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Abstract

Saarland is the smallest – yet arguably one of the most beau-
tiful – state in Germany. And it has a lot to offer! From
rich nature, over its industrial heritage, really smart people,
to powerful planning techniques. SaarPlan combines the best
of these planning techniques to a performant portfolio, mak-
ing it the best planner in Saarland.

Introduction
Among many other things, Saarland offers a wide range of
powerful planning techniques. SaarPlan combines the best
of these techniques into a portfolio planner. Since in Saar-
land we don’t care too much about optimality, but rather
about getting things done, SaarPlan participates in the sat-
isficing, agile, and bounded-cost tracks of the competition.

Some of the ingredients of SaarPlan are also used in Dec-
Star (Gnad, Shleyfman, and Hoffmann 2018), and the OL-
CFF planner (Fickert and Hoffmann 2018). From DecStar,
SaarPlan takes the Star-topology decoupled search part, try-
ing to decompose a given planning task, if possible. In
case a good problem decomposition was detected, decou-
pled search typically performs very well. Finding a decom-
position is fast, it succeeds (or fails) quickly, so not much
time is lost in the latter case. If it fails, SaarPlan tries its
best with Grey planning, an enhancement of the red-black
planning method used by the Mercury planner (Katz and
Hoffmann 2014). The grey planning component of Saar-
Plan only considers the initial state, generates a semi-delete-
relaxed plan and attempts to repair it into a real plan. Again,
this process terminates quickly. If these two techniques do
not manage to solve the planning task, SaarPlan uses an-
other semi-delete relaxation method, the online-refined hCFF

heuristic. It uses different search methods with this heuris-
tic: an enforced hill-climbing with additional novelty prun-
ing, which is followed by a greedy best-first search (GBFS)
using the hCFF heuristic, without pruning. The GBFS part,
which is very LAMA-like (Richter and Westphal 2010) – re-
placing the fully delete-relaxed heuristic with hCFF – com-
pletes SaarPlan, making it Saarland’s best planner.

Big things always start in the small, (“Großes entsteht im-
mer im Kleinen!”) as we say in Saarland. Does this also
hold for planning? Do great planners come from the small
Saarland? The competition will answer this question.

Decoupled Search
We perform decoupled search like introduced by Gnad and
Hoffmann (2018), in its integration in the Fast Downward
planning system (Helmert 2006). We use the improved
fork and inverted-fork, as well as the incident-arcs factor-
ing methods from Gnad, Poser, and Hoffmann (2017). The
outcome of the factoring process is a partitioning F of the
variables of the planning task Π, such that |F| > 1 and
there exists FC ∈ F such that, for every action a where
V(eff(a))∩FC = ∅, there exists F ∈ F with V(eff(a)) ⊆ F
and V(pre(a)) ⊆ F ∪ FC . We then call F a star factoring,
with center factor FC and leaf factors FL := F \ {FC}.

Given a factoring F , decoupled search is performed as
follows: The search will only branch over center actions,
i. e., those actions affecting (with an effect on) a variable in
FC . Along such a path of center actions πC , for each leaf
factor FL, the search maintains a set of leaf paths, i. e., ac-
tions only affecting variables of FL, that comply with πC .
Intuitively, for a leaf path πL to comply with a center path
πC , it must be possible to embed πL into πC into an overall
action sequence π, such that π is a valid path in the projec-
tion of the planning task Π onto FC ∪ FL. A decoupled
state corresponds to an end state of such a center action se-
quence. The main advantage over standard search originates
from a decoupled state being able to represent exponentially
many explicit states, avoiding their enumeration. A decou-
pled state can “contain” many explicit states, because by in-
stantiating the center with a center action sequence, the leaf
factors are conditionally independent. Thus, the more leaves
in the factoring, the more explicit states can potentially be
represented by a single decoupled state.

We will next describe a couple of extensions that have
been developed for decoupled search and that we use in
some of our configurations.



Symmetry Breaking in Decoupled Search
Symmetry Breaking has a long tradition in planning and
many other sub-areas of computer science (Starke 1991;
Emerson and Sistla 1996; Fox and Long 1999; Rintanen
2003; Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2012). We use an extension to decou-
pled search, introduced by Gnad et al. (2017), which is build
on orbit search (Domshlak, Katz, and Shleyfman 2015;
Wehrle et al. 2015). An orbit is a set of states all of which are
symmetric to each other. In the search, each state is mapped
to a canonical representative of its orbit. In case another
state from the same orbit has already been generated, a new
state can safely be pruned. Decoupled orbit search extends
this concept to decoupled states.

