
Probabilistic Safety Verification of Neural Policies via Predicate Abstraction

Marcel Vinzent1, Holger Hermanns1, Jörg Hoffmann1,2

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

{vinzent, hermanns, hoffmann}@cs.uni-saarland.de

Abstract

Neural networks are increasingly important to learn action
policies. Policy predicate abstraction (PPA) verifies safety of
such a neural policy π by over-approximating the state space
subgraph induced by π, and using counterexample-guided
abstraction refinement (CEGAR) to iteratively refine the ab-
straction. So far, PPA verifies safety in non-deterministic state
spaces. This paper extends PPA to probabilistic verification.
Extending the abstract state space computation to the proba-
bilistic case is relatively straightforward. Abstraction refine-
ment, however, becomes substantially more complex, due to
the more intricate form of counterexamples and the various
sources of spuriousness it entails. We tackle this challenge
by drawing inspiration from prior work on probabilistic CE-
GAR, empowering it to deal with neural π. The resulting al-
gorithm decides whether π is safe with respect to a desired
upper bound on unsafety probability. Invoking the algorithm
incrementally, we can also derive upper and lower bounds au-
tomatically. Our experiments show that these algorithms can
derive non-trivial bounds. In a first comparison to state-of-
the-art probabilistic model checkers, our approach is superior.

Technical appendix —
https://fai.cs.uni-saarland.de/vinzent/papers/ripl25-ta.pdf

Code —
https://gitlab.cs.uni-saarland.de/vinzent/PPAToolset

Introduction
Neural networks (NN) are increasingly important to learn
action policies, including in AI planning and robotics
(e.g., (Stahlberg et al. 2022; Amir et al. 2023). But how to
verify safety of such a policy π? Given a start condition ϕ0

and an unsafety condition ϕu, does there exist an unsafe state
su |= ϕu reachable from a start state s0 |= ϕ0 under π? Such
verification is notoriously hard. A growing body of work ad-
dresses NN-controlled systems (Ivanov et al. 2021; Lopez
et al. 2023; Wang et al. 2024), with a focus on continuous
time and action spaces. Another thread explores probabilis-
tic safety guarantees of neural policies in deterministic sys-
tems with discrete time and action spaces (Bacci and Parker
2020; Katz et al. 2023).

Here we follow up on work on policy predicate abstrac-
tion (PPA) by Vinzent et al. (2022; 2023; 2024) (hence-
forth: Vea), which tackles safety verification of neural action

policies π in non-deterministic systems with discrete time
and action spaces. General predicate abstraction (PA) (Graf
and Saı̈di 1997) builds an abstraction of the full state
space Θ defined through a set P of predicates (linear con-
straints over the state variables, e.g., x + y ≤ 1), over-
approximating all possible behaviors. In contrast, PPA ab-
stracts the subgraph Θπ induced by π, over-approximating
all possible behaviors under π. If the abstraction Θπ

P is safe,
then so is π. Counterexample-guided abstraction refinement
(CEGAR) (Clarke et al. 2003) is used to iteratively refine P
until either Θπ

P is safe, or a realizable abstract counterexam-
ple is found, proving π unsafe.

So far, PPA supports non-determinism under π: multi-
ple outgoing transitions in state s, induced by the same
non-deterministic action π(s). Here, we extend PPA to han-
dle probabilistic transitions in addition to non-determinism:
each (non-deterministic) transition specifies a probability
distribution over the possible successor states. In this set-
ting, π is unsafe if there exist an adversary Aπ , a (worst-
case) resolution of transition non-determinism in Θπ , and a
start state s0 |= ϕ0 such that under Aπ the unsafety proba-
bility of reaching ϕu from s0 exceeds a desired upper bound
pu. Extending the abstract state space computation to the
probabilistic case is relatively straightforward. Abstraction
refinement, however, becomes substantially more complex.
In the non-probabilistic context, an abstract counterexample
is an individual path σP from ϕ0 to ϕu in Θπ

P . σP is real-
izable if there exists a corresponding concrete path in Θπ .
In the probabilistic context, however, an abstract counterex-
ample is an adversary Aπ

P for Θπ
P and an abstract start state

s0P |= ϕ0 such that under Aπ
P the probability of reaching ϕu

from s0P exceeds pu. How to effectively check realizability
of such counterexamples, and how to refine the abstraction
if the counterexample is spurious (not realizable)?

