and the search

backtracks to sD1 . Say DFS selects the transition via l4G next, generating the state sD4 =
〈{C}, {1}〉 and its l5G-successor sD5 = 〈{F}, {1}〉. Then sD5 is pruned because it is
dominated by sD2 ∈ V , and the search backtracks from sD4 , which is accepting.

Thus, NestedDFS(sD5,A) is invoked, where sD5,A = 〈〈{C}C〉, 〈{1}1〉〉, because C
and 1 are accepting local states that become the reference states of sD5,A. NestedDFS
will follow the trace l5G, l

3
G, l

6
G, l

7
G, l

7
G, which among others generates the state sD6,R =

〈〈{G}C〉, 〈{1}1〉〉 by l6G, and ends in sD7,R = 〈〈{G}C〉, 〈{1}1〉〉. The latter is pruned,
because it is dominated by sD6,R, which is contained in V ′. No cycle is reported. This is
correct, because the only member state (C, 1) of sD5,A does not occur on a cycle.

Ai Bi

la,iG

lb,jG

AiBi Ci

lG lG

Fig. 9. Illustration of the exponential separations to ample sets (left) and unfolding (right).

DFS then backtracks to sD1 = 〈{B,D}, {1}〉 and generates its remaining successor
sD8 = 〈{G}, {1}〉 via l6G. DFS further generates the l7G-successors of sD8 and eventually
backtracks from sD8 , invoking NestedDFS(sD8,A), where sD8,A = 〈〈{G}G〉, 〈{1}1〉〉.

After two transitions via l7G the resulting state sD9,R = 〈〈{G}G〉, 〈{1}1〉〉 satisfies
the condition that for all components Ai ∃s : s ∈ sD9,R[Ai]s, namely G and 1. Thus, a
cycle is reported. It is induced by the trace l1G, lI , l

6
G, l

7
G, l

7
G.

Note that no decoupled state in the second NestedDFS is pruned, since none of
them is dominated by a state in V ′ of the first NestedDFS invocation. In particular,
sD8,A = 〈{G}G, {1}1〉 is not dominated by sD6,R = 〈{G}C , {1}1〉, because the reference
states differ – G and 1 for sD8,R and C and 1 for sD6,R.

4.4 Relation to other State-Space Reduction Methods

The comparison to ample set pruning and Petri-net unfolding from Section 3.3 carries
over directly to liveness checking via simple adaptations to the examples, see Figure 9.

Theorem 2. CheckEmptiness with explicit-state search and ample sets pruning is ex-
ponentially separated from CheckEmptiness with decoupled search.

Proof (sketch). The argument from Section 3.3 remains valid. With the states Bi ac-
cepting (see Figure 9, left), explicit-state search with ample sets pruning in the worst
case has to exhaust the entire state space. It invokes NestedDFS on the accepting state
(Bi)

n and, worst-case, needs to exhaust the state space again to detect the cycle. Decou-
pled search invokes NestedDFS on the initial state restricted to the component states
Bi. Every successor of that state closes the cycle via an arbitrary lbG transition. So there
are only three decoupled states overall (including the acceptance-restricted initial state).

ut

Theorem 3. Constructing a complete unfolding prefix is exponentially separated from
CheckEmptiness with decoupled search.

Proof (sketch). The component states Bi are made accepting and internal transitions
Bi → Ai are added to the model (see Figure 9, right). Unfolding constructs a complete
prefix as described in Section 3.3, plus one event for each new internal transition.4 De-
coupled search generates the two states as described. The second state has {Ai, Bi, Ci}
reached for all components, its successor via lG is pruned. NestedDFS is invoked on
its restriction to Bi, in which all Ai get reached via the new internal transitions. The
lG-successor of this state closes the cycle, so there are only four decoupled states. ut

4 A weaker cut-off rule is required for liveness checking that can only increase the prefix size [8].

5 Decoupled NDFS Correctness

We now show the correctness of our approach. In Lemmas 1, 2, 3, we show that if our
algorithm reports a cycle, then there exists an accepting run for A1 ‖ . . . ‖ An. In
Theorem 4, we then show that decoupled NDFS does not miss an accepting run.

