
Beyond Red-Black Planning: Limited-Memory State Variables

Patrick Speicher Marcel Steinmetz Daniel Gnad Jörg Hoffmann
Saarland Informatics Campus, Saarland University

Saarbrücken, Germany
speicher@uni-saarland.de;{steinmetz,gnad,hoffmann}@cs.uni-saarland.de

Alfonso Gerevini
University of Brescia

Brescia, Italy
gerevini@ing.unibs.it

Abstract

Red-black planning delete-relaxes only some of the state vari-
ables. This is coarse-grained in that, for each variable, it ei-
ther remembers all past values (red), or remembers only the
most recent one (black). We herein introduce limited-memory
state variables, that remember a subset of their most recent
values. It turns out that planning is still PSPACE-complete
even when the memory is large enough to store all but a single
value. Nevertheless, limited memory can be used to substan-
tially broaden a known tractable fragment of red-black plan-
ning, yielding better heuristic functions in some domains.

Introduction
The delete relaxation has been instrumental for scalability
in satisficing classical planning (e. g., (Bonet and Geffner
2001; Hoffmann and Nebel 2001; Gerevini, Saetti, and Se-
rina 2003; Richter and Westphal 2010)), but it also has
weaknesses. Partial delete relaxation methods interpolate
between delete-relaxed planning and real planning (Key-
der, Hoffmann, and Haslum 2012; 2014; Katz, Hoffmann,
and Domshlak 2013; Domshlak, Hoffmann, and Katz 2015).
We herein focus on red-black planning, which applies the
delete-relaxed semantics to a subset of state variables (the
“red” ones), letting them accumulate their values, while
keeping the real semantics for the others (the “black” ones).
Red-black planning is tractable if the dependencies between
black variables are acyclic, and each black variable is invert-
ible. The heuristic function based on that tractable fragment,
hRB, can be quite useful; it was a key part of the Mercury
system that performed well in IPC’14.

Yet distinctions at the level of entire state variables are
very coarse-grained: either we remember all past values
of a variable (red), or only the most recent one (black).
We herein introduce limited-memory state variables, that al-
low more fine-grained relaxations through remembering a
subset of their most recent values. As we show, planning
is still PSPACE-complete even when the memory is large
enough to store all but a single value. Nevertheless, limited
memory can be used to substantially extend the abovemen-
tioned tractable fragment. In hRB, non-invertible v cannot
be painted black, because v may not be able to go back to a
previous value when required. Our idea is, instead of fully
delete-relax such v, to give v “just enough” memory to en-
sure this property. The resulting heuristic function proves to

be superior in some domains.

Preliminaries
We use the finite-domain representation (FDR) framework.
We introduce FDR and its delete relaxation as special cases
of red-black planning. A red-black (RB) planning task is a
tuple Π = 〈V B , V R, A, I,G〉. V B is a set of black vari-
ables and V R is a set of red variables, where V B ∩V R = ∅
and each v ∈ V := V B ∪ V R has a finite domain D[v]. The
initial state I is a complete assignment to V , the goal G is
a partial assignment. Each action a is a pair 〈prea, eff a〉 of
partial assignments called precondition and effect. For a par-
tial assignment p, V (p) denotes the subset of V instantiated
by p. For V ′ ⊆ V (p), p[V ′] denotes the value of V ′ in p.

A state s assigns each v ∈ V a non-empty subset s[v] ⊆
D[v], where |s[v]| = 1 for all v ∈ V B . An action a is
applicable in s if prea[v] ∈ s[v] for all v ∈ V (prea). Ap-
plying a in s changes the value of v ∈ V (eff a) ∩ V B to
{eff a[v]}, and changes the value of v ∈ V (eff a) ∩ V R to
s[v]∪{eff a[v]}. The resulting state is denoted sJaK. A plan
is an action sequence whose iterative application in I leads
to a state s where G[v] ∈ s[v] for all v ∈ V (G).

Π is an FDR planning task if V = V B , and is a mono-
tonic (MFDR) planning task if V = V R. The delete relax-
ation uses MFDR to approximate FDR; red-black relaxation
uses the more general RB instead. The state-of-the-art red-
black heuristic, hRB, does so via choosing a variable paint-
ing – a partitioning of V into V B and V R – such that the
causal graph over V B is acyclic, and each v ∈ V B is re-
laxed side effects invertible. We will explain these notions
later on when considering our extended heuristic function.

