
Star-Topology Decoupled State Space Search

Daniel Gnad

Saarland University, Saarbrücken, Germany

Jörg Hoffmann
Saarland University, Saarbrücken, Germany

Abstract

State space search is a basic method for analyzing reachability in discrete transi-
tion systems. To tackle large compactly described transition systems – the state
space explosion – a wealth of techniques (e. g., partial-order reduction) have been
developed that reduce the search space without affecting the existence of (optimal)
solution paths. Focusing on classical AI planning, where the compact description
is in terms of a vector of state variables, an initial state, a goal condition, and a set
of actions, we add another technique, that we baptize star-topology decoupling,
into this arsenal. A star topology partitions the state variables into components
so that a single center component directly interacts with several leaf components,
but the leaves interact only via the center. Many applications explicitly come with
such structure; any classical planning task can be viewed in this way by selecting
the center as a subset of state variables separating connected leaf components.

Our key observation is that, given such a star topology, the leaves are condi-
tionally independent given the center, in the sense that, given a fixed path of tran-
sitions by the center, the possible center-compliant paths are independent across
the leaves. Our decoupled search hence branches over center transitions only, and
maintains the center-compliant paths for each leaf separately. As we show, this
method has exponential separations to all previous search reduction techniques,
i. e., examples where it results in exponentially less effort. One can, in principle,
prune duplicates in a way so that the decoupled state space can never be larger
than the original one. Standard search algorithms remain applicable using sim-
ple transformations. Our experiments exhibit large improvements on standard AI

Email addresses: gnad@cs.uni-saarland.de (Daniel Gnad),
hoffmann@cs.uni-saarland.de (Jörg Hoffmann)

Preprint submitted to Artificial Intelligence January 8, 2018

planning benchmarks with a pronounced star topology.1

Keywords: AI Planning, heuristic search, problem decomposition

1. Introduction

Reachability analysis in large discrete state transition systems arises in several
areas of computer science. Examples are AI planning [4] and diagnosis [5], model
checking [6], and multiple sequence alignment [7]. The question is whether, start-
ing from a given state s, the system can reach a given state t, or can reach some
state satisfying a given property, like a planning goal in AI, or the negation of a
safety property in model checking. Answering this question is hard due to the
state explosion problem [8]. The transition system is compactly described, in
terms of state variables and transition rules, a network of synchronized automata,
or a bounded Petri net. The size of the system itself – the compact description’s
state space – is exponential in the size of that description.

Forward state space search is one basic method for reachability analysis. A
wealth of techniques have been developed that reduce the search space while
preserving completeness (finding a solution if one exists) and, ideally, optimal-
ity (finding a solution with minimum summed-up transition cost). Partial-order
reduction exploits permutable parts of the state space [8, 9, 10, 11, 12, 13, 14, 15,
16]. Symmetry reduction exploits symmetric parts of the state space [17, 18, 19,
20, 21]. In Petri-net unfolding, the search space is an acyclic Petri net (a DAG)
over conditions (vertices annotated with state-variable values) and events (ver-
tices annotated with transitions), where events are added based on which markings
(combinations of state-variable values) are reachable [22, 23, 24, 25, 26, 27, 28].

Our contribution consists in a new search reduction method, star-topology de-
coupling, which is complementary to all previous methods, and can be configured
to either preserve completeness and optimality, or to only preserve completeness
(allowing stronger reductions). We introduce the method in AI planning, where a
planning task is given in terms of finite-domain state variables, an initial state, a
goal condition, and a set of actions describing the possible transitions.

1Parts of the presented material were previously published [1, 2, 3]. This article introduces,
analyses, and evaluates our techniques much more comprehensively. In particular, it adds new
theoretical results pertaining to the space of star-topology factorings, to pruning methods avoiding
state space blow-ups, and to exponential separations from previous techniques.

2

1.1. Star-Topology Decoupling
The distinguishing feature of star-topology decoupling is the assumption of

a particular structural profile, a star topology. Viewing disjoint subsets of state
variables as components, in a star topology a single center component interacts
with multiple leaf components, but the leaves interact with each other only via the
center. Many applications explicitly come with such structure. For example, dis-
tributed systems are often synchronized via a central component (client-server ar-
chitectures, shared-memory computing systems), and cooperative agents are syn-
chronized via their shared (commonly affected/queried) state variables. Arbitrary
AI planning tasks can be viewed in this way by selecting the center as some subset
of state variables breaking the dependencies between connected (leaf) components
of the remaining state variables.

The key to star-topology decoupling is a particular form of “conditional in-
dependence”: given a fixed path of transitions by the center, the possible center-
compliant paths are independent across the leaves. For example, say the center C
is a state variable encoding the position of a vehicle v, and each leaf L is a state
variable encoding the position of a transportable object o. Given a fixed path πC

of vehicle moves, the compliant moves for any object o, alongside πC , are those
which load/unload o at those points on πC where v is currently at the required loca-
tion. Any sequence of such load/unload actions for o – any πC-compliant path for
o – can be committed to for o, independently of what any other transportable ob-
ject o′ is committed to. Decoupled search exploits this property by searching over
center paths πC only; it maintains, alongside each πC , the leaf states reachable on
πC-compliant paths. This way, the component (local) state spaces are searched
separately, avoiding the enumeration of combined (global) states across leaves. In
catchy (though imprecise) analogy to conditional independence in graphical mod-
els, star-topology decoupling “instantiates” the center to break the dependencies
between the leaves.

The search is least-commitment in the sense that leaf moves are committed
to only at the end, when the goal is reached. During the search, the leaf states
reachable on πC-compliant paths are maintained exhaustively. Namely, the end
point of each center path πC in the search is associated with a decoupled state
s, which for every leaf component L stores those leaf states sL of L reached by
πC-compliant paths. One can view s as a compact representation of a set of global
states, its hypercube [s]: all states formed from the center state reached by πC , and
any combination of πC-compliant sL. These are exactly those global states that
can be reached on a transition path whose center sub-path is πC .

3

Optionally, each sL is annotated with the cost of a cheapest πC-compliant path
achieving sL. We refer to that cost as sL’s price: it is not a cost we have already
committed to paying, but a cost we will pay if, at the end, we commit to using sL.
Maintaining leaf state prices allows to preserve optimality; maintaining only leaf
state reachability suffices to preserve completeness.

In the example above, for any transportable object o, the object’s initial lo-
cation l0 is reachable on a πC-compliant path, namely the empty path, at cost 0.
Every other location l for o is reachable on a πC-compliant path of length 2 – load
at l0, unload at l – iff πC visits l0 and afterwards visits l. Once the goal location
of o is reachable, we can commit to a compliant path, i. e., a suitable load/unload
pair, moving o to its goal location. In case different loads/unloads have different
cost, distinguishing leaf state prices allows to select a cheapest such pair for each
o. Searching over center paths enabling different-cost pairs allows to guarantee
global optimality.

Star-topology decoupling has been inspired by factored planning methods,
which also partition the state variables into components [29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41]. Hierarchical factored planning is remotely related; the
search for a plan proceeds top-down in a hierarchy of increasingly more detailed
levels identified by the factors. Localized factored planning is more closely re-
lated; the search for a plan proceeds by first planning locally on individual compo-
nents, followed by global cross-component constraint resolution. In comparison
to both, the key feature of star-topology decoupling is the focus on star topolo-
gies, which limits the possible interactions across factors, facilitating specialized
search algorithms (as outlined above).

Star-topology decoupling also relates to Petri net unfolding, specifically to
contextual unfolding [27] as planning actions typically have non-consumed pre-
conditions (typically called prevail conditions). For example, a load action re-
quires, but does not consume, a particular vehicle position. One can view star-
topology decoupling as a new form of unfolding where the “conditions” are com-
ponent states, and the star topology is exploited (a) to avoid the enumeration of
exponentially many event “histories”, keeping track of which prevail conditions
may have been consumed in the past; as well as (b) to get rid of the NP-hard
problem of testing the reachability of a marking in an unfolding prefix (for de-
coupled search, this is testable in linear time). As we shall see, these theoretical
advantages often translate into empirical ones.

4

1.2. Experiments Preview
Figure 1 gives a preview of empirical results. Details will be provided later.

We use the standard benchmarks from the international planning competition
(IPC), which are all solvable; and we use an established collection of unsolvable
benchmarks including those of the unsolvability IPC’16. Star topologies are found
automatically using a simple factoring strategy, identifying an X-shape over the
input task’s variable dependencies; the factoring strategy abstains if no non-trivial
star topology (≥ 2 leaves) is found this way.2

We build (the respective representations of) the entire reachable state spaces,
as a canonical measure of reduction power: How much can a reduction method
achieve on its own? We compare our method to partial-order reduction and Petri
net unfolding, the most competitive related methods (a comparison to the most
competitive localized factored planning method will be included later). The Petri
net unfolding tools are provided with straightforward encodings of planning tasks
into Petri nets, following Hickmott et al. [24].

Decoupled states are more complex structures than standard states, so we show
not only the number of states, but also the amount of memory – the number of
integer variables in our C++ implementation – used to represent them. For the
standard state space, this is simply the number of states times the number of state
variables. For decoupled states, we compute the state space of each leaf once up
front, give IDs to its leaf states, and use these IDs for reference later on. As the
unfolding tools often lag far behind in the number of state spaces successfully
built, their state space representation size data is omitted from this preview (but
will be discussed later).

The data clearly attest to the power of star-topology decoupling. Its completeness-
only (COM) variant successfully builds more than twice as many state spaces as
standard state space search, and more than three times as many as Petri net unfold-
ing. On commonly solved instances, average state space size is typically reduced
by at least one order of magnitude, and often by several orders of magnitude. In
most cases, these improvements apply even when preserving optimality (OPT),
and even relative to the state space pruned by strong stubborn sets.

That said, Figure 1 also exhibits two weaknesses. First, decoupled states are
more costly to maintain, incurring a runtime overhead. In some cases, the over-
head outweighs the reduction gain, and fewer state spaces are successfully built.

2The name “factoring” comes from factored planning; we will use the words “component” and
“factor” interchangeably.

5

Instances Reachable State Space. Middle & Right: Average over Instances Commonly Built by Std, POR, OPT, COM
Success Number of States Representation Size (in Thousands)

Domain All X Std POR Pun Cun OPT COM Std POR OPT COM Std POR OPT COM

Solvable Benchmarks: From the International Planning Competition (IPC)

Depots 22 22 4 4 2 2 3 5 1,193,760 1,193,760 1,173,096 132,640 30,954.8 30,954.8 35,113.1 3,970.0
Driverlog 20 20 5 5 3 3 8 10 3,005,640 3,005,640 27,404 4,708 35,632.4 35,632.4 706.1 127.2
Elevator 100 100 21 17 1 3 8 41 2,168,429 2,168,329 839,359 7,902 22,652.1 22,651.1 21,046.2 186.7
Floortile 80 80 2 2 0 0 0 2
Logistic 63 63 12 12 7 11 23 27 422,508 422,507 2,605 171 3,793.8 3,793.8 85.5 8.2
Miconic 150 145 50 45 25 30 45 145 2,594,960 2,592,063 10,730 68 52,728.9 52,673.1 218.8 2.4
NoMyst 40 40 11 11 5 7 40 40 3,561,168 3,107,551 501 370 29,459.3 25,581.5 11.5 10.0
Pathway 30 30 4 4 3 3 4 4 875,781 19,804 177,383 177,378 54,635.5 1,229.0 11,211.9 11,211.9
PSR 50 3 3 3 3 3 3 3 2,385 2,055 596 596 39.4 33.9 11.1 11.1
Rovers 40 40 5 6 4 4 5 5 3,925,445 263,656 138,812 131,127 98,051.6 6,534.4 4,045.9 4,032.9
Satellite 36 36 5 5 5 5 4 4 170,808 36,149 109,268 11,272 2,864.2 582.5 2,219.1 352.7
TPP 30 29 5 5 4 4 11 11 10,029,509 9,593,134 20 17 340,961.5 326,124.8 .9 .8
Transport 140 140 28 23 11 11 18 34 621,070 621,047 499,889 7,014 4,958.6 4,958.5 12,486.4 173.3
Woodwor 100 87 11 20 16 22 16 16 9,042,574 5,843 370,345 197,138 438,638.5 226.8 16,624.1 9,688.9
Zenotrav 20 20 7 7 2 4 7 7 1,965,822 1,965,763 38,106 3,385 17,468.0 17,467.5 1,028.5 99.4

Unsolvability IPC’16

BTransp 29 29 7 6 3 3 4 11 142,018 142,018 92,922 1,225 5,961 5,961 5,721 73
NoMyst 24 24 2 2 0 1 17 18 8,328,306 5,016,457 360 296 99,324 59,872 10 9
Rovers 20 20 7 7 0 3 7 8 8,949,038 6,169,356 830,272 814,693 247,683 172,389 25,687 25,445

Unsolvable Benchmarks: Extended from [42]

NoMyst 40 40 9 8 2 4 40 40 5,014,955 3,875,186 113 105 85,254.2 65,878.2 3.9 3.8
Rovers 40 40 4 4 0 0 4 4 13,503,020 5,856,821 393,164 361,084 697,778.9 302,608.9 22,001.8 20,924.4∑

1074 1008 202 196 96 123 267 435

Figure 1: State space size using an X-shape factoring strategy. Best results highlighted in bold-
face. “Success”: reachable state space fully explored. “X”: non-trivial X-shape (≥ 2 leaves)
identified, i. e., factoring strategy did not abstain. “Std”: standard state space. “POR”: standard
state space with partial-order reduction using strong stubborn sets [16]. “Pun”: Petri-net unfold-
ing using Punf [43]. “Cun”: contextual Petri-net unfolding using Cunf [44]. “OPT”: decoupled
state space, preserving completeness and optimality. “COM”: decoupled state space, preserving
completeness only. Representation size is the number of integer variables in the underlying C++
implementation (see text). All planning competition benchmark domains were run. Domains
on which the factoring strategy abstained, and domains where no approach could build any state
space, are not included in the table. Multiple test suites of the same domain are accumulated into
the same table row. Runtime limit 30 minutes, memory limit 4 GB.

Second, Figure 1 shows only a selection of domains, namely those where the X-
shape factoring strategy does (sometimes) not abstain. On the majority of the 49
IPC benchmark domains, the strategy abstains on every instance.

Summing up both observations, star-topology decoupling requires a particular
form of structure to work well, namely a pronounced star topology, with many
leaf components. Not all applications, nor all IPC benchmark domains, have that
structure.

However, this weakness – requiring particular structure to work well – is

6

shared by all known search reduction techniques. The distinguishing feature
of star-topology decoupling is that the required structure is explicit, and easily
testable. This is valuable in practice, as it allows to avoid wasting runtime on un-
suitable cases. The factoring strategy takes negligible runtime, and if it abstains,
one can run an alternate technique instead. This is perfect for the design of solver
portfolios, combining the strengths of different approaches (e. g. [45, 46]).

An issue not visible in Figure 1 is that, in practice, the objective is not to
exhaust the entire state space, but to find a solution path, or prove that none ex-
ists. Search techniques orthogonal to ours are available to do so without hav-
ing to exhaust the state space. Using such techniques reduces the advantage of
star-topology decoupling over standard state space search. Nevertheless, as we
shall see, star-topology decoupling often improves over the state of the art on IPC
benchmarks.

1.3. Properties
Star-topology decoupling has exponential separations relative to all previous

search reduction methods: example families whose decoupled state space has size
polynomial in the size of the input, while the previous method’s state space repre-
sentation is exponential in that size.

Yet the technique is not without risks. The decoupled state space may be
exponentially larger than the standard state space, and may even be infinite. As we
show, however, (a) finiteness can be guaranteed with a simple dominance pruning
technique, and (b) a more expensive hypercube pruning technique (involving a co-
NP-complete sub-problem) guarantees that the number of reachable decoupled
states is bounded by the number of reachable standard states. Empirically on
the IPC benchmarks, (b) incurs a prohibitive computational overhead, and even
without (b) the number of decoupled states never exceeds the number of standard
states. So our implementation uses (a) only.

Star-topology decoupling combines gracefully with standard search methods,
in particular with heuristic search algorithms, guiding state space exploration
through heuristic functions mapping states to estimated goal distance [47]. Heuris-
tic search has been extremely successful in AI planning (e. g. [48, 49, 50, 51, 52,
53, 54, 55]). As we show, heuristic search methods can be applied unmodified
to decoupled search, via simple transformations, preserving their optimality and
completeness guarantees.

The paper is structured as follows. Section 2 introduces the planning frame-
work and basic notations. In Section 3, we define star topologies, as factorings

7

(state-variable partitions) inducing a star structure. Section 4 specifies the de-
coupled state space. Section 5 shows that blow-ups can occur, and identifies the
dominance/hypercube pruning methods avoiding these. Section 6 discusses the
relation to previous methods, including the exponential separations. Section 7 ex-
plains how to plug-in standard heuristic search techniques, and Section 8 presents
our experiments. Section 9 concludes with a discussion of future research direc-
tions. Some proofs are moved out of the main text, into Appendix A.

2. Background

AI Planning is concerned with the design of mechanisms taking decision about
action, finding plans that lead from an initial state to a goal. Here we consider
classical planning, which assumes discrete state variables, complete knowledge
about the initial state, and deterministic actions. The planning problem then con-
sists of checking reachability in a large, discrete and deterministic, labeled transi-
tion system. We give our notation for such transition systems first, then give the
syntax and semantics of our planning model.

A labeled transition system in our terminology is a tuple Θ = (S, L, c, T, I, SG)
consisting of a finite set of states S, a finite set of transition labels L, a function
c : L 7→ R0+ associating each label with its non-negative cost, a set of transitions
T ⊆ S × L × S, an initial state I ∈ S, and a set of goal states SG ⊆ S. We
assume that Θ is deterministic, i. e., for every s and l there exists at most one s′

such that (s, l, s′) ∈ T . We will often write s l−→ s′ for (s, l, s′) ∈ T , or s → s′

if the label does not matter. A solution for s ∈ S is a path π in Θ from s to a
goal state. A solution for I is called a solution for Θ. We consider additive cost,
i. e., the cost of a path π, denoted cost(π), is the summed-up cost of its labels. A
solution for s (respectively Θ) is optimal if its cost is minimal among all solutions
for s (respectively Θ).

Our planning syntax follows the finite-domain variables model (e. g., [56, 52]).
A planning task is a tuple Π = (V,A, c, I, G). V is a finite set of state variables
v, variables for short, each associated with a finite domain D(v). A complete
assignment to V is a state. I is the initial state, and the goal G is a partial
assignment to V . A is a finite set of actions, where each action a ∈ A is associated
with its precondition pre(a), and its effect eff(a), each a partial assignment to V .
The function c : L 7→ R0+ associates each action with its cost. We will often
write variable/value pairs (v, d) as v = d.

The semantics of planning tasks are defined via their state spaces, determin-
istic labeled transition systems as above. The state space of a planning task is

8

straightforwardly defined given the task’s syntax; we do so via introducing a num-
ber of notations that will be useful. Our convention will be to denote states (as
well as partial assignments) by p, q, reserving the more usual s, t for the decou-
pled states introduced later on. For a partial assignment p, V(p) ⊆ V denotes
the subset of state variables on which p is defined. Given V ⊆ V(p), it will be
convenient to denote by p[V] := p|V the restriction of p to V . An action a is
applicable in a state p if p[V(pre(a))] = pre(a). The outcome of applying a in p
is pJaK := p[V(p) \ V(eff(a))] ∪ eff(a), i. e., we overwrite p with a’s effect where
defined. We will also use the notation pJaK for arbitrary partial assignments p.

Given a planning task Π = (V,A, c, I, G), its state space, denoted ΘΠ, is the
labeled transition system ΘΠ = (S, L, c, T, I, SG) whose states S are all states of
Π; whose labels L are the actions A; whose cost function c is that of Π; whose
transitions p a−→ q are those were a is applicable in p and q = pJaK; whose initial
state I is that of Π; and whose goal states SG are those p where p[V(G)] = G. A
solution π for ΘΠ is a plan for Π. We will identify π with the sequence of actions
labeling its transitions.

Given a planning task Π, deciding whether a plan exists is PSPACE-complete
[57]. At an algorithmic level, AI planning distinguishes three different problems:
optimal planning, where the objective is to find an optimal plan; satisficing plan-
ning, where it suffices to find any plan; and proving unsolvability, where the ob-
jective is to prove that the goal is unreachable.

Example 1. We use three running examples, named the Vanilla, NoEmpty, and
Scaling example respectively. The latter will be used for illustration as well as
scalability arguments. All examples are based on simple transportation scenarios.

In both the Vanilla and the NoEmpty example, there are two trucks tA, tB mov-
ing along three locations l1, l2, l3 arranged in a line, and there is one transportable
object o. The planning task Π = (V,A, c, I, G) has variables V = {o, tA, tB}
where D(tA) = D(tB) = {l1, l2, l3} and D(o) = {l1, l2, l3, tA, tB}. The initial
state is I = {tA = l1, tB = l3, o = l1, }, i. e., tA and o start at l1, and tB starts
at l3. The goal is G = {o = l3}. The actions are truck moves and load/unload.
All actions have cost 1, and the only difference between the two examples is the
precondition of truck moves. Namely, A consists of the actions:

1. move(t, x, y) for t ∈ {tA, tB} and {x, y} ∈ {{l1, l2}, {l2, l3}}: precondition
{t = x} in the vanilla example; precondition {t = x, o = t} in the no-empty
example; effect {t = y}.

9

2. load(t, x) for t ∈ {tA, tB} and x ∈ {l1, l2, l3}: precondition {t = x, o = x};
effect {o = t}.

3. unload(t, x) for t ∈ {tA, tB} and x ∈ {l1, l2, l3}: precondition {t = x, o = t};
effect {o = x}.

In the NoEmpty example, a truck can only move if the object is currently inside it.
For both examples, an optimal plan is 〈load(tA, l1), move(tA, l1, l2), move(tA, l2, l3),
unload(tA, l3)〉.

The Scaling example is like the Vanilla example except that there is only one
truck and we scale the number of objects as well as the length of the line. The
planning task Π = (V,A, c, I, G) has variables V = {t, o1, . . . , on}whereD(t) =
{l1, . . . , lm} and D(oi) = {l1, . . . , lm, t}. The initial state is I = {t = l1, o1 =
l1, . . . , on = l1}, i. e., the truck and all objects start at l1. The goal is G = {o1 =
lm, . . . , on = lm}, i. e., all objects must be transported to the other end of the line.
The actions are as before, adapted to suit the modified example structure:

1. move(x, y) for x = li, y = lj such that |i − j| = 1: precondition {t = x};
effect {t = y}.

2. load(o, x) for o ∈ {o1, . . . , on} and x ∈ {l1, . . . , lm}: precondition {t =
x, o = x}; effect {o = t}.

3. unload(x, y) for o ∈ {o1, . . . , on} and x ∈ {l1, . . . , lm}: precondition {t =
x, o = t}; effect {o = x}.

An optimal plan for this example loads all objects, drives to the other end of the
line, and unloads all objects.

We require some additional notations and concepts. When we say that an
action a affects a variable v, we mean that v ∈ V(eff(a)). Non-affected ac-
tion preconditions, i. e., pre(a)[V(pre(a)) \ V(eff(a))], are referred to as pre-
vail conditions. To characterize and identify star topologies, we will use the
input task’s causal graph, which captures direct state variable dependencies (e. g.
[30, 58, 59, 52]). Given a planning task Π = (V,A, c, I, G), the causal graph CGΠ

is a directed graph whose vertices are the variables V , and that has an arc from u
to v, denoted u → v, if u 6= v and there exists an action a ∈ A such that either
(i) u ∈ V(pre(a)) and v ∈ V(eff(a)), or (ii) u ∈ V(eff(a)) and v ∈ V(eff(a)).
This captures (i) precondition-effect dependencies, as well as (ii) effect-effect de-
pendencies. Intuitively, given a causal graph arc u → v, changing the value of v

10

may involve changing that of u as well, because either (i) u may need to provide a
precondition, or (ii) u may be affected as a side effect of changing the value of v.

We assume for simplicity that CGΠ is weakly connected. This is without loss
of generality because, otherwise, the task can be equivalently split into several
independent tasks.

Example 2. The causal graphs of our running examples are shown in Figure 2.

o

tA tB

o

tA tB

o1 on...

t

(a) (b) (c)

Figure 2: The causal graphs of our running examples: (a) Vanilla, (b) NoEmpty, (c) Scaling.