We address this challenge by extending PPA with machin-
ery inspired by prior work on probabilistic CEGAR (prob-
CEGAR) (Hermanns et al. 2008). prob-CEGAR checks re-
alizability by incrementally constructing a set upsP of ab-
stract unsafe paths induced by the abstract counterexample
such that the probability Pr(upsP) exceeds pu. There are
two sources of spuriousness: (i) individual paths σP ∈ upsP
may not be realizable, (ii) the (maximal) realizable probabil-
ity maxPr [upsP] may not exceed pu. Here, we extend prob-
CEGAR to a new CEGAR method for probabilistic PPA

(prob-CEGAR-PPA), handling the additional sources of spu-
riousness induced by the neural policy π: it may happen that
(i) and (ii) do not occur in the full system Θ, but in Θπ which
restricts actions to those taken by π. The resulting algorithm
decides whether π is safe with respect to a given pu (prob-
CEGAR-PPA-pu). By invoking the algorithm incrementally,
iterating over different pu while re-using abstraction pred-
icates, we can automate the derivation of upper and lower
bounds on unsafety probability (prob-CEGAR-PPA-inc).

In our experiments these algorithms can derive non-trivial
bounds. We also show that handling the probabilistic transi-
tions in abstract state space computation incurs little over-
head, and so does verifying a given pu with prob-CEGAR-
PPA-inc compared to prob-CEGAR-PPA-pu. Finally, we
run a first comparison to state-of-the-art probabilistic model
checkers, via straightforward encodings of the π-controlled
system into their input languages. Our approach is superior:
the model checkers barely solve anything.

Overview: After providing preliminaries, we summarize
prior work on probabilistic PA, followed by our extension to
probabilistic PPA; and similarly for prior CEGAR methods
followed by our extensions. We describe our experiments
and conclude. A technical appendix (TA) is available online.

Preliminaries
Dist(X) denotes the set of probability distributions over
X , i.e., for µ ∈ Dist(X) it holds µ : X → [0, 1] and∑
x∈X

µ(x) = 1. Throughout this work, we consider distribu-

tions with a finite support Supp(µ) = {x ∈ X | µ(x) > 0}.
We consider state spaces described by a tuple ⟨V,L,O⟩.

V is a finite set of state variables. For each v ∈ V the do-
main D(v) is a bounded integer interval. L is a finite set of
action labels. O is a finite set of action operators. We de-
note by C (V), short C , the set of linear constraints over
V , i.e., of the form

∑
v∈V

dv · v ≥ c with coefficients dv and

c, and Boolean combinations thereof. Accordingly, Exp de-
notes the set of linear expressions over V , i.e., of the form∑
v∈V

dv · v + c. An action operator o ∈ O is a tuple (l, g, ū)

with label l ∈ L, guard g ∈ C , and probabilistic update
ū ∈ Dist(V → Exp). That is, ū(u) is the probability of
update u ∈ Supp(ū), and u assigns each v ∈ V an update
expression from Exp. We write l(o), g(o) and ū(o) to denote
the respective structure.

The state space of ⟨V,L,O⟩ is the probabilistic transition
systems (PTS) Θ = ⟨S,O, U, T ⟩. The set of states S is the
set of variable assignments, i.e., s ∈ S is a function with
domain dom(s) = V and s(v) ∈ D(v) for each v. We de-
note by ϕ(s) and e(s) the evaluation of ϕ ∈ C and e ∈ Exp
over s. We write s |= ϕ if ϕ(s) evaluates true and denote
[ϕ] = {s ∈ S | s |= ϕ}. U =

⋃
o∈O

Supp(ū(o)) is the set of

updates. sJuK = {v 7→ u(v)(s) | v ∈ V} denotes the evalua-
tion of u ∈ U over s ∈ S. Accordingly, sJūK ∈ Dist(U×S)
denotes the U -annotated state distribution induced by prob-
abilistic update ū in s, i.e., sJūK(u, s′) = ū(u) for u ∈
Supp(ū) and s′ = sJuK, otherwise sJūK(u, s′) = 0. The set
of transitions T contains (s, o, µ) ∈ S×O×Dist(U×S) for

operator o = (l, g, ū) iff s |= g and µ = sJūK. A path in Θ is
a finite sequence ⟨s0, o0, µ0, u0, . . . , sn⟩ s.t. (si, oi, µi) ∈ T
and (ui, si+1) ∈ Supp(µi) for all i. By Path(Θ), short
Path , we denote the set of paths. By si(σ), oi(σ), µi(σ)
and ui(σ) we denote the i-th element of σ ∈ Path .

An action policy π is a function S → L. The policy-
restricted subgraph is the PTS Θπ = ⟨S,O, U, T π⟩ with
T π = {(s, o, µ) ∈ T | π(s) = l(o)}. The distinction
between action operators O and labels L (selected by π)
allows for non-determinism in Θπ: multiple transitions in
state s ∈ S, induced by multiple operators with the same
label l ∈ L. We consider π represented by a neural network
(NN). We focus on feed-forward NN with ReLU activation
ReLU (x) = max(x, 0). These NN consist of an input layer,
arbitrarily many hidden layers, and an output layer with one
neuron per label l ∈ L.

