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Abstract

Symmetry breaking is a well-known method for search re-
duction. It identifies state-space symmetries prior to search,
and prunes symmetric states during search. A recent pro-
posal, star-topology decoupled search, is to search not in the
state space, but in a factored version thereof, which avoids
the multiplication of states across leaf components in an un-
derlying star-topology structure. We show that, despite the
much more complex structure of search states – so-called de-
coupled states – symmetry breaking can be brought to bear
in this framework as well. Starting from the notion of struc-
tural symmetries over states, we identify a sub-class of such
symmetries suitable for star-topology decoupled search, and
we show how symmetries from that sub-class induce sym-
metry relations over decoupled states. We accordingly extend
the routines required for search pruning and solution recon-
struction. The resulting combined method can be exponen-
tially better than both its components in theory, and this syn-
ergetic advantage is also manifested in practice: empirically,
our method reliably inherits the best of its base components,
and often outperforms them both.

Introduction
We venture to integrate two methods for search reduc-
tion in forward state space search, symmetry breaking and
star-topology decoupled search (DS). The former is well-
established and well-explored across several CS sub-areas,
including classical planning (e. g. (Starke 1991; Emerson
and Sistla 1996; Fox and Long 1999; Rintanen 2003;
Pochter, Zohar, and Rosenschein 2011; Domshlak, Katz, and
Shleyfman 2012)). It allows to prune (parts of) the exponen-
tial search resulting from, e. g., the presence of objects with
symmetric behavior. Star-topology decoupled search, on the
other hand, has only recently been invented, in classical
planning (Gnad and Hoffmann 2015; Gnad, Hoffmann, and
Domshlak 2015). It avoids the enumeration of states across
leaf factors in a star topology, and has been shown to dramat-
ically improve performance in pronounced star topologies
with many leaf factors. Yet symmetric behaviors may cause
exponential search in this setting as well, so the question is
whether the two methods can be integrated. We answer this
question in the affirmative, and we demonstrate the theoret-
ical and practical benefits.

We focus on classical planning. Symmetry breaking in
this setting has been first proposed by Fox and Long (1999)

in the context of Graphplan (Blum and Furst 1997; Long
and Fox 1999), the basic idea being to recognize symmet-
ric objects – ones that behave symmetrically – in the PDDL
input, forming groups which the search keeps track of, and
which the basic search steps exploit by considering only one
object from each group. Variants of symmetry breaking have
later been proposed for SAT-based planning (Rintanen 2003)
and, most recently, for forward state space search (Pochter,
Zohar, and Rosenschein 2011; Domshlak, Katz, and Shleyf-
man 2012; 2013; Wehrle et al. 2015; Sievers et al. 2015;
Shleyfman et al. 2015a). In the latter setting, the symmetries
take the form of symmetry groups across states. If several
states from a group are encountered, only one of these is ex-
plored; upon finding a goal state, a reconstruction procedure
takes care of any discontinued paths in the solution.

Star-topology decoupled search, short decoupled search,
is a form of factored planning (e. g. (Knoblock 1994;
Amir and Engelhardt 2003; Brafman and Domshlak 2006;
Kelareva et al. 2007; Brafman and Domshlak 2008; 2013;
Fabre et al. 2010)). The factors – disjoint subsets of state
variables – are required to form a star, where a single cen-
ter factor has arbitrary dependencies with each of a set of
leaf factors, yet no two leaf factors depend upon each other
directly. As prior work showed (Gnad and Hoffmann 2015;
Gnad, Hoffmann, and Domshlak 2015), this kind of struc-
ture can be exploited by searching over center paths only
(transitions paths affecting the center), maintaining the pos-
sible moves given such a path separately for each leaf. In
catchy though imprecise analogy to graphical models, de-
coupled search “instantiates the center to break the condi-
tional dependencies between leaves”.

Symmetry breaking and decoupled search are clearly or-
thogonal, in the sense that the structures exploited by either
– symmetrical behavior vs. conditional independence of leaf
factors – are, in general, different. However, we cannot sim-
ply “switch both methods on”, as the structure of search
states in decoupled search, so-called decoupled states, is
much more complex, containing exhaustive tracking infor-
mation for each leaf factor. How can symmetry breaking be
brought to bear in this new search structure?

This question is relevant as decoupled search may still
suffer from symmetrical behavior, within the center and
across leaves. To answer the question, we start from Shleyf-
man et al.’s (2015a) structural symmetries, which capture



previously proposed concepts of symmetry in classical plan-
ning, and which can be derived from an input task’s syntax
in a simple declarative manner. We identify a sub-class of
structural symmetries suitable for decoupled search (essen-
tially, not interfering with the star topology). We show how
to find such symmetries, how they induce symmetry rela-
tions over decoupled states, and how the routines for search
pruning and solution reconstruction can be extended. The
resulting combined method can be exponentially better than
each of its components. Indeed, there are cases where it is
exponentially better than both, showing synergistic effects
where the combination is “more than the sum of its com-
ponents”. Such synergy is also manifested in practice: em-
pirically, our method reliably inherits the best of its compo-
nents, outperforms each component overall, and in several
individual domains outperforms them both.

Preliminaries

We use finite-domain state variables (FDR) (Bäckström and
Nebel 1995; Helmert 2006). A planning task is a tuple
Π = 〈V,A, I, G〉, where V is a set of variables, each asso-
ciated with a finite domain D(v). We identify (partial) vari-
able assignments with sets of variable/value pairs, written as
〈var, val〉. A state is a complete assignment to V . By S we
denote the set of all states of Π. I is the initial state of Π.
The goal G is a partial assignment to V . For a partial as-
signment p, we denote with vars(p) ⊆ V the subset of vari-
ables on which p is defined. For V ⊆ vars(p), by p[V ] we
denote the assignment to V made by p. We say that a (par-
tial) assignment p satisfies a condition q, denoted p |= q, if
vars(q) ⊆ vars(p), and p[v] = q[v] for all v ∈ vars(q).A is
a finite set of actions, each a triple 〈pre(a), eff(a), cost(a)〉
of precondition, effect, and cost, where pre(a) and eff(a) are
partial assignments to V , and cost(a) ∈ R0+. An action a
is applicable in a state s if s |= pre(a). Applying a in s
changes the value of all v ∈ vars(eff(a)) to eff(a)[v], and
leaves s unchanged elsewhere. The outcome is denoted sJaK.