Decoupled Dominance Pruning
Another extension that has recently been introduced is domi-
nance pruning (Torralba et al. 2016), where decoupled states
that are dominated by other – already generated – states
can be safely discarded. We only deploy a very lightweight
pruning method, namely frontier pruning. The standard way
of performing duplicate checking in decoupled search can
already detect certain forms of dominance, in particular if
two decoupled states have the same center state and all leaf
states reachable in one state are also reachable in the other.
Frontier pruning improves this by only comparing a subset
of the reached leaf states, those that can possibly make so
far unreached leaf states available. It has originally been de-
veloped for optimal planning, but can be easily adapted to
become more efficient, when optimal solutions do not mat-
ter, by replacing the real cost of reaching a leaf state by 0, if
a state has been reached at any cost.

Additionally, we also employ a leaf simulation, originally
proposed by Torralba and Kissmann (2015), to remove irrel-
evant leaf states and leaf actions. In some domains, this can
tremendously reduce the size of the leaf state spaces.

The techniques described in this sub-section are only ap-
plicable if F is a fork factoring.

Implementation
Decoupled Search has been implemented as an extension
of Fast Downward (FD) (Helmert 2006). The implemen-
tation does not support conditional effects. By changing
the low-level state representation, many of FD’s built-in
algorithms and functionality can be used with only minor
adaptations. Of particular interest for SaarPlan are greedy
best-first search (GBFS) and the hFF heuristic (Hoffmann
and Nebel 2001). Search algorithms and heuristics can be
adapted to decoupled search using a compilation defined
by Gnad and Hoffmann (2018). We will use the follow-
ing notation to describe our techniques: the decoupled vari-
ant of search algorithm X is denoted DX. We denote fork
(inverted-fork) factorings by F (IF), and factorings gener-
ated using the incident-arcs algorithm by IA. To combine
the power of the factoring strategies, we use a portfolio
approach that runs multiple strategies and picks the one
with the maximum number of leaf factors. Further more,
we restrict the size for the per-leaf domain-size product to

ensure that the leaf state spaces are reasonably small and
do not incur a prohibitive runtime overhead when gener-
ating new decoupled states. We denote this size limit by
|FL

max| := maxFL∈FL Πv∈FL |D(v)|, where D(v) denotes
the domain of variable v. If a fork factoring is detected, we
sometimes perform frontier dominance pruning, denoted FP
and reduce the size of the leaf state spaces removing irrele-
vant transitions and states (IP). (Decoupled) orbit search is
abbreviated (D)OSS.

Grey Planning
In the spirit of partial delete-relaxation methods, like red-
black planning, which has been used in the Mercury planner
(Katz and Hoffmann 2014), SaarPlan employs an extension
thereof, grey planning (Speicher et al. 2017). In this paper,
we only give a brief summary of grey planning and refer the
reader to Speicher et al. (2017) for full details.

Partial delete-relaxation methods interpolate between
delete-relaxed planning and real planning (Keyder, Hoff-
mann, and Haslum 2012; 2014; Katz, Hoffmann, and
Domshlak 2013; Domshlak, Hoffmann, and Katz 2015).
Red-black planning applies the delete-relaxed semantics to a
subset of state variables (the “red” ones), letting them accu-
mulate their values, while keeping the real semantics for the
others (the “black” ones). It is tractable if the dependencies
between black variables are acyclic, and each black variable
is invertible. The heuristic function based on that tractable
fragment, hRB, was a key part of Mercury.

Distinctions at the level of entire state variables, however,
are very coarse-grained: either we remember all past val-
ues of a variable (red), or only the most recent one (black).
Grey planning uses limited-memory state variables, instead,
that allow more fine-grained relaxations through remember-
ing a subset of their most recent values. So it partially re-
laxes within state variables, remembering only a subset of
the most recent values, as needed for tractability. Limited
memory can be used to substantially extend the abovemen-
tioned tractable fragment. In hRB, non-invertible variables
cannot be painted black, because they may not be able to
go back to a previous value when required. In grey plan-
ning, the idea is to give these variables “just enough” mem-
ory to ensure this property, instead of fully delete-relaxing
them. The resulting heuristic function, hGray, has proven to
improve over hRB in many domains.

Implementation
As our other methods, hGray is implemented in Fast Down-
ward (Helmert 2006), adopting Domshlak et al.’s stop search
technique, which tests whether the relaxed plan is actually a
real plan, and if so, stops the search. In fact, we never run an
actual search with hGray, but only use the stop search mecha-
nism. If it succeeds in the initial state, we are done. Else, we
stop the run and proceed with the next component. We also
adopted the painting strategy of Domshlak, Hoffmann, and
Katz (2015), which has been used in the Mercury planner
(Katz and Hoffmann 2014). The main advantage of hGray

over the red-black heuristic of Mercury lies in the additional
stop-search prowess, thus adding another increment to that



same main advantage of hRB over hFF. The abbreviation of
our grey-planning “no-search” approach is GREY. Condi-
tional effects are not supported.