Limited-Memory State Variables
Our notion of limited-memory variables is an instance of
what we baptize trace-memory relaxation. In its most gen-
eral form, such a relaxation R is defined through a function
R[v] : D[v]+ 7→ 2D[v] for each variable v: For a given value
history δ ∈ D[v]+ (v’s value sequence on the current plan
prefix), R[v](δ) is the value subset that v will “remember”
under R. We apply the following two restrictions to R[v]:
(1) For all v ∈ V and δ = d1, . . . , dn ∈ D[v]+, R[v](δ) ⊆
{d1, . . . , dn}, (2) the “latest” value dn is in R[v](δ). Given
the state history I = s0, a1, . . . , am−1, sm−1 = s, we de-

fine sJamK[v] := R[v](d1, . . . , dn) where d1, . . . , dn denote
v’s value changes on this path. An R-relaxed plan is a plan
under these semantics.

The delete relaxation uses R[v](d1, . . . , dn) := {d1, . . . ,
dn}. Red-black relaxation uses the same for v ∈ V R, and
uses R[v](d1, . . . , dn) := {dn} for v ∈ V B . Our new li-
mited-memory relaxation is parameterized by a memory size
M [v], 1 ≤M [v] ≤ |D[v]|, for every v ∈ V . It usesR[v](d1,
. . . , dn) := {dk, . . . , dn}, where k = 1 if |{d1, . . . , dn}| ≤
M [v], and otherwise k is s.t. |{dk, . . . , dn}| = M [v]. In
words, each variable remembers as many of its recent values
as fit into memory. Observe that v ∈ V R is characterized by
M [v] = |D[v]|, and v ∈ V B is characterized by M [v] = 1.

The space of trace-memory relaxations is a refinement
hierarchy, where R refines R′ if, for every v ∈ V and
δ ∈ D[v]+, we have R[v](δ) ⊆ R′[v](δ). If R refines R′,
thenR is more informed thanR′: AnyR-relaxed plan is an
R′-relaxed plan, but not vice versa (unless R = R′). The
unique coarsest element in the refinement hierarchy is the
delete relaxation, R+, as every R refines R+. The unique
most refined element is the standard FDR semantics,R∗, as
R∗ refines everyR′. A limited-memory relaxationR refines
a red-black relaxation iff M [v] = 1 for all v ∈ V B .

Worst-Case Complexity
We consider the complexity ofR-relaxed plan existence for
limited-memory relaxationsR. Observe first thatR-relaxed
plan existence remains a member of PSPACE, thanks to
a similar non-deterministic polynomial space algorithm as
given forR∗ by Bylander (1994) (it suffices to remember the
most recent M [v] values for each v). Observe further that,
likewise easily, R-relaxed plan existence in full generality
remains PSPACE-hard, simply as it includes the case where
R = R∗ and we do not actually relax anything. That case
is, of course, not interesting, so we will exclude it. Observe
finally that limited-memory relaxation is pointless for binary
variables v, i. e., for |D[v]| = 2, as one can only either set
M [v] = 2 (delete relaxation), or M [v] = 1 (no relaxation).

We hence focus on the case where, for all v, |D[v]| >
2 and M [v] > 1. Somewhat surprisingly perhaps, it turns
out that this remains PSPACE-hard even in the maximally
relaxed setting, where M [v] ≥ |D[v]| − 1 for all v, i. e., at
most a single value per variable is forgotten:

Theorem 1 For FDR tasks where |D[v]| > 2 for all v, and
limited-memory relaxationsR where M [v] ≥ |D[v]| − 1 for
all v, decidingR-relaxed plan existence is PSPACE-hard.

Proof Sketch: Our proof is by reduction from FDR with bi-
nary variables,D[v] = {0, 1} for all v, and where prea[v] =
0 whenever eff a[v] = 1, as well as prea[v] = 1 whenever
eff a[v] = 0. Bylander’s (1994) PSPACE-hardness proof
(his Theorem 3.1) is easy to adapt to this FDR fragment.