The state space of Π is denoted TΠ. We will sometimes
write s a−→ t for a transition from s to t with action a. A
plan for Π is an action sequence π iteratively applicable in
I and ending in sG s.t. sG |= G. The plan is optimal if its
summed-up cost, denoted cost(π), is minimal. Given a state
s, we denote the cost of an optimal plan for s as h∗(s).

Given a directed graph G = 〈N,E〉, a permutation σ on
the vertices N , s. t. (n, n′) ∈ E iff (σ(n), σ(n′)) ∈ E, is
called an automorphism. The automorphisms of a graph G
form a group under composition. We call this group an au-
tomorphism group, and denote it by Aut(G). For every per-
mutation σ ∈ Aut(G) there exists an inverse permutation
σ−1 ∈ Aut(G) s.t. σ ◦ σ−1 is the identity permutation.

Base Methods

We start from two base methods, symmetry breaking and de-
coupled search. In what follows, we summarize these meth-
ods to the extent required to describe our modifications.

Symmetry Breaking

Symmetry breaking considers equivalence classes of sym-
metrical states in the search space, and allows for using rep-
resentative states of each equivalence class. Recently, Sh-
leyfman et al. (2015a) introduced the notion of structural
symmetries, which capture previously proposed concepts
of symmetry breaking for classical planning. In a nutshell,
structural symmetries are a relabeling of the factored repre-
sentation of a given planning task Π. Actions are mapped
to actions, variables to variables, and values to values (pre-
serving the variable/value pairs structure). This relabeling
induces an automorphism of the state space TΠ. Herein, we
follow the definition of structural symmetries for FDR plan-
ning tasks as defined by Wehrle et al. (2015).

Definition 1 (Structural Symmetry) For a planning task
Π = 〈V,A, I, G〉, let P be the set of Π’s facts, i. e., pairs
〈v, d〉 with v ∈ V and d ∈ D(v). A structural symmetry for
Π is a permutation σ : P ∪A→ P ∪ A such that:

1. σ(P ) = P , where P := {{〈v, d〉 | d ∈ D(v)} | v ∈ V}.
2. σ(A) = A, and, for all a ∈ A, σ(pre(a)) = pre(σ(a)),
σ(eff(a)) = eff(σ(a)), and cost(σ(a)) = cost(a).

3. σ(G) = G.

Here, for a set X we define σ(X) := {σ(x) | x ∈ X}
(note that this notation can be applied recursively). For a
partial state s, s′ := σ(s) is the partial state obtained from
s such that for all 〈v, d〉 with v ∈ vars(s) and d ∈ D(v),
σ(〈v, d〉) = 〈v′, d′〉 and s′[v′] = d′.

A set of structural symmetries Σ for a planning task Π
induces a subgroup Γ of the automorphism group Aut(Π),
which in turn defines an equivalence relation over the states
S of Π. Namely, we say that s is symmetric to s′ iff there
exists an automorphism σ ∈ Γ such that σ(s) = s′.

Forward search algorithms with symmetry elimination do
not consider all states s ∈ S, but only a single represen-
tative element of the equivalence class of s. These equiv-
alence classes are called orbits and are usually represented
by one of its member states that is called the canonical state.
A∗ with symmetry elimination then explores all applicable
actions, and prunes the resulting successor states if another
representative of their orbit has already been encountered
during search. Due to the properties of structural symme-
tries, this reduced state transition graph is guaranteed to
still contain an optimal plan in s. However, determining if
two states are symmetric is NP-hard (Luks 1993). To over-
come this, one can perform symmetry elimination by com-
puting an approximated canonical representative with an in-
complete ad-hoc procedure that is not guaranteed to detect
all symmetries (Pochter, Zohar, and Rosenschein 2011). We
use the orbit space search (OSS) algorithm introduced by
Domshlak, Katz, and Shleyfman (2015). OSS replaces each
state by its approximated canonical representative, resulting
in a search over the state transition graph induced by the
(approximated) canonical states.



Star-Topology Decoupled Search
Decoupled search (DS) is a technique developed to avoid the
combinatorial explosion of having to enumerate all possible
variable assignments of causally independent parts of a plan-
ning task. It does so by partitioning the state variables into a
factoring F , whose elements are called factors. By impos-
ing a structural requirement on the interaction between these
factors, namely a star topology, decoupled search can effi-
ciently handle cross-factor dependencies. A star factoring is
one that has a center FC ∈ F that interacts arbitrarily with
all other factors FL ∈ FL := F \ FC , called leaves, but
where the only interaction between leaves is via the center.

Actions affecting FC are called center actions, denoted
AC , and those affecting a leaf FL are called leaf actions,
denoted AL. A sequence of center actions applicable to I in
the projection onto FC is a center path, a sequence of leaf
actions affecting FL, applicable to I in the projection onto
FL, is a leaf path. A complete assignment to FC is called a
center state, an assignment to an FL ∈ FL is called a leaf
state. The set of all leaf states is denoted SL, and that of a
particular leaf FL is denoted SL|FL . We define the set of
leaf actions enabled in a center state sC as AL|sC := {aL |
aL ∈ AL ∧ sC |= pre(aL)[FC ]}.

A decoupled state sF is a pair 〈center(sF ), prices(sF )〉,
where center(sF ) is a center state, and prices(sF ) : SL 7→
R0+ ∪ {∞} is the pricing function, that assigns every leaf
state a non-negative price. The pricing function is main-
tained during decoupled search in a way so that the price of a
leaf state sL is the cost of a cheapest leaf path that ends in sL
and that is compliant, i. e., that can be scheduled alongside
the center path executed up to sF .

By SF we denote the set of all decoupled states. We
say that a decoupled state sF satisfies a condition p, de-
noted sF |= p, iff (i) center(sF ) |= p[FC ] and (ii) for
every leaf FL ∈ FL there exists sL ∈ SL|FL s.t. sL |=
p[FL] and prices(sF )[sL] < ∞. The initial decoupled state
IF is defined as IF := 〈center(IF ), prices(IF )〉, where
center(IF ) = I[FC ]. The pricing function is given, for each
FL ∈ FL, as prices(IF )[sL0 ] = 0 where sL0 = I[FL]; and
elsewhere as prices(IF )[sL] = c(sL0 ) where c(sL0 ) is the cost
of a cheapest path of AL|center(IF ) \ AC actions from sL0 to
sL. If no such path exists, then c(sL0 ) = ∞. The set of de-
coupled goal states SFG is SFG := {sFG | sFG |= G}.