3. Star-Topology Factorings

We decompose planning tasks into components identified by disjoint sets of
state variables. Following the factored planning literature (e. g. [33]), we refer
to such decompositions, i. e., to partitions of the state variables, as factorings,
and to the components as factors. A factoring identifies a star topology if its
cross-component interactions take a star shape. Section 3.1 introduces the rele-
vant variants of this concept. Section 3.2 characterizes the space of star-topology
factorings, with a view on maximizing the number of leaf factors.

3.1. Concepts
We start with some special cases that are instructive due to their simplicity, and

that are useful in practice as they are easy to identify (in particular, they underlie
our current factoring strategies).

Definition 1 (Strict-Star Factoring). Let Π be a planning task with variables V .
A factoringF is a partition of V into disjoint non-empty subsets F , called factors.

Let F be a factoring. The interaction graph IGΠ(F) is the quotient graph of
CGΠ given F , i. e., the directed graph whose vertices are the factors, with an arc
F → F ′ if F 6= F ′ and there exist v ∈ F and v′ ∈ F ′ such that v → v′ is an arc
in CGΠ.
F is a strict-star factoring if |F| > 1 and there exists FC ∈ F s.t. all arcs

in IGΠ(F) are incident to FC . FC is the center of F , and each other factor
FL ∈ FL := F \ {FC} is a leaf.

11

F is a fork factoring if the arcs in IGΠ(F) are exactly {FC → FL | FL ∈
F \ {FC}}; it is an inverted-fork factoring if the arcs in IGΠ(F) are exactly
{FL → FC | FL ∈ F \ {FC}}.

In a fork factoring, the only cross-factor interactions consist in the center factor
establishing prevail conditions for actions affecting a leaf factor. In an inverted-
fork factoring, the only cross-factor interactions consist in leaf factors establishing
prevail conditions for actions affecting the center.3 In a strict-star factoring, both
directions of precondition-effect interactions are admitted, plus there may be ac-
tions simultaneously affecting the center and a leaf, i. e., whose effect variables
intersect both FC and one FL ∈ FL.

Example 3. Consider again the causal graphs of our running examples, Fig-
ure 2. In the Vanilla example (a), we obtain a fork factoring when grouping
FC = {tA, tB} and FL = {{o}}, and we obtain an inverted-fork factoring when
grouping FC = {o} and FL = {{tA}, {tB}}. In the NoEmpty example (b), each
of these groupings yields a strict-star factoring (but neither is a fork nor inverted
fork as the dependencies go both ways). In the Scaling example (c), the most sen-
sible grouping is the fork factoring with FC = {t} and FL = {{o1}, . . . , {on}}:
the truck is connected to every other variable so should be in the center.

{t, f}

{o1} {o2} {o3} {o4} {o5}

{m1,m2,m3}

{p(o1), q(o1),
r(o1), s(o1)}

{p(o2), q(o2),
r(o2), s(o2)}

{p(o3), q(o3),
r(o3), s(o3)}

Figure 3: Possible fork factorings in transportation with fuel consumption (left), and production-
planning problems with machines mi processing objects oj (right).

As a more practical illustration, Figure 3 shows fork factorings on examples
similar to AI planning competition (IPC) benchmarks. On the left we consider
a transportation domain with fuel consumption (as in the IPC NoMystery bench-
mark domain). A truck t with fuel supply f transports objects o1, . . . , on; t and f
form the center factor, each oi is a leaf factor on its own.

On the right, we consider a scheduling domain requiring to process a set of ob-
jects with a set of machines (similar to the IPC Woodworking benchmark domain).
Individual objects oi are mutually independent except for sharing the machines, so

3The fork/inverted-fork terminology here follows Katz and Domshlak [60], who considered
similar causal graph structures in the context of tractability analysis.

12

that the machines are grouped into the center and each leaf factor groups together
the properties pertaining to one oi.

We use strict-star factorings, and the forks and inverted forks sub-cases, in
practice, and we will use them throughout the paper in illustrations and practi-
cal discussions. This notwithstanding, our techniques are defined for, and work
correctly on, more general structures.

Decoupled search branches on all actions affecting the center, i. e., these are
included into the center paths being searched over. Therefore, these actions can
be arbitrary. In particular, they can affect and/or rely on multiple leaves. The only
restriction we require, thus, is that the other actions – those that do not affect the
center – are limited to a single leaf factor each:

Definition 2 (General Star Factoring). Let Π be a planning task, and let F be
a factoring. F is a star factoring if |F| > 1 and there exists FC ∈ F such
that, for every action a where V(eff(a)) ∩ FC = ∅, there exists F ∈ F with
V(eff(a)) ⊆ F and V(pre(a)) ⊆ F ∪ FC . FC is the center of F , and all other
factors FL ∈ FL := F \ {FC} are leaves.

This restriction on non-center-affecting actions obviously holds in a strict-
star factoring. However, a center-affecting action in a star factoring may affect
multiple leaves. In other words, strict-star factorings are a special case of star
factorings:

Proposition 1. Let Π be a planning task. Then every strict-star factoring is a star
factoring, but not vice versa.

Observe that Definition 2 can always be enforced without loss of generality,
simply by introducing redundant effects on FC . However, the actions affecting
FC are those the decoupled search branches over, so this transformation is just
another way of saying that “cross-leaf preconditions/effects can be tackled by
centrally branching over the respective actions”.

General star factorings as per Definition 2 cannot be characterized in terms
of just the causal graph. If there is a causal-graph arc between two leaves, we
cannot distinguish whether or not all responsible actions also affect the center.
In contrast, strict-star factorings can be characterized in terms of just the causal
graph, making them easier to identify. Also, as we shall see next, they already are
quite powerful, motivating their use in practice.

13

T

B

T

B T

B

Figure 4: Illustration of Theorem 1: Characterizing fork factorings in terms of “horizontal lines”
{T,B} through the DAG of causal graph SCCs.

3.2. The Space of Strict-Star Factorings
To design an automatic factoring strategy, we need to know under which con-

ditions a strict-star factoring exists, and if so, how to find one with a maximal
number of leaves.

If a factoring F has K leaves, we say it is a K-leaves factoring. By the
maximum number of strict-star (fork/inverted-fork) leaves, we refer to the
number of leaves in a strict-star (fork/inverted-fork) factoring which maximizes
that number.

Let us first consider the simple fork and inverted fork special cases. Denote by
FSCC

Π the factoring whose factors are the strongly connected components (SCC)
of the causal graph CGΠ. Clearly, any fork or inverted-fork factoring F must
be coarser than FSCC

Π , i. e., for every F ∈ FSCC
Π we must have F ′ ∈ F with

F ⊆ F ′. As an immediate consequence, if the causal graph is strongly connected,
|FSCC

Π | = 1, then we cannot obtain a factoring with more than one component, so
no fork or inverted-fork factoring exists.

The opposite is also true: if |FSCC
Π | > 1, then fork and inverted-fork factorings

exist. To see this, consider the interaction graph IGΠ(FSCC
Π) over causal graph

SCCs. This is a directed acyclic graph (DAG), and we can directly read off the
maximum number of fork/inverted-fork leaves:

Theorem 1 (Fork & Inverted-Fork Factorings). Let Π be a planning task. Then
fork and inverted-fork factorings exist if and only if |FSCC

Π | > 1. In that case, the
maximum number of fork leaves equals the number of leaf vertices in IGΠ(FSCC

Π),
and the maximum number of inverted-fork leaves equals the number of root ver-
tices in IGΠ(FSCC

Π).

PROOF SKETCH: The “only if” in the first part of the claim has already been
argued. The “if” direction follows from the second part of the claim. To see why
that latter part holds true for fork factorings (the argument for inverted forks is
symmetric), observe that, as illustrated in Figure 4, any fork factoring F can be

14

viewed as “drawing a horizontal line” through IGΠ(FSCC
Π) where the roots are at

the top and the leaves are at the bottom. Denote by T the top part above the line,
and by B the bottom part. A fork factoring is then obtained by taking T to be
the center, and taking the setW of weakly connected components of IGΠ(FSCC

Π)
within B to be the leaves. Clearly, |W| is at most the number of leaf vertices in
IGΠ(FSCC

Π). Vice versa, drawing the line just above the leaf vertices, we obtain a
fork factoring with exactly that number of leaf factors. 2

Consider now the more general strict-star factorings. Observe first that these
do not need to respect causal graph SCCs. The NoEmpty example, cf. Figure 2,
has a single-SCC causal graph, but we can factorize it as pointed out in Example 3.
Indeed, for any planning task, any partition of the variables into two non-empty
subsets yields a strict-star factoring (where we are free to choose which factor is
the center respectively the single leaf). So, for a task with variables V , there are
at least 2|V | − 2 strict-star factorings. That wealth of factorings is, however, of
unclear practical value, as they have only a single leaf.

It turns out that the number of strict-star leaves is characterized exactly by
independent sets in the causal graph, i. e., subsets of variables with no CGΠ arcs
between them:

Lemma 1. Let Π be a planning task. Then from any size-K independent set in
CGΠ one can construct a K-leaves strict-star factoring, and vice versa.

Proof: Say Π has variables V . From left to right, let I = {v1, . . . , vK} ⊆ V be
an independent set in CGΠ. Consider the factoring F = {V \ I, {v1}, . . . , {vK}}.
Designating V \ I as the center, F is a strict-star factoring because the IGΠ(F)
arcs over pairs of leaf factors coincide with those of CGΠ over pairs of variables
from I , of which by prerequisite there are none.

From right to left, letF = {FC , FL
1 , . . . , F

L
K} be a strict-star factoring. Design

the variable subset I by picking, from every FL
i , an arbitrary variable vi ∈ FL

i .
Then I is an independent set in CGΠ because an arc vi → vj in CGΠ would imply
an arc FL

i → FL
j in IGΠ(F). �

Intuitively, to obtain a strict-star topology, we can select the center as an arbi-
trary borderline separating the leaves. Given this, partsA vs.B of the causal graph
can be turned into separate leaves iff they have no direct connection, i. e., there is
no arc incident to both A and B. The only case where the maximum number of
strict-star leaves is 1 is that where the causal graph is completely connected (every
pair of variables has a direct dependency), an extremely rare case in practice.

On the downside, leaf-number maximization is now intractable:

15

Theorem 2 (Strict-Star Factorings). Let Π be a planning task. Then the maxi-
mum number of strict-star leaves equals the size of a maximum independent set in
CGΠ. Given K ∈ N, it is NP-complete to decide whether the maximum number of
strict-star leaves is ≥ K.

Proof: Immediate from Lemma 1 and NP-completeness of Maximum Indepen-
dent Set [61]. �

One may use Theorem 2 for the design of factoring strategies based on approx-
imations of Maximum Independent Set. For now, we employ the more straight-
forward approach, using Theorem 1 to efficiently find forks, inverted forks, and
an “X-shape” combination thereof.

4. The Decoupled State Space

We next introduce our search reduction method. We assume an input planning
task Π and a (general) star factoring F with center FC and leaves FL. To make
the exposition accessible, we begin in Section 4.1 by introducing the basic con-
cepts and terminology illustrated with an example, and we provide two example
walkthroughs in Section 4.2. Section 4.3 specifies the decoupled state space, as an
alternative labeled transition system to search in. Section 4.4 proves correctness,
i. e., soundness, completeness, and optimality, relative to the input planning task.

4.1. Concepts and Notations
Consider the Vanilla example (an object o and two trucks tA, tB moving along

a line of three locations l1, l2, l3), and consider the fork factoring given by FC =
{tA, tB} and FL = {{o}}. We refer to actions affecting the center – in the ex-
ample, the truck moves – as center actions, notation convention aC ; we denote
the set of all center actions by AC . The search is over center paths, sequences
πC of center actions applicable to I when ignoring preconditions on the leaves
(in the example there are no such preconditions, so center paths are simply appli-
cable sequences of truck moves). The search begins with the empty center path,
πC = 〈〉.

Each center path in the search ends in a decoupled state s. The decoupled
state contains a center state center[s], a value assignment to FC ; for πC = 〈〉, we
have center[s] = {tA = l1, tB = l3}. The decoupled state furthermore contains
a pricing function, a mapping prices[s] : SL 7→ R0+ ∪ {∞} from leaf states to
non-negative numbers, or ∞ to indicate unreachable leaf states. A leaf state sL

16

is a value assignment to any one leaf FL ∈ FL. SL[FL] denotes the set of leaf
states of a specific leaf FL, and SL =

⋃
FL∈FL SL[FL] denotes the set of all leaf

states across leaves.
In the example, SL = SL|{o} = {{o = l1}, {o = l2}, {o = l3}, {o = tA},

{o = tB}} is the set of all value assignments to the object-position variable o. The
prices in the initial decoupled state s are: prices[s]({o = l1}) = 0, prices[s]({o =
tA}) = 1, and prices[s](sL) =∞ for all other leaf states sL. The price of {o = l1}
is 0 as this is already true in the original initial state. The other prices correspond
to the costs of cheapest πC-compliant leaf paths, as will be defined shortly.

A leaf action aL is an action affecting a leaf FL ∈ FL. The set of all leaf
actions is denoted AL, and for the set of actions affecting a specific FL we write
AL[FL]. A leaf path πL of FL is a sequence of AL[FL] actions applicable to
I when ignoring preconditions on the center. In our case, FL = {o} and a leaf
path is any sequence of loads/unloads applicable when ignoring the truck-position
preconditions. Note that, in general (though not in our example), the center ac-
tions AC are not disjoint from the leaf actions AL[FL]. In fact, for general star
factorings, a center action aC may affect multiple leaves. All center actions will
be handled as part of the center search. Therefore, we define center path cost as
the summed-up cost of the path’s actions, while we define leaf path cost as the
summed-up cost of only the path’s non-center, AL[FL] \ AC , actions.

A leaf path πL of leaf FL complies with a center path πC , πL is πC-compliant,
if: (1) the subsequences of AL[FL] ∩ AC actions in πL and πC coincide; and (2)
the AL[FL] \ AC actions in πL can be scheduled alongside πC so that (a) for the
actions in πL all preconditions on FC are satisfied, and (b) for the actions in πC

all preconditions on FL are satisfied. In our present example, (1) is moot because
AL[FL] ∩ AC is empty, and (2b) is moot because center actions do not have leaf
preconditions. But (2a) matters because the object moves (load/unload) rely on
center preconditions. As we show in Section 4.3, the leaf paths complying with a
given center path πC can be easily maintained in the form of a layered compliant-
path graph (with layers corresponding to the steps along πC).

Coming back to our pricing function prices[s], the price of {o = l1} is 0 be-
cause the empty leaf path πL = 〈〉 complies with πC . The price of {o = tA} is
1 because the leaf path πL = 〈load(tA, l1)〉 complies with πC : the only center
precondition of πL, tA = l1, is satisfied in the center state center[s] = {tA =
l1, tB = l3}. For the leaf state {o = tB}, however, there is no πC-compliant leaf
path because we would need the center precondition tB = l1, which is not true
anywhere along πC . In particular, the path 〈load(tB, l1)〉 is not πC-compliant for
that reason. The path 〈load(tB, l3)〉 is πC-compliant, but is not actually a leaf path

17

because it is not applicable to I: its precondition o = l3 on the leaf itself is not
satisfied. Similarly for the leaf states {o = l2} and {o = l3}. These leaf states are
not reachable given πC , so their price in s is∞.

Keep in mind that a pricing function does not represent a commitment, but a
set of options, one of which will be committed to later on. In the example, if we
later on choose to load o into tA, the cost for doing so will be 1. The commitments
will only be made once we reach the goal. Namely, a decoupled goal state is
one whose center state is center goal state, and where every leaf has a finite-price
leaf goal state. Given a center path πC leading to a decoupled goal state, we can
extract a (global) plan π for the input task by augmenting πC with πC-compliant
leaf goal paths. In fact, pricing functions allow to extract a plan π optimal subject
to using exactly the center action subsequence πC . This is so because every global
plan decomposes into a center path augmented with compliant leaf paths, and the
pricing functions keep track of the cheapest compliant leaf paths.

A variant of decoupled search is obtained by replacing the pricing functions
with reachability functions, that distinguish only whether a leaf state is reach-
able (prices[s](sL) < ∞), or not (prices[s](sL) = ∞). This allows to preserve
completeness, but does not allow to preserve optimality. It is of advantage in
practice because reachability functions can be computed more efficiently, and as
they make less distinctions so reduce the size of the decoupled state space. Reach-
ability functions are equivalent to pricing functions in the modified task where all
leaf action costs are set to 0, so we will specify the more general pricing functions
only.

4.2. Example Walkthroughs
We illustrate the workings of decoupled search with two examples, the first

continuing our example above, the second pointing out how state space size may
be exponentially reduced. Both examples use fork factorings. Two additional
examples, illustrating inverted-fork and strict-star factorings, are available in Ap-
pendix A.2.

Example 4. Consider again the Vanilla example with FC = {tA, tB} and FL =
{{o}}. Denote the empty center path by πC

0 , and the corresponding decoupled
state (as above) by s0. The outgoing transitions of a decoupled state are given by
those center actions whose center precondition is satisfied, and whose precondi-
tion on each leaf has a finite price. In s0, these actions are move(tA, l1, l2) and
move(tB, l3, l2).

18

Say we choose move(tA, l1, l2). Denote the extended center path by πC
1 , and

the outcome decoupled state by s1. Then center[s1] = {tA = l2, tB = l3}. The
prices prices[s1] are 0 for {o = l1} and 1 for {o = tA}, as these were the prices in
s0, and no cheaper compliant paths become available in s1: in forks, prices can
only decrease along a center path (this is not so for non-forks). The only change in
prices[s1] is that {o = l2} gets price 2, accounting for the leaf path 〈load(tA, l1),
unload(tA, l2)〉, which is πC

1 -compliant because it can be scheduled alongside πC
1

in the form 〈load(tA, l1), move(tA, l1, l2), unload(tA, l2)〉.
Now say we obtain πC

2 and s2 from πC
1 and s1 by moving tB to l2. Then

center[s2] = {tA = l2, tB = l2}, and we have the new finite price prices[s2]({o =
tB}) = 3 thanks to the πC

2 -compliant path πL
2 := 〈load(tA, l1), unload(tA, l2),

load(tB, l2)〉. Say further that we obtain πC
3 and s3 from πC

2 and s2 by moving tB
back to l3. Then prices[s3]({o = l3}) = 4 thanks to the πC

3 -compliant path πL
3

extending πL
2 with unload(tB, l3). We have now reached a decoupled goal state.

We obtain a global plan by scheduling πL
3 alongside πC

3 , yielding the 7-step global
plan that loads o onto tA, moves tA to l2, unloads o, moves tB to l2, loads o onto
t2, moves tB to l3, and unloads o.

Say finally that we continue on from this decoupled goal state, obtaining πC
4

and s4 from πC
3 and s3 by moving tA to l3. Then center[s4] = {tA = l3, tB = l3}.

The compliant leaf path πL
3 supporting {o = l3} in s3, to yield the price tag

4, is superseded by the new πC
4 -compliant (but not πC

3 -compliant) path πL
4 :=

〈load(tA, l1), unload(tA, l3)〉. This decreases the price tag to prices[s4]({o =
l3}) = 2. Observe that we now get a 6-step global plan, i. e., a plan better than
that of the decoupled goal state s3 we passed through on the way to s4. Intuitively,
decoupled goal states have leaf-goal price tags, the cost of “buying” compliant
leaf goal paths. The center paths account only for the center, not for the leaves,
so the larger path costs of decoupled-goal-state descendants may be counteracted
by a cheaper leaf-goal price tag, as in this example. We will show in Section 7
how optimal search algorithms can deal with this via a simple transformation.

Example 5. Consider the Scaling example, where one truck t and n objects oi
move along a line l1, . . . , lm of length m, the truck and all objects starting in l1,
the goal being to transport all objects to lm. The standard state space has m(m+
1)n reachable states. By contrast, using the fork factoring with FC = {t} and
FL = {{o1}, . . . , {on}}, the decoupled state space has only m(m+1)

2
reachable

decoupled states. This does not even depend on the number of objects.
Intuitively, the reason is that pricing function changes happen synchronously

across all leaves, as a function of truck moves, to the effect that we need to keep

19

track only of the subsequence of locations visited by the truck. In detail: The
initial decoupled state allows each object to be loaded, so each has the price tags
0 for {oi = l1} and 1 for {oi = tA}. After moving to l2, each object gets the
additional price tag 2 for {oi = l2}. Now there are two choices, moving back to
l1 which yields the same center state as before but with the additional {oi = l2}
price tags, or moving ahead to l3 which yields the new price tags 2 for {oi = l3}.
In this manner, for each location li, the new decoupled states are the single one
where the truck reaches li for the first time, plus the i − 1 ones reached by going
back to li−1, . . . , l1. This yields the overall count

∑m
i=1 i = m(m+1)

2
.

Each decoupled state has size 1 + n(m + 1) (truck position; n objects, each
with m+ 1 leaf states), so the overall state-space representation size is O(nm3).

Remarkably, while the Scaling example is trivial, as we will detail in Section 6
it exponentially separates star-topology decoupling from most previous search re-
duction methods.

4.3. Specifying the Transition System
The decoupled state space is a labeled transition system over decoupled states.

To compute the pricing functions, we maintain a compliant-path graph for each
leaf. That graph represents exactly the compliant leaf paths. Namely, given a
center path πC , the πC-compliant-path graph for a leaf FL is a layered graph over
time-stamped FL leaf states, where the time steps t correspond to the center states
along πC , as follows:

Definition 3 (Compliant-Path Graph). Let Π be a planning task, F a star fac-
toring with center FC and leaves FL, and πC = 〈aC1 , . . . , aCn 〉 a center path
traversing center states 〈sC0 , . . . , sCn 〉. The πC-compliant-path graph for a leaf
FL ∈ FL, denoted CompGΠ[πC , FL], is the arc-labeled weighted directed graph
whose vertices are {sLt | sL ∈ SL[FL], 0 ≤ t ≤ n}, and whose arcs are:

(i) sLt
aL−→ s′Lt with weight c(aL) whenever sL, s′L ∈ SL[FL] and aL ∈ AL[FL]\

AC are such that sCt [V(pre(aL)) ∩ FC] = pre(aL)[FC], sL[V(pre(aL)) ∩
FL] = pre(aL)[FL], and sLJaLK = s′L.

(ii) sLt
0−→ s′Lt+1 with weight 0 whenever sL, s′L ∈ SL[FL] are such that sL[V(pre(aCt))∩

FL] = pre(aCt)[FL] and sLJaCt K = s′L.

20

Item (i) concerns transitions within each time step t, i. e., the graph captures
how FL – only FL, not the center or anything else – can be moved given the
center preconditions provided by sCt . Recall here that the center actions AC are
not disjoint from the leaf actions AL[FL]. Within time steps, we consider the
leaf-only actions, AL[FL] \ AC .

Item (ii) concerns transitions across time steps, from t to t+1, compliant with
the center action aCt . Leaf states sLt at step t survive (have a transition to t+1) only
if they comply with the leaf precondition required by aCt , and they get transformed
to leaf states s′Lt+1 at step t + 1 through the effect of aCt on FL. Note that, if aCt
has no precondition on FL (e. g., in a fork), then all leaf states sLt survive. If aCt
has no effect on FL (e. g., in a fork or inverted fork), then the surviving leaf states
remain the same at t+ 1, i. e., the item (ii) transitions have the form sLt

0−→ sLt+1.
The arc weights capture the cost incurred for FL, i. e., the cost of the πC-

compliant leaf paths of FL. Within time steps, for the actions moving only FL,
these are just the action costs. Across time steps, where the center moves (which
may or may not move FL as a side effect), the arc weight is 0 because these costs
are accounted for on the center path itself.

In short, CompGΠ[πC , FL] captures all ways in which leaf paths for FL can be
scheduled alongside ΠC . The πC-compliant paths correspond exactly to the paths
from I[FL]0, i. e., from the vertex representingFL’s initial state in CompGΠ[πC , FL],
to the vertices of the last layer n, where n is the length of πC . Consequently, we
will define the pricing function for πC and FL through the cheapest such paths in
CompGΠ[πC , FL].

Example 6. Consider the Vanilla example with fork factoring FC = {tA, tB} and
FL = {{o}}, and the center path πC = 〈move(tA, l1, l2)〉. The πC-compliant-
path graph for the leaf FL = {o} is shown in Figure 5.

(o = tA)0 (o = tB)0 (o = l1)0 (o = l2)0 (o = l3)0

(o = tA)1 (o = tB)1 (o = l1)1 (o = l2)1 (o = l3)1

(un)load(tA, l1); w 1 (un)load(tB , l3); w 1

w 0 w 0 w 0 w 0 w 0

(un)load(tA, l2); w 1 (un)load(tB , l3); w 1

Figure 5: The compliant-path graph for πC = 〈move(tA, l1, l2)〉 in the Vanilla example.