Partial Delete Relaxation with hCFF

Like grey planning, the hCFF heuristic is an approach to par-
tial delete relaxation. The partially relaxed plans must re-
spect a given set of conjunctions C, which represent combi-
nations of facts that must be achieved simultaneously (Hoff-
mann and Fickert 2015; Fickert, Hoffmann, and Steinmetz
2016). Whenever a conjunction is a subset of the precon-
ditions of an action, the conjunction of these facts must be
achieved instead of the facts individually.

Consider the task illustrated below. The car has to move
from A to C. The car can only hold one unit of fuel, which
each drive action consumes, but can be refueled at any loca-
tion. Formally, there are STRIPS facts at(x) for the position
of the car and fuel to indicate if the car has fuel. Initially the
car is at location A and holds fuel.

A B C

A fully delete relaxed plan can ignore the fuel consump-
tion and just apply the drive actions from A to B and B to
C immediately after each other. The critical conjunction of
facts that is ignored here is that the car must be at B while
holding fuel before the second drive action can be executed.
This conjunction can not be achieved by any of the drive ac-
tions as they consume the fuel fact. A partially relaxed plan
generated by the hCFF heuristic respecting this conjunction
would have to add the refuel action before driving from B to
C, making the relaxed plan a real plan. In fact, with a suf-
ficiently large set of conjunctions C, all plans generated by
hCFF are real plans.

Refinement-HC with Novelty Pruning
The hCFF heuristic works best when the conjunctions are
generated online, in particular in Refinement-HC (RHC)
(Fickert and Hoffmann 2017a), which is an extension of
enforced hill-climbing (EHC) (Hoffmann and Nebel 2001).
Like standard EHC, the algorithm progresses through itera-
tions of breadth-first search (BrFS) until a state s with lower
heuristic value is found, then search continues from there.
In RHC, these explorations are bounded by a fixed depth. If
a state s with lower heuristic value can not be found within
that bound, the heuristic is refined and the BrFS phase is
restarted. Thus, RHC escapes local minima through heuris-
tic refinement instead of brute-force search. A second exten-
sion to standard EHC are restarts from the initial state (with-
out resetting the heuristic) whenever the search is stuck in
a dead end. Due to the convergence of the partially relaxed
plans generated by hCFF to real plans, RHC is complete.

In SaarPlan, we use an extension of Refinement-HC
where the refinement criterion is based on novelty pruning
instead of a simple depth bound (Fickert 2018). Instead
of using BrFS with bounded depth in the local exploration
phase, we perform exhaustive BrFS with incomplete novelty

pruning, similar to a single iteration IW(k) of iterated width
search (Lipovetzky and Geffner 2012). In our setting, a state
passes the novelty test if it contains at least one novel con-
junction c ∈ C, otherwise it is pruned. This corresponds
to IW(1), but uses the conjunctions of hCFF instead of the
individual facts. The novelty pruning is only applied in the
BrFS phase, and thus only considers the states in the current
BrFS exploration for pruning, not across the overall search.

GBFS and Weighted A∗

Refinement-HC can not always overcome the limitations of
local search. For example in Sokoban, the presence of deep
dead ends has proven difficult, and global search algorithms
like GBFS are much more suitable here.

Given these drawbacks, we place a time limit on
Refinement-HC, as well as a growth bound on the num-
ber of conjunctions for the hCFF heuristic and run GBFS
after Refinement-HC terminates. The growth bound on
hCFF is motivated by the observation that in domains where
Refinement-HC works well, the set of conjunctions typically
does not grow excessively large.

The GBFS phase uses a dual-queue of hCFF and a
landmarks-count heuristic (Porteous, Sebastia, and Hoff-
mann 2001; Richter, Helmert, and Westphal 2008). This
makes it is very similar to LAMA (Richter and Westphal
2010), using hCFF instead of hFF. The set of conjunctions
for the hCFF heuristic is reset to a fixed size bound be-
fore starting the GBFS phase. During search, the heuristic
periodically replaces old conjunctions by newly generated
ones, which allows it to adapt itself to the part of the search
space that is currently being explored (Fickert and Hoffmann
2017b). Again, similar to LAMA, when GBFS finds a so-
lution, search continues with an anytime phase of weighted
A∗ with incrementally lower weights. We cache heuristic
values across the GBFS and weighted A∗ iterations to re-
duce overhead.

Implementation
Unsurprisingly, hCFF and the related techniques are also im-
plemented on top of FD (Helmert 2006). Similar to the stop
search technique used in our grey planning component, here
we stop search whenever no conflict could be found in the
refinement process, which implies that the partially relaxed
plan is also a real plan.