A safety property is a tuple ρ = (ϕ0, ϕu, pu). ϕ0 ∈ C rep-
resents the set of start states and ϕu ∈ C the set of unsafe
states; pu ∈ [0, 1] is an upper bound on unsafety probabil-
ity. Path(Θ, ϕu) = {σ ∈ Path(Θ) | s|σ|(σ) |= ϕu ∧ ∀0 ≤
i < |σ| : si(σ) ̸|= ϕu} denotes the set of (minimal) unsafe
paths. An adversary A : S → (O × Dist(U × S)) resolves
transition non-determinism in Θ. It induces a probability
measure on the Markov chain ΘA = ⟨S,O, U, T A⟩ where
T A = {(s, o, µ) ∈ T | A(s) = (o, µ)}. Path(ΘA, s, ϕu) =
{σ ∈ Path(ΘA, ϕu) | s0(σ) = s} denotes the un-
safe paths under A from s ∈ S, short Path(A, s, ϕu).

Pr(ups) =
∑

σ∈ups

|σ|−1∏
i=0

(µi(ui, si+1))(σ) is the accumu-

lated unsafety probability of ups ⊆ Path(A, s, ϕu).
We abbreviate Pr(σ) = Pr({σ}) and Pr(A, s, ϕu) =
Pr(Path(A, s, ϕu)). Θ is unsafe with respect to ρ iff there
exists a counterexample (A, s0), i.e., an adversary A and a
start state s0 |= ϕ0 such that Pr(A, s0, ϕu) > pu. Other-
wise Θ is safe. Safety straight-forwardly translates to policy
safety: π is safe iff Θπ is safe.

Prior Work: Probabilistic PA
Probabilistic predicate abstraction (Wachter et al. 2007)
adopts predicate abstraction (Graf and Saı̈di 1997) for prob-
abilistic systems. Assume a set of predicates P ⊆ C . An
abstract state sP is a complete truth value assignment over
P . The abstraction of a concrete state s ∈ S is the abstract
state s|P with s|P(p) = p(s) for each p ∈ P . Conversely,
[sP] = {s′ ∈ S | s′|P = sP} denotes the concretization of
sP . The abstraction of distribution µ ∈ Dist(U × S) is the
distribution µ|P = {(u, sP) 7→

∑
s∈[sP]

µ(u, s) | u ∈ U, sP ∈

SP} and [µP] = {µ ∈ Dist(U × S) | µ|P = µP} denotes
the concretization of µP ∈ Dist(U × SP).
Definition 1 (Probabilistic Predicate Abstraction). The
predicate abstraction of Θ over P is the PTS ΘP =
⟨SP ,O, U, TP⟩ where SP is the set of all abstract states over
P and TP = {(sP , o, µP) ∈ SP×O×Dist(U×SP) | ∃s ∈
[sP], µ ∈ [µP] : (s, o, µ) ∈ T }.

To compute ΘP , one must solve the abstract transition
problem for every possible abstract transition: (sP , o, µP) ∈

TP with o = (l, g, ū) iff there exist a concrete state s ∈
[sP] such that s |= g(o) and sJūK ∈ [µP]. This is routinely
encoded into satisfiability modulo theories (SMT) using off-
the-shelf solvers (de Moura and Bjørner 2008).

The abstraction of a concrete path σ ∈ Path(Θ) is
the abstract path σ|P ∈ Path(ΘP) where si(σ|P) =
si(σ)|P , oi(σ|P) = oi(σ), µi(σ|P) = µi(σ)|P , and
ui(σ|P) = ui(σ) for all i ∈ 0, . . . , |σ|. Conversely,
[σP](Θ) = {σ ∈ Path(Θ) | σ|P = σP}, short [σP], de-
notes the concretization of abstract path σP ∈ Path(ΘP).
The concretization of an abstract adversary AP is the con-
crete adversary [AP]: [AP](s) = (o, sJū(o)K) if AP(s|P) =
(o, µP) and sJū(o)K ∈ [µP]. Otherwise [AP](s) = (oδ, µδ),
where (oδ, µδ) is a special element s.t. (s, oδ, µδ) /∈ T , i.e.,
[AP] blocks.

For ϕ ∈ C let sP |= ϕ iff ∃s ∈ [sP] ∩ [ϕ]. Safety extends
straight-forwardly to ΘP . Due to the over-approximating,
safety of ΘP implies safety of Θ. Proofs for all theoretical
results are shown in the appendix.

