
On Picking Good Policies: Leveraging Action-Policy Testing in Policy Training

Jan Eisenhut1, Daniel Fišer2, Isabel Valera1,3, Jörg Hoffmann1,4

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2Aalborg University, Denmark

3Max Planck Institute for Software Systems, Saarbrücken, Germany
4German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

{eisenhut,ivalera,hoffmann}@cs.uni-saarland.de, danfis@danfis.cz

Abstract

Testing is a natural approach to assess the quality of learned
action policies π. Prior work introduced policy testing in AI
planning as searching for bugs in π, that is, states where π is
sub-optimal with respect to a given testing objective. Beyond
quality assurance, an obvious application of these methods
is policy selection: given several π to choose from, we can
use testing to select the “least buggy” one. Here, we integrate
testing-based policy selection into the training process. This
includes making more informed decisions when selecting the
final policy after training, as well as choosing more promising
intermediate policies during the training process. Our experi-
ments with ASNets action policies show that integrating test-
ing allows us to more reliably obtain good-quality policies.

Source code and benchmarks —
github.com/fai-saarland/bughive/tree/icaps25-training

Introduction
Learned action policies π, particularly ones based on neu-
ral networks, are increasingly prevalent in AI planning (e.g.,
Groshev et al. 2018; Garg, Bajpai, and Mausam 2019; Toyer
et al. 2020; Ståhlberg, Bonet, and Geffner 2022; Wang and
Thiébaux 2024; Rossetti et al. 2024). Prior work (Steinmetz
et al. 2022; Eisenhut et al. 2023, 2024) introduced policy
testing in classical planning as a means for quality assur-
ance; we will refer to this as π-testing to avoid confusion
with the test set in policy learning. A “bug” in a policy π
is defined as a state s on which π is sub-optimal. Random
walks are used to find π-test states, and sufficient criteria to
prove sub-optimality (called π-test oracles) are used to prove
π-test states to be bugs.

Here, we investigate the use of π-testing to enhance the
policy learning process itself. We leverage π-testing for pol-
icy selection, an inherent sub-task of policy learning. Specif-
ically, we investigate how to apply π-testing offline, as a val-
idation criterion after training, as well as online, to focus on
more promising candidates during training.

Regarding the offline application, say we have trained on
smaller tasks for numerous epochs, possibly with several
different initial weights or hyper-parameters. Saving all in-
termediate policies, we have accumulated many candidates.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Which one to select is non-trivial as candidates flawless on
the training set may be bad on the (unknown) test set, e.g.
due to overfitting. A simple approach used in several prior
works is to evaluate the candidates on a set of validation
tasks. One can check, e.g., whether the candidates solve the
initial states. Here, we propose π-testing as a means to en-
hance reliability in policy-candidate validation, minimizing
the risk of choosing poor candidates. We realize this by con-
sidering additional states in each validation task, and as-
signing scores based on whether the policy solves them and
whether we can classify them as bugs.

In our online use of π-testing, we affect not only the final
policy selection but the candidate set itself. We introduce a
training algorithm which, to the best of our knowledge, is the
first one that does not always continue training on the most
recent policy, and instead iteratively expands a tree-shaped
policy-version history. All intermediate policies are stored
in a set Θ, and in each epoch any policy can be selected for
further training (so that, in particular, the same policy can
have multiple successors). To inform the selection step, we
employ π-testing, selecting the policy π from Θ based on its
π-test result on the validation tasks. For comparison, we also
run random selection from Θ in our experiments.

We experiment with ASNets policies (Toyer et al. 2020),
on the IPC 2023 learning track benchmarks. Offline π-
testing yields final policies with substantially better test set
coverage. An additional observation here is that even the
simple use of validation tasks – selecting the policy based on
validation-set coverage, which the original ASNets authors
do not report about – often yields a comparable performance
boost. The main advantage of π-testing, compared to this, is
that it yields more robust performance on states other than
the IPC initial states, and in terms of the frequency of policy
bugs (as found by the same π-testing machinery).