SaarPlan Configurations
SaarPlan combines the described techniques into a sequen-
tial portfolio. In addition to the standard FD preprocessor,
we perform a relevance analysis based on h2 to simplify
the planning task prior to the search (Alcázar and Torralba
2015). The mutexes found in this process are also used by
the hCFF heuristic to reduce its computational overhead.

This section describes configuration details for the indi-
vidual tracks. We use the following abbreviations:

• PO: dual-queue for preferred operators.

• HA: helpful actions pruning.

• N: novelty pruning.



In all tracks, we start by ignoring the action costs. Costs
are ignored altogether in the agile track, and only re-
introduced in the bounded-cost track if no plan below the
cost bound could be found. In the satisficing track, we re-
introduce the real costs upon finding the first plan.

In the following sub-sections, we detail the configurations
employed in each competition track. We provide the search
configurations, as well as the time each of the components
is allotted (in seconds).

Satisficing Track

The portfolio configuration for the satisficing track is shown
in Figure 1. By default, all configurations ignore action
costs, but reintroduce them after finding the first plan.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 100s
(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 600s

GREY - - hGray - 1100s*
RHC - - hCFF HA,N 1100s*
GBFS - - hLM,hCFF PO 1100s*
WA∗ - - hLM,hCFF PO 1100s*

Figure 1: Portfolio configuration in the satisficing track.
Components are launched top to bottom. Components
whose timeout is marked with * share their timeout. The
RHC component also has an individual timeout of 500s.

Saarplan starts with two decoupled search configurations.
The first one runs decoupled search with a fork factoring,
since these typically perform better, in particular when com-
bined with the strong leaf pruning methods (FP,IP). The sec-
ond component tries all factoring strategies, and additionally
enables decoupled orbit search (DOSS). If none of the fac-
toring strategies succeeds, the component falls back to stan-
dard search using the same options (indicated by the “D” in
parantheses). Both components use the hFF heuristic with
preferred operators in a dual-queue.

After the decoupled search components, we first attempt
to find a grey plan for the initial state and check if it is a real
plan. Then, we run the components of the OLCFF planner
(Fickert and Hoffmann 2018), starting with Refinement-HC
with novelty pruning. The final phase is a LAMA-like any-
time search with GBFS and weighted A∗ using incremen-
tally lower weights, where the main difference to LAMA is
the use of hCFF instead of hFF.

Agile Track

The portfolio configuration for the agile track is shown in
Figure 2. All configurations ignore action costs.

In the agile track, we use a similar configuration to the
satisficing track with only small differences. The second de-
coupled search configuration is moved to the end, and we
don’t need the weighted A∗ phase. Since the time limit is
much lower in the agile track, the time limits of the individ-
ual components are reduced accordingly.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 30s
GREY - - hGray - 170s*
RHC - - hCFF HA,N 170s*
GBFS - - hLM,hCFF PO 170s*

(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 100s

Figure 2: Portfolio configuration in the agile track. Compo-
nents are launched top to bottom. Components whose time-
out is marked with * share their timeout. The RHC compo-
nent also has an individual timeout of 100s.

Bounded-Cost Track
The portfolio configuration for the bounded-cost track is
shown in Figure 2. All components use normal action costs,
except the first two which use unit action costs and only
check if the cost-bound is satisfied upon finding a solution.

Search Factoring |FL
max| Heuristic Pruning Runtime

DGBFS F 1M hFF FP,IP,PO 100s
(D)GBFS F/IF/IA 1/1/0.1M hFF (D)OSS,PO 600s

GREY - - hGray - 800s*
RHC - - hCFF HA,N 800s*
GBFS - - hLM,hCFF PO 800s*

(D)WA∗ F/IF/IA 10/10/1M hLM,hFF (D)OSS,PO 300s

Figure 3: Portfolio configuration in the cost-bounded track.
Components are launched top to bottom. Components
whose timeout is marked with * share their timeout. The
RHC component also has an individual timeout of 400s.

Again, we use a similar configuration to the satisficing
track. We replaced the anytime phase with a (decoupled)
weighted A∗ with w = 3, using hLM and hFF and a dual-
queue for preferred operators.

Conclusion
SaarPlan combines a set of powerful planning techniques
into a sequential portfolio. This portfolio is designed in a
way that quick-to-terminate methods, like star-topology de-
coupled search or grey planning’s stop-search, are applied
first, to find a plan as fast as possible. More search-heavy
algorithms like the online-refining hCFF heuristic are exe-
cuted later, in case the other methods fail. We augment our
techniques with recently introduced extensions like novelty
pruning, and symmetry breaking in decoupled search, to fur-
ther spread the range of techniques.
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