Proposition 2 (Safety in ΘP). Let ρ = (ϕ0, ϕu, pu). If ΘP
is safe with respect to ρ, then Θ is safe as well.

Probabilistic PPA
Policy predicate abstraction (PPA) (Vea 2022) does not ab-
stract the full state space Θ, but rather the subgraph Θπ in-
duced by neural policy π. Our contribution here is the exten-
sion of PPA to probabilistic verification. In this section, we
introduce the probabilistic PPA state space Θπ

P , the compu-
tation of Θπ

P and of abstract counterexamples. Afterward we
show how to obtain the predicate set P .

Definition 3 (Policy Predicate Abstraction). The policy
predicate abstraction (PPA) of Θ over P and π is the PTS
Θπ
P = ⟨SP ,O, U, T π

P ⟩ where T π
P = {(sP , o, µP) ∈ SP ×

O×Dist(U ×SP) | ∃s ∈ [sP], µ ∈ [µP] : (s, o, µ) ∈ T π}.

Safety of π can be proven via safety of Θπ
P .

Proposition 4 (Safety in Θπ
P). Let ρ = (ϕ0, ϕu, pu). If Θπ

P
is safe with respect to ρ, then π is safe as well.

Computing the abstract state space. The abstract tran-
sition problem for Θπ

P extends the one for ΘP in that
(sP , o, µP) ∈ T π

P with o = (l, g, ū) iff there exist a con-
crete state s ∈ [sP] such that s |= g(o), sJūK ∈ [µP], and
additionally π(s) = l(o), i.e., π selects l(o) in s. This is
a key source of intricacy since the SMT formula represent-
ing the neural policy π contains one non-linear constraint
per ReLU activation. This also pertains to non-probabilistic
PPA. Yet, the encoding for probabilistic PPA is again more
laborious since it involves a successor distribution (essen-
tially a conjunction of abstract states) rather than a single
successor. Our SMT encodings are shown in the TA.

Vea (2022) introduce an algorithm to efficiently com-
pute Θπ

P for non-probabilistic systems, more specifically
for the expansion of an abstract source state sP . They de-
ploy approximate SMT checks embedded into an exact deci-
sion procedure. In particular continuous relaxation of integer
state variable enables to use NN-tailored SMT solvers (Katz
et al. 2019). These enhancements can be directly lifted to

probabilistic PPA. Probabilistic expansion is more com-
plex in that it must enumerate abstract successor distribu-
tions while non-probabilistic expansion enumerates abstract
successor states. That said, the size of distribution µP is
bounded by the size of probabilistic update ū, |Supp(µP)| =
|Supp(ū)|, and hence usually small in practice. Pseudocode
adapted for probabilistic expansion is available in the TA.

Computing abstract counterexamples. To verify safety
in Θπ

P , we must check for a counterexample (Aπ
P , s

0
P).

This boils down to a MaxProb problem (Steinmetz et
al. 2016): Θπ

P is unsafe iff maxPr(Θπ
P , ϕ0, ϕu) > pu where

maxPr(Θπ
P , ϕ0, ϕu) = max

Aπ
P ,s0P |=ϕ0

Pr(Aπ
P , s

0
P , ϕu) is the

maximal unsafety probability of Θπ
P . This problem can be

solved with value iteration (Bertsekas 1995), but that neces-
sitates to construct the entire reachable fragment of Θπ

P . We
hence use FRET-LRTDP (Steinmetz et al. 2016), which ex-
plores the reachable fragment incrementally and terminates
once maximizing (Aπ

P , s
0
P) is computed. Aπ

P may be partial
but closed in that it is defined on the fragment of Θπ

P that
is reachable from s0P under Aπ

P while it may be undefined
elsewhere. This enables constructing the reachable fragment
only partially, while still solving MaxProb exactly.

Prior Work: CEGAR
So far we have not specified how to derive the predicate set
P . The commonly used method in PA is counterexample-
guided abstraction refinement (CEGAR) (Clarke et al.
2003). Starting from simple P – here P = {ϕu} sufficient
to distinguish unsafe states – P is iteratively refined. If ΘP
is safe, then so is the concrete state space Θ and CEGAR
stops, else there exists an abstract counterexample in ΘP . If
the counterexample is realizable in Θ, then Θ is unsafe and
CEGAR stops, else the counterexample is spurious and new
predicates are added to P to eliminate spuriousness. Spe-
cific methods are required to deal with the possible sources
of spuriousness in (1) PPA; and (2) probabilistic state spaces.
Here, we summarize prior work tackling (1) and (2). In
the next section, we combine the two in order to obtain a
CEGAR method for probabilistic PPA.