In decoupled search, only center actions are applied. A
center action aC is applicable in a decoupled state sF if
sF |= pre(aC). By SLcompl we define the set of leaf states
that satisfy the leaf precondition of aC , i. e., SLcompl := {sL |
sL |= pre(aC)[FL] ∧ prices(sF )[sL] < ∞}. Applying aC
to sF results in the decoupled state tF = sFJaCK as fol-
lows: center(tF ) := center(sF )JaCK, prices(tF )[tL] :=
minsL∈SL

compl
(prices(sF )[sL] + c(uL)) where sLJaCK =

uL, and c(uL) is the cost of a cheapest path ofAL|center(tF )\
AC actions from uL to tL if such a path exists, else c(uL) =
∞. A decoupled plan for Π is a sequence of center actions
πF from IF to some sFG ∈ SFG . The global plan correspond-
ing to πF , GlobalPlan(πF ), is constructed by augmenting
πF with cheapest-compliant leaf paths, i. e., leaf action se-

quences that lead to the pricing function of sFG.
A decoupled state sF can be interpreted as a set of explicit

states. This set takes the form of a hypercube whose dimen-
sions are the leaf factors FL. Formally, such a hypercube is
defined as follows:

Definition 2 (Hypercube) Let Π be a planning task, and
F a star factoring. Then a state p in Π is a member state
of a decoupled state sF , if p[FC ] = center(sF ) and,
for all leaves FL ∈ FL, prices(sF )[p[FL]] < ∞. We
say that p has cost costsF (s) in sF , where costsF (s) :=∑
FL∈FL prices(sF )[p[FL]]. The hypercube of sF , denoted

[sF ], is the set of all member states of sF .

The hypercube of sF captures both, the reachability
and the prices of all member states p of sF . We define
the goal distance of a decoupled state sF as h∗(sF ) :=
mins∈[sF ]costsF (s) + h∗(s).

Symmetry Relations over Decoupled States
To define symmetries in the decoupled state space, we re-
strict the allowed class of structural symmetries by imposing
additional requirements on their properties.

Definition 3 (Decoupled Structural Symmetry) Let Π be
an FDR task, and let F be a star factoring. Then σ is a
decoupled structural symmetry if and only if σ is a structural
symmetry and in addition it holds that:

(i) σ(FC) = FC .
(ii) ∀FL ∈ FL : σ(FL) ∈ FL.

In other words, decoupled structural symmetries are the
subset of structural symmetries that (i) stabilize the center
(center facts are only mapped to center facts), and (ii) sta-
bilize the leaves (when permuting a fact of a leaf FL1 to a
fact of FL2 , all facts of FL1 must be permuted to facts of
FL2 ). Note that property (i) follows from property (ii) and
the fact that σ is a structural symmetry. Nevertheless, we in-
clude property (i) into the definition for better readability.
These properties are not tautological, i. e., there exist struc-
tural symmetries that do not satisfy them:

Proposition 1 Not every structural symmetry is a decou-
pled structural symmetry.

Proof: Let Π be an FDR task, s.t. V = {v1, v2, v3} is
a set of binary variables, A = {a1, a2} is a set of unit-
cost actions, where a1 = 〈{〈v1, 0〉}, {〈v2, 1〉}〉, a2 =
〈{〈v3, 0〉}, {〈v2, 1〉}〉, I = {〈v1, 0〉, 〈v2, 0〉〈v3, 0〉}, and
G = {〈v2, 1〉}. There is only one structural symmetry σ,
where σ(a1) = a2, σ(v1) = v3, and σ(v2) = v2. Let
FC = {v1} and FL := {v2, v3} ∈ FL be a factoring with a
single leaf FL. Figure 1 illustrates that σ is not a decoupled
structural symmetry, because property (i) of Definition 3 is
violated. Namely σ(FC) 6= FC . �

An example is shown in Figure 1. Such symmetries can-
not be exploited in decoupled search. We remark though
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Figure 1: A structural symmetry σ that is not a decoupled
symmetry for the depicted factoring.

that, in practice as far as reflected by the IPC benchmarks
and our current factoring strategies, this is not a serious lim-
itation: all structural symmetries found are in fact decoupled
structural symmetries.

Applying a decoupled permutation to a decoupled state
requires permuting its center state and pricing function. We
obtain the permuted pricing function by assigning the price
of each leaf state sL to σ(sL):

Definition 4 (Permuted Decoupled States) Let sF be a
decoupled state, and let σ be a decoupled struc-
tural symmetry. We define σ(sF ) as a decoupled state
〈σ(center(sF )), σ(prices(sF ))〉 where σ(prices(sF )) =
prices(σ(sF )), and for each leaf state sL ∈ SL

prices(σ(sF ))[sL] = prices(sF )[σ−1(sL)].

Note that σ(sF ) is a valid decoupled state thanks to the
properties of decoupled structural symmetries: Property (i)
ensures that σ(center(sF )) is indeed a center state, because
center variables are only mapped to center variables. Prop-
erty (ii) ensures that leaf states are always mapped to leaf
states, so prices(sF )[σ−1(sL)] is always well defined. Addi-
tionally, (ii) ensures that all states in a leaf FL1 are permuted
into states of the same target leaf FL2 , so we cannot end up
with a leaf factor that does not have any finite price. In fact,
it can be shown that the prices of σ(sF ) correspond to those
obtained on a path from σ(IF ) to σ(sF ).

First, we introduce an auxiliary Lemma that is used in the
proofs of Propositions 2 and 3.

Lemma 1 Let Π be an FDR task, let F be a star factor-
ing, let sF be a decoupled state, and let σ be a decoupled
structural symmetry. Then, sF a−→ tF with a ∈ AC is a tran-
sition in the decoupled state space of Π given F if and only

if σ(sF )
σ(a)−−−→ σ(tF ) also is such a transition.