Our key observation is that any binary variable v can be
encoded into a counter, consisting of three counter variables
v1, v2, v3 with domain D[vi] = {1, 2, 3, 4} and M [vi] = 3.
The counter is arranged to behave as follows:

1 2 3
4 1 2
3 4 1

1: v = 0
2 3 4
1 2 3
4 1 2

2: dum1
3 4 1
2 3 4
1 2 3

3: dum2
4 1 2
3 4 1
2 3 4

4: v = 1

v := 1 dum1 dum2

v := 0

The counter has a life cycle through 4 counter states –
memory contents of the counter variables – of which state
1 encodes v = 0 and state 4 encodes v = 1. State i is
characterized by the single value i all counter variables have
in common (left-top to right-bottom diagonal in the figure).
To achieve this behavior, the action moving the counter from
state j to state j + 1 has precondition {v1 = j, v2 = j, v3 =
j}, and adds a new value to each vi corresponding to the
new rightmost column in the figure. Any precondition/goal
v = 0 can then be replaced by {v1 = 1, v2 = 1, v3 = 1},
and any precondition/goal v = 1 can be replaced by {v1 =
4, v2 = 4, v3 = 4}. To move from counter state 1 (v = 0) to
counter state 4 (v = 1), we insert two dummy actions which
must be applied, and will be applicable only, after an effect
v := 1 (which by construction necessitates a precondition
v = 0 so will happen only in counter state 1).

The construction assumes that, at the start of the lifecycle,
the counter is in state 1, which cannot be specified in FDR
as each vi has only one initial value. But that issue can be
solved through an additional counter-initialization phase.

A full proof of this theorem is available in a technical re-
port (Speicher et al. 2017).

Extending hRB with Non-Invertible Variables
Towards explaining our extension of hRB, let us summarize
the workings of that heuristic function. To evaluate a state
s, hRB(s) first computes a fully delete relaxed plan π+ for
s, and then refines π+ to treat the variables V B accordingly.
The refinement process goes through π+ = 〈a+1 , . . . , a+k 〉
from front to back, executes each a+i using the RB seman-
tics, and inserts a repair sequence πB for v ∈ V B whenever
the precondition of a+i+1 on v is not satisfied.1 That sequence
πB is found by solving a planning task ΠB over the black
variables V B . The initial state of ΠB is the state of V B be-
fore executing a+i+1; the goal is the precondition of a+i+1 on
v. We denote these by IB and GB respectively.

For hRB to be tractable, solving ΠB must be tractable.
To that end, hRB relies on a known tractability result for
planning, restricting (a) cross-variable dependencies to be
acyclic, and restricting (b) each variable to be able to move
from any value d to any other value d′ (Knoblock 1994;
Williams and Nayak 1997; Brafman and Domshlak 2003;
Helmert 2006; Chen and Giménez 2010). Figure 1 shows
the algorithm, repair planning, that hRB uses in that setting.

Repair planning sequentializes the handling of black vari-
ables, from “clients” to “servants” according to prerequisite
(a) above. Formally, (a) is captured in terms of the causal
graph over V B (Knoblock 1994; Brafman and Domshlak

1Actually, this is what Domshlak et al. (2015) call relaxed plan
repair, a simpler and empirically worse variant of the red facts fol-
lowing algorithm hRB uses. We explain relaxed plan repair as red
facts following is complicated, and our extensions are identical for
both algorithms. Our implementation extends red facts following.

Algroithm: REPAIRPLANNING(ΠB)
πB ← 〈〉
for i = n downto 1 do

/* Denote πB = 〈a1, . . . , ak〉*/
d← IB [vi]
for j = 1 to k do
πj ← 〈〉
if preaj

[vi] is defined then
πj ← path(vi, d, preaj

[vi])

d← preaj
[vi]

πk+1 ← 〈〉
if GB [vi] is defined then
πk+1 ← path(vi, d,G

B [vi])
πB ← π1 ◦ 〈a1〉 ◦ · · · ◦ πk ◦ 〈ak〉 ◦ πk+1

return πB

Figure 1: Domshlak et al.’s (2015) pseudocode for repair
planning in the hRB heuristic, solving black-variable repair
tasks ΠB . v1, . . . , vn is an ordering of V B consistent with
the acyclic V B causal graph. path(vi, d, d

′) denotes an ac-
tion sequence inducing a path moving vi from d to d′.

