
A Landmark-Cut Heuristic for Lifted Optimal Planning
Julia Wichlacza;*, Daniel Höllera, Daniel Fišera and Jörg Hoffmanna,b

aSaarland University, Saarland Informatics Campus, Saarbrücken, Germany
bGerman Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

Abstract. Lifted planning – finding plans directly on the PDDL
input model – has attracted renewed attention during the last years.
This avoids the process of grounding, which can become computa-
tionally prohibitive very easily. However, the main focus of recent
research in this area has been on satisficing, i.e., (potentially) subop-
timal planning. We present a novel heuristic for optimal lifted plan-
ning. Our basic idea is inspired by the LM-cut heuristic, which has
been very successful in grounded optimal planning. Like LM-cut, we
generate cut-based landmarks via back-chaining from the goal, gen-
erating cuts of partially grounded actions. However, exactly mimick-
ing the ground formulation is not feasible, this includes computing
the hmax heuristic several times for one computation of the LM-cut
heuristic (which is already NP-hard to compute). We show that our
heuristic is admissible and evaluate it in a cost optimal setting.

1 Introduction
Heuristic search has been extremely successful in AI planning (e. g.
[2, 12, 10, 22, 25]). But this research has almost exclusively been
based on grounded (propositional) task representations, in contrast
to the lifted PDDL input models, that employ variables ranging over
a finite universe of objects. The grounded representation has – in
worst-case – size exponential in the arity (number of arguments)
of the PDDL predicates and action schemas. Hence, planning tech-
niques at the grounded level are limited to planning tasks where that
blow-up is not prohibitive. It has been frequently observed that this
excludes a variety of applications (e. g. [11, 16, 17, 8, 19]).

Lifted planning methods do not require grounding as a pre-
process. They have been considered throughout the history of AI
planning (e. g. [20, 24, 27], but heuristic search planning has be-
gun to develop lifted methods only recently. Research so far devised
an effective lifted forward search mechanism [5], lifted delete re-
laxation [23, 6, 18, 7] and landmark (LM) heuristics [26]. However,
most methods focused on satisficing planning, where no guarantee on
plan quality is given and hence inadmissible heuristics can be used.
The only heuristic for lifted optimal search is hmax [7], but there are
two other systems for lifted optimal planning: hlmc

hom guides a (lifted)
search with ground heuristics computed on a reduced model [14];
and LiSAT translates lifted planning problems into a propositional
SAT problem [13]. The latter can – however – only do length-optimal
and not cost-optimal planning.

A successful heuristic for grounded optimal planning is the LM-
cut heuristic [10], which generates a set of disjunctive action LMs via
back-chaining from the goal definition. It comes with interesting the-
oretical guarantees and has also been highly successful in empirical

∗ Corresponding Author. Email: wichlacz@cs.uni-saarland.de.

evaluations. However, it does not directly transfer to lifted planning.
The problem is that – in the grounded setting – it relies on informa-
tion from the hmax heuristic [2]. hmax needs to be computed repeat-
edly for one computation of the LM-cut heuristic, which is expensive
(NP-hard) in the lifted setting. The information from hmax is needed
in the precondition choice function, which is both important to deter-
mine good cuts (i.e., LMs), but also to show theoretical properties.

Here we present a novel heuristic for lifted optimal planning,
which is inspired by the grounded LM-cut heuristic, generating dis-
junctive action LMs via back-chaining from the goal. In order to cir-
cumvent the problem described above, we present alternative pre-
condition choice functions. While this means that we cannot show
dominance of hmax (like in the grounded setting), we show that (1)
our cuts form partially grounded disjunctive action LMs, and that (2)
the resulting heuristic values are admissible.

We run experiments on recent benchmarks for lifted planning [18]
which we extend with domain variants featuring non-unit action
costs. We compare our methods to the competitors given above: lifted
hmax, hlmc

hom, and LiSAT. LiSAT turns out to be dominant in length op-
timal planning, while cost optimal planning has more mixed results.

2 Preliminaries

We consider normalized PDDL tasks without conditional effects and
negative preconditions, and with all formulas being conjunctions of
atoms (represented as sets of atoms). To simplify the presentation, we
also, w.l.o.g., assume that the initial state as well as the goal consists
of a single ground atom. Every planning task can be transformed to
this form simply by adding two new auxiliary (ground) actions.

A normalized PDDL task is a tuple P =
〈B, T ,V,P,AS , c, ψI , ψG〉 where B is a non-empty set of
objects, T is a non-empty set of types containing a default type
denoted by t0 ∈ T , objects and types are associated by a total
function D : T 7→ 2B such that D(t0) = B and for every pair of
types ti, tj ∈ T it holds that D(ti) ⊆ D(tj) or D(ti) ⊇ D(tj) or
D(ti) ∩ D(tj) = ∅. V is a denumerable set of variable symbols,
each variable v ∈ V has a type τvar(v) ∈ T .
P is a set of predicate symbols, each predicate p ∈ P has ar-

ity ar(p) ∈ N and an associated type τpred(p, i) ∈ T for every
i ∈ {1, ..., ar(p)}. An atom is of the form p(s1, . . . , sn), where
p ∈ P is a predicate symbol, n = ar(p) is the arity of p, and each
si is either an object o ∈ D(τpred(p, i)), or a variable v ∈ V with
D(τvar(v)) ⊆ D(τpred(p, i)). For a given atom α = p(s1, . . . , sn),
V[α] ⊂ V denotes a set of variables appearing in the atom, i.e.,
V[α] = {s1, . . . , sn} ∩ V , and P[α] = p denotes the predicate
of α. Given a set of atoms X , we define V[X] =

⋃
x∈X V[x]

and P[X] =
⋃
x∈X P[x]. A ground atom is an atom α such that

V[α] = ∅.
AS denotes a set of action schemas, each action schema a ∈ AS

is a tuple a = 〈pre(a), add(a),del(a)〉 where pre(a), add(a) and
del(a) are sets of atoms, called preconditions, add effects, and
delete effects, respectively. We, w.l.o.g., assume non-empty precon-
ditions. By V[a] = V[pre(a) ∪ add(a) ∪ del(a)] we denote a set of
variables appearing in the action. The cost function c : AS 7→ R+

0

maps each action schema to a non-negative number.
ψI and ψG are ground atoms, ψI is called the initial-state atom,

and ψG is called the goal atom.
A function σ : V ∪ B 7→ V ∪ B is called a substitution if

σ(o) = o for every object o ∈ B, and for every variable v ∈ V
it holds that either (i) σ(v) ∈ D(τvar(v)), or (ii) σ(v) ∈ V and
D(τvar(σ(v))) ⊆ D(τvar(v)). We write σx to denote σ(x). A set
of all substitutions is denoted by S.