CEGAR for non-probabilistic PPA. Vea (2023) provide
a CEGAR framework specialized to non-probabilistic PPA
(CEGAR-PPA). Here, a counterexample is an abstract un-
safe path σP from ϕ0 to ϕu, found via forward search in
Θπ
P . Let [σP ∧ ϕu](Θ) = [σP](Θ) ∩ Path(Θ, ϕu) denote

the set of unsafe concretization paths of σP in Θ. σP is real-
izable iff there exists σ ∈ [σP ∧ ϕu](Θ

π) with s0(σ) |= ϕ0.
If σP is spurious, P is refined by adding predicates based on
the source of spuriousness.

(a) T -spuriousness is induced by the transition behav-
ior T of the system. σP is T -realizable iff there exists a
non-policy-restricted concretization σ ∈ [σP ∧ ϕu](Θ) with
s0(σ) |= ϕ0. Otherwise, σP is T -spurious. T -spuriousness
also occurs in general non-policy-restricted systems. The
spuriousness check is routinely encoded into SMT. Standard
refinement techniques exist. Vea deploy weakest precondi-
tion computation along σP .

(b) π-spuriousness is induced by the policy π. A T -
realizable abstract path σP is π-realizable iff there exists a
policy-restricted concretization σ ∈ [σP ∧ ϕu](Θ

π) with
s0(σ) |= ϕ0. Otherwise, σP is π-spurious. The spuriousness
check can be encoded in SMT. For refinement Vea introduce
witness splitting. Consider siP(σP) for some i < |σP |. σP
proceeds due to some concrete witness (siw, o

i(σP), s
i+1
w) ∈

T π with siw ∈ [siP(σP)] and si+1
w ∈ [si+1

P (σP)]. σP is π-
spurious if no such siw is reachable via (prefix) concretiza-
tions of σP in Θπ . In other words, π(si(σ)) ̸= l(oi(σP)) for
any concretization σ ∈ [σP ∧ ϕu](Θ). Vea introduce split
predicates to distinguish siw and si(σ) in the refined abstrac-
tion, approximating the decision boundary of π in siP(σP).

CEGAR for probabilistic PA. Probabilistic CEGAR
(prob-CEGAR) (Hermanns et al. 2008) extends CEGAR to
probabilistic systems. Let (AP , s

0
P) be an abstract coun-

terexample, i.e., s0P |= ϕ0 and Pr(AP , s
0
P , ϕu) > pu.

(AP , s
0
P) is realizable iff there exists some start state s0 ∈

[s0P] ∩ [ϕ0] such that Pr([AP], s0, ϕu) > pu. To check this,
prob-CEGAR maintains a finite set of abstract unsafe paths
upsP ⊆ Path(AP , s

0
P , ϕu). Individual paths σP are added

to upsP incrementally with decreasing probability Pr(σP)

via weighted search in ΘP
AP (Han and Katoen 2007), ex-

ploiting that iff Pr(AP , s0P , ϕu) > pu then there exists finite
upsP such that Pr(upsP) > pu (Han et al. 2009).

There are two possible sources of spuriousness. (i) In-
dividual paths σP may be spurious. This corresponds to
non-probabilistic spuriousness (a) and is checked and re-
fined using standard techniques. (ii) For Pr(upsP) > pu,
the maximal realizable probability of upsP may not ex-
ceed pu because concretizations of distinct abstract paths
in upsP may have distinct start states. Let upsP |s =
{σP ∈ upsP | ∃σ ∈ [σP ∧ ϕu] : s

0(σ) = s} de-
note the subset of upsP with an unsafe concretization from
s ∈ S. The maximal realizable probability of upsP is
maxPr [upsP] = max

s0∈[s0P]∩[ϕ0]
Pr(upsP |s0). maxPr [upsP]

can be computed via an encoding into MaxSMT (Bjørner
and Phan 2014). If maxPr [upsP] > pu then upsP and
thereby the abstract counterexample (AP , s

0
P) are realiz-

able. If maxPr [upsP] ≤ pu then (AP , s
0
P) is not neces-

sarily spurious. upsP is only a subset of Path(AP , s0P , ϕu).
Punused = Pr(AP , s

0
P , ϕu) − Pr(upsP) is the “unused”

probability mass of (AP , s
0
P). (AP , s

0
P) is spurious if

maxPr [upsP]+Punused ≤ pu. Refinement introduces pred-
icates to distinguish start states in s0P .

CEGAR for Probabilistic PPA

We contribute a CEGAR method for probabilistic policy
verification via PPA (prob-CEGAR-PPA). It combines ideas
from CEGAR-PPA and prob-CEGAR (cf. previous section).
Algorithm 1 shows pseudocode. We first discuss the sources
of spuriousness and their refinement; then we describe and
formally analyze our algorithm. Afterward, we provide an
extension of prob-CEGAR-PPA for the automated deriva-
tion of upper and lower bounds on unsafety probability.