The πC-compliant leaf path 〈load(tA, l1), unload(tA, l2)〉 in this graph starts
at I[FL]0, i. e., the vertex (o = l1)0. It follows the arc labeled load(tA, l1) to (o =

21

tA)0, follows the 0-arc to (o = tA)1, and follows the arc labeled unload(tA, l2) to
(o = l2)1. The non-compliant leaf path 〈load(tA, l1), unload(tA, l2), load(tA, l2),
unload(tA, l1)〉 is not present in the graph as the arc (un)load(tA, l2) appears only
at t = 1, while unload(tA, l1) is not available anymore at t = 1.

The pricing function, corresponding to the distances of the t = 1 vertices from
the initial-state vertex (o = l1)0, is 1 for {o = tA}, 0 for {o = l1}, 2 for {o = l2},
and∞ elsewhere.

Note that CompGΠ[πC , FL] contains redundant parts, not reachable from the
initial-state vertex (o = l1)0. This is just to keep Definition 3 simple. In practice,
it suffices to maintain the reachable part of CompGΠ[πC , FL].

Consider now the NoEmpty example with the same factoring FC = {tA, tB}
andFL = {{o}} (now a strict-star factoring). Say again that πC = 〈move(tA, l1, l2)〉.
The πC-compliant-path graph for FL = {o} is shown in Figure 6.

(o = tA)0 (o = tB)0 (o = l1)0 (o = l2)0 (o = l3)0

(o = tA)1 (o = tB)1 (o = l1)1 (o = l2)1 (o = l3)1

(un)load(tA, l1); w 1 (un)load(tB , l3); w 1

w 0

(un)load(tA, l2); w 1 (un)load(tB , l3); w 1

Figure 6: The compliant-path graph for πC = 〈move(tA, l1, l2)〉 in the NoEmpty example.

Note the (only) difference to Figure 5: From time 0 to time 1, the only arc we
have now is that from (o = tA)0 to (o = tA)1. This is because move(tA, l1, l2) now
has the precondition o = tA. All other values of o do not comply with the center
action being applied at this time step, and are excluded from the compliant paths.
Consequently, the pricing function now is∞ for {o = l1}.

We are now ready to define the decoupled state space:

Definition 4 (Decoupled State Space). Let Π = (V,A, c, I, G) be a planning
task, and F a star factoring with center FC and leaves FL. A decoupled state
s is a triple (πC [s], center[s], prices[s]) where πC [s] is a center path, center[s] is
a center state, and prices[s] is a pricing function, prices[s] : SL 7→ R0+ ∪ {∞},
mapping each leaf state to a non-negative price. The decoupled state space is a
labeled transition system ΘFΠ = (SF , AC , c|AC , TF , IF , SFG) as follows:

(i) SF is the set of all decoupled states.

22

(ii) The transition labels are the center actions AC .

(iii) The cost function is that of Π, restricted to AC .

(iv) TF contains a transition (s
aC−→ t) ∈ TF whenever aC ∈ AC and s, t are

such that:

1. πC [s] ◦ 〈aC〉 = πC [t];

2. center[s][V(pre(aC)) ∩ FC] = pre(aC)[FC];

3. center[s]JaCK = center[t];

4. for every FL ∈ FL where V(pre(aC))∩FL 6= ∅, there exists sL ∈ SL[FL]
s.t. sL[V(pre(aC)) ∩ FL] = pre(aC)[FL] and prices[s](sL) <∞; and

5. for every leaf FL ∈ FL and leaf state sL ∈ SL[FL], prices[t](sL) is the
cost of a cheapest path from I[FL]0 to sLn in CompGΠ[πC [t], FL], where
n := |πC [t]|.

(v) IF is the decoupled initial state, where center[IF] := I[FC], πC [IF] := 〈〉,
and, for every leaf FL ∈ FL and leaf state sL ∈ SL[FL], prices[IF](sL) is
the cost of a cheapest path from I[FL]0 to sL0 in CompGΠ[〈〉, FL].

(vi) SFG are the decoupled goal states sG, where center[sG] is a center goal state
and, for every FL ∈ FL, there exists a leaf goal state sL ∈ SL[FL] s.t.
prices[sG](sL) <∞.

Note that ΘFΠ is infinite, for two reasons: (1) decoupled states contain center
paths, of which there are infinitely many unless the center cannot move in circles;
(2) there are infinitely many pricing functions. We show in the next section that
this finitess can be attained by a simple dominance pruning method.

We refer to paths πF in ΘFΠ as decoupled paths. The notions of path cost
and solutions, for decoupled states as well as for ΘFΠ , are inherited from labeled
transition systems. However, we also require a specialized notion of cost and
optimality, augmented cost/optimality, different from the standard additive-cost
notion. This is because, when applied to ΘFΠ , the standard notion accounts only
for the center-action costs. Augmented cost/optimality accounts also for the leaf-
goal price tag, and as we shall see corresponds exactly to optimality in the input
planning task.

23

Definition 5 (Augmented Cost & Optimality). Let Π be a planning task, and F
a star factoring. For a decoupled goal state sG, its leaf-goal price tag, denoted
LGPrice(sG), is the sum over its minimal leaf goal state prices:

LGPrice(sG) :=
∑

FL∈FL

min{prices[sG](sL) | sL ∈ SL[FL], sL[V(G)∩FL] = G[FL]}

For a decoupled path πF ending in sG, its augmented cost is:

AugCost(πF) := cost(πF) + LGPrice(sG).

A solution for a decoupled state s is augmented-optimal if its augmented cost
is minimal among all solutions for s.

In the definition of leaf-goal price tags, recall that each leaf factor may contain
several state variables, and hence may have more than one leaf goal state. So we
need to minimize over these.

When referring to optimality in decoupled search, from now on we will always
mean augmented optimality. To avoid clumsy wording, we will sometimes drop
the word “augmented” and simply talk about optimality.

4.4. Correctness
We now prove soundness, completeness, and optimality of ΘFΠ relative to the

input planning task Π. We do so via a characterization of decoupled states in terms
of their hypercubes:

Definition 6 (Hypercube). Let Π be a planning task, and F a star factoring with
center FC and leaves FL. For a decoupled state s in ΘFΠ , a state p in Π is a
member state of s if p[FC] = center[s] and, for all FL ∈ FL, prices[s](p[FL]) <
∞. The set of all member states of s is the hypercube of s, denoted [s].

In other words, [s] is the product of the reached leaf states across leaf factors.
This is naturally viewed as a hypercube whose dimensions are the leaf factors FL.

Observe that s is a decoupled goal state if and only if its hypercube [s] contains
a goal state of ΘΠ. Furthermore, it is not difficult to prove that [s] captures exactly
those states of ΘΠ reachable using the center path πC [s]:

Lemma 2. Let Π be a planning task, and F a star factoring with center FC and
leaves FL. Let s be a reachable decoupled state in ΘFΠ . Then:

24

(i) [s] is exactly the set of states p for which there exists a path π, from I to p in
ΘΠ, whose center-action subsequence is πC [s].

(ii) For every p ∈ [s], the cost of a cheapest such path π is

cost(πC [s]) +
∑

FL∈FL

prices[s](p[FL])

Our proof, given in Appendix A.3, is via notions of embedded states, and
embedded transitions, linking member states, and member-state transitions, to de-
coupled states. Embedded states p̂ are in one-to-one correspondence with member
states p, but replace the value assignment to each FL with the respective vertex in
the compliant-path graph for FL. Embedded transitions p̂ a−→ q̂ capture member
state transitions p a−→ q in the compliant-path graphs, and hence in the decoupled
state space. One can think about this as capturing the decoupled state space in
terms of atomic transition-addition steps.

Lemma 2 follows directly from the correspondence between member state
transitions, embedded state transitions, and the decoupled state space. The same
correspondence also shows that:

Lemma 3. Let Π be a planning task, and F a star factoring with center FC and
leaves FL. Let p be a reachable state in Π, and let π be a path reaching p. Then
there exists a reachable decoupled state s in ΘFΠ so that p ∈ [s], and πC [s] is the
center action subsequence of π.

The reader familar with state-space abstractions, i. e., state-space quotients
relative to a state partition, might find hypercubes reminiscent of that method.
But these two concepts actually are very different. State-space quotients over-
approximate reachability, whereas the hypercubes in ΘFΠ capture reachability ex-
actly, in the sense stated by Lemmas 2 and 3. Also, the hypercubes of distinct
decoupled states may overlap. We will get back to this in Section 6.4.

Correctness relative to the input planning task Π now follows directly:

Theorem 3 (Soundness, Optimality Subject to Center Path). Let Π be a plan-
ning task, F a star factoring, and πF a solution for ΘFΠ ending in s. Then there
is a plan π for Π where cost(π) = AugCost(πF), where the center-action subse-
quence of π is πC [s], and where π is cheapest among all plans for Π sharing that
same center-action subsequence.

25

Proof: As s is a decoupled goal state, there exists a member goal state in [s]. Let p
be a cheapest such state, i. e., one that minimizes

∑
FL∈FL prices[s](p[FL]). Using

Lemma 2, we can obtain a plan π ending in p, where cost(π) = cost(πC [s]) +∑
FL∈FL prices[s](p[FL]). By construction, this cost is equal to AugCost(πF).
Let now π′ be any plan using πC [s], ending in goal state q. By Lemma 2 (i), q ∈

[s]. So, by construction,
∑

FL∈FL prices[s](q[FL]) ≥
∑

FL∈FL prices[s](p[FL]).
By Lemma 2 (ii) applied to q, cost(π′)≥ cost(πC [s]) +

∑
FL∈FL prices[s](q[FL]).

Hence cost(π′) ≥ cost(π), concluding the argument. �

Theorem 4 (Completeness, Global Optimality). Let Π be a planning task, and
F a star factoring. If Π is solvable, then so is ΘFΠ . If πF is an augmented-optimal
solution to ΘFΠ , then AugCost(πF) equals the cost of an optimal plan for Π.

Proof: Assume that Π is solvable. Let π be an optimal plan for Π, ending in goal
state p. With Lemma 3, there exists a reachable decoupled state s s.t. p ∈ [s]. Let
πF be the decoupled path reaching s from IF . As p is a goal state, s is a decoupled
goal state, so πF is a solution for ΘFΠ .

With Lemma 2 (ii), we have that cost(π) ≥ cost(πC [s])+
∑

FL∈FL prices[s](p[FL]).
By definition, cost(πC [s]) +

∑
FL∈FL prices[s](p[FL]) ≥ AugCost(πF). Thus

cost(π) ≥ AugCost(πF), i. e., ΘFΠ has a solution whose augmented cost is at most
that of π. The second part of the claim now follows directly with Theorem 3. �

Together, Theorems 3 and 4 show that (augmented-optimal) search in ΘFΠ is a
form of (optimal) planning for Π. Furthermore, given a solution πF for ΘFΠ , the
corresponding plan π for Π as per Theorem 3 can be constructed by selecting, for
every leaf factor, a cheapest leaf goal state sL, and a cheapest path to sL in the
respective compliant-path graph. This construction is low-order polynomial-time
in the size of Π and the size of the compliant path graphs along πF .

We have already seen, in our Scaling example (Example 5), that the decoupled
state space can be exponentially smaller than the standard state space. We next
examine possible blow-ups; then we show that our method is exponentially sepa-
rated from all previous search reduction techniques; then we show how to design
(augmented-optimal) search algorithms for ΘFΠ .

5. Decoupled State Space Size and Pruning

As we pointed out, the decoupled state space is, in general, infinite due to (1)
different center paths, and due to (2) different pricing functions. Of these, (1)

26

would be easy to tackle by considering decoupled states to be equivalent if they
disagree only on the center path. However, as we now show, due to (2) there can
be infinitely many reachable non-equivalent decoupled states. Furthermore, even
in finite cases, the number of reachable non-equivalent decoupled states can blow
up exponentially relative to the standard state space.

Fortunately, both can be tackled using pruning techniques. Finiteness can be
achieved through a simple dominance pruning technique that we introduce in Sec-
tion 5.1. Blow-ups can be avoided through a more powerful hypercube pruning
technique that we introduce in Section 5.2. The latter guarantees that there can
never be more reachable decoupled states than reachable standard states. The
downside of hypercube pruning is that it incurs a co-NP-complete subproblem.
Our implementation uses dominance pruning only as, empirically on the standard
IPC benchmarks, hypercube pruning incurs a large computational overhead; re-
duces search space size only marginally relative to dominance pruning; and even
without hypercube pruning, the number of decoupled states never exceeds that of
standard states. We introduce hypercube pruning for its theoretical merit.

5.1. Finiteness and Dominance Pruning
Non-reachable states are not of interest in practice, so we focus on reachable

states only. We denote by ΘRF
Π the subsystem of ΘFΠ containing only those decou-

pled states reachable from IF .
For reachability functions, as their number is finite, so is the number of non-

equivalent decoupled states in ΘRF
Π (and even in ΘFΠ). For fork factorings, the

number of reachable pricing functions is finite because prices can only decrease
as cheaper leaf paths become compliant. In non-fork factorings with pricing func-
tions, however, the center may commit the leaves to provide preconditions, caus-
ing the leaf state prices to increase. Repeated commitments can cause the prices
to diverge:

Example 7. Consider the Vanilla example with inverted-fork factoring FC = {o}
and FL = {{tA}, {tB}}. Say we continue the decoupled path s0

load(tB ,l1)−−−−−−→ s1

with the center action unload(tB, l1). Then the outcome decoupled state s2 has
the same center state as s0, o = l1. But the pricing function is different. The price
tags for tB in s0 are 0 for {tB = l3}, 1 for {tB = l2}, and 2 for {tB = l1}. In
s2, they are 2 for {tB = l1}, 3 for {tB = l2}, and 4 for {tB = l3}. If we continue
loading/unloading the object in alternating locations on the map, then the prices
for truck positions will keep increasing ad infinitum.

27

Intuitively, the decoupled states along load/unload sequences as outlined get
worse, as the prices get higher. This leads to the following simple definition of
dominance:

Definition 7 (Dominance). Let Π be a planning task, F a star factoring, and s, t
decoupled states. We say that t dominates s if center[t] = center[s] and, for every
leaf state sL, prices[t](sL) ≤ prices[s](sL).

Note that equivalence is a special case of dominance, in that equivalent s and
t dominate each other.

Informally, if t dominates s, then anything one can do in s, one can do at least
as well in t. Formally, dominance is a simulation relation (e. g. [62]):

Proposition 2 (Correctness of Dominance Pruning). Let Π be a planning task,
F a star factoring, and s, t decoupled states, where t dominates s. Then, for every

transition s aC−→ s′ in ΘFΠ , t aC−→ t′ also is a transition in ΘFΠ , and t′ dominates s′.

Proof: The center precondition of aC is trivially true in t, and its leaf precon-

ditions have finite prices in t because that is so already in s. Hence t aC−→ t′ is
a transition in ΘFΠ . To see that t′ dominates s′, just note that the compliant-path
graph is extended with the same last time-step on both sides, so the cheaper prices
in t can only lead to cheaper prices in t′. �

Simulation relations have previously been used for dominance pruning in stan-
dard state space search (e. g. [63, 64]). In particular, they can be used for optimality-
preserving pruning when used only against previously visited states with equal or
smaller path costs, i. e., reached with action sequences of equal or smaller cost.
For the purpose of our discussion in this paper, we distinguish the following three
forms of pruning:

1. Ancestor: Compare any new state s to its ancestor states t.

2. Cheaper-Visited: Compare any new state s to all previously visited states t
whose path cost is at most that of s.

3. All-Visited: Compare any new state s to all previously visited states t.

In all cases, if s is dominated by one of the states t it is compared to, then s is
pruned. As dominance generalizes equivalence, such pruning generalizes dupli-
cate pruning over equivalent states.

28

Ancestor states are a special case of cheaper visited states, and cheaper visited
states are a special case of visited states. Hence the pruning methods become
stronger in the order listed. Cheaper-visited pruning preserves optimality [64];
all-visited pruning does not, because the search might first visit a dominating but
more costly state, pruning the optimal solutions.

It turns out that, to avoid infinite reachable decoupled state spaces ΘRF
Π , the

weakest form of pruning considered herein – ancestor dominance pruning – al-
ready suffices.

For inverted-fork factorings, this is trivial: As the prices increase monoton-
ically, with ancestor dominance pruning every search path must stop as soon
as the same center state is visited a second time. For example, the search path

s0
load(tB ,l1)−−−−−−→ s1

unload(tB ,l1)−−−−−−−→ s2 in Example 7 is pruned, because s2 is dominated
by s0.

For more general factorings, with bidirectional dependencies between leaves
and center, where the prices neither increase nor decrease monotonically, the proof
is more involved:

Theorem 5 (Finiteness under Dominance Pruning). Let Π be a planning task,
and F a star factoring. Under ancestor dominance pruning, ΘRF

Π is finite.

PROOF SKETCH: Consider the non-pruned paths πF in ΘRF
Π . We prove that,

under ancestor dominance pruning, every πF is finite. As the branching factor is
finite, this proves the claim.

Observe that the non-pruned paths necessarily are descending: Intuitively,
some prices along πF must descend in each step as otherwise the new state would
be dominated by some previous state. Formally, consider the pricing functions
along πF as vectors v over R0+ ∪ {∞}. Define a relation � over such vectors
by v � v′ iff there exists a vector position k so that v[k] > v′[k]. Say that a
vector sequence ~v = v0, v1, v2, . . . is descending if, whenever v precedes v′ in the
sequence, v � v′.

Assume to the contrary that there is an infinite descending path πF . Then
from an infinite sub-path with identical center states we can extract an infinite
descending vector sequence ~p over R0+∪{∞}. More precisely, ~p is overR∪{∞}
where R contains all possible finite action-cost sums in Π.

It is easy to see (Proposition 5 in Appendix A.4) that R has no infinite de-
scending sequence of 1-vectors (within each finite cost value, only a finite num-
ber of non-0 cost actions can be used). But what about N -vectors? Observe
that, for N > 1, the relation � is not a partial order. It is neither transitive,

29

e. g. (5, 5) � (4, 10) and (4, 10) � (5, 9), but (5, 5) 6� (5, 9); nor asymmetric,
e. g. (4, 5) � (5, 4) and (5, 4) � (4, 5). Furthermore, v � v′ as soon as v′ is
strictly smaller anywhere; all other positions can increase by arbitrary amounts,
e. g. v � v′ for v = (5, 5) and v′ = (4, 1000). Nonetheless (Lemma 8 in Appendix
A.4), if there is no infinite descending sequence of 1-vectors over some setR ⊆ R,
then there is no infinite descending sequence of N -vectors over R ∪ {∞}. Hence
~p must be finite, in contradiction, showing the claim. 2

On fork factorings, in practice we employ an optimization of dominance prun-
ing, that we refer to as frontier pruning. Given a decoupled state s and leaf factor
FL, a leaf state sL is a frontier state if either (a) sL is a leaf goal state; or (b) sL

can still contribute to improving the price of one of its neighbors, i. e., there exist
a and tL so that sL a−→ tL and prices[s](sL) + c(a) < prices[s](tL). Intuitively, as
prices in a fork factoring can only decrease, frontier states are the only ones that
may still have a role in obtaining the cheapest goal price. Hence one can test dom-
inance on frontier states only: t frontier-dominates s if center[t] = center[s] and,
for every frontier leaf state sL, prices[t](sL) ≤ prices[s](sL). This still preserves
optimality. (The easy proof can be looked up in the work by Torralba et al. [3],
who introduce frontier pruning as their most basic method.)

5.2. Size Blow-Up and Hypercube Pruning
Even in finite cases, the number of non-equivalent decoupled states can blow-

up relative to the size of the standard state space. This is because the mainte-
nance of pricing functions can result in a form of “memory of the center path
taken”: different paths may have provided center preconditions enabling different
leaf moves, thus resulting in different pricing functions. This happens, indeed,
even in very simple examples akin to the transportation examples we have been
using all along:

Example 8. Consider the following BlowUp example, with one truck t, one ob-
ject o, and n locations l1, . . . , ln, where the truck can move between any pair of
locations; both t and o are initially at l1, the goal is for o to be at ln. In short, this
is like the Scaling example except with only a single object, and with locations
arranged as a fully-connected road map instead of a line. We consider the fork
factoring FC = {t}, FL = {{o}}.

Obviously, the standard state space in this example is small (n(n + 1) reach-
able states). But the decoupled state space has size exponential in n. Through
the pricing functions, the decoupled states “remember” the locations visited by
t in the past. For example, the decoupled state reached through 〈drive(l1, l2),

30

drive(l2, l3)〉 has finite prices for {o = l1}, {o = t}, {o = l2}, and {o = l3};
while the decoupled state reached through 〈drive(l1, l4), drive(l4, l5)〉 has finite
prices for {o = l1}, {o = t}, {o = l4}, and {o = l5}. Hence the decoupled
state space enumerates pricing functions corresponding to every subset of visited
locations from {l2, . . . , ln}.

Note the simplicity of this example. Blow-ups may occur even for fork factor-
ings, and even when maintaining reachability functions only (as the pricing func-
tions here disagree even on reachability). The latter also implies that dominance
pruning does not prevent the blow-up.4

It turns out that blow-ups can be avoided based on the previously introduced
hypercube characterization. The core observation in this context is that solvability
of a decoupled state is equivalent to solvability of at least one member state:

Lemma 4. Let Π be a planning task, F a star factoring, and s a decoupled state.
Then s is solvable if and only if at least one p ∈ [s] is solvable.

This follows from the same correspondence between member state transitions,
embedded state transitions, and the decoupled state space, as used to prove cor-
rectness in Section 4.4.

The idea now simply is to prune a decoupled state s when its hypercube does
not contribute any new member states, i. e., if s is covered by previously visited
decoupled states:

Definition 8 (Hypercube Covering). Let Π be a planning task, F a star factor-
ing, and s, t1, . . . , tn decoupled states. We say that t1, . . . , tn cover s if center[ti] =
center[s] for all i, and

⋃n
i=1[ti] ⊇ [s].

From Lemma 4, we immediately get:

Theorem 6 (Correctness of Hypercube Pruning). Let Π be a planning task, and
F a star factoring with center FC and leaves FL. Let s, t1, . . . , tn be decoupled
states, where t1, . . . , tn cover s. If s is solvable, then so is at least one ti.

4We remark that frontier pruning does prevent this blow-up. Further, on transportation-style
IPC benchmarks, we never observed any state space size increase even when using only dominance
pruning, not frontier pruning. Presumably, the loss from structure like in our BlowUp example
(many tightly connected locations) is outweighed by the gain from structure like in our Scaling
example (many transportable objects).

31

Therefore, hypercube pruning is correct: if s is covered by previously visited
decoupled states t1, . . . , tn, then pruning s does not forego completeness. This ap-
plies to the same three forms of pruning as above, i. e., ancestor pruning, cheaper-
visited pruning, and all-visited pruning. In each case, the respective collection of
t becomes the set t1, . . . , tn in the hypercube-covering check.

On the other hand, hypercube pruning does, as stated, not preserve optimality.
The hypercube disregards leaf state prices, and so does the notion of hypercube
covering.

Given this, cheaper-visited pruning does not make much sense. Ancestor prun-
ing is not enough to prevent exponential blow-ups. However, all-visited pruning
provides the desired guarantee:

Theorem 7 (Size Guarantee under Hypercube Pruning). Let Π be a planning
task, and F a star factoring. Under all-visited hypercube pruning, the number of
decoupled states in ΘRF

Π is bounded by the number of reachable states in ΘΠ.

Proof: Consider the non-pruned visited decoupled states s under all-visited hy-
percube pruning. With t1, . . . , tn being the decoupled states visited prior to s and
sharing the same center state, denote by [s] := [s] \

⋃n
i=1[ti] the hypercube re-

maining of s when eliminating t1, . . . , tn. Clearly, [s] 6= ∅ as otherwise s would
be pruned. Furthermore, for any other non-pruned visited decoupled state s′,
[s] ∩ [s′] = ∅: if s′ was visited before s, this is because [s′] was eliminated from
[s]; if s′ was visited after s, this is because [s] was eliminated from [s′]. So the
non-pruned decoupled states are associated with non-empty and disjoint sets [s]
of states in ΘΠ. The claim now follows together with Lemma 2, which implies
that, if s is reachable in ΘFΠ , then every p ∈ [s] is reachable in ΘΠ. �

The bad news is that testing Definition 8 is, in general, hard, even for the
hypercubes that may actually occur during decoupled search:

Proposition 3. Given a planning task Π and a star factoring F , it is co-NP-
complete to decide whether reachable decoupled states t1, . . . , tn cover a reach-
able decoupled state s.