Proof: By Lemma 2 in Shleyfman et al. (2015b), it holds
that center(σ(sF ))Jσ(a)K = center(σ(tF )) since σ is a
structural symmetry that preserves the center variables. For
every leaf state tL of a leaf FL, the price of σ(tL) in σ(tF )
is:

prices(σ(tF ))[σ(tL)] =
minσ(sL)∈σ(SL

compl)
(prices(σ(sF ))[σ(sL)] + c(σ(uL))) =

minsL∈SL
compl

(prices(sF )[sL] + c(σ(uL)))

Where SLcompl := {sL | sL |= pre(a)[FL] ∧
prices(sF )[sL] < ∞}, σ(uL) := σ(sL)Jσ(a)K, and
c(σ(uL)) is the cheapest path from σ(uL) to σ(tL) using ac-
tions in AL|center(σ(tF )) \AC . Note that the second equality
directly follows from the definition of permuted decoupled
states.

By the definition of a transition in the decoupled state
space prices(tF )[tL] = minsL∈SL

compl
(prices(sF )[sL] +

c(uL)) where uL := sLJaK and c(uL) is the cheapest path
from uL to tL using actions in AL|center(tF ) \ AC . We next
prove that c(uL) = c(σ(uL)) holds.

Since σ(SL|FL) is isomorphic to SL|FL for every path
from uL to tL with actions in AL|center(tF ) \ AC , there is a
path from σ(uL) to σ(tL) with actions in AL|center(σ(tF )) \
AC , and vice versa. Therefore, c(σ(uL)) = c(uL) and
prices(σ(tF ))[σ(tL)] = prices(tF )[tL]. �

Proposition 2 Let Π be an FDR task, and F a star factor-
ing. Let sF be a decoupled state reachable from IF , and let
σ be a decoupled structural symmetry. Then σ(sF ) is a de-
coupled state reachable from σ(IF ) s.t. for each leaf state
sL ∈ SL, prices(σ(sF ))[σ(sL)] = prices(sF )[sL].

Proof: By induction on the path length. The base case, for
IF , directly follows from the definition of permuted decou-
pled state. The inductive case follows from Lemma 1. �

Decoupled structural symmetries induce an automor-
phism group over the decoupled state space:

Proposition 3 Let Π be an FDR task, and let F be a star
factoring. If σ is a decoupled structural symmetry of Π, then
σ is an automorphism of its decoupled state space.

Proof: Let Σ be the set of all decoupled structural symme-
tries over Π using the factoring F . First, let us show that Σ
is a group. By Lemma 1 in Shleyfman et al. (2015a) struc-
tural symmetries form a finite group. By definition, Σ is a
subset of this group, so it is enough to show that Σ is closed
under composition, i. e., if σ1, σ2 ∈ Σ then σ1 ◦ σ2 ∈ Σ.
Let FC be the center variables of the factoring F , then
σ1 ◦ σ2(FC) = σ1(σ2(FC)) = σ1(FC) = FC . By the
same argument, the leaves of the factoring are preserved
under the composition. Second, to prove that a decoupled
structural symmetry σ induces a graph symmetry of the de-
coupled state space , we need to show that:

(i) σ(SF ) = SF ,

(ii) σ(AC) = AC ,

(iii) (sF
a−→ tF ) with a ∈ AC iff

(σ(sF )
σ(a)−−−→ σ(tF )) with σ(a) ∈ AC

(iv) σ(SFG ) = SFG .

Property (i) holds by the definition of σ. Property (iii)
holds by Lemma 1.

Regarding property (ii), suppose that a ∈ AC , then a af-
fects at least one variable in FC . Thus, as σ(FC) = FC ,
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Figure 2: How applying a permutation to a decoupled state
corresponds to applying it on its hypercube.

σ(a) also affects at least one variable in FC , and σ(a) ∈
AC . If a ∈ σ(AC), then a ∈ AC by the same argument.

For property (iv), suppose that sG ∈ SFG , then as
center(sG) is a goal center state, this is also true for
center(σ(sG)). For every FL ∈ FL, there exists a goal leaf
state sL ∈ SL|FL s. t. prices(sG)[sL] = cL < ∞. Then,
σ(FL) ∈ FL and there exists a goal leaf state σ(sL) ∈
SL|σ(FL) s. t. prices(σ(sG))[σ(sL)] = cL. The other direc-
tion holds by the same argument, since σ−1 is also a decou-
pled structural symmetry. �

Next, we show that applying a permutation to a decoupled
state is equivalent to applying that permutation to each of the
member states of its hypercube, as illustrated in Figure 2:

Theorem 1 Let Π be an FDR task, and F be a star fac-
toring. Let sF be a decoupled state, and let σ be a decou-
pled structural symmetry. Then σ(s) ∈ [σ(sF )] if and only
if s ∈ [sF ], and costσ(sF )(σ(s)) = costsF (s).

Proof: Let s be a state in [sF ] with cost c = costsF (s).
Then s = center(sF ) ∪ ⋃FL∈FL sL, where sL = s[FL]

for all FL ∈ FL, and
∑
FL∈FL prices(sF )[sL] = c.

Applying the permutation σ to s results in σ(s) =
σ(center(sF )) ∪ ⋃

FL∈FL σ(sL). By Definition 4,
center(σ(sF )) = σ(center(sF )), and for every leaf state
tL ∈ SL : prices(σ(sF ))[tL] = prices(sF )[σ−1(tL)].
Hence

∑
FL∈FL prices(σ(sF ))[σ(sL)] =∑

FL∈FL prices(sF )[sL] = c, and σ(s) ∈ [σ(sF )]
with cost c.