Algorithm 1: Probabilistic CEGAR for PPA.
Input: ⟨V,L,O⟩, (ϕ0, ϕu, pu), pε > 0 (minimal path probability).

1 P ← {ϕu}
2 while 1 do
3 (Aπ

P , s0P)← max-prob(⟨V,L,O⟩, (ϕ0, ϕu, pu),P, π)
4 if Pr(Aπ

P , s0P , ϕu) ≤ pu then return SAFE
5 if CeAna(Aπ

P , s0P) = REAL then return UNSAFE

6 Procedure CeAna(Aπ
P , s0P):

7 upsP ← ∅
8 Pmax ← 0 // Upper bound on maxPr [upsP].

9 Punused = Pr(Aπ
P , s0P , ϕu)− Pr(upsP) // Notation.

10 can-add(upsP) := Pr(upsP) < pu ∨ pε < min{Pr(σP) |
σP ∈ upsP} // Termination condition.

11 while 1 do
12 while Pmax ≤ pu ∧ can-add(upsP) do
13 σP ← (|upsP |+ 1)-HighestProb(Aπ

P , s0P , ϕu)

14 if ¬is-T -path-realizable(σP) then
15 return refine-T -path(P, σP) // (i-a)

16 upsP ← upsP ∪ {σP}
17 Pmax ← Pmax + Pr(σP)

18 Pmax ← maxPr [upsP](Θ) // MaxSMT

19 if Pmax > pu then break
20 if Pmax + Punused ≤ pu ∨ ¬can-add(upsP) then
21 return refine-T -prob(P, upsP) // (ii-a)

22 let ups∗P ⊆ upsP with
maxPr [ups∗P](Θ) = Pr(ups∗P) = Pmax

23 if ∃σP ∈ ups∗P : ¬is-π-path-realizable(σP) then
24 return refine-π-path(P, σP) // (i-b)

25 if ¬is-π-all-realizable(ups∗P) then
26 return refine-π-prob(P, ups∗P) // (ii-b)

27 return REAL

Spuriousness and refinement. Consider an abstract
counterexample (Aπ

P , s
0
P) in Θπ

P . prob-CEGAR-PPA com-
poses the sources of spuriousness encountered in CEGAR-
PPA and prob-CEGAR. It involves two sources of spurious-
ness of individual paths, specifically (i-a) T -path and (i-
b) π-path spuriousness. We check and refine both sources
analogously to non-probabilistic CEGAR-PPA (Vea 2024).

As in prob-CEGAR, prob-CEGAR-PPA maintains
upsP ⊆ Path(Aπ

P , s
0
P , ϕu), where each σP ∈ upsP is

T -path realizable. There are two sources of probabilistic
spuriousness. (ii-a) T -probabilistic spuriousness is in-
duced by the transition behavior T . It corresponds to source
(ii) of non-policy-restricted prob-CEGAR. upsP is T -
probabilistic realizable iff it has sufficient realizable prob-
ability without policy-restriction, maxPr [upsP](Θ) > pu.
Otherwise it is T -probabilistic spurious. We compute
maxPr [upsP](Θ) via a call to MaxSMT.

(ii-b) π-probabilistic spuriousness is induced by the pol-
icy π. This new source is specific to prob-CEGAR-PPA.
Consider T -probabilistic realizable upsP such that each
σP ∈ upsP is π-path realizable. upsP is π-probabilistic
realizable iff it has sufficient realizable probability under π,
maxPr [upsP](Θ

π) > pu. Otherwise it is π-probabilistic
spurious. Checking (ii-b) is non-trivial. maxPr [upsP](Θ

π)
boils down to a NN-constrained MaxSMT problem. Support

for NN-tailored MaxSMT solvers is limited (Strong et al.
2023). We settle for an under-approximative π-realization
check: Let ups∗P ⊆ upsP be a maximal T -realizable subset,
i.e., maxPr [ups∗P](Θ) = Pr(ups∗P) = maxPr [upsP](Θ).
upsP is π-probabilistic realizable if ups∗P is π-all realizable
under π, i.e., if there exists s0 ∈ [s0P] ∩ [ϕ0] such that for all
σP ∈ ups∗P there exists σ ∈ [σP ∧ ϕu](Θ

π) with s0(σ) =
s0. This check can be encoded in NN-tailored SMT. It is
under-approximative in that, even if ups∗P is not π-all re-
alizable, upsP may be π-probabilistic realizable, i.e., there
may exist another π-all realizable subset ups ′P ⊆ upsP with
sufficient probability mass Pr(ups ′P) > pu.