We extend σ element-wise to sets and tuples, i.e., if X =
{x1, . . . , xn}, then σX = {σx1, . . . , σxn}, and if X =
〈x1, . . . , xn〉, then σX = 〈σx1, . . . , σxn〉.

Given a set of substitutions Σ = {σ1, . . . , σn} ⊆ S and an
element X (a set X), Σ(X) denotes the set {σx | x ∈ X}
(
⋃
σ∈Σ σ(X)).
A substitution γ is called grounding if γ(v) ∈ B for every v ∈ V .

A set of all groundings is denoted by G.
A = S(AS) denotes the set of all possible actions, and we assume

that for every two distinct action schemas a ∈ AS and a′ ∈ AS it
holds that S(a)∩S(a′) = ∅. We also extend the cost function c over
the set of actions A by setting c(a) = c(aS) whenever a ∈ S(aS)
for some aS ∈ AS . A ground action is an action a such that V[a] =
∅, i.e., G(AS) = G(A) ⊆ A is the set of all ground actions.

A state is a set of ground atoms. An initial state is the state {ψI}
and every state sG such that ψG ∈ sG is a goal state. A ground
action a is applicable in a state s if pre(a) ⊆ s. The resulting state
of applying an applicable ground action a in a state s is the state
a[s] = (s \ del(a)) ∪ add(a). A sequence of ground actions π =
〈a1, . . . , an〉 is applicable in a state s0 if there are states s1, . . . , sn
such that ai is applicable in si−1 and si = a[si−1] for every i ∈
〈1, . . . , n〉. The resulting state of this application is π[s0] = sn. The
cost of the sequence π is defined as c(π) =

∑n
i=1 c(ai). A sequence

of ground actions π = 〈a1, . . . , an〉 is called plan if it is applicable
in the initial state, and π[{ψI}] 3 ψG is a goal state.

To simplify the notation, we use [n] for a natural number n ≥ 1 to
denote {1, . . . , n}.

3 Lifted Disjunctive Action Landmarks
On the ground level, a disjunctive action landmark is a set of ground
actions out of which at least one must be part of every plan [21, 15].
Given a disjunctive action landmarkL, we can immediately infer that
the minimum cost over ground actions from L, which we denote as
c(L) = mina∈L c(a), is a lower bound on the cost of optimal plans,
i.e., it is an admissible estimate from the initial state. Similarly, if we
have two disjoint landmarks L and L′, then c(L) + c(L′) is a lower
bound as every plan has to contain at least one ground action from L
and another one from L′. This clearly generalizes to an arbitrary set
of (pairwise disjoint) landmarks, but we can compute a lower bound
on the cost of optimal plans also from a set of disjunctive action
landmarks sharing some actions using cost partitioning.

Given a set of disjunctive action landmarks L1, . . . , Ln, we
can associate cost functions c1, . . . , cn mapping ground actions
to numbers with L1, . . . , Ln, respectively, and define ci(Li) =

mina∈L ci(a) for every i ∈ [n]. Then
∑n
i=1 ci(Li) is a lower bound

on the cost of optimal plans, if the cost functions c1, . . . , cn are con-
structed in such a way that for every ground action a ∈

⋃
i∈[n] Li it

holds that
∑
i∈[n],a∈Li

ci(a) ≤ c(a). In other words, the sum over
ci(Li) is an admissible estimate as long as we spread the original
cost c(a) of each action a appearing in landmarks across the cost
functions ci.

One particular heuristic function utilizing this principle is the LM-
cut heuristic [10]. It repeatedly builds the so-called justification graph
and then extracts a landmark and the corresponding cost function
from it by finding a cut in the graph separating the initial state and
goal. The justification graph utilized in LM-cut is a labeled directed
multi-graph having facts (ground atoms) as vertices and, for each
ground action a, there is a set of edges labeled with a that connect
a single selected precondition with all its add effects. Preconditions
are selected using the so-called precondition choice function (pcf)
mapping ground actions to facts, which selects the precondition with
the highest hmax value (breaking ties arbitrarily).

Here, we build on the aforementioned LM-cut heuristic designed
for ground planning. First, we generalize the notion of disjunction
action landmarks to the lifted level. Second, we define justification
graphs on the lifted level and we generalize the notion by showing
it can be built much more freely than it was originally used with-
out loosing its property that any cut separating the initial state and
goal corresponds to a landmark. In particular, we show that we can
choose preconditions arbitrarily. This is not an entirely new finding
as Bonet and Helmert [3] already pointed out that an arbitrary pcf
can be used. We expand on this by showing that we do not even need
a pcf (as a function mapping (ground) actions to (ground) atoms),
but for each add effect of each action, we can choose any precon-
dition freely. Note, however, that choosing freely does not preserve
the dominance of the original LM-cut over the hmax heuristic any-
more. Third, we show how to extract a sequence of landmarks and
the corresponding cost functions from the lifted justification graph in
a similar manner as it is done in the ground LM-cut heuristic leading
to a new admissible landmark-cut heuristic for lifted planning.

We start by introducing the notion of lifted disjunctive action land-
mark as a set of actions (ground or lifted, i.e., with or without vari-
ables) such that its grounding is a ground disjunctive action land-
mark. That is, L ⊆ A is a lifted disjunctive action landmark if every
plan contains at least one ground action from G(L).

Definition 1. A set of actions L = {l1, . . . , lm} is called a lifted
disjunctive action landmark (or a landmark for short) if for ev-
ery plan π = 〈a1, . . . , an〉 there exist i ∈ 〈1, . . . , n〉, and j ∈
〈1, . . . ,m〉 such that ai ∈ G(lj).

Next, we define a lifted justification graph as a labeled directed
multi-graph where vertices are atoms (ground or lifted) and edges
are labeled with actions (also ground or lifted). Following the con-
struction of the justification graph from [10], the edges connect ac-
tions’ preconditions with their add effects and the graph contains the
initial-state and goal facts. In contrast to [10], we do not require a
pcf. So, we require that (C1) the initial-state and goal atoms have
corresponding vertices in the graph; (C2) every edge is labeled with
an action and leads from one of its preconditions to one of its add
effects, i.e., we do not require that all edges labeled with the same
action start in the same precondition; and (C3) we require that for
every non-initial-state atom u there are incoming edges whose la-
bels cover all possible ground actions leading to any ground atom in
G(u), i.e., the lifted justification graph must be constructed so that
it includes all possible actions leading to an atom appearing in the

graph. An s-t-path is then defined as a sequence of edges leading
from the vertex (atom) s to the vertex (atom) t, and an s-t-cut is a set
of edges separating s and t.

Definition 2. A labeled directed multi-graph is a tuple K =
〈U,E,L〉 where U denotes a set of vertices, L denotes a set of la-
bels, and E denotes a set of labeled edges 〈u, u′, l〉, also denoted

by u l−→ u′, where u ∈ U and u′ ∈ U are start and end vertices,
respectively, such that u 6= u′, and l ∈ L is a label.