The results with respect to the online application of π-
testing are mixed. π-testing based policy selection during
training can yield improved performance when the budget in
terms of training epochs is small; when that budget is high,
performance is rarely improved and sometimes deteriorates.
However, even though our results do not demonstrate a clear
advantage across the board, the branching ability of our tree-
shape training algorithm can be beneficial in some domains
also for high budgets.

Background
We first provide the necessary background on classical plan-
ning, action policies represented by Action Schema Net-
works (ASNets) and their training, as well as policy testing.

Finite-Domain Representation Planning
A finite-domain representation planning task (Bäckström
and Nebel 1995) Π is a tuple ⟨V ,A, I, G⟩, where V is a fi-
nite set of variables, each v ∈ V associated with a finite
domain dom(v); A is a finite set of actions; I is a full vari-
able assignment called the initial state; and G is a partial
variable assignment called the goal. Complete variable as-
signment over V are referred to as states. S denotes the set
of all states and s ∈ S is a goal state if G ⊆ s. Each action
a ∈ A is a triple ⟨pre(a), eff(a), cost(a)⟩, where precon-
dition pre(a) and effect eff(a) are partial variable assign-
ments and cost(a) ∈ R+

0 is the action cost. We say a is
applicable in state s if pre(a) ⊆ s. Applying an applicable
action a to a state s results in a state sJaK such that sJaK = s
except that all variables v on which eff(a) is defined are re-
assigned to eff(a)[v]. Building on that, a sequence of ac-
tions a⃗ = ⟨a1, . . . , an⟩ is applicable in s0 ∈ S if there ex-
ist states s1, . . . , sn such that ai is applicable in si−1 and
si = si−1JaiK. Applying a⃗ in s0 results in s0J⃗aK = sn. If
a⃗ is applicable in s and sJ⃗aK is a goal state, a⃗ is called a
plan for s with cost cost(⃗a) =

∑n
i=1 cost(ai). A plan a⃗

is optimal if there exists no cheaper plan. The cost-to-goal
function h⋆ maps each state s to the cost of an optimal plan
for s if there exists a plan for s and to∞ otherwise.

Action Policies and ASNets
Deterministic action policies π : S → A ∪ {∅} map states
s to actions a applicable in s, or ∅ if no such action exists.
We run π on s by iteratively applying the action selected by
π until there either exists no applicable action, we reach a
goal state, or we reach a state for the second time. Formally,
the unique run σπ(s) of π on s = s0 is the longest state ac-
tion sequence ⟨s0, a0, . . . , an−1, sn⟩ consisting of pairwise
different states and such that, for all i < n, G ⊈ si and
ai = π(si) ∈ A is applicable in si with si+1 = siJaiK. The
run cost of π on s is costπ(s) = cost(⟨a0, . . . , an−1⟩) if
G ⊆ sn and costπ(s) =∞ otherwise.

We focus on learned action policies represented by neu-
ral networks. While our proposed methods are generic, we
implement them for the well-established ASNets architec-
ture (Toyer et al. 2018, 2020). Leveraging the relation struc-
ture of planning problems, ASNets are domain-generalized
policies, i.e., they are trained on small instances to learn a
common set of weights θ, which are then used to instantiate
ASNets policies for larger instances from the same domain.

ASNets are trained using so-called imitation learning: Be-
fore every training epoch, the current policy is used to sam-
ple states from the (small) training instances and for each
such state s, an external (symbolic) planner is called to ob-
tain the best action a for s. These pairs (s, a) of the input
state s and its label a are then used as the training data, which
(possibly) grow with every training epoch as more states are
sampled and labeled by the external planner.

Algorithm 1: Original ASNets training algorithm.
Inputs: Training tasks Πtrain

Params: Maximal number of epochs Nepoch

Output: Weights θ (policy model)
1 θ ← randomWeights();
2 M← ∅ ; // training data
3 for i = 1, . . . , Nepoch do
4 θ,M← trainEpoch(θ,M,Πtrain);
5 if earlyTerminationCriterion(θ,M, i) then break;

Algorithm 1 sketches the training algorithm of Toyer et al.
The training data M is shared across all invocations of
trainEpoch and extended in each epoch as described above.
The trainEpoch procedure runs a fixed number of train-
ing cycles. In each cycle, it randomly samples a fixed-size
mini-batch from M and uses the Adam optimizer to opti-
mize weights θ. Training is stopped if the limit Nepoch is
reached (we do not use a time limit as Toyer et al.), or if
the trained policy solves all training instances in 20 con-
secutive epochs (which we denote here with the procedure
earlyTerminationCriterion). The selected policy is always
the result of the last trainEpoch invocation, so all interme-
diate policies can be discarded. In particular, this means that
policy selection relies only on the training dataM, i.e., no
validation data is used.