2003; Helmert 2006). In the acyclic case, every action
affects exactly one v ∈ V B ; and the arcs in the causal
graph over V B are exactly the servant-client relations, i. e.,
an arc v1 → v2 indicates that there is an action a where
v1 ∈ V (prea) and v2 ∈ V (eff a).

Repair planning fixes the sub-plans for each variable vi
one-by-one, processing vi after all its potential clients are
already processed. The sub-plan created for vi then provides
the values requested by the clients, as manifested in the ac-
tion sequence πB constructed so far; and it achieves vi’s own
goal (if any) at the end. Prerequisite (b) is required so that
the requested paths path(vi, d, d

′) always exist. To ensure
the latter, hRB requires every value transition d1 → d2 of vi
to be relaxed side effects (RSE-)invertible. The exact defi-
nition of RSE-invertibility is not needed to understand our
contribution. The important aspect is: RSE-invertibility en-
tails that vi can always get from d to its start value IB [vi],
back along the path it came from. From IB [vi], vi can get to
d′ in the same way the input delete-relaxed plan π+ does.

Our extension consists in a more elaborate handling of
the case where some value transitions of vi are not RSE-
invertible. Currently, hRB has to paint vi red, relaxing it
completely and removing it from ΠB . But this is an overkill
if, for example, only a few instances of path(vi, d, d

′) will
fail, or if the required paths all exist yet are via transitions
not captured by RSE-invertibility. Our idea is to relax vi
“just enough” to guarantee prerequisite (b).

Our relaxation now distinguishes three kinds of variables:
fully relaxed (red) and unrelaxed (black) variables as before;
and partially relaxed variables, that we call gray variables,
V G. For prerequisite (a), as the gray variables are members
of ΠB , i. e., are part of repair planning, we require the causal
graph over V B ∪ V G to be acyclic. For prerequisite (b), we
design a suitable limited-memory relaxationR on v ∈ V G.

The relaxation R[v] of v ∈ V G needs to be such that,
whenever a path path(v, d, d′) is required, v remembers at
least one value d0 from which a path to d′ exists. SuchR[v]
can, in principle, be obtained through limited-memory re-

laxation with a suitable memory size. For example, one can
set M [v] so that IB [v] can always be reached. Yet, for most
instances of path(vi, d, d

′), this memory size will be much
larger than actually needed to make d′ reachable. This leads
us to the idea of not fixing the memory size once a-priori
(offline), but setting it on a per-need basis (online) instead.

Our online limited-memory relaxation adjusts the mem-
ory size dynamically during heuristic function computation.
The method is thus specific to the particular computation
addressed, i. e., repair planning as per Figure 1. The mem-
ory size is set individually for each relevant time point dur-
ing the run of that algorithm. Namely, say that vi ∈ V G.
Consider the sub-plan construction for vi, i. e., the inner for
loop of Figure 1, and consider any iteration j of that loop.
We define a memory size Mj [vi], and therewith a limited-
memory relaxationRON

j [vi], individually for each j. Denote
by 〈d1, . . . , dm〉 the value sequence of vi along π1◦· · ·◦πj−1
constructed so far. If no request of the form path(vi, dm, d

′)
is made, we set Mj [vi] := 1. Otherwise, if a request of
the form path(vi, dm, d

′) is made, we set Mj [vi] such that
RON

j [vi](d1, . . . , dm) = {dl, . . . , dm} where l ≤ m is the
highest index for which a path from dl to d′ exists. In words,
the online relaxation relaxes vi only where needed during
repair planning, and only to the extent required for success.
We force the repair planner to be as unrelaxed as possible
(without necessitating backtracking) in the handling of vi.

The basic properties of this construction follow easily by
extending Domshlak et al.’s (2015) observations. Say we
run the modified hRB as above on a state s, using a parti-
tion of V into V B , V G, and V R. Then (i) the algorithm
terminates in time polynomial in the length of the action se-
quence πON returned. Denote by RON the overall dynamic
relaxation, i. e., RON fully relaxes v ∈ V R, it does not relax
v ∈ V B , and for vi ∈ V G and vi’s value sequence along
〈a1, . . . , aj〉 at iteration j, RON[vi] constitutes our limited-
memory relaxation with memory size Mj [vi]. Then (ii) πON

is an RON-relaxed plan, and (iii) RON is a refinement of the
red-black relaxation with black variables V B and red vari-
ables V G ∪ V R. We denote the resulting heuristic function
– returning the length of πON – by hGray. In the sense of (ii)
and (iii) put together, hGray is more informed than hRB.