We first show that the optimization of checking dominance of states in NestedDFS
against states on the stack is sound, i.e., that an accepting run exists.

Lemma 1. Let rD be a decoupled state on the current DFS Stack , and let tDR be a
decoupled state generated by NestedDFS. If tDR ⊇ rD, then there exists an accepting
run for A1 ‖ . . . ‖ An.

Proof. Let sD be the accepting state that is backtracked from in DFS, i.e., the current
NestedDFS was invoked on its lAG-successor sDA .

From Theorem 1 we know that if sD2 is reachable from sD1 , then for every state

~s2 ∈ sD2 there exists a state ~s1 ∈ sD1 such that ~s1
~π−→ ~s2, where πG(~π) = πG(sD1 , s

D
2).

This result also holds for decoupled states reached in NestedDFS from states in
DFS. This is because the acceptance-split transition lAG only restricts the set of reached
member states of sD in sDA , so in particular sDA ⊆ sD. Furthermore, split transitions
generating states behind sDA do not affect reachability of member states of these split-
decoupled states compared to their non-split counterparts.

In particular, (1) for every state ~s2 ∈ sD there exists a state ~s1 ∈ sD0 that reaches
~s2 on a trace ~π where πG(~π) = πG(sD0 , s

D), which, with sDA ⊆ sD also holds for all
~s2 ∈ sDA ; and (2) for every state ~t ∈ tDR there exists an accepting state ~sA ∈ sDA that
reaches ~t on a trace ~π where πG(~π) = πG(sDA , t

D
R).

Since rD is on Stack, it holds that every ~s ∈ sDA is reachable from a ~r ∈ rD, and,
with tDR ⊇ rD, that every ~r ∈ rD is reachable from an accepting state ~sA ∈ sDA .

Let pred(sD1 , s
D
2 , ~s2) be a function that, if sD2 is reachable from sD1 and ~s2 ∈ sD2 ,

outputs a state ~s1 ∈ sD1 that reaches ~s2 via a trace ~π with πG(sD1 , s
D
2) = πG(~π).

Let ~s0 be a state reached in both tDR and rD, and let ~s1 = pred(rD, tDR , ~s0) be
its predecessor in rD. If ~s1 = ~s0, then we are done, because there exists a lasso
~s0, . . . , ~s0, . . . , ~sA, . . . , ~s0, . . . , ~sA, where ~sA is an accepting state traversed in sDA . Such
an accepting state exists because all member states of a decoupled state in NestedDFS
are reachable from an accepting state in sDA .

If ~s1 6= ~s0, then we iterate and set ~si = pred(rD, tDR , ~si−1), where such ~si exist
because rD ⊆ tDR . Because there are only finitely many states in rD, eventually we get
~si = ~sj (where j < i) and there exists a lasso as follows:

First, there exists a cycle ~si, . . . , ~si−1, . . . , ~sj = ~si, where between every pair of
states ~sk, ~sk−1 an accepting state ~sk,A in sDA is traversed, for the same reason as before.
We can obviously shift and truncate the cycle to start right after and end in ~si,A. The
prefix of the lasso is ~s0, . . . , ~si,A. ut

Lemmas 2 and 3 show the soundness of our main termination criterion, and of
CheckLocalAccept.

Lemma 2. Let tDR be a split decoupled state generated in NestedDFS. If for every
component Ai there exists a component state si such that si ∈ tD[Ai]si , then there
exists an accepting run for A1 ‖ . . . ‖ An.