Policy Testing
We use the π-testing framework of Steinmetz et al. (2022)
as adapted by Eisenhut et al. (2023, 2024). Given a planning
task and an action policy π, a bug in π is a state s such that
costπ(s) > h⋆(s), i.e., π does not solve s even though s is
solvable or π solves s but there exists a cheaper plan. The
search for bugs in action policies is organized in a two-step
procedure: we first build a pool P ⊆ S of π-test states in
a fuzzing process, and then we invoke π-test oracles on the
generated pool states, attempting to identify them as bugs.

The fuzzer is based on random walks that can be guided
by biases (Eisenhut et al. 2024), aiming to steer them to-
wards bugs. While these can enhance π-testing, we do not
employ biases here as they are policy-dependent and thus
hinder a fair comparison of different action policies, i.e., we
compare policies on the exact same pools.

Likewise, the oracle we employ is fixed in each compar-
ison. We rely on bound-maintenance oracles (BMOs), the
best-performing class of oracles of Eisenhut et al. (2023),
which work by maintaining upper bounds on h⋆ across π-
test states and decreasing them via comparisons based on
dominance functions (Torralba 2017). They have the key
ability to prove that π is sub-optimal on a π-test state with-
out a planning process, allowing quick configurations, but
can also be combined with more expensive (search-based)
tools, yielding slower but more thorough oracles.

Applying Policy Testing in Policy Training
We present our refined training algorithm in Algorithm 2. It
consists of three steps: a start-up phase based on the origi-

Algorithm 2: Advanced training including π-testing.
Inputs: Training tasks Πtrain, validation tasks Πval

Params: # random initializations Ninit,
start-up epochs Nstart (per initialization),
main phase epochs Nmain,
maximal # expansions Nexp (per model)

Output: Weights θ (policy model)
1 M← ∅ ; // training data
2 Θ← ∅ ; // set of policy models θ
3 T ← ∅ ; // map of models to π-test results
4 E ← ∅ ; // map of models to # expansions

// start-up phase
5 for i = 1, . . . , Ninit do
6 θ ← randomWeights();
7 Θ← Θ ∪ {θ}; T [θ]← π-test(θ,Πval); E [θ]← 0;
8 for j = 1, . . . , Nstart do
9 E [θ]← 1;

10 θ,M← trainEpoch(θ,M,Πtrain);
11 Θ← Θ∪{θ}; T [θ]← π-test(θ,Πval); E [θ]← 0;

// main phase with online policy selection
12 for i = 1, . . . , Nmain do
13 θ ← selectOnline(Θ, T , E , Nexp);
14 E [θ]← E [θ] + 1;
15 θ,M← trainEpoch(θ,M,Πtrain);
16 Θ← Θ ∪ {θ}; T [θ]← π-test(θ,Πval); E [θ]← 0;

// offline selection of final policy
17 θ ← selectOffline(Θ, T);

nal training algorithm, an optional main phase with online
policy selection, and the offline selection of the final policy.

As inputs, we require a set of training tasks Πtrain and
validation tasks Πval. Since ASNets training requires a high
number of invocations of a teacher planner, we are restricted
to training instances that a traditional planner can solve
within seconds. In contrast, we are able to support signifi-
cantly larger validation tasks. Their size is only limited by
how quickly we can π-test policies on them meaningfully.

As in the original algorithm,M is the accumulated train-
ing data, including the set of states sampled from in each
training epoch. Throughout the entire training process, we
store all models θ in a set Θ. Each θ completely determines
an action policy πθ. We obtain a new θ either by sampling
random weights (function randomWeights) or by loading
an old model θold and training it for an epoch (function
trainEpoch), in which case we call θ a successor of θold and
the invocation of trainEpoch an expansion. Note that each
expansion of the same θold likely yields a different succes-
sor, e.g., becauseM has changed or because random sam-
pling fromM results in different mini-batches.