Experiments
We implemented hGray in FD (Helmert 2006). We adopt
Domshlak et al.’s stop search technique, which tests whether
the relaxed plan is actually a real plan, and if so, stops the
search. We use this in all configurations tested.

We compare hGray to its direct predecessor hRB, and to
hFF as a baseline. We use FD’s canonical search algorithm
for satisficing planning, greedy best-first search (GBFS). To
get an unbiased comparison between the different heuristics,
respectively to compare to state-of-the-art, we report results
from disabling, as well as enabling FD’s preferred operators.
For the latter, to enhance comparability, we use the same
preferred operators, taken from hFF, for all three heuristics.2

2Taking preferred operators from the individual heuristics does
not significantly affect the results.

w/ p.o. stop search at I w/o p.o.
Domain # hFF hRB hGray hFF hRB hGray hFF hRB hGray

Airport 50 37 37 36 0 0 0 36 36 37
Barman 40 35 39 39 0 0 0 31 32 32
Blocksworld 35 35 35 35 0 1 1 35 35 35
Childsnack 20 3 6 6 0 0 0 0 0 0
Depots 22 18 18 18 0 1 1 14 16 16
Elevators 50 50 50 50 0 50 50 48 50 50
Floortile 40 8 9 8 0 0 0 8 9 8
Freecell 80 80 80 80 0 0 0 79 79 78
Gripper 20 20 20 20 0 20 20 20 20 20
Hiking 20 19 12 12 0 0 0 16 11 11
Logistics 63 63 63 63 0 63 63 54 63 63
Miconic 150 150 150 150 0 150 150 150 150 150
Mprime 35 35 35 35 0 0 9 31 31 34
Mystery 30 16 16 15 0 0 7 18 18 19
NoMystery 20 10 15 15 0 0 0 9 14 14
Openstacks 100 100 100 100 0 0 77 100 100 100
Parcprinter 51 39 51 39 0 0 0 39 51 39
Parking 40 37 36 36 0 0 0 29 28 29
Pathways 30 20 20 20 0 0 0 11 11 12
PipesNoTank 50 44 44 43 0 0 0 30 32 30
PipesTank 50 39 39 39 0 0 0 23 23 25
Rovers 40 40 40 40 0 3 40 23 27 40
Satellite 36 36 36 36 0 10 10 30 36 36
Scanalyzer 50 46 48 48 0 0 0 44 46 46
Sokoban 50 48 48 48 0 0 0 48 46 48
Storage 30 20 20 20 0 3 3 18 18 18
Tetris 20 16 14 15 0 0 0 7 8 8
Thoughtful 20 14 12 12 0 0 0 9 11 9
Tidybot 20 15 14 16 0 0 0 14 15 16
TPP 30 30 30 30 0 5 5 23 24 19
Transport 70 45 70 70 0 70 70 16 70 70
Trucks 30 20 18 18 0 0 0 17 16 14
Visitall 40 4 40 40 0 40 40 4 40 40
Woodworking 50 50 50 50 0 1 1 49 50 49
Zenotravel 20 20 20 20 1 20 9 20 20 19
OTHERS 145 145 145 145 1 1 1 142 142 142

Log’98-Battery 35 17 25 30 0 0 20 7 7 23∑
1682 1424 1505 1497 2 438 577 1252 1385 1399

Table 1: Coverage with respectively without preferred oper-
ators (“p.o.”), and number of instances solved without search
because stop search fires at the initial state. Best results
within each category shown in boldface. Domains where all
three heuristic functions perform equally within every cate-
gory are summarized in “OTHERS”.

To choose the partitioning of V into V B , V G, and V R,
we extend Domshlak et al.’s painting strategy. That strat-
egy starts with V B = V . It then paints red, i. e., moves to
V R, (1) all causal graph leaf variables, and (2) all non-RSE-
invertible variables. From the remaining variables V B , (3)
iteratively one v is picked and painted red, until the causal
graph over V B is acyclic. We use the same strategy, except
that we omit step (2) and, upon termination, paint all non-
RSE-invertible v ∈ V B gray (moving them to V G).