Proof. Let sDA be the acceptance-split decoupled state from which NestedDFS was
started. If for every component Ai such an si exists, then the state ~s = (s1, . . . , sn) is
reachable in both sDA and tDR . By the construction of the reached state sets tDR [Ai]si , ~s is
reachable from itself and is accepting. Hence, there exists a lasso ~s0, . . . , ~s, . . . , ~s. ut

Lemma 3. Let tD be an accepting decoupled state generated in DFS such that a cycle
is reported by CheckLocalAccept(tD), then an accepting run for A1 ‖ . . . ‖ An exists.

Proof. By prerequisite, there exists an accepting member state ~s of tD. If CheckLo-
calAccept(tD) reports a cycle, then there exists a component Ai, where an accepting
state si ∈ tD[Ai] is reached that lies on an cycle induced by transitions labelled with
LiI . Thus, we can set the local state of Ai in ~s to si, and the lasso looks as follows:
~s0, . . . , ~s, . . . , ~s, where on the cycle only Ai moves. ut

We are now ready to prove the correctness of our decoupled NDFS algorithm.

Theorem 4. LetA1 ‖ . . . ‖ An be the composition of n NBA and letA1 ‖D . . . ‖D An
be its decoupled composition. Then CheckEmptiness(A1 ‖D . . . ‖D An) reports a
cycle if and only if an accepting run for A1 ‖ . . . ‖ An exists.

Proof. If CheckEmptiness reports a cycle, then by Lemmas 1, 2, and 3, which cover
exactly the cases where a cycle is reported, an accepting run for A1 ‖ . . . ‖ An exists.

For the other direction, assume that ~ρ is an accepting run forA1 ‖ . . . ‖ An. Let ~sa,
with 0 ≤ a < k, be the accepting state that starts the cycle of the lasso ~ρp = ~s0, . . . , ~sa,
~ρc = ~sa+1, . . . , ~sk, where ~sa = ~sk. Let ~π = l1, . . . , lk be the trace on which ~sk is
reached, i.e., for all 1 ≤ i < k : 〈~si, li+1, ~si+1〉 ∈→.

By Theorem 1, there exists a decoupled state sD reached in DFS that contains ~sa.
If ~π is such that for all a < i ≤ k : li ∈ LI , i.e., the cycle ~ρc is induced only

by internal labels, we next proof that CheckLocalAccept(sD) reports a cycle: As ~sa is
accepting, sD is accepting, too, so unless a cycle is reported before, eventually Check-
LocalAccept(sD) is called. If ~ρc is induced by only internal labels, then, because there
cannot be any component interaction via LI -transitions, there must exist a component
Ai for which the local state si in ~sa reaches itself with only LiI -transitions. We can
pick any such Ai and ignore transitions from ~ρc that are labelled by an element of
LI \ LiI , since these are not required for an accepting cycle. Consequently, CheckLo-
calAccept(sD) reports a cycle.

We next show that, if ~π contains a global label on the cycle, i.e., there exists an i ∈
{a+1, . . . , k} such that li ∈ LG, then, unless a cycle is reported before, NestedDFS(sDA)
reports a cycle, where sDA is the lAG-successor of sD.

Assume for contradiction that this is not the case, i.e., no cycle has been reported
before, and NestedDFS(sDA) does not report a cycle. Let NestedDFS(sDA) be the first
call to NestedDFS that misses a cycle, although an ~sa ∈ sDA that is on a cycle exists.

If ~sa is on a cycle, then by Theorem 1 there exists a decoupled state tD reachable
from sDA that also contains ~sa. The result of Theorem 1 holds in this case because, by
the definition of split transitions, the splitting does not affect reachability of member
states. So there exists tDR reachable from sDA that contains ~sa.