A sequence of edges π = 〈s1
l1−→ t1, . . . , sn

ln−→ tn〉 is called an
s1-tn-path if for every i ∈ [n− 1] it holds that ti = si+1.

Given two distinct vertices s ∈ U and t ∈ U , a set of edges
C ⊆ E is called an s-t-cut if every s-t-path contains at least one
edge from C.

Definition 3. Given a normalized PDDL task P =
〈B, T ,V,P,A, ψI , ψG〉, a labeled directed multi-graph
K = 〈U,E,L〉 is called a lifted justification graph for P if
all of the following hold:

(C1) U is a set of atoms, and ψI ∈ U and ψG ∈ U , and
(C2) for every s l−→ t ∈ E it holds that l is an action and s ∈ pre(l)

and t ∈ add(l), and
(C3) for every u ∈ U such that ψI 6∈ G(u), and every grounding

γ ∈ G, and every ground action ag such that γu ∈ add(ag),

there exists an edge u′ l−→ u ∈ E such that ag ∈ G(l).

Note that any atom can be represented by at most one vertex in a
lifted justification graph (cf. condition (C1)). Before we show that
every ψI -ψG-cut of any lifted justification graph correspond to a
lifted disjunctive action landmark, we prove two auxiliary lemmas.
In Lemma 4, we show that every edge u′ l−→ u ∈ E of a lifted justifi-
cation graph has its grounded counterparts a ∈ G(l) and p′ ∈ pre(a)
such that p′ ∈ G(u′) (and therefore also p′ ∈ G(pre(l))).

In Lemma 5, we show that every plan has its corresponding ψI -
ψG-path in every lifted justification graph. The correspondence is
such that for every plan 〈a1, . . . , an〉 there is a sequence of labels
(actions) 〈l1, . . . , lm〉 induced by some ψI -ψG-path such that for
every li there is some aj ∈ G(li), and the labels have the same or-
dering as plans’ actions, i.e., given li corresponding to aj and li′
corresponding to aj′ , if i > i′ then j > j′.

For the rest of this section, let P = 〈B, T ,V,P,A, ψI , ψG〉 de-
note a normalized PDDL task.

Lemma 4. Let a denote a ground action, let p ∈ add(a) denote one
of its add effects, and let K = 〈U,E,L〉 denote a lifted justification
graph for P. If there exists u ∈ U such that p ∈ G(u), then there

exists u′ l−→ u ∈ E such that a ∈ G(l) and p′ ∈ G(u′) for some
p′ ∈ pre(a).

Proof. From (C3) it follows that there exists u′ l−→ u ∈ E such that
a ∈ G(l), and from (C2) we have that u′ ∈ pre(l) and therefore
there exists p′ ∈ pre(a) such that p′ ∈ G(u′).

Lemma 5. Let π = 〈a1, . . . , an〉 denote a plan, and let K =
〈U,E,L〉 denote a lifted justification graph for P. Then there exists

a ψI -ψG-path p = 〈u0
l1−→ u1, . . . , um−1

lm−−→ um〉 with u0 = ψI
and um = ψG and an increasing function f : [m] 7→ [n] such that
for every i ∈ [m] it holds that af(i) ∈ G(li).

Proof. (By induction) First, we show that there exists um−1
lm−−→

um = ψG and ai ∈ {a1, . . . , an} s.t. ai ∈ G(lm). Since π is a plan,

we have that ψG ∈ π[ψI], and from (C1) we have ψG ∈ U . Let
i ∈ [n] denote an arbitrary number such that ψG ∈ add(ai). From

Lemma 4, we have u l−→ ψG ∈ E such that ai ∈ G(l) and p ∈ G(u)
for some p ∈ pre(a).

Next, we show that if there exists ux−1
lx−→ ux for some x ∈ [m]

and ai ∈ {a1, . . . , an} s.t. ai ∈ G(lx), then either (i) ux−1 = ψI

(and therefore u0 = ux−1), or (ii) there exists ux−2
lx−1−−−→ ux−1 and

aj ∈ {a1, . . . , ai−1} s.t. aj ∈ G(lx−1), i.e., j < i and aj precedes
ai in π. Since we assume non-empty preconditions and a singleton
initial state, {ψI} = pre(a1) so (i) eventually holds. So, assuming
ux−1 6= ψI , the precondition p ∈ pre(ai) s.t. p ∈ G(ux−1) (C3)
must be achieved by some action preceding ai in π, therefore there
exists aj ∈ {a1, . . . , ai−1} with p ∈ add(aj) s.t. p ∈ G(ux−1).
Therefore (ii) follows from Lemma 4.

So, there exists a ψI -ψG-path p = 〈u0
l1−→ u1, . . . , um−1

lm−−→
um〉 with each li ∈ {l1, . . . , lm} corresponding to a different
aj ∈ {a1, . . . , an} in such a way that if li corresponds to aj and
li′ corresponds to aj′ , then i > i′ implies j > j′.

Now we can finally prove that ψI -ψG-cut induces a lifted dis-
junctive action landmark. The reason is simple: As we know from
Lemma 5, every plan π has its corresponding ψI -ψG-path p. There-
fore, every ψI -ψG-cut contains at least one edge e from every such
p, and the edge e in turn corresponds to some action in π. So, every
ψI -ψG-cut goes over at least one action of every plan.

Theorem 6. Let K = 〈U,E,L〉 denote a lifted justification graph

for P, and let C denote an ψI -ψG-cut, and let CL = {l | s l−→ t ∈
C}. Then CL is a lifted disjunctive action landmark.

Proof. If there is no plan, then any set of actions is a lifted disjunc-
tive action landmark, so let us assume there are some plans. From
Lemma 5 it follows that for every plan π = 〈a1, . . . , an〉 there ex-

ists an ψI -ψG-path p = 〈u0
l1−→ u1, . . . , um−1

lm−−→ um〉 and a
function mapping each li to some aj in such a way that aj ∈ G(li).
Furthermore, since C is an ψI -ψG-cut, C contains at least one edge
ux−1

lx−→ ux from every such p. Therefore, we have that lx ∈ CL
and we also have some ay ∈ G(lx) for some y ∈ [n], which con-
cludes the proof.

Theorem 6 shows how to extract landmarks from a lifted justifi-
cation graph, but it does not tell us how to sum them up admissibly.
Note that getting an admissible estimate from a set of lifted land-
marks is more involved than doing the same from a set of ground
landmarks. The reason is that lifted landmarks can contain lifted ac-
tions so instead of looking for intersections between landmarks, we
need to deal with intersections between groundings of landmarks. For
example, let us assume we have two lifted landmarks L1 and L2 and
we would like to extract a lower bound on the cost of optimal plans
from it. When can we take the sum mina∈L1 c(a) + mina∈L2 c(a)?
Clearly, just checking the intersection between L1 and L2 is not
enough as the actions in L1 and L2 can be lifted. Instead, we need to
check the intersection G(L1) ∩ G(L2). If it is empty, we can use the
aforementioned sum. If it is not empty, we need to apply some kind
of cost partitioning.