Upon learning a new θ, we π-test the corresponding pol-
icy πθ on Πval and store the result in the map T . In addition,
we keep track of how often we have expanded each θ in a
map E , allowing us to balance the trade-off between focus-
ing on the most promising models and exploring a higher
number of them.

The start-up phase follows Algorithm 1, extending it only

in that we conduct Ninit random initializations of θ. We
include it to guarantee a number Nstart of training steps
per random initialization. Apart from altering random seeds
in each run, we could also adapt hyper-parameters such as
the number of neural network layers. However, we decided
against including that to keep our experiments simpler.

The main phase enables online π-testing based policy
selection and branching. For Nmain iterations, we select a
model θ ∈ Θ according to its π-test result T [θ] and the
number of expansions E [θ]. Then, we train θ producing a
new set of weights, which we π-test on Πval and add to Θ.
The function selectOnline returns the best θ under the re-
striction that E [θ] is below the expansion limit Nexp, i.e., θ
with Nexp successors are ignored. Note that this online pol-
icy selection informed by π-testing on Πval marks the only
way in which we incorporate information derived from vali-
dation data in the training process. We never directly include
any validation data in the training process itself.

Finally, we invoke selectOffline to select the final policy.
The only algorithmic extension required for this offline pol-
icy selection is to store and π-test the intermediate policies.
In particular, the number of expansions is ignored.

Policy selection in selectOffline and selectOnline is based
on the same score, which consists of three equally weighted
components derived from (a) the number of validation tasks
where the policy solves the initial state, (b) the percentage
of processed pool states solved by the policy, and (c) the
percentage of them classified as bugs by a fixed oracle.1 All
three scores are relative, comparing policies to the best pol-
icy in each category. For example, if π1 solves no validation
task at all, π2 solves only one, but one is the maximum, then
π1 receives the worst possible and π2 the best possible score.
However, if there is a π3 solving all validation tasks, both
π1 and π2 receive (almost equally) bad scores. In addition,
to avoid full π-testing on larger tasks outside the scalability
range of a policy π, we completely omit π-testing on a task
if it fails to solve the initial state, in which case we base the
scores on the assumption that π solves no states and all are
bugs in π, even though we do not know whether this is true.

We have experimented with different test scores in pre-
liminary experiments and found that the current set-up us-
ing equally weighted scores is a reasonable choice. In most
cases, the percentage of solved pool states and identified
bugs primarily act as tie-breakers in case multiple policies
achieve (almost) the same number of solved validation tasks.
We have seen that this leads to better results than focusing
more on solved pool states or bugs (or even selecting the
final policy based only on bug states).

Experiments
To conduct our experimental evaluation, we extend the
framework of Eisenhut et al. (2024). Apart from using their
π-testing tool, we implement our refined training algorithm
within the ASNets framework introduced there, which is a
faster re-implementation2 of ASNets in C. To run π-testing

1Here, “processed” refers to the states that could be π-tested
within a time limit of two minutes per task.

2https://gitlab.com/danfis/cpddl

Evaluating different selection criteria; all policies trained using “line” configuration (240 epochs)