PROOF SKETCH: Membership follows directly from the results by Hoffmann
and Kupferschmid [65] for general hypercube covering problems. Hardness fol-
lows by reduction from the complement of SAT, extending Hoffmann and Kupfer-
schmid’s argument by a simple construction of Π and F . Given any CNF formula
φ with clauses C1, . . . , Cm, the construction includes, for each clause Cj , a center

32

action aCj which is applicable to the initial state, and which allows to generate
a hypercube tj corresponding to the truth-value assignments disallowed by Cj .
Another center action aC0 allows to generate the hypercube s corresponding to
the space of all truth-value assignments. Consider the time point in search where
search has explored each of the alternatives aC1 , . . . , a

C
m (applied each of these ac-

tions to the initial state separately), and now explores the alternative aC0 . Then
all-visited hypercube pruning checks whether t1, . . . , tm cover s. The latter is the
case iff φ is unsatisfiable. 2

We remark that F in the proof construction is a fork factoring, so co-NP-
completeness holds for this restricted case already.

Hoffmann and Kupferschmid [65] devise an algorithm, “cube elimination”, to
solve hypercube covering problems. We implemented this algorithm, but found it
to be ineffective in decoupled search, where it consumes prohibitive amounts of
memory. We also experimented with an encoding into SAT, and a SAT solver API
(Z3 [66]), but that was ineffective too, consuming prohibitive amounts of runtime.
It remains an open question whether hypercube pruning can be made effective in
practice. In particular, this pertains to optimality-preserving variants. (A simple
such variant results from reducing each ti to only those leaf states whose price is
at most that in s.)

6. Related Techniques and Exponential Separations

Several previous methods relate to star-topology decoupling in that they may
sometimes exploit similar structure. All these methods are complementary to star-
topology decoupling, i. e., they do not dominate star-topology decoupling, nor
vice versa. In particular, there are exponential separations: examples where star-
topology decoupling results in exponentially less effort.

We discuss partial-order reduction (POR) methods in Section 6.1, unfolding
methods in Section 6.2, and factored planning methods in Section 6.3. We sum-
marize the relation to other methods in Section 6.4.

6.1. Partial-Order Reduction
POR methods prune applicable transitions, preserving completeness while

avoiding unnecessary permutations. POR originates in Verification (e. g. [8, 9,
10, 11, 12, 13]), and has more recently also been successfully applied in classical
planning, specifically in the form of strong stubborn sets [15, 16].

Star topologies relate to POR in that they can also be directly exploited for
POR. In a fork topology, where the only cross-factor interactions consist of leaf

33

actions requiring preconditions on the center, one can fix an ordering of leaves,
and schedule transitions in round-robin blocks “center – first leaf – . . . – last
leaf”, where each factor may choose to move or stand still, but if leaf FL chooses
to stand still then it has to remain so until the center moves in a way that enables
a different transition for FL.

Nevertheless, star-topology decoupling is exponentially separated from POR
methods. Specifically, here and in the discussions below, by an exponential sep-
aration from X , where X is an alternate search reduction method, we mean a
family {Πn | n ∈ N+} of planning tasks, of size (number of state variables and
actions) polynomially related to n, so that (i) the number of reachable decoupled
states is bounded by a polynomial in n, while (ii) the state space size under X is
exponential in n. In most cases, the exponential separation will be our Scaling ex-
ample, fixing, for simplicity, the number of locations to be the same as the number
n of objects oi to transport. Recall from Example 5 that condition (i) is satisfied
(there are n(n+1)

2
reachable decoupled states), while the standard state space has

n(n+ 1)n reachable states.
The Scaling example is an exponential separation from strong stubborn sets.

These collect a subset of actions branching over which suffices to preserve op-
timality in a given state; applicable actions outside the strong stubborn set are
pruned. A strong stubborn set must (a) contain actions that make “progress to
the goal”, as well as (b) contain all actions that interfere (that are not concurrent)
with applicable actions already included into the stubborn set. Now, consider the
initial state I in our Scaling example, where the truck and all objects are at l1.
To satisfy (a), it suffices to include a single load(oi, l1) action. However, we also
need to include move(l1, l2), as this (b) interferes with load(oi, l1). But then, we
must include all applicable load actions, {load(oi, l1) | 1 ≤ i ≤ n}, because these
(b) interfere with move(l1, l2). The same argument applies, in the outcome state
of applying any load(oj, l1) in I , to all other load actions {load(oi, l1) | 1 ≤ i ≤
n, i 6= j}. Hence the state space under strong stubborn set pruning enumerates all
subsets of objects that may be loaded in the initial state, resulting in a number of
states ≥ 2n.

6.2. Petri Net Unfolding
Instead of pruning permutations in the standard state space, unfoldings rep-

resent the reachable state space as an acyclic Petri net, capturing concurrency
explicitly (e. g. [22, 23, 24, 25, 26]). This relates to star-topology decoupling in
that both approaches build structures over partial (component) states, without nec-
essarily enumerating their combinations. One can view star-topology decoupling

34

as a form of unfolding exploiting star topologies to get rid of two major sources
of complexity, namely (1) testing whether a conjunctive condition is reached and
(2) dealing with prevail conditions. Exponential separations are easy to construct
given these complexity reductions; e. g., our Scaling example is one.

Petri net unfolding constructs a DAG, an unfolding prefix P , whose vertices
are conditions, annotated with state-variable values in our context; and events,
annotated with actions in our context. Starting from P containing only the initial
state conditions, the unfolding process adds possible events, and adds their effects
as new conditions.

A possible event is one whose precondition is reachable within P . Complexity
source (1) arises because deciding whether that is so, i. e., whether a (partial) value
assignment (a marking) has non-conflicting support within P , is NP-complete
given P . Testing this property requires to find a jointly reachable combination
of conditions annotated with the required values. This needs to be done every
time a new event should be added, and, once the prefix is completed, when testing
whether the goal is reachable. In contrast, such reachability testing is linear-time
in the decoupled state space, whose organization via center paths avoids cross-leaf
conflicts.

Regarding complexity source (2), prevail conditions are an important feature
in our setting, specifically leaf actions with prevail conditions on the center. Con-
sider for example the load actions in our examples, which require, but do not
consume, a truck position t = l. The decoupled state space does not have to
branch over such actions.

In Petri nets, prevail conditions correspond to read arcs, that do not consume
their input. Standard Petri nets do not support read arcs. They can be encoded via
the plain method, where t = l is both an input and an output of every load/unload;
or via the place-replication method, where the same is done but each load/unload
gets its own copy of t = l, and a truck move away from l requires all these copies
as inputs. Both encodings are quite different from the native treatment of prevail
conditions in planning. In particular, in our Scaling example, both encodings
result in unfoldings enumerating all subsets of objects that may be loaded at l1.
For the plain encoding, this is because the concurrency between the load(oi, l1)
events is lost. In the place-replication encoding, adding move(l1, l2) to the prefix
enumerates the object subsets because, for every copy of t = l1, we can choose
whether to use the condition from before, or after, the respective object-load event.

There is a Petri net variant, contextual Petri nets (c-nets), that natively supports
read arcs [27]. The unfolding process for c-nets is like that sketched above, except
that, instead of a prefix P , c-net unfolding builds an enriched prefix E = (P ,H),

35

where H maps the events in P to sets of histories: the event history needs to
distinguish the subset of prevail conditions consumed in the past, so that the un-
folding process can determine which new events are still possible in the future.
Any one event may have exponentially many different histories. Indeed, the num-
ber of event histories in E is asymptotically identical with the size of the place-
replication unfolding [27]. In our Scaling example, the histories for move(l1, l2)
are exactly the subsets of loaded objects.

Of course, unfolding has advantages too. Any example family whose unfold-
ing is small, but that has no useful star topology, is an exponential separation from
star-topology decoupling. Such cases do occur also in the IPC benchmarks. In
the Airport IPC domain (an abstract version of airport ground traffic control [67]),
unfolding yields strong state space reductions [24]. Yet all airplanes interact di-
rectly with each other, so there is no useful star topology. An interesting direction
for future work are hybrids between decoupled search and unfolding, trying to
combine advantages from both sides.

6.3. Factored Planning
As stated, star-topology decoupling has been inspired by factored planning,

which also partitions the state variables into factors [29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41].

In localized factored planning, the planning process is formulated as local
planning on individual components, followed by global cross-component con-
straint resolution. The latter is done in terms of constraint satisfaction or message-
passing methods over exhaustive sets of local plans. Several works have analyzed
in depth the worst-case complexity of such planning processes, with major sources
of exponential complexity being the length of local plans, and the treewidth of the
global constraint graph (the interaction graph, in our terminology). Star-topology
decoupling eliminates both of these complexity sources by restricting the form of
global interactions allowed.

The most recent, and empirically the most successful, localized factored plan-
ning method is partition-based pruning [40], which originates from multi-agent
planning. The local planning here takes place as part of a state space search, where
a local component state space – an agent’s “private” part of the search – is pur-
sued exclusively, until “public” state changes (relevant to other components) are
encountered. This can be viewed as a form of partial-order reduction, exploiting
permutability of local plans across components.

In hierarchical factored planning, the factors are used within a hierarchy of
increasingly more detailed levels, accumulating the factors processed so far as

36

search proceeds down the hierarchy. As a high-level plan may not be realizable
at lower levels, one needs to allow backtracking across levels. In star-topology
decoupling, the maintenance of compliant paths (low-level plans in a 2-level hier-
archy with bidirectional dependencies) eliminates that need.

Almost all factored planning approaches cannot guarantee global plan opti-
mality; sometimes, it is a hypothetical but impractical possibility involving ex-
haustive search over all local plan lengths. The single exception is the work by
Fabre et al. [36], which uses finite automata to represent the local-plan languages
(the sets of local plans) at any point in the search.

Algorithmically, star-topology decoupling is quite different from both, local-
ized and hierarchical factored planning. At the core of the differences is the as-
sumption of a particular structural profile, a star topology, in our method; vs. the
handling of arbitrary cross-factor interactions in previous methods. Consequently,
whereas previous works concentrate on the resolution of complex interactions –
via constraint satisfaction, tree decomposition, message passing, backtracking –
our work concentrates on algorithms specialized to star topologies, which facil-
itate a much different direct handling of the simple interactions between center
and leaves. In particular, thanks to the latter, our algorithms end up being like
state space search, only on a more complex state structure; this is not the case of
any previous factored planning method (save partition-based pruning which is a
partial-order reduction technique). The only strong conceptual commonality be-
tween star-topology decoupling and factored planning thus remains the use of a
state variable partition.

Turning our attention to exponential separations, consider first localized fac-
tored planning. It is easy to see that our Scaling example is an exponential separa-
tion from partition-based pruning, as the only private actions are those of the truck,
which does not affect the exponential behavior in the number n of packages. For
most other localized factored planning approaches, exponential separations result
from their scaling exponentially in local plan length [32, 33, 35, 39]. For example,
one can modify our Scaling example so that objects have to traverse a more com-
plex internal state space in addition to being loaded/unloaded (leaf state spaces can
be made arbitrarily complex, without increasing the number of decoupled states,
so long as the additional transitions do not have preconditions on the center). Sim-
ilarly, Fabre et al.’s [36] framework scales exponentially on leaf factors whose sets
of local plans have no compact finite-automata representation.

Regarding hierarchical factored planning, in our Scaling example such ap-
proaches will start with high levels containing only the objects (planning “from
the leaves to the root”). So the example becomes an exponential separation when

37

each object may choose between several goal paths. For example, this happens
when introducing several trucks which serve different parts of the map.

6.4. Other Methods
Other methods are more remotely related. Symmetry reduction (e. g. [17, 18,

19, 68, 21]) is complementary to star-topology decoupling as leaf factors do not
need to be symmetric at all. What is more, even if leaf factors are symmetric,
decoupling may have a stronger effect than symmetry reduction. Our Scaling
example is an exponential separation because even perfect symmetry breaking
still keeps track of the number of objects at every location.

Star-topology decoupling relates to search with compact state-set represen-
tations, in particular with binary decision diagrams (BDD) (e. g., [69, 70, 71]),
to the extent that a decoupled state s is a compact representation of a state set,
namely its hypercube [s]. This connection is weak, of course, as hypercubes are
very particular state sets, pertaining to particular points in the search, whereas
BDDs are used to represent large parts of the search space. Hypercubes always
have a small representation by definition; whereas BDDs can represent arbitrary
state sets and, consequently, may become large. Exponential separations are easy
to construct, e. g., from a BDD-based breadth-first search. An example is a task
encoding the adjacency in a k × k grid [72], which is known to lead to an expo-
nential blow-up in a BDD representation. This task can be formulated with leaves
F {i,j} encoding whether cells i and j are adjacent, resulting in a decoupled state
space with polynomial size.

Decoupled states, specifically their hypercubes, may be reminiscent of ab-
stractions (state-space quotients relative to a state partition), extensively used in
AI to design lower-bounding heuristic functions (e. g. [73, 74, 75, 76, 77, 78])
Like for BDDs, the connection is weak though. The hypercubes in star-topology
decoupling are not a partition (the hypercubes of different decoupled states may
overlap). More importantly, they capture the original transition system paths ex-
actly, merely representing and exploring them in a different manner.

Fork/inverted-fork factorings may be somewhat reminiscent of safe abstrac-
tion for automatic planning-task specification. This method is rooted in early
works on hierarchical factored planning with the downward refinement property
[79, 30], where all abstract plans are realizable at lower levels. Helmert [80]
introduced this as an optimization in (an early version of) the Fast Downward sys-
tem [52], removing inverted-leaf variables with strongly connected state spaces.
Haslum [81] generalized this method to consider only the relevant variable val-
ues, Tozicka et al. [82] introduced a related reduction technique merging mutually

38

reachable variable values. All these methods work at the level of single state
variables, not factors; none of them can guarantee global optimality; downward
refinement is only possible in case of single-directional dependencies, unable to
handle more general star topologies. Furthermore, all these techniques rely on
mutual reachability between variable values, so that exponential separations are
trivial to construct by removing “backwards-actions” not needed in the plan (e. g.,
in our Scaling example, truck moves towards l1 and unloading actions at locations
other than lm).

Analyzing task structure has a long tradition in planning. The causal graph,
which we use for factorization, has been extensively explored for complexity anal-
ysis, in particular the identification of tractable fragments [58, 83, 59, 84, 85, 86,
87, 88, 89, 90]. Recent research has extended this to the consideration of fixed-
parameter tractability, with “backdoors” to planning encapsulating the exponen-
tial part of the search [91, 92]. While many structural aspects considered in such
research relate to our factoring types, star-topology decoupling is directed not at
tractable parts of the task, but at worst-case exponential parts that interact in a
limited manner. That said, work on the identification of backdoors might inspire
new factoring methods in the future.

7. Heuristic Search

Heuristic search has been highly successful in AI Planning since the end of
the 90s (e. g. [48, 49, 50, 51, 52, 53, 54, 55]). State space search here is guided
by a heuristic function, heuristic for short, a function h that maps states s to esti-
mates of remaining cost, i. e., of the cost of an optimal solution for s. We denote
that latter cost as the perfect heuristic h∗. If h is a lower bound on h∗ – if h is
admissible – then it can be used for optimal searches like A∗ [93, 47].

We show in this section that star-topology decoupling combines gracefully
with standard heuristic search methods. Section 7.1 discusses heuristic functions,
Section 7.2 discusses search algorithms.

7.1. Heuristic Functions
Our definition of heuristic functions for decoupled search follows the standard

concepts, instantiated for augmented optimality:

Definition 9 (Heuristic Function). Let Π be a planning task, and F a star fac-
toring. A heuristic function, heuristic for short, is a function hF : SF 7→ R0+ ∪
{∞}.

39

The augmented-perfect heuristic, hF∗, assigns each s ∈ SF the augmented
cost of an augmented-optimal solution for s. We say that a heuristic h is augmented-
admissible if hF ≤ hF∗.

The possibility to return∞, instead of a numeric estimate, is intended to allow
hF to identify unsolvable states, a capability many classical-planning heuristic
functions have (e. g. [94, 78, 42]).

Per the definition of augmented optimality (Definition 5, page 24), the augmented-
perfect heuristic hF∗ accounts, not only for standard path cost from a decoupled
state s, but also for the cost of compliant leaf goal paths that a solution for s needs
to be augmented with. A subtlety here is that, given the least-commitment strategy
for leaf factors, selecting the entire leaf path only at the end, part of the associated
price lies “in the past”, before s. Specifically, let πF be a solution for s, ending
in sG. hF∗ accounts for (1) the cost of πF , i. e., of the center action sequence πC

underlying πF ; plus (2) the cost of πC [sG]-compliant leaf goal paths πLi . In (2),
πC [sG] = πC [s]◦πC , so part of the paths πLi will be scheduled alongside the path
πC [s] leading to s. In particular, while heuristic functions usually return 0 on goal
states, that is not so for hF∗: we still have to pay the leaf-goal price tag, moving
the leaves into place.

Pricing functions, however, capture everything relevant about the past, so that
it suffices to consider the possible futures starting from the current pricing func-
tion. We formulate this in terms of a compilation into classical planning, allowing
to estimate hF∗ through standard classical-planning heuristics. The idea is to force
the plan to “buy” exactly one leaf state from each leaf factor:

Definition 10 (hF∗ as Classical Planning). Let Π = (V,A, c, I, G) be a plan-
ning task, F a star factoring with center FC and leaves FL, and s a decoupled
state. The buy-leaves compilation is the planning task ΠL$ = (VL$, AL$, cL$, sL$, GL$),
obtained from Π and s as follows:

1. The variables VL$ add a new Boolean variable bought[FL] for every leaf FL,
VL$:= V ∪ {bought[FL] | FL ∈ FL}. For all variables v 6∈ FC , we add the
new value none into D(v).

2. The initial state is sL$:= center[s] ∪ {v = none | v 6∈ FC} ∪ {bought[FL] =
0 | FL ∈ FL}.

3. The goal is GL$:= G ∪ {bought[FL] = 1 | FL ∈ FL}.

40

4. The actionsAL$ are the previous onesA, adding precondition bought[FL] = 1
to a whenever V(pre(a))∩FL 6= ∅. We furthermore add, for every leaf FL, and
for every leaf state sL ∈ SL[FL] where prices[s](sL) <∞, a new action a[sL]
with precondition pre(a[sL]) := {bought[FL] = 0} and effect eff(a[sL]) :=
sL ∪ {bought[FL] = 1}.

5. The cost function cL$ extends the previous one c by setting cL$(a[sL]) :=
prices[s](sL) for each new action a[sL].

We will use the buy-leaves compilation to design heuristic functions for de-
coupled search.5 We explain this below; let us first explain the compilation. The
leaf factors are assigned the value none initially to indicate that they “do not have
a state yet”. Before we can do anything relying on a leaf factor FL, we have to
buy (exactly) one of its states, at the price specified in the decoupled state s at
hand. The price we pay in doing so accounts for FL’s compliant path before s;
the classical plan obtained afterwards accounts for FL’s compliant path behind s.

Note that the goal in ΠL$ forces the plan to buy a leaf state from every FL,
even if FL has no goal and would otherwise not be touched by any actions in the
plan for ΠL$. This is necessary because FL may have had to move before s: we
need to account for any costs incurred in FL in order to enable (to comply with)
the decoupled path πC [s] leading to s in the first place.

Example 9. Consider the Vanilla example, with object o and two trucks moving
along the line l1, l2, l3. Initially, tA = l1, tB = l3, and o = l1. The goal is o = l3.
Consider the strict-star factoring FC = {tA, tB} and FL = {{o}}, and consider
the decoupled state s reached by applying move(tA, l1, l2). We have hF∗(s) = 3
due to the optimal solution induced by the center path 〈move(tA, l2, l3)〉, aug-
mented with the leaf goal path 〈load(tA, l1), unload(tA, l3)〉. Observe that load(tA, l1)
is scheduled before s, while unload(tA, l3) is scheduled behind s.

The finite prices in s are 0 for {o = l1}, 1 for {o = tA}, and 2 for {o = l2}.
In the buy-leaves compilation ΠL$, we can pay one of these prices to obtain a leaf
state other than none. The cheapest plan for ΠL$ results from buying {o = tA},
yielding the plan 〈a[{o = tA}], move(tA, l2, l3), unload(tA, l3)〉 which corre-
sponds to the part behind s in the optimal solution above.

5One could, in principle, use the compilation to find solutions for decoupled states. But that
would be nonsensical, replacing decoupled search with standard search, defeating the purpose of
our approach.

41

Consider now the NoEmpty example, which is the same except that truck
moves require o to be in the truck. Say, however, that the goal is tA = l3. Con-
sider again the decoupled state s reached by applying move(tA, l1, l2). The finite
prices in s now are 1 for {o = tA} and 2 for {o = l2}; {o = l1} is no longer
reachable as the truck move committed o to {o = tA}. Observe that hF∗(s) = 2
because the optimal solution is 〈move(tA, l2, l3)〉 augmented with the compliant
leaf goal path 〈load(tA, l1)〉. Now, if ΠL$ did not have the goal bought[{o}] = 1,
then 〈move(tA, l2, l3)〉 would be a plan for ΠL$, of cost 1 < hF∗(s). The goal
bought[{o}] = 1 forces the plan to pay for any services o may have needed to
provide before s.

Given a classical-planning heuristic function h, we obtain the buy-leaves heuris-
tic function hFL$ by setting, given a decoupled state s, the value of hFL$ on s to
the value of h on sL$ in ΠL$. In other words, hFL$ results from h’s estimate of
initial-state remaining cost in the buy-leaves compilation for s. This construction
guarantees two very desirable properties: if h is admissible, then so is hFL$; and
if h is perfect, then so is hFL$. The former is of course crucial for optimal plan-
ning. The latter curbs information loss: if the heuristic information given by h is
perfect, then no loss is incurred. Both properties follow directly from the fact that
ΠL$ indeed captures hF∗:

Lemma 5. Let Π be a planning task, F a star factoring, and s a decoupled
state. Let ΠL$ = (VL$, AL$, cL$, sL$, GL$) be the buy-leaves compilation. Then
h∗(sL$) = hF∗(s).

Proof: “≤”: Say πF is any solution for s, ending in decoupled state sG. Let πC

be the sequence of center actions underlying πF . We can construct a plan π for
ΠL$ by augmenting πC with a cheapest πC-compliant sequence of leaf actions for
each leaf factor FL, starting from a finite-price leaf state sL in s ∈ SL[FL]; and
buying that leaf state via the action a[sL]. By construction, the cost of π in ΠL$ is
cost(πC) + LGPrice(sG) = AugCost(πF). Hence h∗(sL$) ≤ hF∗(s).

“≥”: Say π is any plan for ΠL$. Let πC be the subsequence of center actions.
As the construction of ΠL$ forces the plan to buy, for each leaf factor, exactly
one leaf state sL ∈ SL[FL], πC must be augmentable with πC-compliant leaf
paths achieving the leaf goals starting from these sL. So πC induces a solution
for s, ending in some sG. If the leaf paths used by π are the cheapest ones, then
cost(π) = cost(πC) + LGPrice(sG) = AugCost(πF). For arbitrary leaf paths, we
have that cost(π) ≥ AugCost(πF), and hence that h∗(sL$) ≥ hF∗(s) as desired.
�

42

Theorem 8. Let Π a planning task, and F a star factoring. Let h be a classical-
planning heuristic function. If h is admissible, then hFL$ is augmented-admissible.
If h = h∗, then hFL$ = hF∗.

Proof: Direct from Lemma 5. �

It should be noted that, while our construction can in principle be used with
any heuristic function h, doing so efficiently may be challenging. In particular,
the subset of artificial actions a[sL] present, as well as their cost, depend on the
decoupled state s. This is problematic for heuristic functions relying crucially on
precomputations prior to search, like the aforementioned abstraction heuristics.
We have so far realized the buy-leaves compilation for a number of canonical
heuristic functions not relying on precomputation. (Namely for hmax, hLM-cut, and
hFF; see more details in Section 8.)