It is easy to see that G(L1) ∩ G(L2) 6= ∅ holds if and only if
there exist a ∈ L1 and a′ ∈ L2 such that G(a) ∩ G(a′) 6= ∅. In
other words, we can apply cost partitioning over (lifted) actions by
considering non-empty intersections G(a) ∩ G(a′). That is, we can
construct the cost function c1 for L1 and c2 for L2 so that for every

a ∈ L1 and a′ ∈ L2 such that G(a) ∩ G(a′) 6= ∅ it holds that
c1(a) + c2(a′) ≤ min{c(a), c(a′)} (and ci(a) = c(a) for all other
actions). Then the sum mina∈L1 c1(a) + mina∈L2 c2(a) is a lower
bound on the cost of optimal plans.

To generalize this approach over larger sets of landmarks, we in-
troduce the notion of an action-cost database. It is defined as a set of
pairs relating an action to its cost in such a way that every ground ac-
tion is covered by some entry, and for every pair 〈a, ca〉 of the action
a ∈ A and its cost ca ∈ R+

0 in the database it holds that ca ≤ c(a).

Definition 7. A set D ⊆ A×R+
0 is called an action-cost database

if, for every action a ∈ A, there exists 〈b, cb〉 ∈ D such that G(a) ∩
G(b) 6= ∅ and cb ≤ c(a).

Given an action-cost database D and an action a ∈ A, we define
D(a) = min{ca | 〈a′, ca〉 ∈ D,G(a) ∩ G(a′) 6= ∅}.

Given an action-cost database D and a set of actions A ⊆ A, we
define D(A) = mina∈AD(a).

We use action-cost databases instead of cost functions. Given an
action-cost database D and an action a ∈ A, we define D(a) as the
minimum cost over all entries matching a. Such a definition allows
us to update action-cost databases by simply adding more action-
cost pairs. On one hand, this is guaranteed to only decrease D(a)
values. On the other hand, if we update the database with the residual
costs of (lifted) actions already encountered in previously considered
landmarks, then the database will provide costs of actions that can be
used for further landmarks admissibly.

Consider the following example: Let L1 and L2 denote two lifted
landmarks and let D1 denote an action-cost database. Furthermore,
let us assume that there is exactly one a1 ∈ L1 and exactly one
a2 ∈ L2 such that G(a1) ∩ G(a2) 6= ∅. Clearly, both D1(L1) and
D1(L2) are (each individually) admissible estimates, but D1(L1) +
D1(L2) is not guaranteed to be an admissible estimate. Neverthe-
less, we could use a’s cost up to D1(L1) and leave the residual cost
D1(a) − D1(L1) for a′ in L2. In other words, we can construct an-
other action-cost database D2 = D1 ∪ {〈a,D1(a)−D1(L1)〉} and
then the sumD1(L1)+D2(L2) must be an admissible estimate. This
is because adding 〈a,D1(a) − D1(L1)〉 to D2 makes sure that ev-
ery action a′ such that G(a) ∩ G(a′) 6= ∅ gets the cost of at most
D1(a) − D1(L1), which induces a cost partitioning over actions in
L1 and L2 – it is the same as creating cost functions c1 and c2 such
that ci(a) = min{Di(a),Di(Li)} for every a ∈ Li, and therefore
c2(a′) ≤ c1(a)−mina′′∈L1

c1(a′′).
In the following theorem, we prove this principle formally for any

sequence of lifted disjunctive action landmarks as long as the first
action-cost database in the sequence starts with the original costs of
actions.

Theorem 8. Let L1, . . . , Ln denote a sequence of disjunctive ac-
tion landmarks, let D1, . . . ,Dn denote a sequence of action-cost
databases such that D1 = {〈a, c(a)〉 | a ∈ AS} and, for every
i ∈ {2, . . . , n}, Di = Di−1 ∪ {〈a,Di−1(a) − Di−1(Li−1)〉 |
a ∈ Li−1}, and let c? denote the cost of an optimal plan. Then∑n
i=1Di(Li) ≤ c

?.

Proof. Before we get to the main claim, we need to verify that, for
every i ∈ [n], Di is a well-defined action-cost database. For that, it
is enough to show that for every i ∈ [n], and every a ∈ Li, it holds
that 0 ≤ Di(a) − Di(Li) ≤ c(a). This trivially holds for i = 1 as
D1(a) = c(a). For i ≥ 2, it easy to see that Di(a) ≥ Di(Li) ≥ 0
by Definition 7, therefore Di(a)−Di(Li) is non-negative, and also
Di(a) ≤ Dj(a) for any j ∈ [i − 1] because D1(a) = c(a) and any

consecutive Di(a) can only decrease, concluding the first part of the
proof.

Let Ki = G(Li) for every i ∈ [n], and let AK =
⋃
i∈[n] Ki.

Next, we prove that
∑n
i=1Di(Ki) =

∑n
i=1Di(Li). From Defi-

nition 7, it easily follows that D(a) = minag∈G(a)D(ag) for any
action a ∈ A and any action-cost database D. Therefore, for any
action-cost database D and any set of actions L ⊆ A we have
that D(L) = mina∈LD(a) = mina∈L minag∈G(a)D(ag) =
mina′g∈G(L)D(a′g) = D(G(L)). Therefore, we have that Di(Li) =

Di(Ki) for every i ∈ [n].
Finally, we prove that

∑n
i=1Di(Ki) ≤ c?. Since every Li is a

landmark, then also every Ki is a landmark (Definition 1). There-
fore, it is enough to show that for every a ∈ AK it holds that∑
i∈[n],a∈Ki

Di(Ki) ≤ c(a). Keeping in mind that Di(a) ≥
Di(Ki) for every Ki s.t. a ∈ Ki, we prove an even stronger
claim: For every a ∈ AK and every i ∈ [n] such that a ∈ Ki it
holds that

∑
j∈[i−1],a∈Kj

Dj(Kj) + Di(a) ≤ c(a). Since c(a) =

D1(a) ≥ Dk(a) ≥ Dl(a) for every 1 ≤ k ≤ l ≤ n, it is
easy to see that the claim holds for the smallest possible i. Now,
we assume it holds for some i ∈ [n], and we prove that it also
holds for the smallest possible k ∈ {i + 1, . . . , n}, i.e., we assume
a ∈ Ki for some i ∈ [n] and it holds that