For refinement of probabilistic spuriousness, we propose
start witness splitting. Consider a finite set of start states
S0 ⊆ [s0P]∩ [ϕ0]. For each state variable v ∈ V let S0(v) =
{s(v) | s ∈ S0} denote the set of start state values and let
S0
i (v) ∈ S0(v) denote the i-th smallest value. We introduce

split predicates v ≤ S0
i (v) for each i ∈ 1 . . . ,

∣∣S0(v)
∣∣ − 1.

S0 is constructed as follows: (ii-a) S0 contains a maximiz-
ing start state s0∗ ∈ [ϕ0] with upsP |s0∗ = ups∗P of some
maximal T -realizable subset ups∗P ⊆ upsP . Additionally,
S0 contains a start state s0(σ) of some unsafe concretiza-
tion σ ∈ [σP ∧ ϕu](Θ) for each σP ∈ upsP \ ups∗P . (ii-b)
Analogously, S0 contains a start state s0(σ) of some unsafe
concretization σ ∈ [σP ∧ ϕu](Θ

π) for each σP ∈ ups∗P .
Intuitively, each s0 ∈ S0 is a witness of the realizable start
region of at least one σP ∈ upsP . By introducing split pred-
icates between these witnesses, we approximate the start re-
gions in the refined abstraction.

Algorithm. The core of Algorithm 1 is the CEGAR
loop (line 2 - 5). Each iteration starts with a MaxProb search
in Θπ

P (line 3), computing the abstract adversary Aπ
P and

start state s0P that maximize the abstract unsafety probability
Pr(Aπ

P , s
0
P , ϕu). If Θπ

P and thereby π are proven safe (line
4), CEGAR terminates. Otherwise counterexample analysis
(CeAna) is invoked (line 5). If CeAna returns REAL, π is
unsafe and CEGAR terminates. Otherwise CEGAR iterates.

Procedure CeAna (line 6) shows pseudocode for CeAna.
Following prob-CEGAR, we maintain a set of abstract
unsafe paths upsP ⊆ Path(Aπ

P , s
0
P , ϕu) (line 7). Addi-

tionally, we maintain an upper bound Pmax on the max-
imal realizable probability of upsP (line 8). Punused is a
short-hard notation for the abstract probability mass that
is not used in upsP (line 9). We also define a condi-
tion can-add(upsP) (line 10) on the minimal probability
pε of individual paths σP added to upsP . Pr(Aπ

P , s
0
P , ϕu)

may be infinite. can-add(upsP) is to guarantee termina-
tion. The condition is suppressed while insufficient ab-
stract probability mass has been accumulated, Pr(upsP) <
pu. Pr(upsP) ≥ pu can always be achieved with
finitely many paths (Han et al. 2009). CeAna first ana-
lyzes T -spuriousness (line 11 - 21). Only if upsP is T -
realizable, it proceeds to the more expensive analysis of π-
spuriousness (line 21 - 27).

T -analysis iteratively constructs upsP (line 12 - 17). In
each iteration, the path σP ∈ Path(Aπ

P , s
0
P , ϕu) with the

(|upsP | + 1)-th highest probability is computed (line 13)
via weighted search in the subgraph induced by Aπ

P (Han

and Katoen 2007). If σP is T -path spurious, we refine (line
15) and CeAna terminates. If σP is realizable, it is added
to upsP (line 16) and we update Pmax (line 17). Once
Pmax > pu (line 12) the maximal T -realizable probability
is computed via MaxSMT and Pmax is set accordingly (line
18). If Pmax > pu, then upsP is T -realizable and we con-
tinue to π-analysis (line 19). If Pmax + Punused ≤ pu (line
20), then (Aπ

P , s
0
P) is spurious, we refine and CeAna termi-

nates. We also refine if ¬can-add(upsP), i.e., the minimal
probability condition on individual paths is violated. If not,
T -analysis iterates and adds additional paths to upsP until
again Pmax > pu (or ¬can-add(upsP)).

π-analysis restricts to a maximal T -realizable subset
ups∗P ⊆ upsP (line 22). If some path σP ∈ ups∗P is π-
path spurious, we refine (line 24) and CeAna terminates.
Otherwise π-analysis checks whether ups∗P is π-all realiz-
able (line 25). If so, (Aπ

P , s
0
P) is realizable (line 27). If not,

we refine (line 26). In either case CeAna terminates.

Formal guarantees. CeAna involves a non-trivial loop
which enumerates paths from the potentially infinitely large
set Path(Aπ

P , s
0
P , ϕu). This raises question of termination of

CeAna in particular and prob-CEGAR-PPA in general. We
answer this question in the affirmative and argue correctness.