Dining Philosophers Ring Topology
SPIN Cunf DecNDFS SPIN Cunf DecNDFS

#A Time #States Mem Time #E M Time #States M #A Time #States Mem Time #E M Time #S M
3 0.0 76 129 0.00 75 6 0.00 36 8 6 0.10 81.5K 133 0.00 342 6 0.00 8 8
4 0.0 348 129 0.00 162 6 0.00 97 8 7 0.95 560K 157 0.00 484 7 0.00 9 8
5 0.0 2000 129 0.00 293 6 0.00 272 8 8 8.35 3.7M 303 0.01 651 7 0.00 10 8
6 0.0 9416 131 0.01 482 7 0.01 783 8 9 73.6 24.6M 1367 0.01 843 8 0.00 11 8
7 0.2 45132 139 0.01 735 8 0.06 2290 8 10 - - - 0.01 1060 9 0.00 12 8
8 1.3 212K 175 0.02 1066 9 0.60 6761 8 15 - - - 0.03 2525 17 0.00 17 8
9 7.9 992K 333 0.02 1481 11 5.49 20.1K 9 20 - - - 0.10 4570 37 0.00 22 8
10 46.8 4.6M 993 0.04 1994 15 56.7 59.9K 14 25 - - - 0.22 7240 74 0.01 27 8
11 278.0 21.6M 3965 0.04 2386 18 558 179K 44 50 - - - 3.80 30K 917 0.06 52 8
12 - - - 0.06 2874 23 - - - 75 - - - - - - 0.26 77 8

Fig. 10. Statistics on the two scaling models, where #A is the number of philosophers, resp. the
number of NBAs, Time is runtime in seconds, #States (#S) and #E are the number of visited
states, resp. generated events, and Mem (M) is the memory usage in MiB.

Denote by ~πc = la+1, . . . lk the cycle part of ~π. Because ~sa is an accepting mem-
ber state of sD, all its component states siA become reference states in sDA . Therefore,
assuming that πG(sDA , t

D
R) = πG(~πc), for all components we have siA ∈ tDR [Ai]siA and

a cycle is reported. If this is not the case, then either (1) sD was not reached in DFS, or
(2) tDR was not reached in NestedDFS(sDA).

In case (1), there must exist a state sDP ⊇ sD that prunes sD. But then, sDP contains
~sa, too, and NestedDFS was called on its lAG-successor sDP,A and the cycle of ~sa was
missed before, in contradiction.

For (2), either (a) there exists a state tDP,R ⊇R tDR that was reached in a prior invo-
cation of NestedDFS on an accepting state sDP,A, or (b) a state tDP,R ⊇ tDR was reached
in NestedDFS(sDA) before tDR . In both cases, tDR is pruned and the cycle through ~sa is
missed. Case (a) can only happen if sDP,A contains ~sa, too, because the reference states
of sDA need to be a subset of the ones of sDP,A. But then, the cycle of ~sa was missed be-
fore, in contradiction. For (b), if tDR ⊆R tDP,R, then for allAi we have siA ∈ tDP,R[Ai]siA ,
so the cycle would have been reported before, in contradiction.

The reachability argument in (1,2a,2b) applies recursively to all predecessors of sD

in DFS, and of tDR in NestedDFS(sDA), so, unless a cycle is reported before, eventually
a state sD is reached in DFS that contains ~sa, and a state tDR with siA ∈ tDR [Ai]siA in
NestedDFS(sDA). ut

6 Experimental Evaluation

We implemented a prototype of the decoupled NDFS algorithm from Figure 7. The
input is specified in the Hanoi Omega-Automata format [1], describing a set of NBAs
synchronized via global labels as in Definition 2. We compare our prototype to the SPIN
model checker [20] (v6.5.1), and to the Cunf Petri-net unfolding tool [30] (v1.6.1). We
also experimented with the symbolic model checkers NuSMV and PRISM [3, 25], but
both are significantly outperformed by the other methods. We conjecture that this is
because both systems are not specifically designed for asynchronous execution of pro-
cesses, or LTL model checking. For SPIN, we translate each NBA to a process where