7.2. Heuristic Search Algorithms
Disregarding solution quality, one can run any search algorithm on the decou-

pled state space ΘFΠ , treating it like an arbitrary transition system. When taking
solution quality into account, in particular for optimality, matters are a little more
subtle as we need to tackle augmented-optimality in ΘFΠ , in difference to the stan-
dard additive-cost notion for which heuristic search algorithms are defined. In
particular, as we illustrated in Example 4, a solution for ΘFΠ may have a worse
solution as a prefix. The issue is easy to resolve though, by making the leaf-goal
price tags explicit, encoding them as additional transitions to a fresh goal state:

Definition 11 (Explicit Leaf-Goal Price). Let Π = (V,A, c, I, G) be a planning
task, F a star factoring, and ΘFΠ = (SF , AC , c|AC , TF , IF , SFG) the decoupled
state space. The explicit leaf-goal price state space ΘLGF

Π is like ΘFΠ , but with a
new state s∗ set to be the only goal state; and adding, for every sG ∈ SFG , a new
transition sG → s∗ with a new label whose cost is LGPrice(sG).

In other words, ΘLGF
Π requires to pay the leaf-goal price tag at the end of any

solution, in the form of a transition having that cost. Obviously, the solutions for
ΘLGF

Π are in one-to-one correspondence with those for ΘFΠ , where additive cost in
the former corresponds to augmented cost in the latter.

Consider now any optimal search algorithm X for additive cost in labeled tran-
sition systems, and consider a heuristic function hF defined on SF . Define a
heuristic function hLGF for ΘLGF

Π simply by extending hF with hLGF(s∗) := 0.
Define the algorithm Decoupled-X (D-X) as running X with hLGF on ΘLGF

Π , re-
turning πF when X returns πF ◦ 〈sG → s∗〉. With the above, we have:

43

Proposition 4. If X is complete, then D-X is complete. If X is optimal for admissi-
ble heuristic functions, then D-X is augmented-optimal for augmented-admissible
heuristic functions.

With Theorem 8 and Proposition 4 together, we can (in principle) take any
complete/optimal heuristic search algorithm X, and any classical-planning heuris-
tic function h, and turn them into a complete/augmented-optimal search algorithm
for ΘFΠ , searching with hLGFL$ on ΘLGF

Π . By Theorems 3 and 4, this yields a com-
plete/optimal planning algorithm.

We remark that, while this construction is simple and canonical, there also
are heuristic search algorithms specialized to star-topology decoupling. One can
define heuristic functions estimating only the remaining cost for the center. This
enables search algorithms exploring decoupled states by estimated center cost,
pruning against the best known global solution so far. We described and tested
such an algorithm in our prior work [1]. We omit this here for brevity, as the
empirical benefits over the simpler approach are limited on standard benchmarks.

8. Experiments

We consider all three algorithmic planning problems, i. e., optimal planning,
satisficing planning, and proving unsolvability. For each of these, we use star-
topology decoupling together with canonical baseline heuristic search planning
algorithms, comparing its performance to the state of the art.

We begin in Section 8.1 by briefly describing important aspects of our im-
plementation, and explaining the experiments setup. Section 8.2 discusses state
space size reductions, filling in some data not covered by our preview in Figure 1.
The three algorithmic planning problems are covered, in turn, by Sections 8.3, 8.4,
and 8.5.

8.1. Implementation & Experiments Setup
Our implementation of star-topology decoupling is in C++, within the Fast

Downward (FD) framework [52]. FD is the most commonly used framework in
classical planning, and it in particular contains the state-of-the-art heuristic search
planning algorithms. Our implementation is modular in that it affects only FD’s
representation of states, and the computation of state transitions. All of FD’s
search algorithms can be run via Proposition 4. All of FD’s heuristic functions
can be run (in principle) via Theorem 8. In our experiments, we instantiate these
connections with canonical baseline algorithms. These algorithms are orthogonal

44

to ours, and their details are not needed to understand our results. Hence we only
give a brief overview. The search algorithms we use are:

1. A∗, which is used in all state-of-the-art heuristic search optimal-planning sys-
tems.

2. Greedy best-first search (GBFS), specifically FD’s lazy greedy best-first search
with a dual open queue for preferred operators. This algorithm is canonical for
satisficing heuristic search planning, in that its performance is close to the state
of the art, and it is commonly used as a baseline. Preferred operators are ap-
plicable actions used in the abstract plan internally generated by a heuristic
function. One of the two open queues uses only these actions; the other open
queue retains the states generated by other actions, preserving completeness.

The heuristic functions we use are:

1. hmax [49], a basic admissible heuristic function mainly useful for detecting
unsolvable states during search. hmax estimates remaining cost by assuming
that, from each subgoal conjunction, it suffices to achieve the single most costly
variable value.

2. hLM-cut [53], a canonical admissible heuristic function, among the state of the
art in optimal planning and widely used as a baseline in that context. hLM-cut

estimates remaining cost through identifying landmarks [95], action sets that
must be hit by every plan.

3. hFF [50], a canonical inadmissible heuristic function, widely used in satisficing-
planning systems. hFF estimates remaining cost through the cost of an abstract
plan pretending that state variables accumulate, rather than switch between,
their values (this is commonly known as the delete relaxation [48, 49]).

4. A blind heuristic, which returns 0 on goal states and the cost of the cheapest
action otherwise. Using this in A∗ is the most common design of a cost-optimal
blind search in FD.

The key aspect of decoupled search implementation is the representation, and
computation, of decoupled states. As earlier hinted, to avoid the repetition of leaf
states across decoupled states, we precompute the state space of each leaf factor
just once before search begins, giving IDs to its leaf states and storing these in an
array. In the decoupled states, we represent reachability functions as sets of IDs

45

(the reached leaf states), and we represent pricing functions as sets of (ID,price)
pairs (the prices of the reached leaf states). Instead of compliant path graphs, we
merely store for each reached leaf state sL the last action in a cheapest compliant
path to sL. This information is maintained incrementally across decoupled-state
transitions s→ t.

To automatically identify a star factoring for an input task Π, we use one of
three simple strategies:

1. Fork (F): Compute the interaction graph IGΠ(FSCC
Π) of the factoring into causal

graph SCCs. Let I be the set of leaf vertices F in IGΠ(FSCC
Π) that, as a simple

sanity criterion, satisfy the size bound
∏

v∈F |D(v)| < 232. Abstain if |I| < 2.
Otherwise, take I as the leaf factors, FL := I, and collect all remaining vari-
ables into the center FC := V \

⋃
F∈I F .

2. Inverted-Fork (IF): As above, but defining I to contain the root vertices in
IGΠ(FSCC

Π).

3. X-Shape (X): As above, but defining I to contain the leaf vertices in IGΠ(FSCC
Π),

plus those root vertices in IGΠ(FSCC
Π) that do not have an arc to a leaf vertex.

As the benefit of decoupled search lies in avoiding the multiplication of states
across leaves, we abstain from single-leaf factorings. As decoupled states explic-
itly enumerate leaf-factor state spaces, these should not be excessively large, so we
apply the simple sanity criterion stated. By Theorem 1, unless the sanity criterion
applies, the F (IF) strategy yields a fork (inverted-fork) factoring with maximal
possible number of leaves. The X strategy is just a simple way of combining
the two. As IGΠ(FSCC

Π) typically is very small, all three strategies take negligible
runtime (rounded to 0.00 seconds in most cases).

Figure 7 shows statistics regarding the number of instances factorized using
each strategy, the number of leaf factors, and the state space size of those leaf
factors (the set of domains, slightly larger than that in Figure 1, will be explained
below). As the data shows, leaf factor state spaces are typically small, with notable
exceptions in Mystery, Pathways, and TPP. The X strategy subsumes the F and IF
ones in terms of the number of factorizable instances (this is not necessarily so as
there could be cases with a single IGΠ(FSCC

Π) leaf SCC and several root SCCs all of
which have an arc to the leaf). Moreover, in almost all cases, X yields exactly the
outcome of either F or IF, behaving like a switch choosing whichever of the two
structures is present (the only exceptions to this are Pathways and Woodworking).
Given this, search performance with X almost always subsumes that of both F and

46

Fork (F) Inverted-Fork (IF) X-Shape (X)
Inst # Inst Leaf Factors # Inst Leaf Factors # Instances Leaf Factors

Domain All F # MSize IF # MSize X F IF # MSize

Solvable Benchmarks: From the International Planning Competition (IPC)

Childsnack 40 40 3 4 40 40 3 4
Depots 22 22 2.8 5.2 22 22 2.8 5.2
Driverlog 20 20 8.3 12.2 20 20 8.3 12.2
Elevators 100 100 4.5 7.4 100 100 4.5 7.4
Floortile 80 80 2.3 2 80 80 2.3 2
Logistics 63 63 11.2 71.2 63 23.3 9.8 63 63 11.2 71.2
Miconic 150 145 16 4 145 145 16 4
Mystery 19 1 3 189660 1 1 3 189660
NoMystery 40 40 9 10.5 40 40 9 10.5
Pathways 30 29 21.1 2 30 25 20.6 7670.6
PSR 50 3 2 2 3 3 2 2
Rovers 40 40 20.9 2 38 7.7 35.2 40 40 20.9 2
Satellite 36 36 54.8 2 34 7.4 69.3 36 36 54.8 2
TPP 30 27 8.3 954.4 26 4.8 6.9 29 27 2 8.3 889.4
Transport 140 140 3.1 48.6 140 140 3.1 48.6
Woodworking 100 61 3.9 43.6 87 3.9 44.7 87 8 4 60.2
Zenotravel 20 20 9.9 11.7 18 3.5 63.4 20 20 9.9 11.7

Unsolvable Benchmarks: From the Unsolvability IPC’16

BagTransport 29 29 2.9 55.9 29 29 2.9 55.9
NoMystery 24 24 14.1 15.1 24 24 14.1 15.1
Rovers 20 20 13.0 2.0 20 20 13.0 2.0

Unsolvable Benchmarks: IPC Mystery, Others Extended from [42]

Mystery 11 3 2.7 43673.7 3 3 2.7 43673.7
NoMystery 40 40 15 13 40 40 15 13
Rovers 40 40 26.8 2 40 40 26.8 2∑

1144 608 681 1052 551 417

Figure 7: Factoring strategy statistics. “F”/”IF”/”X”: fork/inverted-fork/X-shape factoring iden-
tified. In the X-Shape part of the table, “F” and “IF” show the number of instances whose X
factoring actually is a fork/inverted-fork factoring. Per-domain averages shown for the leaf factor
statistics. “MSize” is maximum leaf factor size, i. e., the number of reachable leaf states when
ignoring preconditions on the center.

IF, and in the below we consider X only. We will include data for the rare cases
where either F or IF results in substantially better performance.

We also experimented with more complex factoring strategies, in particular,
attempting to greedily maximize not only the number of leaves, but also leaf mo-
bility, the number of actions affecting only a leaf (possibly with a prevail condition
on the center), which the search need not branch over. The results were not con-
vincing. Another reason to prefer simple factoring strategies is to avoid overfitting
to the benchmarks, by fine-tuning factoring outcomes, and in particular by fine-
tuning the set of benchmarks abstained upon: If we can already see (after less than
0.01 seconds) that decoupled search does not make sense on an input task, then
the natural thing to do is to abstain. But this limits the view of the benchmark

47

set, and fine-tuning factoring strategies runs the risk of fine-tuning that view. We
hence stick to the simplest possible form of that view, to evaluate the basic prop-
erties of star-topology decoupling, rather than the possibilities for system tuning.
Nevertheless, throughout the following results, the reader should keep in mind
that they are taken over the subset of benchmarks with an obvious star topology.
The results must be qualified against that selection.6

The collection of benchmarks we start from is that of the IPC, more specifi-
cally, of the classical-planning tracks of the IPC, and of these tracks only those
benchmarks that fit our planning task syntax. The major part of the IPC – 100
test suites in total – does fit that profile, so this is not limiting. Of the 100 test
suites, the X strategy selects (does not abstain on at least one instance from) 34.
The IPC benchmarks are organized in terms of domains, sets of related planning
tasks. Each domain may be associated with several test suites. Our IPC bench-
mark collection contains 49 domains in total, and 17 of those are selected by the
X strategy. As there is not much interest in distinguishing the different test suites
per domain (they differ mainly in instance size), we accumulate these, presenting
results per-domain rather than per-test-suite, as already done in Figures 1 and 7
above. The IPC benchmarks are publicly available from the IPC web pages.7.

All IPC benchmarks, save 11 instances of the Mystery domain, are solv-
able. For proving unsolvability, we use the benchmarks used in the unsolvability
IPC’16, as well as the well-established benchmark collection by Hoffmann et al.
[42]. The former benchmark collection contains 15 domains, of which our strat-
egy can detect an X factoring in 3. The latter contains 8 domains (one test suite
each), of which the X strategy selects 3. In 2 of these 3 domains, NoMystery
and Rovers, both of which are concerned with resource-constrained planning, we
introduce additional easier instances in order to get some performance data for all
algorithms tested. Specifically, we extend the range of the constrainedness levels
C – the ratio between available and minimum-needed amount of fuel/energy [96]
– from {0.5, 0.6, . . . , 0.9} in the original benchmarks, to {0.2, 0.3, . . . , 0.9}. In-
stances with smaller constrainedness level are easier to prove unsolvable as they
are more tightly constrained.

All experiments were run on a cluster of machines with Intel Xeon E5-2660

6We could, in principle, invoke an arbitrary algorithm outside that selection. But that would
only water down our results. It would also be ill-defined. There is no reason, in practice, to
choose any algorithm over another, unless one investigates the design of prediction-based dynamic
portfolios.

7http://www.icaps-conference.org/index.php/Main/Competitions

48

processors running at 2.2 GHz. As is customary in the IPC, the runtime/memory
limit was set to 30 minutes/4 GB.

The state of the art algorithms differ considerably depending on the purpose,
i. e., optimal planning vs. satisficing planning vs. proving unsolvability. We will
therefore introduce these algorithms, which we compare to empirically, in the
subsections below. A few words are in order up front though, regarding factored
planning, and regarding Petri net unfolding.

Localized factored planning [32, 33, 35, 36, 37, 39, 40] has inspired star-
topology decoupling, so is a natural approach to compare to empirically. Yet,
all but one of these approaches (that by Fabre et al. [36]) cannot guarantee global
optimality; many works are purely theoretical; and good results on standard IPC
benchmarks are scarce. Some works run proof-of-concept experiments on a few
custom-designed (non-IPC) toy benchmarks only. Some approaches (e. g., that
by Fabre et al.) are explicitly reported by their authors to not work well on IPC
benchmarks. The empirically most successful approach is the aforementioned
partition-based pruning [40], which exploits permutability of intra-factor plans.
Hence we compare to that approach here.

Petri net unfolding methods are not defined on planning tasks, so given a task
Π we need to translate it into a Petri net first. Such translations are easy and known
[24]. To maximize comparability with our FD-based tools, we implemented trans-
lations starting from FD’s internal planning task representation (and hence relying
on the same relevance and invariance analysis preprocesses as used by FD [97]).
Each variable value v = d becomes a place pv=d in the Petri net, and each action
a becomes a transition ta in the Petri net. If v = d is a precondition of a, then
pv=d becomes an input of ta, and if v = d is an effect of a, it becomes an out-
put of ta. In case v = d is not consumed, i. e., is a prevail condition, we need
to encode a read arc from pv=d to ta. Contextual Petri nets support this natively.
For translation into a standard Petri net, we use the aforementioned plain method,
making pv=d both, an input and an output, of ta. We compare to standard respec-
tively contextual unfolding tools, Punf [43] respectively Cunf [44], regarding state
space/unfolding size. Regarding planning performance, we compare to Bonet et
al.’s [28] heuristic-search-planning Petri net unfolding tool, which realizes hmax

and hFF (but not hLM-cut, nor preferred operators) in this context.

8.2. State Space Size
Figure 8 shows data supplementary to the preview given in Figure 1. We show

also those 3 domains where no state space was successfully built by any method;

49

and we include the Petri net unfolding methods into the representation size com-
parison. The representation size for Punf is the number of events generated, that
for Cunf is the number of event histories generated.

Instances Reachable State Space. Right: Average over Instances Commonly Built
Success Representation Size (in Thousands)

Domain All X Std POR Punf Cunf OPT COM Std POR Punf Cunf OPT COM

Solvable Benchmarks: From the International Planning Competition (IPC)

Childsnack 40 40 0 0 0 0 0 0
Depots 22 22 4 4 2 2 3 5 407.2 407.2 59.5 58.6 471.1 54.3
Driverlog 20 20 5 5 3 3 8 10 446.7 446.7 112.3 95.5 74.7 17.7
Elevators 100 100 21 17 1 3 8 41 1,941.8 1,941.5 544.3 543.3 2,098.6 36.3
Floortile 80 80 2 2 0 0 0 2
Logistics 63 63 12 12 7 11 23 27 1,121.2 1,121.2 111.2 118.4 133.2 12.1
Miconic 150 145 50 45 25 30 45 145 154.6 152.3 139.1 143.1 5.9 .7
Mystery 19 1 0 0 0 0 0 0
NoMystery 40 40 11 11 5 7 40 40 266.2 248.8 124.2 101.3 4.3 3.9
Pathways 30 30 4 4 3 3 4 4 4,748.8 115.9 53.8 103.5 1,787.3 1,787.2
PSR 50 3 3 3 3 3 3 3 39.4 33.9 10.2 7.9 11.1 11.1
Rovers 40 40 5 6 4 4 5 5 113.6 76.5 8.9 6.8 40.3 39.3
Satellite 36 36 5 5 5 5 4 4 2,864.2 582.5 53.7 45.1 2,219.1 352.7
TPP 30 29 5 5 4 4 11 11 192.5 192.5 11.6 12.4 .2 .2
Transport 140 140 28 23 11 11 18 34 151.7 151.7 90.0 90.0 325.3 9.2
Woodworking 100 87 11 20 16 22 15 16 109,174.4 199.9 .6 1.2 11,895.8 4,274.2
Zenotravel 20 20 7 7 2 4 7 7 1.3 1.3 2.2 2.3 .3 .3

Unsolvable Benchmarks: From the Unsolvability IPC’16

BagTransport 29 29 7 6 3 3 4 11 1,889.8 1,889.8 219.6 219.6 2,025.8 34.9
NoMystery 24 24 2 2 0 1 17 18
Rovers 20 20 7 7 0 3 7 8

Unsolvable Benchmarks: IPC Mystery, Others Extended from [42]

Mystery 11 3 0 0 0 0 0 0
NoMystery 40 40 9 8 2 4 40 40 91.7 38.8 23.9 5.5 .5 .5
Rovers 40 40 4 4 0 0 4 4∑

1144 1052 202 196 96 123 267 435

Figure 8: State space size using the X-shape factoring strategy. Best results highlighted in bold-
face. “POR” is partial-order reduction using strong stubborn sets [16]. Punf [43] is Petri net
unfolding, Cunf [44] is contextual Petri net unfolding. “OPT” and “COM” are the optimality-
preserving (pricing functions) respectively completeness-preserving (reachability functions) vari-
ants of the decoupled state space.

The partial-order reduction technique we use is strong stubborn sets pruning
as per Wehrle and Helmert [16]. We remark that this approach (in difference to
the other approaches compared here) depends on the goal condition. Naturally,
we use the original goal conditions supplied with the instances. On goal states (in
solvable instances), we allow POR to prune all actions.

Petri net unfolding sometimes is superior at building small state-space repre-
sentations. This pertains, foremost, to the Woodworking benchmark where Cunf
excels. But it also pertains to some other domains, where the representation size
advantage does not translate into an advantage in the number of state spaces built.

50

This is due to the runtime overhead of building the unfolding: in the respec-
tive smallest unsuccessful benchmark instances, the unfolding methods run out
of time.

Observe that, to a large extent, the data for factorings in Figure 7 explains that
for decoupled search in Figure 8. The state-space reduction tends to be large if (a)
there is a sufficient number of leaf factors, and each leaf factor is neither (b) too
small (not allowing a substantial reduction), nor (c) too large (incurring substantial
overhead). Prime examples satisfying all of (a)–(c) are Driverlog, Elevators, Lo-
gistics, Miconic, NoMystery, TPP, Transport, Woodworking, and Zenotravel – a
very good match with those domains where star-topology decoupling works well.
Examples not satisfying (a) are Floortile and PSR; examples not satisfying (b) are
these same two domains, plus Rovers and Satellite; examples not satisfying (c)
are Mystery and Pathways. Note that, given this strong connection between sim-
ple factoring-structure features and state-space reduction performance, one could
easily design factoring strategies filtering out the bad cases in Figure 8. We do not
do that here for the sake of clarity, cf. the discussion of fine-tuning above.

Even with the bad cases, Figure 8 certainly shows that star-topology decou-
pling can yield huge advantages compared to related methods. We examine next
to what extent these advantages are preserved when supplying the search with
the orthogonal search techniques – heuristic functions, preferred operators prun-
ing, etc. – intensively developed in the AI planning community, geared at optimal
planning, at satisficing planning, respectively at proving unsolvability.

8.3. Optimal Planning
Optimal planning is a separate track in the international planning competi-

tions. In this subsection, we use the test suites of the IPC optimal tracks only.
We consider additive-cost optimality, used in the IPC since 2008.8 For this form
of planning, the most competitive algorithms are based on heuristic state space
search, on BDDs, and on optimality-preserving state-space reduction techniques.
We hence compare against the leading representatives of these techniques in AI
planning: Symba [101], the winner of the IPC’14 optimal track, which runs a
BDD-based heuristic search; A∗ with strong stubborn sets pruning as used previ-
ously already [16]; A∗ with symmetry reduction [21]; and A∗ with a combination
of symmetry reduction and strong stubborn sets [102]. We furthermore compare

8Previous IPCs allowed also other forms of optimality, e. g. the makespan of parallel plans
(e. g., [98, 99, 100]).

51

to partition-based pruning and heuristic-search Petri net unfolding, as discussed
above. Figure 9 shows the data.

(A) Coverage (Number of Tasks Solved) (B) Nodes (C) Runtime
Inst Blind hmax F Blind hLM-cut hLM-cut hLM-cut

Dom All X BD A∗ P Sy Psy PP HP D- HP F A∗ D- A∗ P Sy Psy PP D- Psy D- BD P Sy Psy PP D-

Csna 20 20 3 0 +−0 +6 +6 +−0 +−0 +−0 +−0 0 +−0 +6 +6 +−0 +−0
Depo 22 22 5 4 +−0 +2 +1 +−0 -2 +−0 -2 7 +−0 +1 +1 +−0 +−0 2.3 1.2 1.1 0.9 2.0 1.9 1 0.9
Drive 20 20 14 7 +−0 +−0 +−0 +−0 -3 +4 -3 20 7 +4 13 +−0 +−0 +−0 +−0 +−0 1.7 2.2 0.6 0.9 1.2 1.4 1.2 0.6
Eleva 50 50 44 26 +−0 +2 +4 +5 -10 -10 -10 40 +−0 +−0 +−0 +1 +1 2.2 1.8 6.9 1.1 1.2 2.0 3 1.6
Floor 40 40 34 2 +−0 +−0 +−0 +−0 -2 +−0 -2 13 +−0 +3 +3 +−0 +−0 2.0 1.0 148 0.9 2.0 1.9 1.1 1.1
Logi 63 63 25 12 +−0 +2 +3 +2 -2 +14 +−0 63 12 +14 26 +−0 +−0 +1 +−0 +8 7.8 211 0.4 3.1 1.5 8.2 2.8 293
Mico 150 145 102 50 -5 +1 -4 -5 -35 -5 -32 145 50 -5 136 +−0 +−0 +−0 +−0 -1 2.1 2.2 0.0 0.9 1.9 1.8 0.8 0.4
Myst 19 1 0 0 +−0 +−0 +−0 +−0 +−0 +−0 +−0 0 +−0 +−0 +1 +−0 +−0
NoM 20 20 15 8 +−0 +1 -1 +−0 -6 +12 -1 20 8 +12 14 +−0 +−0 +−0 +−0 +6 1.0 29.4 0.6 0.8 1.1 0.4 0.9 30.2
Path 30 30 5 4 +−0 +−0 +−0 +−0 -1 +−0 +−0 29 3 +−0 5 +−0 +−0 +−0 +−0 -1 1.7 4.6 0.1 1.2 1.0 1.2 0.6 0.8
PSR 50 3 3 3 +−0 +−0 +−0 +−0 +−0 +−0 +−0 3 3 +−0 3 +−0 +−0 +−0 +−0 +−0 1.6 1.7 0.1 1.0 1.0 1.0 0.6 1.0
Rove 40 40 13 6 +1 +−0 +1 +−0 -5 +−0 +−0 40 6 +−0 7 +2 +−0 +3 +3 +1 3.3 4.8 11.8 3.3 0.9 2.8 2.5 2.5
Sate 36 36 8 6 +−0 +−0 +1 +1 -2 +−0 -1 36 6 +−0 7 +4 +6 +7 +5 +−0 96 1.0 32.3 23.9 4.1 99 17.1 0.7
TPP 30 29 7 5 +−0 +1 +1 +−0 -2 +18 -3 27 5 +18 5 +−0 +1 +1 +−0 +13 6.9 2557 11.7 0.9 6.5 6.2 1.1 346
Trans 70 70 29 24 -1 +−0 -1 +−0 -8 -5 -6 23 +−0 +−0 +−0 +−0 +−0 1.4 0.8 6.6 0.9 1.1 1.1 1.4 0.7
Wood 50 39 27 8 +7 +−0 +9 +−0 +7 +2 +4 18 4 +2 20 +17 +−0 +17 +2 +8 1468 11.2 5.1 517 1.5 765 1 13.0
Zeno 20 20 10 8 +−0 +−0 +−0 +−0 -2 +3 -1 20 8 +3 13 +−0 +−0 +−0 +−0 +−0 2.0 4.6 1.9 0.9 1.5 1.6 2.1 5.4∑

730 648 344 173 +2 +15 +20 +3 -73 +33 -57 421 112 +48 332 +23 +17 +40 +11 +35

Figure 9: Optimal planning performance. Best results highlighted in boldface. Part (A) shows
coverage, relative to the baseline A∗ except for “BD”. Parts (B) and (C) show improvement factors
relative to the baseline, i. e., the ratio baseline/planner of (B) the per-domain sum of evaluated
search nodes (calls to hLM-cut), and (C) the per-domain sum of runtime. The underlying instances
in (B) and (C) are those commonly solved by the baseline and the planners shown, skipping in (C)
trivial instances commonly solved in ≤ 0.1 seconds. “F Blind” shows data for fork factoring.
“BD” is Symba [101], the BDD-based winner of the IPC’14 optimal track. “HP” is optimal
planning with Bonet et al.’s [28] heuristic-search Petri net unfolding tool (coverage for hmax shown
relative to Blind A∗). “P” is partial-order reduction using strong stubborn sets [16], “Sy” is A∗

with symmetry reduction [21], “Psy” is A∗ with both [102]. “PP” is A∗ with partition-based
pruning [40]. “D-” is D-A∗.