Domain |Πtest|
coverage (# solved instances) on Πtest

|Πrel| |P|
% solved states ∈ P % bug states ∈ P

early
Πtrain

loss
Πtrain

solved
Πval

π-test
Πval

solved
Πtest

solved
Πval

π-test
Πval

solved
Πtest

solved
Πval

π-test
Πval

solved
Πtest

Blocksworld 60 39.3 42.3 50.3 50.3 52.5 48.5 4850 96.6 96.8 95.4 3.0 3.1 3.7
Childsnack 60 14.5 11.3 35.8 35.8 43.3 28.8 2706 26.9 26.9 26.9 4.4 4.4 4.6
Ferry 63 38.5 55.3 63.0 63.0 63.0 61.0 6100 100.0 100.0 100.0 1.0 0.8 1.0
Floortile 60 17.5 14.0 21.5 23.0 25.8 19.8 1975 20.1 20.1 20.4 3.0 3.1 2.6
Miconic 70 48.8 56.3 66.0 70.0 70.0 65.0 6062 99.3 100.0 96.9 66.7 47.5 69.3
Rovers 39 8.5 10.8 12.8 12.8 15.0 11.8 1175 81.9 81.9 81.3 39.8 39.8 39.4
Satellite 60 53.3 49.5 56.3 58.8 60.0 55.0 5500 95.5 97.4 96.4 39.4 34.4 30.6
Sokoban 43 4.5 4.8 5.8 5.8 7.0 5.0 458 83.4 83.8 78.1 34.6 33.9 37.6
Spanner 84 6.0 6.0 81.8 73.0 82.3 70.3 6122 89.5 85.3 88.7 49.5 43.8 49.2
Transport 55 37.0 34.0 38.8 41.0 42.3 37.8 3775 94.1 98.2 96.1 30.3 21.4 26.5

Evaluating policies trained using different algorithm configurations; same criterion for selecting final policy (“π-test Πval”)

Domain |Πtest|
coverage (# solved instances) on Πtest

budget: 40 epochs budget: 60 epochs budget: 80 epochs budget: 240 epochs

start line line
π-test tree tree

π-test line line
π-test tree tree

π-test line line
π-test tree tree

π-test line line
π-test tree tree

π-test

Blocksworld 60 20.3 44.3 47.8 35.8 43.8 47.0 48.5 43.0 51.5 44.8 49.5 49.3 51.3 50.3 52.0 53.5 53.0
Childsnack 60 16.0 29.5 36.8 32.5 32.8 18.8 36.8 38.8 35.3 39.8 38.3 39.3 36.5 35.8 47.0 42.0 39.3
Ferry 63 62.8 63.0 63.0 63.0 63.0 63.0 63.0 62.8 63.0 62.8 63.0 62.8 63.0 63.0 63.0 62.8 63.0
Floortile 60 0.0 16.3 20.5 3.0 3.5 21.8 19.0 6.8 4.3 22.3 20.3 12.0 8.8 23.0 18.8 22.0 19.8
Miconic 70 61.8 68.5 69.3 62.3 67.8 69.5 68.8 65.5 70.0 70.0 68.8 62.8 70.0 70.0 68.8 68.3 70.0
Rovers 39 0.0 8.8 8.5 3.8 1.8 10.3 10.3 4.5 9.0 11.5 10.3 6.3 9.3 12.8 10.3 11.0 10.8
Satellite 60 19.5 58.0 56.5 52.8 56.0 58.5 56.5 54.8 57.5 57.8 56.5 57.0 57.5 58.8 56.5 59.3 57.5
Sokoban 43 1.8 5.5 4.5 3.0 3.5 5.8 4.5 3.8 3.8 5.3 4.5 4.8 4.0 5.8 4.3 4.8 4.0
Spanner 84 66.8 74.3 67.0 72.8 75.8 83.5 67.0 79.0 75.8 83.5 67.0 78.3 73.8 73.0 67.0 78.8 69.0
Transport 55 25.8 41.5 38.5 28.5 39.3 41.8 39.0 37.3 38.0 41.8 38.8 37.5 38.0 41.0 38.8 40.8 40.3

Table 1: Policy quality in Πtest, across policies selected by different criteria (top) or trained differently (bottom). In the upper
right part, Πrel ⊆ Πtest is the set of relevant problems considered for the comparison (all compared policies solve the initial
state, π-testing completed). P is the joint state pool across all Π ∈ Πrel. “% solved states ∈ P” denotes the percentage of pool
states solved by the respective policy and “% bug states ∈ P” denotes the percentage of identified bugs among them. All results
are averaged over four experiment runs.

during training (and for the overall experiment), we use an
adapted version of lab (Seipp et al. 2017). The code and
dataset is publicly available.