10−1 100 101 102 103

10−1

100

101

102

103

SPIN

D
ec

N
D

FS

0%
20%
40%
60%
80%

10−1 100 101 102 103

10−1

100

101

102

103

Cunf

D
ec

N
D

FS

10−1 100 101 102 103

10−1

100

101

102

103

SPIN

D
ec

N
D

FS

2
3
4
5
6
7
8

10−1 100 101 102 103

10−1

100

101

102

103

Cunf

D
ec

N
D

FS

l1I l2I

l3I

l4I

l5I

l6I

liG

li+1
G

llFi
G

llFi
G

lrFi
G

lrFi
G

llFi
G l

rFi+1

G

leatI

llFi
Gl

rFi+1

G

lthink
I

Fig. 11. Left part: scatterplots with the runtime of DecNDFS on the y-axis and the one of SPIN
(left column) and Cunf (right column) on the x-axis, on randomly generated models. Each point
represents one instance. In the top row, we highlight different ratios of local labels with differ-
ent colors/shapes, in the bottom row we highlight different numbers of components. Right part:
illustrations of the ring model (top) and the fork (middle) and philosopher (bottom) NBAs of the
philosophers model. Initial (accepting) states are marked by an incoming arrow (double circle).

NBA states are represented by state labels, internal transitions by goto statements, and
global transitions by rendezvous channel operations. For the latter, SPIN only supports
synchronization of two processes at a time, so we restrict the models to global transi-
tions with exactly two components. We model acceptance for SPIN explicitly using a
monitor process that gets into an accepting state if all processes are in a local accept-
ing state. The translation for Cunf encodes NBA states as net places and transitions as
net transitions into a single Petri net, ignoring the individual components. In our proto-
type and in SPIN, when a lasso is reported or the algorithm proved that no lasso exists
within the cut-off limits, we say that the instance was solved. For Cunf, we attempt to
construct a complete unfolding prefix. We consider an instance solved if the construc-
tion terminates, i.e., we do not actually check the liveness property. The experiments
were performed on a cluster of Intel E5-2660 machines running at 2.20 GHz, with time
(memory) cut-offs of 15 min (4 GiB). Our code and models are publicly available [13].

We compare SPIN with standard options, i.e., with partial-order reduction enabled,
Cunf with the cut-off rule of [10], and decoupled search (DecNDFS), using two kinds of
benchmarks: (1) two scaling examples to showcase the behaviour on well-known mod-
els. One is an encoding of the dining philosophers problem, the other is a ring-shaped
synchronisation topology. Both are illustrated in Figure 11 (right). The philosophers
model has 2N NBAs, N philosophers and N forks, synchronized by global transitions
llFi

G and lrFi

G . After synchronizing with its left and right fork, a philosopher can perform
an internal eat transition; after releasing the forks it can perform an internal think tran-
sition. In the ring-topology model, each component can enter a diamond-shaped region

Ratio # SPIN Cunf DecNDFS #A # SPIN Cunf DecNDFS
2 750 721 750 749
3 750 696 745 712

0% 1050 373 369 319 4 750 411 243 541
20% 1050 385 384 462 5 750 130 114 372
40% 1050 397 384 573 6 750 49 53 266
60% 1050 422 394 723 7 750 24 34 180
80% 1050 468 431 888 8 750 14 23 145∑

5250 2045 1962 2965
∑

5250 2045 1962 2965

Fig. 12. Number of solved instances on the random models as a function of the ratio of internal
transitions (left) and the number of components #A (right).

via internal transitions, followed by a synchronization with its left or right neighbor
via liG or li+1

G . No accepting run exists for either model. Moreover, (2) we use a set
of random automata, where for each combination of a ratio of internal transitions in
{0%, 20%, . . . , 80%}, i.e., the number of transitions labelled with LI divided by the
total number of transitions, and a number of components in {2, . . . , 8}, we generated
sets of 150 random graphs. Each component has 15 to 100 local states, out of which up
to 3% are accepting (at least one). We ensure that none of the instances has an inter-
nal accepting cycle to focus on more interesting cases. One could easily implement a
lookup similar to CheckLocalAccept, which is necessary for DecNDFS, for the other
methods, too, which then essentially simplifies the problem to basic reachability.