To pick v in (3), Domshlak et al. experiment with many
prioritization options. Here we use their canonical (simple
and performant) option, always selecting the v with highest
index in Helmert’s (2004) level ordering. More precisely,
we experiment with two different strategies, (A) as just de-
scribed, (B) preferring non-RSE-invertible v and breaking
ties by the level ordering (so that RSE-invertible v are more
likely to end up black). With (B), hGray is very close to hRB,
with differences only where some variables can be painted
gray on top of the black ones in hRB. With (A), the paintings
tend to differ more. For space reasons, we show data only
for (A) and briefly summarize the differences for (B).

We run all IPC STRIPS benchmarks. We assume unit ac-

100 101 102 103 104 105 106 107 108
100

101

102

103

104

105

106

107

108

108

108

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

Figure 2: Search space size (left) and total runtime (right),
for hRB (x-axis) vs. hGray (y-axis), without preferred opera-
tors. Red data points for domains where hGray stops search
at the initial state in more instances than hRB.

tion costs throughout. As a showcase for the strengths of
our method, we also run a modification of IPC’98 Logistics,
where load/unload consumes battery power, and in every
city there is one location where the battery can be recharged.
The battery variable is not RSE-invertible so hRB must paint
it red, whereas we can paint it gray. If that is done – which
typically happens with strategy (A) though never with (B)
– then stop search succeeds in the initial state, i. e., our re-
laxed plan for I is a real plan. All experiments were run on
a cluster of Intel Xeon E5-2650v3 machines, with runtime
(memory) limits of 30 minutes (4 GB). Consider Table 1.

With preferred operators in use (left part of table), there
isn’t much difference between hRB and hGray, except for Par-
cprinter and Logistics’98-Battery. As we see in the right part
of the table, this is partly because the differences are hidden
beneath the preferred operators. With strategy (B), hGray’s
loss in Parcprinter disappears; total coverage on IPC bench-
marks is marginally better for hRB with preferred operators
(+2), and is better for hGray without them (+9).

The middle part of the table shows the number of times
stop search solves the task directly at the initial state, the
main advantage of this kind of heuristic (Domshlak, Hoff-
mann, and Katz 2015). Here hGray is clearly superior to hRB,
as it does not have to paint key non-RSE-invertible variables
red. With strategy (B), hGray stop search solves all Zeno-
travel instances, but does not solve any Logistics’98-Battery
instances because it uses the same paintings as hRB.

Figure 2 gives a search space and runtime comparison.
The main advantage of hGray over hRB lies in the additional
stop-search prowess, thus adding another increment to that
same main advantage of hRB over hFF.

Conclusion
While red-black planning has opened a huge space of relax-
ations in between the delete relaxation and real (unrelaxed)
planning, that space is still limited in having to take deci-
sions at the level of entire state variables. Our contribution
lies in pointing this out, putting forward the much richer
concept of trace-memory relaxation, and examining limited-
memory variables as a first instantiation. The empirical re-
sults are not overwhelming but certainly show promise, and
an entire universe of future research lies in exploring the
space of trace-memory relaxations in more detail.

Acknowledgments. This work was partially supported
by the German Research Foundation (DFG), under grant
HO 2169/5-1, “Critically Constrained Planning via Partial
Delete Relaxation”, and was partially supported by the Ger-
man Federal Ministry of Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and
Accountability (CISPA, grant no. 16KIS0656).

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. Journal of Computer and System
Sciences 76(7):579–592.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 128–136. AAAI Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research
50:487–533.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

Speicher, P.; Steinmetz, M.; Gnad, D.; Hoffmann,
J.; and Gerevini, A. 2017. Beyond red-black plan-
ning: Limited-memory state variables (technical report).
Technical report, Saarland University. Available at
http://fai.cs.uni-saarland.de/hoffmann/
papers/icaps17b-tr.pdf.
Williams, B. C., and Nayak, P. P. 1997. A reactive planner
for a model-based executive. In Pollack, M., ed., Proceed-
ings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI’97), 1178–1185. Nagoya, Japan: Mor-
gan Kaufmann.