The same argument can be used to show that if σ(s) ∈
[σ(sF )] then s ∈ [sF ] and costσ(sF )(σ(s)) = costsF (s). �

Finding Decoupled-State Symmetries
It is obviously infeasible to compute the automorphism
group of the state space TΠ of a planning task Π directly
on the state space. The symmetries on the state space must
be inferred from a compact representation. Prior work intro-
duced the problem description graph (PDG) of a task Π, and
showed that the automorphism group of this graph induces
a subgroup of Aut(TΠ) (Pochter, Zohar, and Rosenschein
2011). Later, Domshlak et al. (2012) made some modifica-
tions to the definition of the PDG, mainly to allow support
of general-cost actions. Considering that the number of PDG
vertices is linear in the size of Π, its automorphism group
can be found efficiently using off-the-shelf tools. Our defi-
nition loosely follows that by Domshlak et al. (2012):

Definition 5 Let Π be an FDR task. The problem descrip-
tion graph of Π, PDG(Π), is the colored digraph 〈N,E〉
with nodes N , node colors col(n), and edges E:

N = {nv | v ∈ V}∪
⋃
v∈V
{n〈v,d〉 | d ∈ D(v)}∪{na | a ∈ A},

col(n) =


1 if n = n〈v,d〉, {〈v, d〉} ∈ G
2 + cost(a) if n = na, a ∈ A
0 otherwise

E =
⋃
v∈V
{〈nv, n〈v,d〉〉 | d ∈ D(v)} ∪

⋃
a∈A

(
Epre
a ∪ Eeff

a

)
Where Epre

a and Eeff
a are defined as follows:

Epre
a = {〈n〈v,d〉, na〉 | {〈v, d〉} ∈ pre(a)},

Eeff
a = {〈na, n〈v,d〉〉 | {〈v, d〉} ∈ eff(a)}.

The automorphism group of PDG(Π) induces a set of
structural symmetries of Π. By the same recipe we create
a slightly modified version of the PDG, which induces the
decoupled structural symmetries of Π:

Definition 6 Let Π be an FDR task, let F be a star factor-
ing, and let 〈N,E〉 be the PDG of Π. The factored prob-
lem description graph of Π given F , PDG(Π,F), is the
colored digraph 〈N ′, E′〉 with: N ′ = N ∪ {nL | FL ∈
FL} node colors col(nL) = −1; and edges E′ = E ∪⋃
FL∈FL{〈nL, nv〉 | v ∈ FL}.

We ensure the properties required to only obtain decou-
pled structural symmetries by adding the nL nodes. By at-
taching each nL node to the variables in FL, leaf variables
can only be mapped to leaf variables (so center variables
can only be mapped to center variables). By coloring all nL
nodes in the same color, we allow permutations across leaf
factors. Thus, because all variables of a particular leaf FL
are connected to exactly one nL, we guarantee that if there
exist symmetries that permutes a variable of FL1 to one of
FL2 , then all variables of FL1 must be mapped into vari-
ables of FL2 .

Proposition 4 Let Π be an FDR task, and let F be a star
factoring. Every automorphism of PDG(Π,F) corresponds
to a decoupled structural symmetry of Π.

Proof: PDG symmetries are structural symmetries of Π. The
two additional properties of decoupled structural symme-
tries are ensured by the new nodes. The nL nodes ensure
that center variables v ∈ FC can only be mapped to center
variables. Further more, they ensure that if cross-leaf permu-
tations exist, then the entire leaves have to be mapped. Oth-
erwise, only leaf states sL within a leaf state space SL|FL

are permuted. �



Symmetry Breaking in Decoupled Search
Exploiting the symmetries of a planning task by pruning
states from the search space has proved to be highly bene-
ficial in standard search. We propose decoupled orbit space
search (DOSS), that applies symmetry pruning in the decou-
pled state space. Like in orbit space search, DOSS replaces
each new decoupled state by its canonical representative.
We next provide further details about how exactly a canoni-
cal decoupled state is computed and, once the search is com-
pleted, how a valid (optimal) plan can be reconstructed from
the decoupled orbit state space.

Mapping to Canonical Representatives
In orbit space search (OSS), every state is replaced by its
canonical representative. The perfect canonical state is de-
fined as the one with minimal lexicographic ordering, given
an arbitrary total order on variable/value pairs. Because find-
ing the coarsest relation is NP-hard (Luks 1993), OSS ap-
proximates canonical representatives through a local search
procedure, whose search nodes correspond to states and
whose search transitions correspond to the application of
one of the generators of the structural symmetries group.
Search states are ranked based on their lexicographical or-
dering. The search stops at a local minimum.

We adapt this idea to handle decoupled states. We define
the perfect canonical decoupled state to be one with a lexi-
cographically minimal center state given an arbitrary total
order on the values of center variables, and among these
center-minimal decoupled states, one whose pricing func-
tion is lexicographically minimal according to an arbitrary
total order on the set SL of leaf states. (Preferring center-
minimality here reduces the number of different center states
among canonical decoupled states, which tends to be bene-
ficial given the focus of decoupled search on the center.)

Like in OSS, we approximate canonical representatives
via a local search procedure. For efficiency reasons, we
divide this local search into two phases. A permutation
σ is called center-affecting for a decoupled state sF , if
σ(center(sF )) 6= center(sF ). Otherwise, we say that σ is
center-stable for sF . We first perform a local search only
considering center-affecting permutations, in order to obtain
a decoupled state that is a local minimum with respect to
the center state. Note that these center-affecting permuta-
tions may also affect the leaves, but are only applied if they
improve the current center state. We then perform a second
local search from that state, using only center-stable per-
mutations. Dividing the search into two phases reduces the
computational overhead to obtain the canonical state, since
the more expensive checks of whether a permutation pro-
duces a lexicographically smaller pricing function are only
performed for center-stable permutations.

Solution Reconstruction
When the search stops once a decoupled goal state sFG
is found, the sequence of center actions leading to sFG
is not guaranteed to be valid, because a permutation
could have been applied in every step. Let σ0(sF0 )

a1−→
σ1(sF0 Ja1K) . . .

ak−→ σk(sFk−1JakK) be such a center path,

where sF0 = IF . To get a plan for the given planning task,
we need to obtain a valid center path, reconstruct the com-
pliant leaf paths, and embed them into the center path.

We obtain a valid center path similarly to standard
plan reconstruction in OSS (Domshlak, Katz, and Sh-
leyfman 2012). This procedure retrieves all permutations
(σ0, . . . , σk) applied during the search and then reconstructs
a plan from the (real) initial decoupled state to a goal state
by finding the applicable actions a′i that produce the unper-
muted state in every step. More formally, the reconstruction
retrieves the following path:

IF
a′
1−→ σ−1

0 (IFJa1K) . . .
a′
k−→ (σ−1

0 ◦σ
−1
1 ◦· · ·◦σ

−1
k−1)(s

F
k−1JakK)

Having a valid center path, we apply the standard solution
construction process of decoupled search (Gnad, Hoffmann,
and Domshlak 2015). This process takes low-order polyno-
mial time in the size of the leaf state spaces and the length
of the center path.