We take the benchmarks of the IPC 2023 learning track
(IPC’23). For each domain, this contains 100 or slightly less
(numbered) training tasks, out of which the first 20 form our
training set Πtrain and 40 are used as our validation set Πval

(we cover the full range of the original training set, i.e., if
it contains exactly 100 tasks, every second of the remaining
80 tasks is selected for Πval). Note that the IPC’23 training
set already contains instances that are too large for imitation
learning using a teacher planner, which limits the number of
tasks we can select for Πtrain. We adopt the IPC’23 test set
Πtest, which consists of 90 tasks per domain, out of which
30 are classified as “easy”,“medium”, and “hard”, respec-
tively. We omit tasks where pre-processing steps (computing
the grounded task as used by ASNets or computing domi-
nance functions for our π-test oracles) run out of memory.
The final number of test tasks used for each domain is listed
in Table 1, column |Πtest|.

During training, we store all policies on disk, which re-

quired only up to a few MiBs per policy. All policies are π-
tested on precomputed state pools (of size up to 50/100 for
validation/test tasks). For π-testing on Πval (i.e., when se-
lecting a policy), we use a quick BMO π-test oracle (Eisen-
hut et al. 2023) and a time limit of two minutes per task.
When π-testing the final policies on Πtest, we use an ex-
tended BMO including the plan improver Aras (Nakhost and
Müller 2010), and set time and memory limits of 12 hours
and 8 GiB per task. The entire experiment (including train-
ing) is repeated four times with different random seeds and
was run on a cluster of AMD EPYC 7702 processors.

To evaluate the offline application of π-testing, we com-
pare five criteria for selecting the final policy, choosing:

1. π obtained after 20 consecutive epochs of solving all
training tasks or the last π if no such policy exists (“early
Πtrain”, resembling the selection criterion of Toyer et al.
(2020) explained in the “Background” section);

2. π with the minimal loss on the training set as computed
in trainEpoch (“loss Πtrain”);

3. π solving the most validation tasks (“solved Πval”);

4. π with the best π-test score (“π-test Πval”); and
5. as a hypothetical best-case with access to Πtest, π solving

the highest number of test tasks (“solved Πtest”, timeout
of 5 minutes per task)—this criterion is only added as a
theoretical reference, which allows us to better assess the
other methods.

Note that selecting the policy based on a loss on the vali-
dation set is not practicable, as the loss depends on the plan
found by the teacher planner and Πval contains tasks that are
too large for the teacher planner to solve them in a reason-
able time.

To evaluate the online use of π-testing, we compare dif-
ferent configurations of Algorithm 2 for multiple budgets
in terms of the overall number of training epochs. We al-
ways use Ninit = 4 seeds. “line” is the configuration clos-
est to the original algorithm, using the entire budget in the
start-up phase (Nstart ∈ {10, 15, 20, 60}, Nmain = 0).
All other configurations use a short start-up phase (“start”,
Nstart = 5) and the remaining budget in the main phase
Nmain ∈ {20, 40, 60, 220}). We include three such configu-
rations:

1. “line π-test” which uses π-testing for policy selection but
does not allow branching (Nexp = 1);

2. “tree” which allows branching (Nexp = 4) but uses ran-
dom policy selection; and

3. “tree π-test” which uses branching and π-testing.

Table 1 shows the results. In the upper part, we evaluate
the offline use of π-testing, comparing the said five criteria
for selecting the final policy from a fixed set of 240 can-
didates trained with “line”. Regarding coverage (left), the
methods relying only on Πtrain are significantly worse than
the methods based on Πval, which are basically on par with
each other and often come close to “solved Πtest” (the the-
oretical optimum here, up to the different runtime restric-
tions). While “π-test Πval” only has slight advantages over
“solved Πval” in some domains with respect to coverage,
it has clear advantages when considering policy quality in
more detail (right): In terms of solved states and bugs, the
selection based on the π-test score is the best performing
method, often even performing better than “solved Πtest”
despite that method’s access to Πtest. Also note that the ta-
ble does contain information about plan length performance:
in all but one domain, most pool states are solved and hence
most identified bugs are states on which the policy’s plan is
sub-optimal. In general, the results show that employing a
reliable policy selection method matters and that π-testing
can serve to that effect.