Consider first the coverage data, i. e., the number of benchmark instances
solved, in part (A) of the table. For blind state space search, star-topology decou-
pling is the most effective technique, somewhat more so when using fork factor-
ings only, due to a performance loss in Elevators when using X-shape factorings.
For both, blind search and search with hLM-cut, the combination of strong stubborn
sets with symmetry reduction, Psy in the figure, outperforms each of its com-
ponent techniques, and outperforms partition-based pruning. It is complemen-
tary to star-topology decoupling in that it works well on different domains. The
strongest domains of Psy are Childsnack, Floortile, Rovers, Satellite, and Wood-
working, whereas those of star-topology decoupling are Driverlog, Logistics, No-
Mystery, TPP, Woodworking, and Zenotravel. In cross-domain overall coverage,

52

both methods lead to substantial gains (differing somewhat basically due to bench-
mark scaling). Petri net unfolding generally is not competitive; BDD-based search
is, yielding the strongest performance in several domains largely complementary
to those listed above.

Parts (B) and (C) show search space size and runtime data. In (B), we in-
clude only Psy as that provably dominates each of stubborn sets and symmetry
reduction; and as it empirically dominates partition-based pruning, with minor
exceptions. BD and HP are not included in (B) as the number of search nodes
cannot be directly compared, HP is not included in (C) as it is not competitive.

In both (B) and (C), the advantages over the baseline are reflected in substan-
tial improvement factors, and the complementarity of star-topology decoupling
vs. other methods is again reflected in per-domain strengths and weaknesses. The
most significant reductions are obtained in Floortile by BDDs; in Satellite and
Woodworking by Psy; and in Logistics, NoMystery, and TPP by star-topology de-
coupling. Figure 10 provides a per-instance view. (a) shows that D-A∗ (decoupled
A∗) incurs hardly any risk vs. A∗ (cases with larger runtime are rare). (b) and (c)
exhibit again the complementarity of the methods (which is especially strong vs.
BDDs, expectedly, as the two methods are unrelated).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

(a) D-A∗ vs. A∗ (b) D-A∗ vs. Psy (c) D-A∗ vs. BDD

Figure 10: Runtime in optimal planning: D-A∗ using hLM-cut (y-axis) vs. (a) A∗ using hLM-cut; (b)
A∗ using hLM-cut with strong stubborn sets and symmetry reduction [102]; (c) BDD-based search
with Symba [101].

Coming back to the question whether the state space reductions in Figure 8,
for OPT (pricing functions) in this case, are preserved under advanced search
techniques: The superiority of star-topology decoupling does disappear or reduce
sometimes, where heuristic search already achieves similar reductions. This is es-
pecially pronounced in Driverlog, where OPT was able to build more state spaces
than standard search, yet loses this advantage completely when hLM-cut is in use.
However, star-topology decoupling still yields additional reductions, to varying
extents, and up to several orders of magnitude. In 3 domains, it outperforms

53

all competing techniques. (This is without partial-order and symmetry reduction
techniques. Our recent work shows that strong stubborn sets can be extended
to decoupled search, inheriting, and sometimes surpassing, the best performance
from both sides [103]. Presumably, this is possible for symmetry reduction as
well.)

8.4. Satisficing Planning
In this subsection, we use the test suites of the IPC satisficing tracks only.

For this form of planning, the most competitive algorithms are based on heuris-
tic state space search. We use FD’s lazy greedy best-first search with hFF as the
competitive baseline, cf. above; and we compare to the recent winners of the IPC
satisficing tracks, LAMA [54] (winner IPC’08 and IPC’11) and Mercury [55]
(highest scorer among non-portfolios, IPC’14). LAMA is designed for anytime
plan-quality improvement, running an iteration of searches with different param-
eters; we focus on runtime performance here, so we run only LAMA’s first search
iteration, which is geared at that performance parameter. Specifically, LAMA’s
first search iteration runs FD’s lazy greedy best-first search, with hFF and an ad-
ditional inadmissible heuristic function based on landmarks. Mercury runs FD’s
lazy greedy best-first search with an improved version of hFF, based on more in-
formed – partially delete-relaxed instead of fully delete-relaxed – abstract plans.

Consider first the coverage data without preferred operators in Figure 11 part
(A). Star-topology decoupling yields huge advantages, especially with inverted-
fork factorings which are much more effective than X-shape factorings in Rovers,
Satellite, and TPP. Preferred operators, however, are extremely effective in these
benchmarks. Switching them on, much of the coverage advantage disappears. Im-
provements remain in Childsnack, Depots, NoMystery, and Transport, where the
state space reduction counter-acts weaknesses of the delete relaxation. In Trans-
port, GBFS trivializes under star-topology decoupling: the search merely expands
the states along a path to the goal.

LAMA and Mercury share the prowess in Transport, especially Mercury which
does not need to search at all as the abstract plan identified by its heuristic function
on the initial state is an actual plan for the input task. All three techniques also
behave similarly in Depots. The complementarity across techniques is exhibited
in Childsnack, NoMystery, and Pathways.

Coverage on the IPC satisficing benchmarks carries limited information as
many benchmarks are solved already by the baseline (559 out of 657, compared
to 332 out of 648 for optimal planning). So it is especially important here to

54

(A) Coverage (Number of Tasks Solved) (B) # Nodes (C) Runtime
Inst No PO IF No PO PO No PO PO No PO PO

Domain All X GS PP HP D- IF GS D- GS PP LA Mer D- D- LA Mer D- D- LA Mer D-

Csnack 20 20 0 +−0 +−0 +−0 20 +−0 +−0 3 +1 -3 -3 +3
Depots 22 22 14 +2 -3 +5 22 14 +5 18 +−0 +2 +3 +2 10.7 5.7 5.8 5.5 11.2 2.9 4.8 4.9
Driverlog 20 20 18 +−0 -3 +1 20 -1 +−0 +−0 +−0 3.8 1.3 1.7 1.4 5.7 1.2 1.6 0.9
Elevator 50 50 48 +2 -35 +2 50 48 +2 50 -2 +−0 +−0 +−0 8.7 0.9 2253.9 18.8 10.3 1.1 11.6 16.0
Floortile 40 40 8 +−0 -4 -2 40 8 -2 8 +1 +−0 +−0 +−0 2.6 0.3 1.0 3.5 2 0.2 0.5 2.6
Logistic 63 63 54 +4 -11 +9 63 54 +9 63 -1 +−0 +−0 +−0 34.2 4.3 5382.1 40.4 18.4 4.9 39.0 5.5
Miconic 150 145 145 +−0 -29 +−0 145 +−0 +−0 +−0 +−0 2.5 0.5 176.0 4.3 1.1 0.4 0.9 1.4
Myst 19 1 0 +−0 +1 +1 1 0 +1 1 +−0 +−0 +−0 +−0 0.7 0.2 59.3 0.9 0.6 0.0
NoMyst 20 20 9 +1 +4 +11 10 +3 +3 +4 +10 153.1 848.6 2013.8 63060.9 3.7 547.9 634.1 1574.4
Pathway 30 30 11 +−0 -7 +2 20 +2 +4 +10 +−0 12.7 0.3 0.3 1.4 5.4 0.3 0.3 0.3
PSR 50 3 3 +−0 +−0 +−0 3 +−0 +−0 +−0 +−0 1.6 0.5 0.5 1.4
Rovers 40 40 23 +2 -8 -1 38 21 +17 40 +−0 +−0 +−0 +−0 1.2 0.4 0.5 1.3 0.7 0.3 0.2 1.0
Satellite 36 36 30 -3 -19 +3 34 28 +6 36 -9 +−0 +−0 +−0 2.7 0.2 11.3 1.9 1.2 0.1 1.7 2.4
TPP 30 29 21 +1 -18 +3 26 18 +8 29 +−0 +−0 +−0 -3 3147.5 0.4 0.3 0.0 505.9 0.4 0.3 0.0
Transport 70 70 16 +10 -6 +54 70 16 +54 45 -6 +18 +25 +25 310.3 0.5 4979.6 331.2 170.5 0.6 14.8 14.9
Woodwor 50 48 47 -24 -39 +1 48 47 +1 48 +−0 +−0 +−0 +−0 2.7 4.9 0.2 1.2 1.2 1.9 0.2 0.6
Zenotrav 20 20 20 +−0 -5 +−0 18 18 +−0 20 +−0 +−0 +−0 +−0 23.9 0.4 87.1 4.4 4.5 0.4 0.7 1.0∑

730 657 467 -5 -182 +89 430 272 +101 559 -12 +24 +39 +37

Figure 11: Satisficing planning performance. Best results within each category (“PO” vs. “No
PO”) highlighted in boldface. Part (A) shows coverage relative to the baseline, greedy best-first
search (GBFS) with hFF, abbreviated as “GS” here. Parts (B) and (C) show improvement factors
relative to the baseline, i. e., the ratio baseline/planner of (B) the per-domain sum of evaluated
search nodes (calls to hFF), and (C) the per-domain sum of runtime. The underlying instances in
(B) and (C) are those commonly solved by the baseline and the planners shown, skipping in (C)
trivial instances commonly solved in ≤ 0.1 seconds. We distinguish between using vs. not using
preferred operators, “PO”, as that has a large impact on performance. “IF No PO” shows data
for inverted-fork factoring. “PP” is GBFS with partition-based pruning [40]. “HP” is satisficing
planning with Bonet et al.’s [28] heuristic-search Petri net unfolding tool. “LA” is LAMA [54],
the winner of the IPC’08 and IPC’11 satisficing tracks. “Mer” is Mercury [55], the winner (among
non-portfolios) of the IPC’14 satisficing track.“D-” is D-GBFS.

consider the more fine-grained performance measures in (B) and (C) (we do not
include PP and HP here as they are not competitive).

For search space size (B), without preferred operators star-topology decou-
pling yields reductions in every domain, of a factor > 10 in 7 cases, of 3 orders of
magnitude in TPP. With preferred operators, the reductions tend to be weaker but
still present, the most striking exceptions being TPP which is easily solved by the
baseline now, and NoMystery where the improvement factor grows as the com-
monly solved instances are larger. The large improvement factors for Mercury in
Elevators, Logistics, Transport, and Zenotravel are all due to the phenomenon dis-
cussed above: the abstract plan for the initial state solves the input task. Mercury
subsumes LAMA except in Woodworking. Star-topology decoupling is superior
in NoMystery, where hFF is not informative due to the fuel constraints, and state

55

space reduction is essential for success (we get back to this below).
For runtime (C), the improvement factors of all three methods are smaller, as

all three incur a runtime overhead. Without preferred operators, star-topology de-
coupling still yields large improvements in many cases; with preferred operators,
the improvements pertain mainly to Depots, Elevators, Logistics, NoMystery, and
Transport. Interestingly, Mercury’s search-space-size superiority, relative to star-
topology decoupling, does not pay off in Elevators, Transport, and Zenotravel, as
the runtime for even a single call to Mercury’s heuristic function exceeds that of
decoupled search.

Figure 12 provides a per-instance view. In all three comparisons, D-GBFS is
more often in the advantage than not. The risk vs. the baseline (a) is relatively
small, though not as small as in optimal planning. Similarly for the strength of the
complementarity (b) and (c) vs. the state of the art.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

(a) D-GBFS vs. GBFS (b) D-GBFS vs. LAMA (c) D-GBFS vs. Mercury

Figure 12: Runtime in satisficing planning: D-GBFS using hFF and preferred operators (y-axis)
vs. (a) GBFS using hFF and preferred operators; (b) LAMA [54]; (c) Mercury [55].

Coming back to the question whether the state space reductions in Figure 8, for
COM (reachability functions), are preserved under advanced search techniques:
The reductions get lost in many cases as greedy search with delete-relaxation
heuristics is extremely effective on these benchmarks. This is especially pro-
nounced in TPP, where the gigantic advantage of COM disappears completely
when employing preferred operators (though not without them). That said, star-
topology decoupling does yield reductions in half of the domains. In NoMystery,
the reduction is by 5 orders of magnitude, and star-topology decoupling outper-
forms all competing techniques. (This is without relying on the additional heuris-
tic functions used in LAMA and Mercury. Using these in decoupled search is
straightforwardly possible via Theorem 8.)

Let us briefly extend on NoMystery, which captures an interesting kind of
structure pertaining to satisficing planning in critically constrained situations.
Consider Figure 13.

56

 40

 50

 60

 70

 80

 90

 100

 1 1.2 1.4 1.6 1.8 2

D-GBFS

FD-AutoTune

 40

 50

 60

 70

 80

 90

 100

 1 1.2 1.4 1.6 1.8 2

D-GBFS

Arvand

(a) NoMystery “small” (b) NoMystery “large”

Figure 13: Coverage in satisficing planning on the two original NoMystery test suites, by Nakhost
et al. [96], controlling the constrainedness level C (the ratio between available and minimum-
needed amount of fuel), shown on the x-axis. We compare D-GBFS using hFF and preferred
operators to the best-performing planners in Nakhost et al.’s comprehensive experiments on these
test suites: “FD-Autotune” is an IPC’11 self-tuned variant of FD [104, 105]; Arvand is Nakhost et
al.’s planner extending GBFS using hFF with random walks for increased exploration.

The test suites underlying Figure 13 differ from those used in the IPC. They
were created by Nakhost et al. [96] specifically to test planner performance as a
function of the constrainedness level C. They created a set of base instances, and
made copies of these differing only in the amount of fuel available, i. e., in the
value of C. The closer C is to 1.0, the harder it becomes for greedy techniques
to find a plan, as many action sequences – making sub-optimal use of fuel – will
lead into unsolvable states (dead-ends) where insufficient fuel is left to solve the
task. For C = 1.0, only the optimal use of fuel will succeed. Delete-relaxation
heuristic functions are unable to recognize this, as the underlying abstract plans
pretend that fuel is not being consumed. Nakhost et al. proposed to combat this
with random walk techniques. Yet even the most competitive planners from their
comprehensive experiments fail to solve many instances for C = 1.0. With star-
topology decoupling, all instances are solved. In short: on critically constrained
problems with a pronounced star topology, decoupled search is superior to the
state of the art. This kind of structure is infrequent in the IPC, but is certainly
practically relevant (e. g., cooperative agents with shared resources).

8.5. Proving Unsolvability
As before, we use heuristic search as the baseline. This is useful – it avoids

exhausting the entire state space, which we already considered above – provided
the heuristic function can identify dead-ends, returning∞ (cf. Section 7.1). Most
AI planning heuristic functions do have that capability. In particular, this is so for
the three heuristic functions hmax, hLM-cut, and hFF considered here. We use hmax

57

as the baseline, because all three heuristic functions return∞ in exactly the same
cases, and hmax is the fastest among the three.

Among the state of the art in proving unsolvability, in AI planning, are merge-
and-shrink (M&S) abstractions [78], specifically those designed by Hoffmann et
al. [42] to either preserve goal reachability exactly (and thus prove unsolvability
without search), or to approximate and serve as heuristic functions for identify-
ing dead-ends during search. On our selection of (X-shape) benchmarks, most
successful runs of M&S were ones proving unsolvability without search, so we
include that variant (“Own+A” in Hoffmann et al.’s paper) here. The only excep-
tion is the BagTransport domain, where the “N100k M100k” variant of Hoffmann
et al. – combining the M&S heuristic with hmax in the search – proves to be better.
Therefore, we include data for the former in all domains except BagTransport,
where we show “N100k M100k”.

Additionally, we include the winner and runner-up of the Unsolve IPC’16
(UIPC), Aidos, respectively SymPA. Aidos is a portfolio consisting of many tech-
niques designed to prove planning tasks unsolvable [106]. SymPA uses symbolic
perimeter abstraction heuristics [107]. We furthermore include all planners tested
for optimal planning above, as these techniques are often suitable also for proving
unsolvability. In particular, the most competitive non-M&S planner in Hoffmann
et al.’s [42] experiments was the BDD-based planner Symba.

(A) Coverage (Number of Tasks Proved Unsolvable) (B) # Nodes (C) Runtime
Inst Blind hmax

Domain All X BD MS SP Ai A∗ P Sy Psy PP HP D- A∗ P Sy Psy PP HP D- Psy D- BD MS SP Ai P Sy Psy PP D-

Unsolvable Benchmarks: From UIPC’16

BTransp 29 29 7 6 8 22 7 -1 +−0 -1 +−0 -3 +4 6 +−0 +−0 +−0 +−0 -2 +4 1.2 141 4.3 0.5 22.0 1513 0.5 0.9 0.5 0.8 73.0
NoMyst 24 24 6 14 6 14 2 +−0 +−0 +−0 +−0 -2 +16 2 +−0 +1 +−0 +−0 -2 +16 1.5 873 1.1 51.2 0.6 16.2 0.5 1.2 0.3 0.8 61.4
Rovers 20 20 11 15 13 14 7 +−0 +−0 -3 +−0 -6 +1 7 +−0 +−0 +−0 +−0 -6 +1 2.1 9.3 130 369 97.9 14.9 0.5 0.8 0.2 0.7 1.2

Unsolvable Benchmarks: IPC Mystery, Others Extended from [42]

Myst 9 3 0 2 0 3 0 +−0 +−0 +2 +−0 +−0 +−0 0 +1 +−0 +2 +−0 +−0 +−0
NoMyst 40 40 19 40 20 40 9 -1 +1 -3 +−0 -6 +31 12 +−0 +2 -1 +−0 -4 +28 2.1 7190 9.8 291 6.4 129 0.5 1.7 0.2 0.8 395
Rovers 40 40 18 32 18 38 4 +−0 -1 -1 +−0 -4 +−0 9 -1 -1 -1 -1 -5 +1 1.9 22.5 11.5 682 15.5 34.9 0.6 0.8 0.4 0.7 2.7∑

162 156 61 109 65 131 29 -2 +−0 -6 +−0 -21 +52 36 +−0 +2 +−0 -1 -19 +50

Figure 14: Proving unsolvability performance. Best results within each category highlighted in
boldface. Part (A) shows coverage relative to the baseline A∗. Parts (B) and (C) show improve-
ment factors relative to the baseline, i. e., the ratio baseline/planner of (B) the per-domain sum of
evaluated search nodes (calls to hmax), and (C) the per-domain sum of runtime. The underlying
instances in (B) and (C) are those commonly proved unsolvable by the baseline and the planners
shown, skipping in (C) trivial instances commonly proved unsolvable in ≤ 0.1 seconds. “MS”
is the best of Hoffmann et al.’s [42] “Own+A” and “N100k M100k” merge-and-shrink abstrac-
tions. “SP”/“Ai” are the SymPA/Aidos planners from the unsolvability IPC [107, 106]. All other
abbreviations are as in Figure 9.

58

Consider Figure 14. Star-topology decoupling excels in NoMystery as be-
fore (recall that in both the UIPC, and Hoffmann et al.’s version, these are the
instances originally by Nakhost et al. [96], but with constrainedness levels < 0).
In the UIPC’16 version of the domain, it is even able to outperform advanced
systems like Aidos and SymPA, particularly designed to prove planning tasks un-
solvable. Except in Rovers and Mystery, decoupled search performs better than
all competitors excluding Aidos. In Rovers, BD, M&S, and SymPA are better,
in Mystery, it’s only M&S and the combination of partial-order and symmetry
reduction (Psy).

Coming back to the question whether the state space reductions in Figure 8, for
COM (reachability functions), are preserved under advanced search techniques:
From the limited collection of unsolvable planning benchmarks, only NoMystery
has strong state space reductions. These are preserved when using hmax. M&S
abstractions are equally effective in NoMystery, by very different means. (We
remark that, as one would expect, there are natural cases where M&S abstractions
are much inferior to star-topology decoupling; for example, a simple unsolvable
variant of TPP has this property.)

9. Conclusion

Star-topology decoupling is a new state space reduction method for reacha-
bility analysis in compactly described discrete transition systems. It exploits a
form of conditional independence between leaf components in a star topology,
given a fixed transition sequence of the center component. The decoupled state
space branches over center transitions only, and maintains leaf state spaces sep-
arately. Thanks to that separation, state space size can be exponentially reduced.
Blow-ups can also occur in principle, but that can be avoided with suitable prun-
ing techniques. The method has exponential separations from all previous state
space reduction methods in theory. In practice, on standard AI Planning bench-
marks with a pronounced star topology, it outperforms previous methods in terms
of the most basic measure of reduction power, exhausting the state space. The
empirical advantage reduces when using orthogonal search enhancements, but is
still manifested in situations where previous methods are weak.

From these results, it is clear that star-topology decoupling is a promising new
method for reachability analysis. Its suitability for pronounced star topologies –
with many leaf components that exhibit individual mobility, not affecting the cen-
ter state in every transition – makes it an exciting method to try on problems that
come with such structure by design. Multi-agent systems of cooperative agents

59

with shared variables, e. g. shared resources, are one example. The application
to model checking also is very promising, as star topology is a pervasive design
paradigm in distributed and concurrent computing settings. Client-server archi-
tectures are a classical example. A highly relevant recent direction are concurrent
programs under weak memory models (e. g. [108, 109, 110, 111]). Processes run
locally on separate processors, and read/write operations are performed on local
memory. Explicit “fence” operations wait for local memory to be fully committed
to global memory, and a consistent view of memory needs to be guaranteed. Ob-
serve that star-topology decoupling is especially suited here, as there may be many
processors (leaf components), and many local operations (leaf mobility), and the
objective is to verify correctness (exhaust the state space). Key challenges include
the adaptation to the system-description languages used in model checking, and
the extension to checking temporal properties, beyond reachability (i. e., beyond
safety).

It may be possible to better leverage star-topology decoupling in planning
through better factoring methods. Initial progress in this direction was recently
made [112]. An interesting question is whether recent methods for identifying
planning backdoors can be adapted for that purpose.

Star-topology decoupling is complementary to previous search enhancements,
and there are manifold opportunities for combining it with these. The authors
have already devised combinations with strong stubborn sets [103], symmetry
reduction [113], and BDDs for representing leaf state spaces [114]. Beyond these,
the combination with unfolding methods seems particularly promising.

Last but not least, star-topology decoupling can be viewed as a form of target-
profile factoring, that looks for a particular structural profile suited to specialized
combinatorial search algorithms. Beyond star profiles, this suggests an entirely
new way of exploiting structure in AI Planning:

Instead of relaxing the planning task into a (structurally defined) fragment to
obtain a heuristic function, try to factorize the task into the fragment to obtain a

plan.