Completeness and Optimality
We prove that DOSS preserves the completeness and opti-
mality of search algorithms giving those guarantees.

Lemma 2 Let Π be an FDR task, let F be a star factoring,
and let σ be a decoupled structural symmetry. Let sF be a
decoupled state. Then, h∗(σ(sF )) = h∗(sF ).

Proof: By Theorem 1, for every p ∈ [sF ] with cost c we
have σ(p) ∈ [σ(sF )] with the same cost. By the proper-
ties of structural symmetries, h∗(p) = h∗(σ(p)) for all p ∈
[sF ]. Therefore, h∗(sF ) = minp∈[sF ] costsF (p) + h∗(p) =

minp∈[σ(sF )] costσ(sF )(p) + h∗(p) = h∗(σ(sF )). �

Our claim now follows by an argument very similar to that
for OSS (Domshlak, Katz, and Shleyfman 2015):

Theorem 2 DOSS preserves both, completeness and opti-
mality, of the search algorithm employed.

Proof: Let Π be an FDR task, and let F be a star factor-
ing. DOSS performs decoupled search by replacing each
decoupled state sF with its canonical representative σ(sF ),
where σ is an arbitrary decoupled structural symmetry. By
Lemma 2, the goal distance of σ(sF ) and sF is the same
(note that h∗(sF ) takes into account both the center and
leaf cost). Thus, an optimal plan for sF has the same cost
as an optimal plan for σ(sF ) and we can safely replace sF
by σ(sF ). The claim follows as decoupled search preserves
completeness and optimality. �

Separation from Base Methods
We analyze the theoretical differences between DOSS, its
two base components OSS and DS, and standard search
which we refer to by STD. To be able to compare the meth-
ods independent of which search algorithm is used, we mea-
sure the size of the search space as the number of reachable



search nodes. We assume a perfect canonical state for OSS
and DOSS, though approximations are used in practice.

We say that a method A is exponentially separated from
method B if there exists a family of planning tasks {Πn}
whose search space is exponential in the size of Πi un-
der B, yet is polynomial under A. Previous work already
proved that OSS and DS are exponentially separated from
STD. Since OSS and DS are orthogonal, i. e., each can yield
exponential separations over STD in different examples, it
follows that they are exponentially separated from one an-
other. By the same reasoning, DOSS is exponentially sep-
arated from each of OSS and DS. More interestingly, there
exist families of planning tasks where OSS is exponentially
separated from both its base components:

Theorem 3 There exist families of planning tasks {Πn}
with factoring Fn, structural symmetries Γn, and decoupled
structural symmetries Γdn such that the DOSS search space
has size polynomial in the size of Πn, while both the OSS
search space and the DS search space have size exponential
in the size of Πn.

Proof: Let Πn be an FDR task s.t. V =
{vC0 , . . . , vCn , vL1 , . . . , vLn}. Fn is a factoring with n
leaves FL = {FL1 , . . . , FLn}. The n + 1 center
variables vC0 , . . . , v

C
n are binary. Each leaf variable

vLi has domain D(vLi ) = {0, . . . , i}, and is assigned
to a leaf factor FLi = {vLi }. The initial state is
I = {〈vCi , 0〉∀i ∈ [0, n], 〈vLj , 0〉∀j ∈ [1, n]} and the
goal is G = {〈vCi , 1〉∀i ∈ [0, n], 〈vLj , j〉∀j ∈ [1, n]}. There
are three types of (unit-cost) actions:

1. aC0 = 〈{〈vC0 , 1〉}, {〈vC0 , 0〉}〉,
2. aCi,1 = 〈{〈vC0 , 0〉, 〈vCi , 0〉}, {〈vC0 , 1〉, 〈vCi , 1〉}〉 for i ∈
{1, . . . , n},

3. aLi,j = 〈{〈vLi , j〉,∀k〈vCk , 0〉}, {〈vLi , j + 1〉}〉 for i ∈
{1, . . . , n}, j ∈ {0, . . . , i− 1}, k ∈ {1, . . . n}.
The structural symmetries Γn in this domain are such that

all center variables except vC0 are symmetric to one another,
so vCi is symmetric to vCj for any i, j ∈ {1, . . . , n}. There
are no structural symmetries among the leaves because they
have a different number of facts. Since there are n! combi-
nations of leaf states that are reachable from the initial state,
the number of states considered by OSS is exponential in the
number of leaves.

Since the center condition of all leaf actions aLi,j holds in
the initial center state, all decoupled states have the same
pricing function in all leaves. This is so because the mini-
mum possible prices are obtained in the initial state and do
not change later on. Therefore, DS gets reduced to STD on
the center variables, and the size of its search space is 2n+1.

Finally, consider the search space of DOSS. The structural
symmetries Γn only affect center variables in Fn. Hence,
Γdn = Γn are decoupled structural symmetries under factor-
ing Fn. As in the case of DS, all decoupled states have the
same pricing function, so the state space explored by DOSS
is isomorphic to the one explored by OSS in the center vari-
ables, which has 2n different states. Therefore, the search
space of DOSS has polynomial size in n. �

Note that the exponential separation does not imply that
the search space under DOSS will always be smaller than
that of its components. While this is true for OSS compared
to STD, DS does not dominate STD. Indeed, there exist ex-
amples where STD (and thus also OSS) has a search space
exponentially smaller than that of DS (Gnad and Hoffmann
2015). The same examples can be used to show that STD
and OSS are exponentially separated from DOSS. However,
as we shall see next, in practice the search space of DOSS
does tend to be smaller than that of DS and OSS.

Experiments
We implemented our techniques in Fast Downward (Helmert
2006), extending Gnad et al.’s (2015) implementation of DS
and the symmetries implementation of Metis (Alkhazraji et
al. 2014). To obtain the decoupled structural symmetries of a
planning task Π, we use the BLISS tool (Junttila and Kaski
2007) on the factored problem description graph of Π. To
obtain star factorings, we use Gnad et al.’s X-shape factor-
ing strategy, which greedily computes a factoring that max-
imizes the number of leaf factors. Like Gnad et al., if the
obtained factoring has less than two leaf factors, we abstain
from solving the task (the rationale being that decoupled
search addresses conditional dependencies across multiple
leaves).