∑
j∈[i−1],a∈Kj

Dj(Kj) +

Di(a) ≤ c(a), and we prove that
∑
j∈[k−1],a∈Kj

Dj(Kj) +

Dk(a) ≤ c(a) for k = min{x ∈ {i + 1, . . . , n} | a ∈
Kx}. Since k > i and for every x ∈ {i + 1, . . . , k − 1}
it holds that a 6∈ Kx, it follows that that Dk(a) ≤ Di(a) −
Di(Ki) holds by construction (as we already know that Di(Li) =
Di(Ki)). Moreover, we have that

∑
j∈[k−1],a∈Kj

Dj(Kj) +

Dk(a) =
∑
j∈[i−1],a∈Kj

Dj(Kj) + Di(Ki) + Dk(a). So, every-
thing put together, we have that

∑
j∈[i−1],a∈Kj

Dj(Kj)+Di(Ki)+

Dk(a) ≤
∑
j∈[i−1],a∈Kj

Dj(Kj) +Di(Ki) +Di(a)−Di(Ki) =∑
j∈[i−1],a∈Kj

Dj(Kj)+Di(a) ≤ c(a) which concludes the proof.

4 Computing Lifted Landmark-Cuts
Moving from theory to practice, here we introduce a novel algorithm
utilizing the ideas from the previous section. We start with the defi-
nition of (most general) unifiers as substitutions under which sets of
atoms or actions become singletons.

Definition 9. Given a set of atoms or actions X , a substitution σ is
called unifier for X if |σX| = 1, and σv = v for every variable
v 6∈ V[X].

A unifier σ for X is called a most general unifier (MGU) for X
if, for every unifier τ for X , there exists another unifier ρ such that
τ = ρσ.

To simplify the formalization, we tacitly assume than, unless ex-
plicitly specified otherwise, every unifier σ for X maps every vari-
able v ∈ V[X] either to itself or to a fresh variable not used anywhere
else, i.e., it never “recycles” any variable already used in any atom or
other substitution.

It is well-known, that if there exists a unifier, then there also exists
a most general unifier and it is unique up to renaming of variables [4].
It is also easy to see that G(a) ∩ G(a′) 6= ∅, for a pair of atoms or
actions a and a′, if and only if there exist an MGU for {a, a′}. More-
over, note that we assume unifiers are the identity mapping outside
the considered set of atoms or actions. For example, given an action
a, its add effect p ∈ add(a), some atom q, and a unifier σ for {p, q},

σ can re-map only the variables appearing in p and q, i.e., applying
σ on a preserves the variables V[a] \ V[p].

The proposed algorithm, encapsulated in Algorithm 1, follows the
schema laid out in Theorem 8 by looking for lifted landmarks one
by one while maintaining the updated action-cost database. In each
cycle, a lifted landmark with non-zero cost (according to the current
action-cost database) is extracted as an ψI -ψG-cut of a lifted justifi-
cation graph (Theorem 6). The algorithm terminates once it fails to
find a non-zero lifted landmark which happens when there exists a
zero-cost ψI -ψG-path.

The most noticeable difference to the theory is that we do not con-
struct the full lifted justification graph. Instead, we iteratively build
the smallest portion of the lifted justification graph connected to the
goal vertex ψG containing a single non-zero ψI -ψG-cut. More pre-
cisely, we start with ψG and enumerate all possible actions having
ψG in their add effects. For every such action a we select one of its
preconditions p ∈ pre(a) (using some function SelectPre) and
repeat this process for p as long as the explored actions have cost
zero according to the current action-cost database (or ψI is reached).
The non-zero actions encountered during this process then form a
(non-zero) lifted disjunctive action landmark because we enumerate
all possible actions achieving each explored atom (cf. Achievers
and (C3)) and therefore we obtain a cut separating ψI and ψG.

Looking at Algorithm 1 in more detail, the algorithm maintains the
resulting heuristic value h initialized on line 1 to zero and increased
with each non-zero landmark (line 6). It also maintains the action-
cost database D initialized at line 2 and updated on line 7 in the way
as described in Theorem 8. For completeness, we also include the
function Cost(D,a) implementing D(a) as per Definition 7. The
main part of the algorithm on lines 3 to 8 extracts landmarks using
the function FindCut (line 3 and 8) one by one while updating the
heuristic value h (line 5 and 6) and the action-cost databaseD (line 7)
with the cost of the current landmark.

The function FindCut uses the function ExploreGoalZone,
wich iteratively builds a portion of the lifted justification graph,
extracts all atoms P0 from which the goal vertex ψG is reach-
able with zero-cost paths, and a non-zero ψI -ψG-cut A+ which
consists of all actions having their add effects in P0. Moreover,
ExploreGoalZone returns empty sets (which eventually leads to
the termination of the algorithm) whenever it connects ψI and ψG
with a zero-cost path. Note that ExploreGoalZone can use an ar-
bitrary function SelectPre for selecting one of the preconditions
of the given action. It does not even have to be a function in a mathe-
matical sense as it can have an internal memory and return a different
precondition for the same action when called multiple times. Lastly,
FindCut tries to reduce A+ by removing actions whose selected
precondition lies in the P0 set. Since we are allowed to choose any
precondition when constructing the lifted justification graph, we can
reduce the cut A+ by removing (non-zero cost) actions connecting
vertices within P0 because they are not necessary for separating ψI
from ψG. Next, we sketch a proof showing that Algorithm 1 returns
an admissible estimate for any function SelectPre.

Theorem 10. Let c? denote the cost of optimal plans. Then Algo-
rithm 1 with any SelectPre function returns h ≤ c?.

Proof Sketch. Assuming FindCut eventually returns the empty set,
the algorithm terminates. Assuming FindCut returns either the
empty set or a valid ψI -ψG-cut, it follows from Theorem 8 that the
main procedure on lines 1 to 8 results in an admissible estimate h.
Furthermore, assuming ExploreGoalZone returns either empty
sets or a ψI -ψG-cut A+ and a set of all vertices P0 from which ψG

Algorithm 1: Lifted Landmark-Cut Heuristic
Input: Set of action schemasAS , initial-state atom ψI , goal atom

ψG
Output: Heuristic value h

1 h← 0;
2 D ← {〈a, c(a)〉 | a ∈ AS};
3 C ← FindCut(D);
4 while |C| > 0 do
5 k ← mina∈C Cost(D,a);
6 h← h+ k;
7 D ← D ∪ {〈a,Cost(D,a)− k〉 | a ∈ C};
8 C ← FindCut(D);

9 function FindCut(D)
10 A+, P0 ← ExploreGoalZone (D);
11 C ← ∅;
12 foreach a ∈ A+ do
13 q ← SelectPre(a);
14 if q is not unifiable with any p ∈ P0 then
15 C ← C ∪ {a};