In Figure 10, we show detailed statistics for the scaling models, with increasing
number of components #A (Time in seconds, #States is the sum of states visited in both
DFSs, #E is the number of events in the prefix, Memory in MiB). In dining philosophers,
SPIN and DecNDFS show similar results. SPIN has a runtime advantage in the larger
instances of roughly a factor of 2, but DecNDFS uses only a fraction of the memory.
Cunf clearly outperforms both. This model is not very well suited to decoupled search.
Only half of the NBAs have internal transitions, and only two each, and there are no
non-deterministic transitions that DecNDFS could represent compactly. On the ring-
topology model, SPIN manages to exhaust the search space for up to 9 components.
Cunf and DecNDFS scale significantly higher, the number of decoupled states grows
only linearly in the number of components. Cunf on the other hand does show a blow-
up and runs out of memory between 50 and 75 components. This showcase example
only serves to illustrate a near-to-optimal case for decoupled search reductions, which
likely does not carry over in this extent to real-world models.

In Figure 11 (left part), we show detailed runtime behaviour in terms of scatter plots
with a per-instance comparison on the random models. Each point corresponds to one
instance, where the x-value is the runtime of SPIN, resp. Cunf, and the y-value is the
runtime of DecNDFS, so points below the diagonal indicate an advantage of DecNDFS.
Different ratios of internal labels (top row) and numbers of components (bottom row)
are depicted in different colors/shapes. We observe that, as expected, with a higher ratio
of internal transitions, the advantage of DecNDFS increases significantly. For all ratios,
DecNDFS clearly improves with a higher number of components.

In Figure 12, for the same benchmark set we show the number of solved instances
as a function of the ratio (left) and of the number of components (right). Here, we
see that from around 20% internal transitions, DecNDFS consistently beats both SPIN

and Cunf. SPIN and Cunf also benefit from the decrease in synchronizing statements,
although not as much as DecNDFS. On the right, we see that starting with 4 component
NBAs (#A), DecNDFS consistently beats SPIN and Cunf. While SPIN and Cunf show a
significant decline with more components, this effect is less pronounced for DecNDFS.

7 Concluding Remarks and Future Work

We have presented an approach to adapt decoupled search, an AI planning technique to
mitigate the state-space explosion, to the verification of liveness properties of composed
NBAs. Specifically, we have adapted a standard on-the-fly algorithm for checking ω-
regular properties, nested depth-first search (NDFS), and proven its correctness. The
necessary adaptations essentially pertain to the conditions that identify the existence of
accepting runs, which must be handled differently given the different properties of de-
coupled states. Our approach extends the scope of decoupled search from safety proper-
ties, as done in [12], to liveness properties. Our experimental evaluation has shown that
decoupled search can yield significant reductions in search effort across random models
that consist of a set of synchronized NBAs, and simple scaling showcase examples.

We have focused on a verification problem for composed NBAs that is sufficiently
general to cover significant cases like automata-based LTL model checking. We believe
that our solution can be adapted to other verification problems for composed NBAs, in-
cluding Büchi automata with multiple acceptance conditions such as generalized Büchi
automata, and language intersection of the involved automata. Indeed, NDFS has suc-
cessfully been used for emptiness checking of generalized NBA. We are confident that
decoupled NDFS can be adapted to the compilation introduced by [33], where an addi-
tional “counter component” is added to keep track of the components that already have
an accepting cyle during the nested DFS. Concretely, we believe that the verification
problem of generalized NBA can be handled with adaptations by our approach: In the
compilation by [33], the counter component increases its local state from 1 to n (as-
suming n components), one by one whenever component i has an accepting state. We
can essentially apply the same compilation in decoupled NDFS, restricting the set of
local states ofAi to the accepting ones when the counter is increased from i to i+1 by
a separate acceptance-split transition lA

i

G for each Ai. This ensures that a global cycle
includes an accepting state for all components.