This suggests a new direction for causal graph research, designing fragments
suited to specialized combinatorial search algorithms, as opposed to tractability
analysis. In the long term, this could lead to an entire portfolio of target profiles.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG), under grant HO 2169/6-1, “Star-Topology Decoupled State Space
Search”.

60

We thank Carmel Domshlak for his contribution in extending decoupled search
beyond fork topologies. We thank Álvaro Torralba for discussions, for his con-
tribution to dominance pruning methods, and for contributing the proof idea for
Lemma 8.

Appendix A. Proofs and Additional Examples

Appendix A.1. Factorings
Proposition 1. Let Π be a planning task. Then every strict-star factoring is a star
factoring, but not vice versa.

Proof: Assume that F is a strict-star factoring, and let a be an action where
V(eff(a)) ∩ FC = ∅. If there were two different leaf factors FL

1 6= FL
2 both

affected by a, then IGΠ(F) would contain the arc FL
1 → FL

2 , in contradiction.
So there exists a leaf factor FL

1 with V(eff(a)) ⊆ FL
1 . But then, V(pre(a)) ⊆

FL
1 ∪ FC , because again, otherwise, if a was also preconditioned on FL

2 6= FL
1 ,

IGΠ(F) would contain the arc FL
1 → FL

2 in contradiction.
Not every star factoring is a strict-star factoring because star factorings, but

not strict-star factorings, allow action effects to touch multiple leaf factors. For
example, if we add to the Scaling example an action that loads all objects, as
well as moves the truck, simultaneously, then the grouping FC = {t} and FL =
{{o1}, . . . , {on}} is a star factoring but not a strict-star factoring. �

Theorem 1 (Fork & Inverted-Fork Factorings). Let Π be a planning task. Then
fork and inverted-fork factorings exist if and only if |FSCC

Π | > 1. In that case, the
maximum number of fork leaves equals the number of leaf vertices in IGΠ(FSCC

Π),
and the maximum number of inverted-fork leaves equals the number of root ver-
tices in IGΠ(FSCC

Π).

Proof: Say Π has variables V . The “only if” direction in the first part of the claim
holds because any fork or inverted-fork factoring must be coarser than FSCC

Π . The
“if” direction follows from the second part of the claim.

We prove the second part of the claim for fork factorings; the argument for in-
verted forks is symmetric because those are equivalent to forks in the modification
of IGΠ(FSCC

Π) where the direction of each arc is inverted.
Denote by K the maximum number of fork leaves. Denote by K ′ the number

of leaves in IGΠ(FSCC
Π).

61

K ≥ K ′ holds simply because we obtain a fork factoring by setting the leaves
in IGΠ(FSCC

Π) to be the leaf factors, and taking the remaining state variables to
form the center.

K ≤ K ′ holds because any fork leaf must be closed under following arcs
in the causal graph, and hence every fork leaf must contain at least one leaf in
IGΠ(FSCC

Π). Precisely, let F be any fork factoring, and let FL be any leaf factor of
F . Let F, F ′ be factors in FSCC

Π such that F → F ′ is an arc in IGΠ(FSCC
Π). If F ⊆

FL, then we must have F ′ ⊆ FL: otherwise, either F ′ ⊆ FC in contradiction,
or F ′ ⊆ FL

2 for some other leaf factor FL
2 in contradiction. As F is coarser

than FSCC
Π , there exists at least one F where F ⊆ FL. Applying the argument

transitively starting from F , we obtain a leaf F ′′ in IGΠ(FSCC
Π) so that F ′′ ⊆ FL.

But then, as the leaf factors in F are disjoint, there cannot be more leaf factors
than leaves in IGΠ(FSCC

Π), concluding the argument. �

Appendix A.2. Additional Example Walkthroughs
Example 10. Consider the Vanilla example, with the inverted-fork factoringFC =
{o}, FL = {{tA}, {tB}}, where the object is in the center and each truck is a leaf.
In contrast to the fork factoring (Example 4), center actions now have precondi-
tions on leaves but not vice versa, and center states are object positions while
pricing functions pertain to truck positions.

For πC
0 = 〈〉 and the corresponding decoupled state s0, center[s0] = {o = l1}.

As the leaves now don’t have preconditions on the center, the pricing function cor-
responds to cheapest paths within each leaf component, starting from the current
leaf states {tA = l1} and {tB = l3}. Hence the prices are 0 for {tA = l1}, 1 for
{tA = l2}, 2 for {tA = l3}, 0 for {tB = l3}, 1 for {tB = l2}, and 2 for {tB = l1}.

The applicable center actions in s0 are load(tA, l1) and load(tB, l1): their
center preconditions are satisfied, and their leaf preconditions have finite prices,
prices[s0]({tA = l1}) = 0 < ∞ and prices[s0]({tB = l1}) = 2 < ∞. Say we
apply load(tB, l1). Denote the resulting center path and decoupled state by πC

1

and s1.
We have center[s1] = {o = tB}. The pricing function remains unchanged

regarding tA. However, the prices regarding tB change completely: the center
action we have chosen uses a leaf precondition on tB, namely tB = l1. This
commits that leaf to move to (any) one of its finite-price leaf states complying with
that leaf precondition. Here, there is just one such leaf state, {tB = l1}. In terms
of compliant paths, of the compliant paths with respect to πC

0 the ones supporting
{tB = l3} and {tB = l2} are not compliant anymore, because they don’t provide
the leaf precondition tB = l1. All cheapest πC

1 -compliant paths for tB start with

62

the prefix 〈move(tB, l3, l2), move(tB, l2, l1)〉, to be scheduled before load(tB, l1).
After that, they may append any cheapest sequence of tB moves to some other leaf
state, to be scheduled behind load(tB, l1). So the prices in s1 are 2 for {tB = l1},
3 for {tB = l2}, and 4 for {tB = l3}. Note that the prices have increased relative
to the previous decoupled state: while, in forks, prices decrease monotonically, in
inverted-forks they increase monotonically.

In s1, the applicable center actions are all unloads of the object from tB, at any
location. In particular, we can already reach a decoupled goal state, by applying
unload(tB, l3). In the outcome decoupled state s2, center[s2] = {o = l3} which is
a center goal state as desired; and tB is now committed to l2 which it must reach
by a compliant path, so its new price tags are 4 for {tB = l3}, 5 for {tB = l2}, and
6 for {tB = l1}. The global plan extracted is the one using tB, at cost 4 + 2 = 6.

Observe that the pricing functions here are extremely volatile. Every center
action commits some leaf to a unique leaf state, completely changing its pricing
function in the next state. This is typical of inverted-fork factorings. The reacha-
bility functions, on the other hand, remain constant throughout our example here,
and for any inverted fork with strongly connected leaf state spaces: from whatever
leaf state a leaf is committed to, all other leaf states are reachable so the prices
are always <∞.

Example 11. Consider the NoEmpty example, where truck moves have the ad-
ditional precondition o = t (no empty-truck moves). Say we use the strict-star
factoring FC = {tA, tB}, FL = {{o}}, which has bidirectional dependencies
(compare Figure 2 (b), page 11).

The initial decoupled state s0 is center[s0] = {tA = l1, tB = l3}, with prices
0 for {o = l0}, 1 for {o = tA},∞ elsewhere. Whereas in the Vanilla example we
could apply either of move(tA, l1, l2) or move(tB, l3, l2), now only the first choice
is possible because move(tB, l3, l2) has the leaf precondition o = tB whose price
is infinite. Applying move(tA, l1, l2) to obtain s1, we get center[s1] = {tA =
l2, tB = l3}. The price is 1 for {o = tA}, keeping its previous price because this
is the leaf state the center action choice committed o to. The price of {o = l1},
however, is now ∞. Through the commitment to {o = tA}, we lost the previous
price 0, and given the new center state there is no compliant path re-achieving
{o = l1}. For {o = l2} on the other hand, we now get price 2 due to the leaf path
〈load(tA, l1), unload(tA, l2)〉, which is now compliant thanks to the new center
precondition tA = l2 provided in s1. All other prices remain infinite.

Note how this combines fork behavior with inverted-fork behavior: the price
for {o = l2} has decreased while that for {o = l1} has increased. Due to the

63

now bidirectional dependency, the prices are neither monotonically decreasing
nor monotonically increasing.

Appendix A.3. Decoupled State Space Correctness
To capture decoupled-state reachability, we introduce an intermediate concept,

embedded states, exhibiting the link between member states and decoupled states.
Instead of an explicit leaf-state assignment, embedded states contain a link to the
respective compliant-path graph vertex:

Definition 12 (Embedded State). Let Π be a planning task, and F a star factor-
ing with center FC and leaves FL. For a decoupled state s in ΘFΠ , an embed-
ded state in s is a function p̂ on F , mapping FC to center[s], and mapping each
FL ∈ FL to a vertex sLn in CompGΠ[πC [s], FL] with prices[s](sL) < ∞, where
n := |πC [s]|. The set of all embedded states of s is the embedded hypercube of s,
denoted [ŝ].

The initial embedded state, Î , maps FC to center[IF] = I[FC] and, for each
FL ∈ FL, maps FL to the vertex I[FL]0 in CompGΠ[〈〉, FL].

Given a decoupled state s, as CompGΠ[πC [s], FL] contains exactly one vertex
sLn for every sL ∈ SL[FL], the member states and embedded states of s are in
one-to-one correspondence. Given a decoupled state s and member state p ∈ [s],
we denote the unique corresponding embedded state by p̂, and vice versa.

Intuitively, embedded states p̂ serve to “track the progress of the corresponding
states p through the decoupled state space”. We formalize this through a notion of
embedded transitions:

Definition 13 (Embedded Transitions). Let Π be a planning task, and F a star
factoring with center FC and leaves FL. Let s be a decoupled state in ΘFΠ , and
p̂ ∈ [ŝ] an embedded state. Then p̂ a−→ q̂ is an embedded transition

(i) on FL in ΘFΠ , if a ∈ AL[FL] \ AC , CompGΠ[πC [s], FL] contains an arc
p̂(FL)

a−→ q̂(FL), and for all FL 6= F ∈ F we have p̂(F) = q̂(F);

(ii) on FC in ΘFΠ , if a ∈ AC , s a−→ t is a transition in ΘFΠ , and for all FL ∈ FL

we have that CompGΠ[πC [t], FL] contains an arc p̂(FL)
0−→ q̂(FL).

We refer to paths of embedded transitions as embedded paths. The cost of an
embedded path π̂, denoted cost(π̂), is the summed-up cost of its transition labels.

64

Note here that, necessarily by the construction of q̂ and compliant path graphs,
q̂ ∈ [ŝ] in (i), and q̂ ∈ [t̂] in (ii). Decoupled-state reachability is captured in the
following form:

Lemma 6. Let Π be a planning task, and F a star factoring. Let SF be the
decoupled states in ΘFΠ . For any s ∈ SF , p̂ ∈ [ŝ], and q̂ reachable from p̂ in ΘFΠ ,
there exists t ∈ SF such that q̂ ∈ [t̂] and t is reachable from s in ΘFΠ . Vice versa,
for any s, t ∈ SF where t is reachable from s in ΘFΠ , and for any q̂ ∈ [t̂], there
exists p̂ ∈ [s] such that q̂ is reachable from p̂ in ΘFΠ .

Proof: For the first part of the claim, t and q̂ as specified must exist simply be-
cause the individual transitions on an embedded path from p̂ to q̂ all follow decou-
pled transitions (FC) respectively compliant-path graph arcs (FL) present in ΘFΠ .
For the second part of the claim, if πF is a decoupled path from s to t, then we
can backchain from q̂ through the compliant-path graphs along πF to obtain the
desired embedded state p̂ in s. �

Having clarified the basics of embedded states and how they capture reacha-
bility, let us get back to the link with member states. The core observation is that,
like the member states and embedded states themselves, their transitions also are
in one-to-one correspondence:

Lemma 7. Let Π be a planning task, and F a star factoring with center FC and
leaves FL. Let s be a decoupled state in ΘFΠ . Then, for any member state p ∈ [s]
and action a, p a−→ q is a transition in Π if and only if p̂ a−→ q̂ is an embedded
transition in ΘFΠ .

Proof: From left to right, say a is applicable to p and q = pJaK. We distinguish
two cases. First, a is a non-center action, a 6∈ AC . Then, as F is a star factoring, a
affects a single leaf factor FL, aL ∈ AL[FL]\AC . As a is applicable to p, we have
pre(a)[FC] = center[s][V(pre(a)) ∩ FC] and pre(a)[FL] = p[V(pre(a)) ∩ FL].
Therefore, by Definition 3 (i), the compliant path graph CompGΠ[πC [s], FL] layer
at time n corresponding to s contains the arc p[FL]n

a−→ q[FL]n, which establishes
the desired embedded transition.

Second, say a is a center action, a ∈ AC . As a is applicable to p, for every
FL ∈ FL where pre(a)[FL] 6= ∅, there exists a finite-price leaf state in s, namely
p[FL]. Hence there exists a transition s a−→ t in ΘFΠ . Furthermore, for each FL,
by Definition 3 (ii) the compliant path graph CompGΠ[πC [t], FL] contains the arc
p[FL]n

0−→ q[FL]n+1. Together, these establish the desired embedded transition.

65

From right to left, say p̂ a−→ q̂ is an embedded transition in ΘFΠ . Distinguishing
the same two cases, if aL ∈ AL[FL] \ AC then p̂ a−→ q̂ is an FL transition. By
Definition 13 (i), p̂ and q̂ differ only in terms of taking a single arc on FL, so p and
q differ only on FL. By Definition 3 (i), pre(a)[FC] = center[s][V(pre(a))∩FC],
pre(a)[FL] = p[V(pre(a)) ∩ FL], and p[FL]JaK = q[FL]. But this immediately
implies that a is applicable to p and q = pJaK, as desired.

Say finally that a ∈ AC so p̂
a−→ q̂ is an FC transition. By Definition 13

(ii), q̂ results from p̂ by updating the center state according to a, and taking the
arc p̂(FL)

0−→ q̂(FL) for every FL. By Definition 3 (ii) for every FL we have
pre(a)[FL] ⊆ p[V(pre(a)) ∩ FL] and p[FL]JaK = q[FL]. But then, again a is
applicable to p and q = pJaK, concluding the proof. �

We are now ready to prove the two core lemmas:

Lemma 2. Let Π be a planning task, and F a star factoring with center FC and
leaves FL. Let s be a reachable decoupled state in ΘFΠ . Then:

(i) [s] is exactly the set of states p for which there exists a path π, from I to p in
ΘΠ, whose center-action subsequence is πC [s].

(ii) For every p ∈ [s], the cost of a cheapest such path π is

cost(πC [s]) +
∑

FL∈FL

prices[s](p[FL])

Proof: To prove (i), say first that p ∈ [s]. Consider the corresponding embedded
state p̂. As all compliant path graph vertices in p̂ are reached at s, for every FL

there must exist a path π[FL] from I[FL]0 to p̂(FL) in CompGΠ[πC [s], FL]. From
the collection of these paths, along with πC [s], we obtain an embedded path π̂
from Î to p̂: simply interleave the embedded FC transitions induced by πC [s]
with the embedded FL transitions induced by the π[FL]. With Lemma 7, from π̂
we obtain a path π as desired.

Say now that π is a path in Π from I to some p, where the center action
subsequence of π is πC [s]. With Lemma 7, we obtain an embedded path π̂ from Î
to p̂. Collecting the FL transitions from π̂ for each FL, clearly we get paths π[FL]
from I[FL]0 to p̂(FL) in CompGΠ[πC [s], FL]. Therefore, p ∈ [s] as desired.

Claim (ii) now follows directly, because the above shows that, for every p ∈
[s], the paths π as specified are in one-to-one correspondence with πC [s] aug-
mented with the possible selections of CompGΠ[πC [s], FL] paths from I[FL]0 to

66

p[FL]n, where n := |πC [s]|. Thus, by the definition of pricing functions, the
cheapest such π has exactly the specified cost. �

Lemma 3. Let Π be a planning task, and F a star factoring with center FC and
leaves FL. Let p be a reachable state in Π, and let π be a path reaching p. Then
there exists a reachable decoupled state s in ΘFΠ so that p ∈ [s], and πC [s] is the
center action subsequence of π.

Proof: With Lemma 7, π corresponds to an embedded path π̂ from Î to p̂. By
Lemma 6, there exists a decoupled state s such that p̂ ∈ [ŝ], and s is reachable
from IF in ΘFΠ . Clearly, the decoupled transitions taken in reaching s, according
to the proof of Lemma 6, correspond exactly to the center action subsequence of
π. �

Appendix A.4. Decoupled State Space Size
In what follows, we consider N -vectors v ∈ RN over some subset R ⊆ R0+

of non-negative reals. For the special case of N = 1, we identify v with v[1].
We consider (possibly infinite) sequences ~v = v0, v1, v2, . . . of vectors. We define
the relation � over vectors by saying that v � v′ iff there exists a vector position
1 ≤ k ≤ N so that v[k] > v′[k]. We say that a vector sequence ~v is descend-
ing if, whenever v precedes v′ in the sequence, v � v′. We say that R has an
infinite descending N -sequence if there exists an infinite descending sequence of
N -vectors.

Theorem 5 (Finiteness under Dominance Pruning). Let Π be a planning task,
and F a star factoring. Under ancestor dominance pruning, ΘRF

Π is finite.

Proof: Consider the non-pruned paths πF in ΘRF
Π . Observe that such paths neces-

sarily are descending: some prices along πF must descend each time we encounter
the same center state, as otherwise the new state would be dominated by some pre-
vious state. We prove that there is no infinite descending path, i. e., every πF has
finite length. As every s ∈ SRF must be the endpoint of such a path, and as the
branching factor is finite, this proves the claim.

Assume to the contrary that there is an infinite descending path πF . As the
number of different center states is finite, there must exist a center state sC visited
infinitely often on πF . Denote by ~s = s0, s1, . . . the sub-sequence of decoupled
states along πF where center[si] = sC .

Collect, from each si, the vector pi of leaf state prices (using some arbitrary
order of leaf states to fix the ordering of vector positions). Denoting by N the

67

number of leaf states, ~p := p0, p1, . . . is a sequence ofN -vectors over R0+∪{∞}.
More precisely, ~p is a sequence of N -vectors over possible plan cost values, i. e.,
over R ∪ {∞} where R contains

∑n
i=1 c(ai) for any finite sequence 〈a1, . . . , an〉

of actions in Π.
Proposition 5 below shows that R has no infinite descending 1-sequence.

Lemma 8 below shows that, given this, R ∪ {∞} has no infinite descending N -
sequence for any N .

However, by construction, whenever p precedes p′ on ~p then there exists a
vector position k so that p[k] > p′[k]. That is, ~p is descending, in contradiction,
showing the claim. �

Proposition 5. Let Π be a planning task. Let R ⊆ R0+ be the set of numbers that
contains

∑n
i=1 c(ai) for any finite sequence 〈a1, . . . , an〉 of actions in Π. Then R

does not have an infinite descending 1-sequence.

Proof: Consider any sequence ~v = v0, v1, v2, . . . of 1-vectors over R. Then, in
particular, vi < v0 for all i > 0. But, for any C ∈ R0+, there is only a finite
number of values

∑n
i=1 c(ai) < C. This is because any non-0 cost action a can

occur at most bC/c(a)c times on 〈a1, . . . , an〉. �

Lemma 8. Let R ⊆ R be a set of numbers that has no infinite descending 1-
sequence. Let ~v be a descending sequence of N -vectors over R ∪ {∞}. Then ~v is
finite.

Proof: Let K ⊆ {1, . . . , N} be an arbitrary subset of vector positions. Denote
by ~v[K,∞] the subsequence of vectors v on ~v where v[k] 6= ∞ iff k ∈ K. In
words, consider the subsequence of vectors that fits the “∞-profile” given by K.
We show that ~v[K,∞] is finite, which proves the claim as there is only a finite
number of profiles.

Construct the vector sequence ~v[K,∞]|K by projecting each element of ~v[K,∞]
onto the position subset K. Then ~v[K,∞]|K is a sequence of vectors over R ∪
{∞}. By construction, as ~v[K,∞] is a descending sequence, and because the el-
ements of ~v[K,∞] all agree on the positions outside K, we have that ~v[K,∞]|K
is a descending sequence. It thus remains to show that every descending sequence
of finite vectors over R is finite. We prove this by induction over N .

The induction base case, N = 1, holds by prerequisite as R has no infinite
descending 1-sequence.

68

For the inductive case, assume that there is no infinite descending sequence of
N -position vectors over R. We show that there is no infinite descending sequence
of N + 1-position vectors over R.

Let ~w = w0, w1, w2, . . . be any descending sequence ofN+1-position vectors
over R. Denote w0 = (c1, . . . , cN+1), where each cj is a constant, i. e., cj ∈ R.

Let j ∈ {1, . . . , N + 1} be arbitrary. Denote Cj := {c′ ∈ R | c′ < cj}. Then
Cj is finite because otherwise we could sequence its elements into an infinite
descending 1-sequence over R. Let c′ ∈ Cj be arbitrary. Denote by ~w[j, c′] the
subsequence of vectors w on ~w where the j-th position has value c′. Obviously,
every wi for i > 0 must be contained in at least one ~w[j, c′]. We show that each
~w[j, c′] is finite. As there is a finite number of choices of j′ and c′, this proves the
claim.

Denote K := {1, . . . , N + 1} \ {j}. Construct the vector sequence ~w[j, c′]|K
by projecting each element of ~w[j, c′] onto the position subsetK. By construction,
as ~w[j, c′] is a descending sequence, and because the elements of ~w[j, c′] all agree
on the single position j that is outside K, we have that ~w[j, c′]|K is a descending
sequence. As ~w[j, c′]|K is a sequence of vectors with N positions, by induction
assumption, ~w[j, c′]|K is finite. Hence ~w[j, c′] is finite as desired, concluding the
argument. �

Lemma 4. Let Π be a planning task, F a star factoring, and s a decoupled state.
Then s is solvable if and only if at least one p ∈ [s] is solvable.

Proof: From left to right, say the decoupled goal state t is reachable from s in ΘFΠ .
Clearly, there exists a goal state q ∈ [t]. By Lemma 6, there exists an embedded
state p̂ ∈ [ŝ] such that q̂ is reachable from p̂ in ΘFΠ . By Lemma 7, q is reachable
from p in Π. Hence the state p is solvable as desired.

From right to left, say the goal state q is reachable from p in Π. By Lemma 7,
q̂ is reachable from p̂ in ΘFΠ . By Lemma 6, there exists a decoupled state t such
that q̂ ∈ [t̂] and t is reachable from s in ΘFΠ . As q is a goal state, t is a decoupled
goal state, as desired. �

Proposition 3. Given a planning task Π and a star factoring F , it is co-NP-
complete to decide whether reachable decoupled states t1, . . . , tn cover a reach-
able decoupled state s.

Proof: Membership follows directly from the results by Hoffmann and Kupfer-
schmid [65] for general hypercube covering problems.

69

Hardness follows by reduction from the complement of SAT, extending Hoff-
mann and Kupferschmid’s argument by a simple construction of Π and F . As-
sume a CNF formula φ with propositional variables P1, . . . , Pn and clauses C1,
. . . , Cm. The construction of Π includes state variables p1, . . . , pn, each with do-
main {u, 0, 1} where u is the initial value; there furthermore is a variable c with
domain {u, 0, 1, . . . ,m}. The goal does not matter for our purposes. The factoring
F has center {c} and leaves {{p1}, . . . , {pn}}.

The actions are as follows. For each clause Cj there is a center action aCj
which is applicable to the initial state, and which allows to generate a hypercube
corresponding to the truth-value assignments disallowed by cj . Specifically, we
set pre(aCj) = {c = u}, and eff(aCj) = {c = j}. Furthermore, we include leaf
actions aLl , one for each literal l ∈ Cj , with pre(aCl) = {c = j}, and eff(aCl) = {l}
where l is the opposite of l, i. e., pi = 1 if l = ¬Pi, and pi = 0 if l = Pi.
Finally, we include leaf actions aLij0 and aLij1 for each variable Pi that does not
occur in Cj , with pre(aLij0) = pre(aLij1) = {c = j}, eff(aLij0) = {pi = 0}, and
eff(aLij1) = {pi = 1}. Observe that, once aCj has been applied, the hypercube tj of
reached leaf states over the variables pi corresponds exactly to those assignments
over Pi which do not satisfy Cj .