16 return C
17 function ExploreGoalZone(D)
18 Q← {ψG};
19 P0 ← {ψG};
20 A+ ← {};
21 while |Q| ≥ 0 do
22 p← Pop(Q);
23 foreach a ∈ Achievers(AS , p) do
24 if Cost(D,a) = 0 then
25 q ← SelectPre(a);
26 if there exists an MGU for {q, ψI} then
27 return ∅, ∅;
28 Q← Q ∪ {q};
29 P0 ← P0 ∪ {q};
30 else
31 A+ ← A+ ∪ {a};

32 return A+, P0;

33 function Achievers(AS , p)
34 A← ∅;
35 foreach a ∈ AS do
36 foreach q ∈ add(a) do
37 σ ← Find MGU for {p, q};
38 if σ exists then
39 A← A ∪ {σa};

40 return A;

41 function Cost(D, a)
42 k ← c(a);
43 foreach 〈b, cb〉 ∈ D do
44 if cb < k and there exists an MGU for {b, a} then
45 k ← cb;

46 return k;

is reachable with a zero-cost path, the procedure on lines 11 to 16
clearly disregards only the actions fromA+ that are not necessary for
separating ψI and ψG, therefore FindCut returns either the empty
set or an ψI -ψG-cut.

Therefore, we need to prove that (1) ExploreGoalZone even-
tually returns empty sets, and (2) if A+ and P0 returned by
ExploreGoalZone are non-empty, then (2a) A+ is a ψI -ψG-cut
and (2b) P0 contains all vertices from the lifted justification graph
from which the vertex ψG is reachable with zero-cost paths.

The main observations here are that ExploreGoalZone builds
the portion of the lifted justfication graph starting from the ψG ver-
tex and backchaining via actions add effects to their precondition
which means that conditions (C1) and (C2) from Definition 3 hold
for the explored portion of the graph. Anothoer crucial observa-

tion is that the function Achievers always enumerates all possi-
ble actions having the given atom p in their add effects. Therefore,
ExploreGoalZone either reaches ψI with a zero-cost path, or the
condition (C3) holds for all vertices (atoms) in P0. Therefore, it im-
mediatelly follows that (2b) holds, and (2a) holds because it also
means that all non-zero actions having atoms from P0 in their add
effects are added to A+. As for (1), it is easy to see that since we are
iterativelly reducing costs of actions in the action-cost database and
since we are not skipping any action during the building of the jus-
tification graph, it must eventually happen that we connect ψI with
ψG by a zero-cost path.

As given before, SelectPre can be any function selecting a pre-
condition of an action. Here, we evaluate the following functions:

• LMC-random selects a precondition randomly, i.e., it can select
a different precondition every time it is called on the same action.

• LMC-most-gr selects the precondition having least variables, ties
are broken arbitrarily. Fully lifted atoms are more likely unifiable
with ψI , so avoiding those leads to a larger graph and potentially
more cuts.

• LMC-least selects the precondition whose predicate was picked
as a supporter least often so far, ties are broken arbitrarily. Picking
predicates we have not seen in the graph so far is more likely to
lead to new action schemas in the graph.

• LMC-hLmax selects the precondition with the highest hmax value
breaking ties arbitrarily. This is the variant closest to the original
LM-cut heuristic. For this purpose, we adapted the already exist-
ing hLmax heuristic [6] computing hmax values using a Datalog
program on the lifted level.

5 Experimental Evaluation
We implemented1 our approach on top of the Powerlifted (PWL) sys-
tem [6]. We evaluate four configurations LMC-random, LMC-most-
gr, LMC-least, and LMC-hLmax, described in the previous section.
We compare our system against several systems from the literature.
We use two grounded configurations of Fast Downward [9]:

• hmax: ground A∗ search combined with the hmax heuristic [2].
• hlmc: ground A∗ search combined with the LM-cut heuristic [10].

Then we compare against several lifted systems:

• hLmax: lifted PWL A∗ search with the hmax heuristic [6].
• hlmc

hom: lifted A∗ with LM-cut computed on the task reduced with
PDDL homomorphisms that was subsequently grounded [14], we
use the best performing variant, as reported in [14], that preserves
goal objects and reduces the planning task by 95% of objects.

• LiSAT: translation of the lifted problem into a propositional SAT
problem [13]. We use the non-incremental, length-optimal config-
uration with the Kissat [1] solver.

Be aware that neither hlmc
hom nor LiSAT uses a heuristic computed

on the lifted model, making hLmax the system closest to ours.
We evaluate our system on a benchmark set that has been intro-

duced specifically for lifted planning [6, 18] and has been used in
recent papers (see also [6, 18, 13, 26]).

However, the benchmarks have been introduced for satisficing
planning and therefore most domains come with unit costs. So to
make the cost-optimal planning evaluation more meaningful, we
adapted the domains by adding cost values1 in the following way:

1 The code can be found at: https://github.com/minecraft-saar/powerlifted

• GED – already came with action costs.
• Organic Synthesis – since the costs represent the “effort” of a

reaction, we assigned an action its number of effects as cost value.
• Pipesworld – here we distinguish unary/non-unary pipes; opera-

tions on unary pipes come with cost 1, those on non-unary cost 3.
• VisitAll – the version of visitAll that we build on comes with more

than two dimensions; inspired by some kind of high bay ware-
house, we gave moving on the first two dimensions cost 1, the
third dimension cost 5 (since some kind of lift needs to be used),
and further increased costs the higher the dimensions get.

• Childsnack – here we tried to reflect the temporal effort of the
different actions in their costs and assigned costs 5 to making the
sandwich, 1 to putting it on the tray, and 3 to serving it.

• Blocks World – here we tried to reflect the control effort (putting a
block on some other block being more difficult than putting it on
the table) and energy consumption (putting a block down being
less effort than lifting it) in the costs and assigned 5, 3, 5 and 10
to pickup, putdown, stack and unstack, respectively.

• Logistics – operations of planes cost more than those of trucks,
moving costs more than loading and unloading.

• Rovers – here we assigned costs based on the temporal effort and
energy consumption of the actions (e.g., taking an image costing
less than taking a rock sample).

We conduct two separate evaluations, one for the length-optimal
and one for the cost-optimal setting. Since the SAT-based solver can
only generate length-optimal solutions, we only use it in this setting.
The other systems can plan both length- and cost-optimal.

h
m

ax

h
lm

c

L
iS

A
T

h
lm

c
h
o
m

h
L

m
a
x

L
M

C
-r

an
do

m

L
M

C
-m

os
t-

gr

L
M

C
-l

ea
st

L
M

C
-h

L
m

a
x

ged (156) 16 18 38 18 16 22 7 21 18
ged-spl (156) 18 18 30 18 16 13 20 18 20

orgsy-alk (18) 15 15 18 17 18 6 6 18 18
orgsy-mit (18) 2 2 18 9 18 9 10 17 14
orgsy-org (20) 0 0 20 1 8 7 8 7 2
pipeswrl (50) 7 8 20 14 5 9 9 9 2
visitall (180) 70 62 103 56 66 31 31 36 26

childsnack (144) 5 4 50 4 0 0 0 1 0
blocks (40) 1 8 40 11 0 29 37 1 3

logistics (40) 2 6 30 25 4 0 0 0 0
rovers (40) 1 2 4 5 1 1 1 0 0

Total Sum (826) 137 143 371 178 152 127 129 128 103

Table 1: Coverage for length-optimal planning. The grounded sys-
tems are shown on the left, lifted systems on the right.