We conduct experiments in optimal planning, in satisfic-
ing planning, as well as in proving unsolvability. In all of
these settings, we use all IPC STRIPS benchmarks (1998
– 2016) where the factoring method does not abstain. The
experiments were performed on a cluster of Intel E5-2660
machines running at 2.20 GHz, with time (memory) cut-offs
of 30 minutes (4 GB).

Optimal Planning
Most prior work using symmetry breaking in classical
planning focused on its application in optimal planning,
where reducing the size of the search space by pruning
states is highly beneficial (e. g. Pochter, Zohar, and Rosen-
schein (2011), Domshlak, Katz, and Shleyfman (2012)).
Here, we show that the same holds when applying symme-
tries to the decoupled state space.

Table 1 shows the number of solved instances by the base-
line algorithms – standard search (STD), orbit space search
(OSS), and decoupled search (DS) – and our new decoupled
orbit space search (DOSS). DOSS clearly excels in terms of
total coverage. Taking a more detailed look at the individual
domains reveals that, when using blind search, DOSS dom-
inates DS in all domains, being strictly better in five. The
comparison to OSS illustrates the complementarity of both
approaches. Although the coverage increases in domains in
which DS does not perform well, enabling symmetry prun-
ing cannot completely compensate for the lower coverage of
DS in, e. g., Elevators, Miconic, or Transport.

Matters are different when using LM-cut (Helmert and
Domshlak 2009). DOSS almost always inherits the strength
of its best component method. There are only three bench-
mark instances solved by either of OSS or DS, but not
by DOSS. Even more impressively, in five domains DOSS



Blind Search LM-cut
Domain # STD OSS DS DOSS STD OSS DS DOSS
Childsnack 20 0 6 0 6 0 6 0 6
Depots 22 4 6 4 5 7 8 7 9
Driverlog 20 7 7 11 11 13 13 13 13
Elevators08 30 14 15 9 11 22 22 23 23
Elevators11 20 12 13 7 9 18 18 18 18
Floortile11 20 2 2 2 2 7 8 7 8
Floortile14 20 0 0 0 0 6 8 6 8
Logistics00 28 10 12 22 22 20 20 28 28
Logistics98 35 2 3 4 4 6 6 6 8
Miconic 145 50 51 36 38 136 137 135 136
NoMystery 20 8 9 17 17 14 15 20 20
Pathways 30 4 4 4 4 5 5 4 4
Rovers 40 6 6 7 7 7 7 9 9
Satellite 36 6 6 6 6 7 13 7 13
TPP 29 5 6 23 23 5 7 18 20
Transport11 20 6 6 6 6 6 7 6 6
Transport14 20 7 7 4 4 6 6 6 6
Woodwork08 24 6 6 7 7 12 14 17 18
Woodwork11 15 2 2 3 3 8 9 11 12
Zenotravel 20 8 8 11 11 13 13 13 13
Others 37 14 14 14 14 14 14 14 14∑

651 173 189 197 210 332 356 368 392

Table 1: Coverage on all optimal planning benchmarks that
have an X-shape factoring. All configurations use A∗ search.
Domains with equal coverage in all configurations are sum-
marized in “Others”. Best results marked in bold face.

strictly dominates both of its components, and in two of
these domains by more than one instance. This shows that
true synergies, DOSS being more than the sum of its com-
ponents, occur not only in theory (cf. Theorem 3), but also
in practice.

In Figure 3, the four left-most scatter plots (the two
columns marked by “OPT”) shed further light on the rela-
tion between DOSS and its components when using LM-
cut. The upper plots show the number of expanded states
until the last f-layer in A∗. In both plots, the advantage of
DOSS over OSS and DS is pronounced, even more so for
OSS. The bottom plots show that this reduction in search
space size nicely translates into reduced runtime. Especially
interesting is that DOSS seems to come at a very low risk:
the computational overhead pays off, most of the time.

Satisficing Planning
We next consider satisficing planning. We run greedy best-
first search using the hFF heuristic (Hoffmann and Nebel
2001), both with and without preferred operator pruning. It
turns out to be beneficial, in this setting, to apply only the
center-affecting permutations in the quest for canonical rep-
resentatives: applying the center-stable automorphisms typ-
ically incurs more runtime overhead than search benefit.

Table 2 shows coverage results of DOSS compared to
the baseline algorithms. Independent of the usage of pre-
ferred operators, DOSS very consistently beats its compo-
nent methods. There are only two domains where DOSS
loses coverage. In Mystery, due to the computational over-
head of obtaining the symmetry relation on the very large

no preferred operators preferred operators
Domain # STD OSS DS DOSS STD OSS DS DOSS
Childsnack 20 0 4 0 4 3 14 6 20
Depots 22 14 17 19 21 18 19 20 22
Driverlog 20 18 18 20 20 20 20 20 20
Elevators11 20 18 18 20 20 20 20 20 20
Floortile11 20 6 6 4 7 6 7 6 7
Logistics98 35 26 31 35 35 35 35 35 35
Mystery 4 0 0 1 0 1 1 1 0
NoMystery 20 9 10 19 19 10 11 19 19
Pathways 30 11 11 13 13 20 20 20 20
Rovers 40 23 23 22 22 40 40 40 40
Satellite 36 30 35 33 35 36 36 36 36
TPP 29 21 18 25 26 29 29 29 29
Transport08 30 16 17 30 30 28 27 30 30
Transport11 20 0 1 20 20 11 10 20 20
Transport14 20 0 0 20 20 6 7 20 20
Woodwork11 20 19 19 20 20 20 20 20 20
Others 274 256 256 256 256 256 256 256 256∑

660 467 484 557 568 559 572 598 614

Table 2: Coverage on all satisficing planning benchmarks
that have an X-shape factoring. All configurations use
greedy best-first search with the hFF heuristic. Domains with
equal coverage in all configurations are summarized in “Oth-
ers”. Best results marked in bold face.

leaf state spaces in this domain. And in Rovers, due to the
worse performance of DS with respect to STD. Except for
those cases, DOSS again inherits the strengths of both DS
and OSS. And again, it sometimes surpasses those strengths
– in Depots and Childsnack – exhibiting true synergy. In-
deed, in Childsnack with preferred operators, DOSS out-
classes both its components, increasing coverage by +6 rel-
ative to OSS and by +14 relative to DS.