There are several interesting topics for future work, like the adaptation of optimiza-
tions proposed for basic NDFS (e.g. [22, 32]), or the combination with orthogonal state
space reduction methods, as previously done in the context of AI planning for partial-
order reduction [16], symmetry reduction [18], and symbolic search [17]. Having fo-
cused on NDFS [5, 22, 32] in this work, we believe that the adaptation of SCC-based
algorithms is a promising line of research [6, 11], extending the scope of decoupled
search further to model checking of CTL properties [24].

Acknowledgments. We thank Álvaro Torralba for helpful discussions about the state-
splitting approach. Daniel Gnad was supported by the German Research Foundation
(DFG), as part of project grant HO 2169/6-2, ”Star-Topology Decoupled State Space
Search”. Jörg Hoffmann’s research group has received support by DFG grant 389792660
as part of TRR 248 (see perspicuous-computing.science).

References

1. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kretı́nský, J., Müller, D., Parker,
D., Strejcek, J.: The hanoi omega-automata format. Lecture Notes in Computer Science,
vol. 9206, pp. 479–486. Springer (2015)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers 35(8), 677–691 (1986)

3. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, 14th International Confer-
ence, CAV 2002, Copenhagen, Denmark, July 27-31, 2002, Proceedings. Lecture Notes in
Computer Science, vol. 2404, pp. 359–364. Springer (2002)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001)
5. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for

the verification of temporal properties. Formal Methods in System Design 1(2/3), 275–288
(1992)

6. Couvreur, J.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock, J.,
Davies, J. (eds.) FM’99 - Formal Methods, World Congress on Formal Methods in the De-
velopment of Computing Systems, Toulouse, France, September 20-24, 1999, Proceedings,
Volume I. Lecture Notes in Computer Science, vol. 1708, pp. 253–271. Springer (1999)

7. Emerson, E.A., Sistla, A.P.: Symmetry and model-checking. Formal Methods in System De-
sign 9(1/2), 105–131 (1996)

8. Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. Lecture Notes
in Computer Science, vol. 1853, pp. 475–486. Springer (2000). https://doi.org/10.1007/3-
540-45022-X

9. Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings. In: Vardi,
M.Y., Dwyer, M.B., Chechik, M. (eds.) Proceedings of the 8th International SPIN Workshop
on Model Checking of Software (SPIN-01). pp. 37–56. Springer-Verlag, Toronto, Canada
(May 2001)

10. Esparza, J., Römer, S., Vogler, W.: An improvement of mcmillan’s unfolding algorithm.
Formal Methods in System Design 20(3), 285–310 (2002)

11. Geldenhuys, J., Valmari, A.: Tarjan’s algorithm makes on-the-fly LTL verification more effi-
cient. Lecture Notes in Computer Science, vol. 2988, pp. 205–219. Springer (2004)

12. Gnad, D., Dubbert, P., Lluch-Lafuente, A., Hoffmann, J.: Star-topology decoupling in SPIN.
In: del Mar Gallardo, M., Merino, P. (eds.) Proceedings of the 25th International Symposium
on Model Checking of Software (SPIN’18). Lecture Notes in Computer Science, Springer
(2018)

13. Gnad, D., Eisenhut, J., Lluch Lafuente, A., Hoffmann, J.: Code and Benchmark Models of
the CAV’21 paper “Model Checking ω-Regular Properties with Decoupled Search” (Feb
2021). https://doi.org/10.5281/zenodo.4501646