We finally include a center action aC0 which is applicable to the initial state,
and allows to generate a hypercube corresponding to all truth-value assignments.
Specifically, we set pre(aC0) = {c = u}, and eff(aC0) = {c = 0}, and we include
leaf actions aLi00 and aLi01 for each 1 ≤ i ≤ n, with pre(aLi00) = pre(aLi01) =
{c = 0}, eff(aLi00) = {pi = 0}, and eff(aLi01) = {pi = 1}. Observe that, once
aC0 has been applied, the hypercube s of reached leaf states over the variables pi
corresponds exactly to the space of all assignments over Pi.

Consider the time point in search where search has explored each of the alter-
natives aC1 , . . . , a

C
m (applied each of these actions to the initial state separately),

and now explores the alternative aC0 . Then all-visited hypercube pruning checks
whether t1, . . . , tm cover s. The latter is the case iff φ is unsatisfiable. �

References

[1] D. Gnad, J. Hoffmann, Beating LM-cut with hmax (sometimes): Fork-
decoupled state space search, in: R. Brafman, C. Domshlak, P. Haslum,
S. Zilberstein (Eds.), Proceedings of the 25th International Conference on
Automated Planning and Scheduling (ICAPS’15), AAAI Press, 2015, pp.
88–96.

70

[2] D. Gnad, J. Hoffmann, C. Domshlak, From fork decoupling to star-
topology decoupling, in: L. Lelis, R. Stern (Eds.), Proceedings of the
8th Annual Symposium on Combinatorial Search (SOCS’15), AAAI Press,
2015, pp. 53–61.

[3] Á. Torralba, D. Gnad, P. Dubbert, J. Hoffmann, On state-dominance criteria
in fork-decoupled search, in: [115], 2016.

[4] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Prac-
tice, Morgan Kaufmann, 2004.

[5] G. Lamperti, M. Zanella, Diagnosis of Active Systems, Kluwer Academic
Publishers, 2003.

[6] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 2001.

[7] R. E. Korf, W. Zhang, Divide-and-conquer frontier search applied to opti-
mal sequence alignment, in: H. A. Kautz, B. Porter (Eds.), Proceedings of
the 17th National Conference of the American Association for Artificial In-
telligence (AAAI’00), AAAI Press, Austin, TX, USA, 2000, pp. 910–916.

[8] A. Valmari, Stubborn sets for reduced state space generation, in: Proceed-
ings of the 10th International Conference on Applications and Theory of
Petri Nets, 1989, pp. 491–515.

[9] P. Godefroid, P. Wolper, Using partial orders for the efficient verification
of deadlock freedom and safety properties, in: Proceedings of the 3rd
International Workshop on Computer Aided Verification (CAV’91), 1991,
pp. 332–342.

[10] A. Valmari, A stubborn attack on state explosion, Formal Methods in
System Design 1 (1992) 297–322.

[11] D. Peled, All from one, one for all: on model checking using represen-
tatives, in: Proceedings of the 5th International Conference on Computer
Aided Verification (CAV’93), 1993, pp. 409–423.

[12] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Sys-
tems – An Approach to the State-Explosion Problem, volume 1032 of Lec-
ture Notes in Computer Science, Springer, 1996.

71

[13] S. Edelkamp, S. Leue, A. Lluch-Lafuente, Partial-order reduction and trail
improvement in directed model checking, International Journal on Soft-
ware Tools for Technology Transfer 6 (2004) 277–301.

[14] R. Nissim, U. Apsel, R. I. Brafman, Tunneling and decomposition-based
state reduction for optimal planning, in: L. D. Raedt (Ed.), Proceedings
of the 20th European Conference on Artificial Intelligence (ECAI’12), IOS
Press, Montpellier, France, 2012, pp. 624–629.

[15] M. Wehrle, M. Helmert, Y. Alkhazraji, R. Mattmüller, The relative pruning
power of strong stubborn sets and expansion core, in: [116], 2013.

[16] M. Wehrle, M. Helmert, Efficient stubborn sets: Generalized algorithms
and selection strategies, in: S. Chien, M. Do, A. Fern, W. Ruml (Eds.),
Proceedings of the 24th International Conference on Automated Planning
and Scheduling (ICAPS’14), AAAI Press, 2014.

[17] P. Starke, Reachability analysis of petri nets using symmetries, Journal
of Mathematical Modelling and Simulation in Systems Analysis 8 (1991)
293–304.

[18] E. A. Emerson, A. P. Sistla, Symmetry and model-checking, Formal Meth-
ods in System Design 9 (1996) 105–131.

[19] M. Fox, D. Long, The detection and exploitation of symmetry in planning
problems, in: [117], 1999, pp. 956–961.

[20] N. Pochter, A. Zohar, J. S. Rosenschein, Exploiting problem symmetries in
state-based planners, in: [118], 2011.

[21] C. Domshlak, M. Katz, A. Shleyfman, Enhanced symmetry breaking in
cost-optimal planning as forward search, in: [119], 2012.

[22] K. L. McMillan, Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits, in: G. von Bochmann, D. K.
Probst (Eds.), Proceedings of the 4th International Workshop on Com-
puter Aided Verification (CAV’92), Lecture Notes in Computer Science,
Springer, 1992, pp. 164–177.

[23] J. Esparza, S. Römer, W. Vogler, An improvement of mcmillan’s unfolding
algorithm, Formal Methods in System Design 20 (2002) 285–310.

72

[24] S. L. Hickmott, J. Rintanen, S. Thiébaux, L. B. White, Planning via petri
net unfolding, in: [120], 2007, pp. 1904–1911.

[25] B. Bonet, P. Haslum, S. L. Hickmott, S. Thiébaux, Directed unfolding of
petri nets, Transactions on Petri Nets and Other Models of Concurrency 1
(2008) 172–198.

[26] J. Esparza, K. Heljanko, Unfoldings – A Partial-Order Approach to Model
Checking, Monographs in Theoretical Computer Science, Springer, 2008.

[27] P. Baldan, A. Bruni, A. Corradini, B. König, C. Rodrı́guez, S. Schwoon,
Efficient unfolding of contextual Petri nets, Theoretical Computer Science
449 (2012) 2–22.

[28] B. Bonet, P. Haslum, V. Khomenko, S. Thiébaux, W. Vogler, Recent ad-
vances in unfolding technique, Theoretical Computer Science 551 (2014)
84–101.

[29] E. D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artificial
Intelligence 5 (1974) 115–135.

[30] C. Knoblock, Automatically generating abstractions for planning, Artificial
Intelligence 68 (1994) 243–302.

[31] A. L. Lansky, L. Getoor, Scope and abstraction: Two criteria for local-
ized planning, in: S. Mellish (Ed.), Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI’95), Morgan Kaufmann,
Montreal, Canada, 1995, pp. 1612–1619.

[32] E. Amir, B. Engelhardt, Factored planning, in: G. Gottlob (Ed.), Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03), Morgan Kaufmann, Acapulco, Mexico, 2003, pp. 929–935.

[33] R. Brafman, C. Domshlak, Factored planning: How, when, and when not,
in: Y. Gil, R. J. Mooney (Eds.), Proceedings of the 21st National Con-
ference of the American Association for Artificial Intelligence (AAAI’06),
AAAI Press, Boston, Massachusetts, USA, 2006, pp. 809–814.

[34] E. Kelareva, O. Buffet, J. Huang, S. Thiébaux, Factored planning using
decomposition trees, in: [120], 2007, pp. 1942–1947.

73

[35] R. I. Brafman, C. Domshlak, From one to many: Planning for loosely
coupled multi-agent systems, in: [121], 2008, pp. 28–35.

[36] E. Fabre, L. Jezequel, P. Haslum, S. Thiébaux, Cost-optimal factored plan-
ning: Promises and pitfalls, in: R. I. Brafman, H. Geffner, J. Hoffmann,
H. A. Kautz (Eds.), Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), AAAI Press, 2010, pp.
65–72.

[37] R. Nissim, R. I. Brafman, C. Domshlak, A general, fully distributed
multi-agent planning algorithm, in: W. van der Hoek, G. A. Kaminka,
Y. Lespérance, M. Luck, S. Sen (Eds.), Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’10), IFAAMAS, 2010, pp. 1323–1330.

[38] M. Crosby, M. Rovatsos, R. P. A. Petrick, Automated agent decomposition
for classical planning, in: [116], 2013.

[39] R. Brafman, C. Domshlak, On the complexity of planning for agent teams
and its implications for single agent planning, Artificial Intelligence 198
(2013) 52–71.

[40] R. Nissim, R. Brafman, Distributed heuristic forward search for multi-
agent planning, Journal of Artificial Intelligence Research 51 (2014) 293–
332.

[41] D. Wang, B. C. Williams, tburton: A divide and conquer temporal planner,
in: [122], 2015, pp. 3409–3417.

[42] J. Hoffmann, P. Kissmann, Á. Torralba, “Distance”? Who Cares? Tai-
loring merge-and-shrink heuristics to detect unsolvability, in: T. Schaub
(Ed.), Proceedings of the 21st European Conference on Artificial Intelli-
gence (ECAI’14), IOS Press, Prague, Czech Republic, 2014.

[43] V. Khomenko, M. Koutny, Towards an efficient algorithm for unfolding
petri nets, in: Proceedings of the 12th International Conference on Concur-
rency Theory (CONCUR’01), 2001, pp. 366–380.

[44] C. Rodrı́guez, S. Schwoon, Cunf: A tool for unfolding and verifying petri
nets with read arcs, in: Proceedings of the 11th International Symposium

74

on Automated Technology for Verification and Analysis (ATVA’13), 2013,
pp. 492–495.

[45] L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown, Satzilla: Portfolio-based
algorithm selection for sat, Journal of Artificial Intelligence Research 32
(2008) 565–606.

[46] I. Cenamor, T. de la Rosa, F. Fernández, IBACOP and IBACOP2 planner,
in: IPC 2014 planner abstracts, 2014, pp. 35–38.

[47] J. Pearl, Heuristics, Morgan Kaufmann, 1984.

[48] D. V. McDermott, Using regression-match graphs to control search in plan-
ning, Artificial Intelligence 109 (1999) 111–159.

[49] B. Bonet, H. Geffner, Planning as heuristic search, Artificial Intelligence
129 (2001) 5–33.

[50] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation
through heuristic search, Journal of Artificial Intelligence Research 14
(2001) 253–302.

[51] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search
and temporal action graphs, Journal of Artificial Intelligence Research 20
(2003) 239–290.

[52] M. Helmert, The Fast Downward planning system, Journal of Artificial
Intelligence Research 26 (2006) 191–246.

[53] M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions:
What’s the difference anyway?, in: A. Gerevini, A. Howe, A. Cesta,
I. Refanidis (Eds.), Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), AAAI Press, 2009, pp.
162–169.

[54] S. Richter, M. Westphal, The LAMA planner: Guiding cost-based anytime
planning with landmarks, Journal of Artificial Intelligence Research 39
(2010) 127–177.

[55] C. Domshlak, J. Hoffmann, M. Katz, Red-black planning: A new system-
atic approach to partial delete relaxation, Artificial Intelligence 221 (2015)
73–114.

75

[56] C. Bäckström, B. Nebel, Complexity results for SAS+ planning, Compu-
tational Intelligence 11 (1995) 625–655.

[57] T. Bylander, The computational complexity of propositional STRIPS plan-
ning, Artificial Intelligence 69 (1994) 165–204.

[58] P. Jonsson, C. Bäckström, Incremental planning, in: European Workshop
on Planning, 1995.

[59] R. Brafman, C. Domshlak, Structure and complexity in planning with unary
operators, Journal of Artificial Intelligence Research 18 (2003) 315–349.

[60] M. Katz, C. Domshlak, Structural patterns heuristics via fork decomposi-
tion, in: [121], 2008, pp. 182–189.

[61] M. R. Garey, D. S. Johnson, Computers and Intractability—A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[62] M. R. Henzinger, T. A. Henzinger, P. W. Kopke, Computing simulations on
finite and infinite graphs, in: Proceedings of the 36th Annual Symposium
on Foundations of Computer Science (FOCS’95), IEEE Computer Society,
1995, pp. 453–462.

[63] D. Hall, A. Cohen, D. Burkett, D. Klein, Faster optimal planning with
partial-order pruning, in: [116], 2013.

[64] Á. Torralba, J. Hoffmann, Simulation-based admissible dominance prun-
ing, in: [123], 2015, pp. 1689–1695.

[65] J. Hoffmann, S. Kupferschmid, A covering problem for hypercubes, in:
L. P. Kaelbling (Ed.), Proceedings of the 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI’05), Morgan Kaufmann, Edinburgh,
UK, 2005, pp. 1523–1524.

[66] L. D. Moura, N. Bjørner, Z3: An efficient SMT solver, in: Proceedings
of the 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’08), 2008, pp. 337–340.

[67] S. Trüg, J. Hoffmann, B. Nebel, Applying automatic planning systems
to airport ground-traffic control — a feasibility study, in: S. Biundo,
T. Frühwirth, G. Palm (Eds.), KI-04: Advances in Artificial Intelligence,
Springer-Verlag, Ulm, Germany, 2004, pp. 183–197.

76

[68] J. Rintanen, Symmetry reduction for SAT representations of transition sys-
tems, in: E. Giunchiglia, N. Muscettola, D. Nau (Eds.), Proceedings of
the 13th International Conference on Automated Planning and Scheduling
(ICAPS’03), Morgan Kaufmann, Trento, Italy, 2003, pp. 32–41.

[69] R. E. Bryant, Graph-based algorithms for boolean function manipulation,
IEEE Transactions on Computers 35 (1986) 677–691.

[70] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
1993.

[71] S. Edelkamp, Taming numbers and durations in the model checking in-
tegrated planning system, Journal of Artificial Intelligence Research 20
(2003) 195–238.

[72] S. Edelkamp, P. Kissmann, On the complexity of BDDs for state space
search: A case study in connect four, in: [118], 2011.

[73] J. C. Culberson, J. Schaeffer, Pattern databases, Computational Intelligence
14 (1998) 318–334.

[74] S. Edelkamp, Planning with pattern databases, in: [124], 2001, pp. 13–24.

[75] A. Felner, R. Korf, S. Hanan, Additive pattern database heuristics, Journal
of Artificial Intelligence Research 22 (2004) 279–318.

[76] P. Haslum, A. Botea, M. Helmert, B. Bonet, S. Koenig, Domain-
independent construction of pattern database heuristics for cost-optimal
planning, in: A. Howe, R. C. Holte (Eds.), Proceedings of the 22nd Na-
tional Conference of the American Association for Artificial Intelligence
(AAAI’07), AAAI Press, Vancouver, BC, Canada, 2007, pp. 1007–1012.

[77] J. Seipp, M. Helmert, Counterexample-guided Cartesian abstraction refine-
ment, in: [116], 2013, pp. 347–351.

[78] M. Helmert, P. Haslum, J. Hoffmann, R. Nissim, Merge & shrink abstrac-
tion: A method for generating lower bounds in factored state spaces, Jour-
nal of the Association for Computing Machinery 61 (2014).

[79] F. Bacchus, Q. Yang, Downward refinement and the efficiency of hierar-
chical problem solving, Artificial Intelligence 71 (1994) 43–100.

77

[80] M. Helmert, Fast (diagonally) downward, in: IPC 2006 planner abstracts,
2006.

[81] P. Haslum, Reducing accidental complexity in planning problems, in:
[120], 2007, pp. 1898–1903.

[82] J. Tozicka, J. Jakubuv, M. Svatos, A. Komenda, Recursive polynomial
reductions for classical planning, in: A. Coles, A. Coles, S. Edelkamp,
D. Magazzeni, S. Sanner (Eds.), Proceedings of the 26th International Con-
ference on Automated Planning and Scheduling (ICAPS’16), AAAI Press,
2016, pp. 317–325.

[83] C. Domshlak, Y. Dinitz, Multi-agent offline coordination: Structure and
complexity, in: [124], 2001, pp. 34–43.

[84] M. Helmert, A planning heuristic based on causal graph analysis, in:
S. Koenig, S. Zilberstein, J. Koehler (Eds.), Proceedings of the 14th Inter-
national Conference on Automated Planning and Scheduling (ICAPS’04),
Morgan Kaufmann, Whistler, Canada, 2004, pp. 161–170.

[85] M. Katz, C. Domshlak, New islands of tractability of cost-optimal plan-
ning, Journal of Artificial Intelligence Research 32 (2008) 203–288.

[86] O. Giménez, A. Jonsson, The complexity of planning problems with simple
causal graphs, Journal of Artificial Intelligence Research 31 (2008) 319–
351.

[87] O. Giménez, A. Jonsson, Planning over chain causal graphs for variables
with domains of size 5 is NP-hard, Journal of Artificial Intelligence Re-
search 34 (2009) 675–706.

[88] O. Giménez, A. Jonsson, The influence of k-dependence on the complexity
of planning, Artificial Intelligence 177-179 (2012) 25–45.

[89] M. Katz, E. Keyder, Structural patterns beyond forks: Extending the com-
plexity boundaries of classical planning, in: J. Hoffmann, B. Selman
(Eds.), Proceedings of the 26th AAAI Conference on Artificial Intelligence
(AAAI’12), AAAI Press, Toronto, ON, Canada, 2012, pp. 1779–1785.

[90] M. Aghighi, P. Jonsson, S. Ståhlberg, Tractable cost-optimal planning over
restricted polytree causal graphs, in: [122], 2015, pp. 3225–3231.

78

[91] M. Kronegger, S. Ordyniak, A. Pfandler, Backdoors to planning, in: C. E.
Brodley, P. Stone (Eds.), Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI’14), AAAI Press, Austin, Texas, USA, 2014,
pp. 2300–2307.

[92] M. Kronegger, S. Ordyniak, A. Pfandler, Variable-deletion backdoors to
planning, in: [122], 2015, pp. 3305–3312.

[93] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic deter-
mination of minimum cost paths, IEEE Transactions on Systems Science
and Cybernetics 4 (1968) 100–107.

[94] P. Haslum, H. Geffner, Admissible heuristics for optimal planning,
in: S. Chien, R. Kambhampati, C. Knoblock (Eds.), Proceedings of the
5th International Conference on Artificial Intelligence Planning Systems
(AIPS’00), AAAI Press, Menlo Park, Breckenridge, CO, 2000, pp. 140–
149.

[95] J. Hoffmann, J. Porteous, L. Sebastia, Ordered landmarks in planning,
Journal of Artificial Intelligence Research 22 (2004) 215–278.

[96] H. Nakhost, J. Hoffmann, M. Müller, Resource-constrained planning: A
Monte Carlo random walk approach, in: [119], 2012, pp. 181–189.

[97] M. Helmert, Concise finite-domain representations for PDDL planning
tasks, Artificial Intelligence 173 (2009) 503–535.

[98] A. L. Blum, M. L. Furst, Fast planning through planning graph analysis,
Artificial Intelligence 90 (1997) 279–298.

[99] H. Kautz, B. Selman, Unifying SAT-based and graph-based planning, in:
[117], 1999, pp. 318–325.

[100] D. Long, M. Fox, The 3rd international planning competition: Results and
analysis, Journal of Artificial Intelligence Research 20 (2003) 1–59.

[101] Á. Torralba, C. Linares López, D. Borrajo, Abstraction heuristics for sym-
bolic bidirectional search, in: [115], 2016, pp. 3272–3278.

[102] M. Wehrle, M. Helmert, A. Shleyfman, M. Katz, Integrating partial order
reduction and symmetry elimination for cost-optimal classical planning, in:
[123], 2015.

79

[103] D. Gnad, M. Wehrle, J. Hoffmann, Decoupled strong stubborn sets, in:
[115], 2016, pp. 3110–3116.

[104] F. Hutter, H. H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: An auto-
matic algorithm configuration framework, Journal of Artificial Intelligence
Research 36 (2009) 267–306.

[105] C. Fawcett, M. Helmert, H. Hoos, E. Karpas, G. Röger, J. Seipp, FD-
Autotune: Automated configuration of Fast Downward, in: IPC 2011 plan-
ner abstracts, 2011, pp. 31–37.

[106] J. Seipp, F. Pommerening, S. Sievers, M. Wehrle, Fast downward aidos, in:
UIPC 2016 planner abstracts, 2016, pp. 28–38.

[107] Á. Torralba, Sympa: Symbolic perimeter abstractions for proving unsolv-
ability, in: UIPC 2016 planner abstracts, 2016, pp. 8–11.

[108] B. Jonsson, State-space exploration for concurrent algorithms under weak
memory orderings, SIGARCH Computer Architecture News 36 (2008)
65–71.

[109] A. Linden, P. Wolper, A verification-based approach to memory fence in-
sertion in PSO memory systems, in: N. Piterman, S. A. Smolka (Eds.), Pro-
ceedings of the 19th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’13), Springer-Verlag,
2013, pp. 339–353.

[110] O. Travkin, A. Mütze, H. Wehrheim, SPIN as a linearizability checker
under weak memory models, in: Proceedings of the 9th International Haifa
Verification Conference (HVC’13), 2013, pp. 311–326.

[111] Y. A. Alrahman, M. Andric, A. Beggiato, A. Lluch-Lafuente, Can we
efficiently check concurrent programs under relaxed memory models in
maude?, in: Revised Selected Papers of the 10th International Workshop
on Rewriting Logic and Its Applications (WRLA’14), 2014, pp. 21–41.

[112] D. Gnad, V. Poser, J. Hoffmann, Beyond forks: Finding and ranking star
factorings for decoupled search, in: C. Sierra (Ed.), Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI’17), AAAI
Press/IJCAI, 2017.

80

[113] D. Gnad, Á. Torralba, A. Shleyfman, J. Hoffmann, Symmetry breaking in
star-topology decoupled search, in: Proceedings of the 27th International
Conference on Automated Planning and Scheduling (ICAPS’17), AAAI
Press, 2017.

[114] D. Gnad, Á. Torralba, J. Hoffmann, Symbolic leaf representation in de-
coupled search, in: A. Fukunaga, A. Kishimoto (Eds.), Proceedings of
the 10th Annual Symposium on Combinatorial Search (SOCS’17), AAAI
Press, 2017.

[115] S. Kambhampati (Ed.), Proceedings of the 25th International Joint Confer-
ence on Artificial Intelligence (IJCAI’16), AAAI Press/IJCAI, 2016.

[116] D. Borrajo, S. Fratini, S. Kambhampati, A. Oddi (Eds.), Proceedings of
the 23rd International Conference on Automated Planning and Scheduling
(ICAPS’13), AAAI Press, Rome, Italy, 2013.

[117] M. Pollack (Ed.), Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI’99), Morgan Kaufmann, Stockholm, Sweden,
1999.

[118] W. Burgard, D. Roth (Eds.), Proceedings of the 25th National Conference
of the American Association for Artificial Intelligence (AAAI’11), AAAI
Press, San Francisco, CA, USA, 2011.

[119] B. Bonet, L. McCluskey, J. R. Silva, B. Williams (Eds.), Proceedings of
the 22nd International Conference on Automated Planning and Scheduling
(ICAPS’12), AAAI Press, 2012.

[120] M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), Morgan Kaufmann, Hyderabad, India,
2007.

[121] J. Rintanen, B. Nebel, J. C. Beck, E. Hansen (Eds.), Proceedings of the
18th International Conference on Automated Planning and Scheduling
(ICAPS’08), AAAI Press, 2008.

[122] B. Bonet, S. Koenig (Eds.), Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI’15), AAAI Press, 2015.

81

[123] Q. Yang (Ed.), Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15), AAAI Press/IJCAI, 2015.

[124] A. Cesta, D. Borrajo (Eds.), Proceedings of the 6th European Conference
on Planning (ECP’01), Springer-Verlag, 2001.

82

	Introduction
	Star-Topology Decoupling
	Experiments Preview
	Properties

	Background
	Star-Topology Factorings
	Concepts
	The Space of Strict-Star Factorings

	The Decoupled State Space
	Concepts and Notations
	Example Walkthroughs
	Specifying the Transition System
	Correctness

	Decoupled State Space Size and Pruning
	Finiteness and Dominance Pruning
	Size Blow-Up and Hypercube Pruning

	Related Techniques and Exponential Separations
	Partial-Order Reduction
	Petri Net Unfolding
	Factored Planning
	Other Methods

	Heuristic Search
	Heuristic Functions
	Heuristic Search Algorithms

	Experiments
	Implementation & Experiments Setup
	State Space Size
	Optimal Planning
	Satisficing Planning
	Proving Unsolvability

	Conclusion
	Proofs and Additional Examples
	Factorings
	Additional Example Walkthroughs
	Decoupled State Space Correctness
	Decoupled State Space Size