Figure 1 shows our coverage results for the unit-cost setting. It
can be seen that in this setting, no search-based approach reaches
the performance of the SAT-based approach on the given bench-
mark set. From the search-based systems, hlmc

hom has the hightest cov-
erage, followed by hLmax and our configurations. As we expected
LMC-hLmax falls behind on overall coverage. The overall coverage
of LMC-random, LMC-most-gr, and LMC-least are close, but they
perform very different across the domain set. The greatest differ-
ence is in the Blocks World domain, where the best of our config-
urations (LMC-most-gr) solves 37 out of 40 instances, while LMC-
least solves only a single instance. Notably, this is the one of two
domains where a search-based configuration reaches a performance
close to the SAT-based system. The other is Organic Synthesis (“alk”
and “mit”), but here several search-based systems are close together.

h
m

ax

h
lm

c

h
lm

c
h
o
m

h
L

m
a
x

L
M

C
-r

an
do

m
L

M
C

-m
os

t-
gr

L
M

C
-l

ea
st

L
M

C
-h

L
m

a
x

ged (156) 18 18 18 16 4 0 12 8
ged-spl (156) 18 18 18 16 4 0 16 8

orgsy-alk (18) 15 15 17 18 6 6 18 18
orgsy-mit (18) 2 2 9 18 9 10 16 12
orgsy-org (20) 0 0 1 8 6 5 7 1
pipeswrl (50) 8 8 13 5 8 8 7 2
visitall (180) 70 58 44 60 26 13 18 9

childsnack (144) 11 18 6 1 0 0 1 0
blocks (40) 1 8 11 0 36 36 1 3

logistics (40) 2 6 19 6 0 0 0 0
rovers (40) 1 2 10 1 2 1 0 0

Total Sum (826) 146 153 166 149 101 79 96 61

Table 2: Coverage for cost-optimal planning. The grounded systems
are shown on the left, lifted systems on the right.

Another domain with large differences between our configurations is
Organic Synthesis (alk), where LMC-least and LMC-hLmax perform
better then the others. In GED, LMC-most-gr does not perform well.

Compared to the other search-based systems, our configurations
perform worse mainly in two domains: VisitAll and Logistics. How-
ever, the latter seems to be difficult for all PWL-based configurations,
the only search-based system performing well is hlmc

hom.
Let us next have a look at the cost-optimal setting (Table 2). When

we first compare our configurations, we see that there are – again –
differences in the performance among the domains: LMC-least per-
forms well in GED and Organic Synthesis, LMC-random in VisitAll
and both LMC-random and LMC-most-gr in Blocks World. We also
see the expected drop in overall coverage by LMC-hLmax.

Comparing all systems, hlmc
hom performs best. Using ground heuris-

tics on the transformed model seems to work well on the given
benchmark set. Compared to the other lifted heuristic (LMC-hLmax),
our configurations perform worse especially in visitAll and Logistics.
We will discuss the latter domain in more detail in the next section.
Our system shows especially good results in the Blocks World. Here
it even beats hlmc

hom.

6 Discussion and Conclusion

In this paper, we presented a lifted version of the admissible LM-cut
heuristic. We also showed that the justification graph used in LM-cut
for the extraction of landmarks can be built much more freely than
previously used. Moreover, we introduced an algorithm that does not
need to construct the whole justification graph to infer a landmark,
but it constructs just the minimal part of the graph connecting a non-
zero cost landmark to the goal.

A main question is how to come up with an informative pcf that
can be computed on the lifted model. As we expected, using LMC-
hLmax seems to be too costly and resulted in the worst overall cov-
erage of our pcfs. Further, there is also not a single domain where
it outperformed the other pcfs. The other pcfs perform similar when
looking at overall coverage, but there are large differences between
the domains. While this is not good for the comparison with other
systems as done in the evaluation, it opens several directions for fu-
ture work. The most elegant solution would be to find a different
pcf combining the advantages of the ones presented here. But from
a practical perspective, there are also other ways to combine the ad-
vantages. One would be to compute several landmark sets and do a

cost partitioning or hitting set approach based on them. Computation-
ally, this might be no problem, since the different steps like successor
generation or heuristic computation are more costly in lifted planning
than in the grounded setting. If it is too costly, it might be an option
to select the best pcf for a given planning instance based on the initial
heuristic value. Since the heuristics are admissible, a simple criterion
might be to pick the one with highest value on the initial node.

One detail in the evaluation made us especially interested: we did
not expect the poor result in the Logistics domain, both in terms of
absolute performance (coverage of 0 across all pcfs), nor in compari-
son to hLmax (the latter is different e.g. in Childsnack). A look in the
data revealed that all 6 instances solved by hLmax in the cost-optimal
setting have a single goal, resulting in very informed hLmax values.

While this is an extreme example, it seems that the benchmark set
has been constructed in a way to get large, but simple problems, re-
sulting in problems with very few goals. Another example is VisitAll,
which comes with 1 to 3 goals.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

Goal Size

in
it
al

h
-v
al
u
e

hLmax

LMC-most-gr
LMC-random
LMC-least

LMC-hLmax

Figure 1: Plot showing different initial heuristic values for logis-
tics problems with larger goals. Configurations LMC-random, LMC-
least, LMC-hLmax all have identical values.

Based on this insight, we want to get an impression about scaling
behavior of the heuristics across goals and are especially interested in
the comparison to hLmax, since these are the only lifted heuristics in
the evaluation (hlmc

hom uses grounded heuristics on a reduced model).
We created a small Logistics problem with a single city, a single

truck, and an increasing number of packages, all of which are placed
at a single position and need to be brought to the same goal position.
Since hLmax and our configurations are admissible, we can meaning-
fully compare the initial heuristic values and we know that a larger
value is always better. Figure 1 shows the number of packages on the
x axis and the initial heuristic value on the y axis. In this example, we
observe the behavior that we expected when comparing hLmax with
other heuristics: while hLmax cannot incorporate costs of more than
one sub-goal (resulting in a constant heuristic value shown at the bot-
tom), our heuristics accumulate costs over all sub-goals, resulting in
a heuristic value scaling with the number of goals. Be further aware
that not only one, but all our different pcf functions scale reasonably
well with the packages. In this example, LMC-most-gr returns the
best heuristic values.