In Figure 3, the plots in the two “SAT” columns show
number of expanded states (top) and runtime (bottom) when
not using preferred operators. The comparison of DOSS to
OSS is extremely favorable, showing in particular that us-
ing decoupled search on top of symmetry breaking incurs
hardly any risk. In the comparison of DOSS to DS, the im-
provements are smaller but still significant. In the runtime
plot, observe that, the more difficult a task is, the bigger is
the benefit of applying symmetries: for tasks that are quickly
solved by both algorithms, DS can be significantly faster, yet
on more challenging tasks the overhead of symmetry break-
ing is typically outweighed by the reduced search space size.

Proving Unsolvability
Proving unsolvability has recently gained atten-
tion (Bäckström, Jonsson, and Ståhlberg 2013;
Hoffmann, Kissmann, and Torralba 2014), culminating
in the Unsolvability IPC 2016. To prove a task unsolvable,
one possibility is to completely exhaust the reachable state
space. Since both decoupled search and symmetry breaking
are techniques developed to reduce the size of the state
space, we apply DOSS to exhaust state spaces. We do so
on the domains of the Unsolvability IPC’16; we also run
all standard IPC benchmarks (of both, the optimal and
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Figure 3: Scatter plots, with a data point per instance, showing the number of expanded nodes (top) (until last f-layer for OPT
configurations) and runtime in seconds (bottom) of algorithms “X vs. Y”, with X on the x-axis and Y on the y-axis. OPT
configurations use A∗ with the LM-cut heuristic, SAT use greedy best-first search with the hFF heuristic.

satisficing tracks), which of course are not unsolvable, but
which provide an additional evaluation of the ability (or
lack thereof) to exhaust state spaces.

The results in Table 3 shed light on the number of state
spaces each technique can entirely build. For readability,
we aggregate different versions of each domain into a sin-
gle row. We compare standard search and orbit space search

DS DOSS
Domain # STD OSS OPT COM OPT COM
Childsnack 40 0 6 0 0 6 12
Depots 22 4 5 3 5 4 8
Driverlog 20 5 7 8 10 8 10
Elevators 100 21 28 8 41 10 42
Logistics 63 12 14 23 25 24 25
Miconic 145 45 51 30 145 35 137
NoMystery 40 11 12 25 28 26 28
Satellite 36 4 5 4 4 5 5
TPP 29 5 6 11 11 14 16
Transport 140 25 29 18 34 20 34
Woodworking 87 11 12 16 16 16 17
Others 177 21 21 21 21 21 21

Unsolvability IPC’16
BagTransport 29 7 7 4 11 5 11
NoMystery 24 2 2 12 12 12 12
Rovers 20 7 7 8 8 9 9∑

972 180 212 191 371 215 387

Table 3: Number of tasks for which the reachable part of
the state space could be built (top) or that could be proved
unsolvable (bottom). OPT/COM: Decoupled search variants
that preserve optimality/completeness. Domains with equal
numbers in all configurations are summarized in “Others”.
Best results marked in bold face.

against two variants of decoupled search and DOSS, called
OPT and COM, of which OPT preserves completeness and
optimality while COM preserves completeness only. OPT is
exactly what we described above; COM simplifies this by
maintaining not pricing functions, but reachability functions
which merely indicate, for each leaf state sL, whether or not
sL has been reached yet. (Reachability functions are equiv-
alent to pricing functions in a modified task where all action
costs are assumed to be 0.) Clearly, COM suffices to prove
unsolvability, so it is our main focus here; results for OPT
are included for reference.

According to Table 3, the OPT variant of DS is highly
complementary to OSS, and enabling symmetry pruning on
top of DS does not win back the advantage of orbit space
search in most domains where OSS is better. Compared to
DS, performance is still improved significantly.

The results for the more suitable COM variant, however,
are much better. The COM variant of DOSS dominates both
baselines in all domains but Miconic, where DOSS explores
larger parts of the state space than DS.1 In Childsnack, De-
pots, Elevators, TPP, Woodworking, and UIPC’16 Rovers,
DOSS outperforms both its components, exhibiting once
again a strong practical ability for exploiting synergies.

Figure 4 shows more detailed results in terms of state
space size (top) and runtime (bottom), using the more appro-
priate COM variant of decoupled search. The general picture
is very similar to that of optimal and satisficing planning.
Compared to OSS, the advantage of decoupled search yields
huge search space and runtime reductions, at a very low risk.
Compared to DS, the improvements are smaller but still sig-

1This is counter-intuitive because symmetries reduce the size of
the decoupled state space. However, using symmetries may reduce
the power of the dominance pruning that decoupled search uses in
order to prune states with higher prices.
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Figure 4: Like Figure 3, for COM state space exhaustion.

nificant. It is noteworthy that almost all bad cases for DS
vs. DOSS, i. e., points above the diagonal, in particular the
cluster around x = 103 in the state space size plot, are due
to the Miconic domain. In all other domains, the runtime of
DOSS merely increases by a small constant factor, and the
state space size is mostly smaller than that of DS.

Conclusion
Symmetry breaking and star-topology decoupled search are
complementary search reduction methods. As we show, they
can be combined. That combination may be stronger than
both components, exhibiting true synergy. Most remarkably,
such synergy is not only possible in theory, but happens quite
regularly on the standard planning benchmarks.

Future work includes the further exploration of algorithm
space – with star-topology decoupled search being a re-
formulation of the search itself, essentially all search re-
duction methods for forward search are potentially appli-
cable (Gnad, Wehrle, and Hoffmann 2016; Torralba et al.
2016). Combinations of several methods, like decoupled
search + partial-order reduction + symmetries, are interest-
ing as well. Beyond this, another exciting direction is the
application of these ideas beyond planning, in particular in
verification where state space exhaustion is paramount.
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Torralba, Á.; Gnad, D.; Dubbert, P.; and Hoffmann, J. 2016.
On state-dominance criteria in fork-decoupled search. In
Kambhampati (2016).
Wehrle, M.; Helmert, M.; Shleyfman, A.; and Katz, M.
2015. Integrating partial order reduction and symmetry
elimination for cost-optimal classical planning. In Yang, Q.,
ed., Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI’15). AAAI Press/IJCAI.