14. Gnad, D., Hoffmann, J.: Star-topology decoupled state space search. Artificial Intelligence
257, 24 – 60 (2018)

15. Gnad, D., Hoffmann, J.: On the relation between star-topology decoupling and petri net
unfolding. In: Proceedings of the 29th International Conference on Automated Planning and
Scheduling (ICAPS’19). pp. 172–180. AAAI Press (2019)

16. Gnad, D., Hoffmann, J., Wehrle, M.: Strong stubborn set pruning for star-topology decoupled
state space search. Journal of Artificial Intelligence Research 65, 343–392 (2019)

17. Gnad, D., Torralba, Á., Hoffmann, J.: Symbolic leaf representation in decoupled search. In:
Fukunaga, A., Kishimoto, A. (eds.) Proceedings of the 10th Annual Symposium on Combi-
natorial Search (SOCS’17). AAAI Press (2017)

18. Gnad, D., Torralba, Á., Shleyfman, A., Hoffmann, J.: Symmetry breaking in star-topology
decoupled search. In: Proceedings of the 27th International Conference on Automated Plan-
ning and Scheduling (ICAPS’17). pp. 125–134. AAAI Press (2017)

19. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems – An Ap-
proach to the State-Explosion Problem, Lecture Notes in Computer Science, vol. 1032.
Springer (1996)

20. Holzmann, G.: The Spin Model Checker - Primer and Reference Manual. Addison-Wesley
(2004)

21. Holzmann, G.J., Peled, D.A.: An improvement in formal verification. In: Hogrefe, D., Leue,
S. (eds.) Formal Description Techniques VII, Proceedings of the 7th IFIP WG6.1 Interna-
tional Conference on Formal Description Techniques, Berne, Switzerland, 1994. IFIP Con-
ference Proceedings, vol. 6, pp. 197–211. Chapman & Hall (1994)

22. Holzmann, G.J., Peled, D.A., Yannakakis, M.: On nested depth first search. In: Grégoire, J.,
Holzmann, G.J., Peled, D.A. (eds.) The Spin Verification System, Proceedings of a DIMACS
Workshop, New Brunswick, New Jersey, USA, August, 1996. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 32, pp. 23–31. DIMACS/AMS (1996)

23. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design
9(1/2), 41–75 (1996)

24. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time
model checking. J. ACM 47(2), 312–360 (2000)

25. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of the 23rd International
on Conference Computer Aided Verification (CAV’11). Lecture Notes in Computer Science,
vol. 6806, pp. 585–591. Springer (2011)

26. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-core empti-
ness checking of timed büchi automata using inclusion abstraction. In: Sharygina, N., Veith,
H. (eds.) Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 8044, pp. 968–983. Springer (2013)

27. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification
of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) Proceedings of the 4th
International Workshop on Computer Aided Verification (CAV’92). pp. 164–177. Lecture
Notes in Computer Science, Springer (1992)

28. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
29. Peled, D.A.: Combining partial order reductions with on-the-fly model-checking. Formal

Methods in System Design 8(1), 39–64 (1996)
30. Rodrı́guez, C., Schwoon, S.: Cunf: A tool for unfolding and verifying petri nets with read

arcs. In: Proceedings of the 11th International Symposium on Automated Technology for
Verification and Analysis (ATVA’13). pp. 492–495 (2013)

31. Roggenbach, M.: Determinization of büchi-automata. In: Grädel, E., Thomas, W., Wilke, T.
(eds.) Automata, Logics, and Infinite Games: A Guide to Current Research. Lecture Notes
in Computer Science, vol. 2500, pp. 43–60. Springer (2001)

32. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. Lecture Notes in
Computer Science, vol. 3440, pp. 174–190. Springer (2005). https://doi.org/10.1007/978-3-
540-31980-1 12

33. Tauriainen, H.: Nested emptiness search for generalized büchi automata. Fundamenta Infor-
maticae 70(1-2), 127–154 (2006)

34. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System Design 1(4),
297–322 (1992)