While this discussion points towards a problem that might be
present in the benchmark set, we want to underline that we do not
have a good solution for it: the lifted systems are – yet – not as pow-
erful as the grounded ones. So instances in the benchmark set need
to be relatively simple to solve. At the same time, they shall be large
enough to break the systems needing a grounded model. This results
in a set like the one used in recent work (and here).

Acknowledgments

„Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) –
Projektnummer 232722074 – SFB 1102 / Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –
Project-ID 232722074 – SFB 1102“

References

[1] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian
Heisinger, ‘CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
entering the SAT Competition 2020’, in Proceedings of the 2020 SAT
Competition – Solver and Benchmark Descriptions, volume B-2020-1
of Department of Computer Science Report Series B, pp. 51–53. Uni-
versity of Helsinki, (2020).

[2] Blai Bonet and Héctor Geffner, ‘Planning as heuristic search’, Artificial
Intelligence, 129(1–2), 5–33, (2001).

[3] Blai Bonet and Malte Helmert, ‘Strengthening landmark heuristics via
hitting sets’, in Proceedings of the 19th European Conference on Arti-
ficial Intelligence (ECAI’10), pp. 329–334. IOS Press, (2010).

[4] Samuel R. Buss, ‘An introduction to proof theory’, in Handbook of
Proof Theory, volume 137 of Studies in Logic and the Foundations of
Mathematics, chapter I, 1–78, Elsevier, (1998).

[5] Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem
Francès, ‘Lifted successor generation using query optimization tech-
niques’, in Proceedings of the 30th International Conference on Auto-
mated Planning and Scheduling (ICAPS’20), pp. 80–89. AAAI Press,
(2020).

[6] Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem
Francès, ‘Delete-relaxation heuristics for lifted classical planning’, in
Proceedings of the 31st International Conference on Automated Plan-
ning and Scheduling (ICAPS’21), pp. 94–102. AAAI Press, (2021).

[7] Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem
Francès, ‘The FF heuristic for lifted classical planning’, in 36th AAAI
Conference on Artificial Intelligence (AAAI’22), pp. 9716–9723. AAAI
Press, (2022).

[8] Patrik Haslum, ‘Computing genome edit distances using domain-
independent planning’, in Proceedings of the SPARK Workshop, (2011).

[9] Malte Helmert, ‘The Fast Downward planning system’, Journal of Ar-
tificial Intelligence Research, 26, 191–246, (2006).

[10] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in Proceedings of the
19th International Conference on Automated Planning and Scheduling
(ICAPS’09), pp. 162–169. AAAI Press, (2009).

[11] Jörg Hoffmann, Stefan Edelkamp, Sylvie Thiébaux, Roman Englert,
Frederico Liporace, and Sebastian Trüg, ‘Engineering benchmarks for
planning: the domains used in the deterministic part of IPC-4’, Journal
of Artificial Intelligence Research, 26, 453–541, (2006).

[12] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast
plan generation through heuristic search’, Journal of Artificial Intelli-
gence Research, 14, 253–302, (2001).

[13] Daniel Höller and Gregor Behnke, ‘Encoding lifted classical planning
in propositional logic’, in Proceedings of the 32nd International Con-
ference on Automated Planning and Scheduling (ICAPS’22), pp. 134–
144. AAAI Press, (2022).

[14] Rostislav Horčík, Daniel Fišer, and Álvaro Torralba, ‘Homomorphisms
of lifted planning tasks: The case for delete-free relaxation heuristics’,
in Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI’22), pp. 9767–9775. AAAI Press, (2022).

[15] Erez Karpas and Carmel Domshlak, ‘Cost-optimal planning with land-
marks’, in Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI’09), pp. 1728–1733, (2009).

[16] Alexander Koller and Jörg Hoffmann, ‘Waking up a sleeping rabbit: On
natural-language sentence generation with FF’, in Proceedings of the
20th International Conference on Automated Planning and Scheduling
(ICAPS’10), pp. 238–241. AAAI Press, (2010).

[17] Alexander Koller and Ronald Petrick, ‘Experiences with planning for
natural language generation’, Computational Intelligence, 27(1), 23–
40, (2011).

[18] Pascal Lauer, Álvaro Torralba, Daniel Fišer, Daniel Höller, Julia Wich-
lacz, and Jörg Hoffmann, ‘Polynomial-time in PDDL input size: Mak-
ing the delete relaxation feasible for lifted planning’, in Proceedings of

the 30th International Joint Conference on Artificial Intelligence (IJ-
CAI’21), pp. 4119–4126. IJCAI organization, (2021).

[19] Rami Matloob and Mikhail Soutchanski, ‘Exploring organic synthesis
with state-of-the-art planning techniques’, in Proceedings of the SPARK
Workshop, pp. 52–61, (2016).

[20] J. Scott Penberthy and Daniel S. Weld, ‘UCPOP: A sound, complete,
partial order planner for ADL’, in Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the 3rd International Conference
(KR’92), pp. 103–114. Morgan Kaufmann, (1992).

[21] Silvia Richter, Malte Helmert, and Matthias Westphal, ‘Landmarks re-
visited’, in Proceedings of the 23rd National Conference of the Amer-
ican Association for Artificial Intelligence (AAAI’08), pp. 975–982.
AAAI Press, (2008).

[22] Silvia Richter and Matthias Westphal, ‘The LAMA planner: Guiding
cost-based anytime planning with landmarks’, Journal of Artificial In-
telligence Research, 39, 127–177, (2010).

[23] Bram Ridder and Maria Fox, ‘Heuristic evaluation based on lifted re-
laxed planning graphs’, in Proceedings of the 24th International Con-
ference on Automated Planning and Scheduling (ICAPS’14), pp. 244–
252. AAAI Press, (2014).

[24] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice-Hall, Englewood Cliffs, NJ, 1995.

[25] Jendrik Seipp, ‘Pattern selection for optimal classical planning with
saturated cost partitioning’, in Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI’19), pp. 5621–5627,
(2019).

[26] Julia Wichlacz, Daniel Höller, and Jörg Hoffmann, ‘Landmark heuris-
tics for lifted planning’, in Proceedings of the 31st International Joint
Conference on Artificial Intelligence (IJCAI’22), pp. 4665–4671. IJCAI
organization, (2022).

[27] Håkan L. S. Younes and Reid G. Simmons, ‘VHPOP: versatile heuristic
partial order planner’, Journal of Artificial Intelligence Research, 20,
405–430, (2003).

	Introduction
	Preliminaries
	Lifted Disjunctive Action Landmarks
	Computing Lifted Landmark-Cuts
	Experimental Evaluation
	Discussion and Conclusion