In the lower part of the table, we evaluate the online ap-
plication of π-testing, comparing the said four training con-
figurations while fixing “π-test Πval” for final policy selec-
tion. For small training budgets (particularly 40 epochs), π-
testing based policy selection can yield improved coverage
while for high budgets this is almost never the case. This
trend is to be expected to a certain degree. It makes more
sense to apply a bias to focus on particular candidates if we
cannot consider a high number of them. Applying such a
bias inevitably risks ignoring candidates and overfitting to

Πval. An aspect of our training algorithm that can potentially
be useful for high budgets though is its ability to branch: for
budget 240, “tree” is competitive with “line” in all domains
(at least on par, or worse by a < 2 margin only), and is bet-
ter by margins > 5 in Childsnack and Spanner (although
in Childsnack, the ability to branch is clearly not necessary
to reach a significant improvement, as “line π-test” outper-
forms both “tree” and “tree π-test” by ≥ 5). Given the un-
stable nature of ASNets training, we conjecture that random
branching can constitute a form of regularization, yielding
potential advantages of “tree” over “line” for high budgets.

A limitation of our experimental evaluation is that it does
not include an analysis of the opportunity cost of running
π-testing on Πval versus extending the training set Πtrain

with additional tasks. It is clear that it can be practicable to
extend Πtrain to a certain degree and one could also generate
additional training problems of comparable size. However,
note we selected a setup in which Πval contains instances too
large for imitation learning using a teacher planner, limiting
the potential of this alternative.

Conclusion
Learned action policies are gaining ever more traction. Here,
we contribute a first integration of policy testing into the
training process, leveraging π-testing scores for policy se-
lection. Our results indicate that this can yield improved
policies. An interesting topic for future work is to integrate
π-testing into the training process more tightly, using found
bug states to bias or guide the training priorities.

Acknowledgments
This work was funded by the European Union’s Hori-
zon Europe Research and Innovation program under the
grant agreement TUPLES No 101070149, as well as
by DFG Grant 389792660 as part of TRR 248 (CPEC,
https://perspicuous-computing.science).

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Eisenhut, J.; Schuler, X.; Fišer, D.; Höller, D.; Christakis,
M.; and Hoffmann, J. 2024. New Fuzzing Biases for Ac-
tion Policy Testing. In Proceedings of the 34th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’24), 162–167. AAAI Press.
Eisenhut, J.; Torralba, Á.; Christakis, M.; and Hoffmann,
J. 2023. Automatic Metamorphic Test Oracles for Action-
Policy Testing. In Proceedings of the 33rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’23), 109–117. AAAI Press.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proceedings of the
29th International Conference on Automated Planning and
Scheduling (ICAPS’19), 631–636. AAAI Press.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Poli-
cies Using Deep Neural Networks. In Proceedings of the

28th International Conference on Automated Planning and
Scheduling (ICAPS’18), 408–416. AAAI Press.
Nakhost, H.; and Müller, M. 2010. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling (ICAPS’10),
121–128. AAAI press.
Rossetti, N.; Tummolo, M.; Gerevini, A. E.; Putelli, L.; Se-
rina, I.; Chiari, M.; and Olivato, M. 2024. Learning General
Policies for Planning through GPT Models. In Proceedings
of the 34th International Conference on Automated Planning
and Scheduling (ICAPS’24), 500–508. AAAI Press.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In Proceedings of
the 32nd International Conference on Automated Planning
and Scheduling (ICAPS’22), 629–637. AAAI Press.
Steinmetz, M.; Fišer, D.; Enişer, H. F.; Ferber, P.; Gros, T.;
Heim, P.; Höller, D.; Schuler, X.; Wüstholz, V.; Christakis,
M.; and Hoffmann, J. 2022. Debugging a Policy: Automatic
Action-Policy Testing in AI Planning. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling (ICAPS’22), 353–361. AAAI Press.
Torralba, Á. 2017. From Qualitative to Quantitative Dom-
inance Pruning for Optimal Planning. In Proceedings of
the 26th International Joint Conference on Artificial Intel-
ligence (IJCAI’17), 4426–4432.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. Journal
of Artificial Intelligence Research, 68: 1–68.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies with Deep
Learning. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence (AAAI’18), 6294–6301. AAAI Press.
Wang, R. X.; and Thiébaux, S. 2024. Learning Gener-
alised Policies for Numeric Planning. In Proceedings of the
34th International Conference on Automated Planning and
Scheduling (ICAPS’24), 633–642. AAAI Press.