Theorem 5. CeAna terminates.

Proof sketch. It suffices to show that T -analysis (line 11 -
21) terminates. At the start of each iteration, it holds
Pmax ≤ pu and can-add(upsP) (line 19, 20). Hence, the
loop (line 12 - 17) is entered. Per invocation of CeAna, this
loop can accumulate only finitely many iterations since for
finitely many paths Pr(upsP) > pu (Han et al. 2009) and
min

σP∈upsP
Pr(σP) < pε. Hence, T -analysis terminates.

Theorem 6. If CeAna returns REAL, then π is unsafe.

Proof sketch. By π-all realization of ups∗P (line 25), there
exists ups ⊆ Path([Aπ

P], s
0, ϕu) for some s0 ∈ [s0P] ∩ [ϕ0]

so that Pr(ups) = Pr(ups∗P) > pu. Hence, π is unsafe.

Due to the termination condition ¬can-add(upsP), but
also the under-approximative check for π-probabilistic re-
alization (line 25), CeAna may fail to detect realizable
(Aπ
P , s

0
P). That said, for the overall CEGAR algorithm ter-

mination and correctness are guaranteed.

Theorem 7. Algorithm 1 terminates.

Proof sketch. In each iteration, CEGAR either terminates or
strictly refines the abstraction P ⊊ P ′ in that ∃s, t ∈ S such
that s|P = t|P for original P while s|P′ ̸= t|P′ for refined
P ′. This holds for refinement of (i-a,b) (Vea 2023) and also
for refinement of (ii-a,b) via start state splitting, specifically
for s, t ∈ S0. Since S is finite, Θπ

P approximates Θπ exactly
within finitely many iterations and CEGAR terminates.

Theorem 8. If Algorithm 1 returns SAFE, then π is safe. If
Algorithm 1 returns UNSAFE, then π is unsafe.

Proof. Follows from Proposition 4 and Theorem 6.

Automated bound derivation. While verifying safety
with respect to a given upper bound pu, prob-CEGAR-PPA
also derives interval bounds [P lo

u , P up
u] on the maximal un-

safety probability maxPr(Θπ, ϕ0, ϕu) under π. 0 ≤ P lo
u =

maxPr [upsP](Θ
π) is the maximal realizable probability of

some upsP (if computed). P up
u = maxPr(Θπ

P , ϕ0, ϕu) ≤ 1
is the (latest) maximal abstract unsafety probability of Θπ

P .
We use linear search on pu to incrementally tighten

[P lo
u , P up

u]. The linear search is embedded into the CEGAR
loop. While Θπ

P is safe, pu is decreased by some step size
p∆ ∈ (0, 1). While CeAna derives unsafe, pu is increased
by p∆ and CeAna re-continues with current upsP and up-
dated pu. If spuriousness is detected, linear search pauses
and CEGAR iterates. p∆ controls the precision with which
[P lo

u , P up
u] approximates the unsafety probability in Θπ .

Linear search terminates once P up
u − P lo

u ≤ p∆. We de-
note this incremental invocation of prob-CEGAR-PPA for
automated bound derivation by prob-CEGAR-PPA-inc. We
denote prob-CEGAR-PPA verifying a specific pu by prob-
CEGAR-PPA-pu. Pseudocode adapted for CEGAR with lin-
ear search is available in the TA.

Experiments
We implemented our approach on top of Vea’s C++
code base (2024), which uses Marabou (2019) for NN-
constrained SMT. For MaxSMT we use Z3 (2008). All ex-
periments were run on machines with AMD EPYC 9654
processors at 2.4GHz with time and memory limits of 12h
and 4GB. Our tool and all experiments are available online.

Benchmarks. We use probabilistic versions of Vea’s
benchmarks (2022). These benchmarks are adaptations of
the planning domains Blocksworld, Puzzle, and Transport
encoded in the automata language JANI (Budde et al. 2017).

In Blocksworld and Puzzle, Vea already train their poli-
cies in a probabilistic environment. For verification, they
abstract probabilistic transitions to non-deterministic ones,
amounting to a worst-case analysis. We perform probabilis-
tic verification. In Blocksworld, the policy is unsafe if the
number of blocks on the table exceeds a fixed limit. Blocks
probabilistically drop on the table. In Puzzle, unsafe states
are specified in terms of unsafe tile positions. Tiles may
probabilistically move to an unsafe position. Vea’s Transport
version is non-probabilistic and we add probabilistic behav-
ior: Whenever the truck loads more than one package, it may
drop probabilistically. Dropping a package is unsafe.

State space enumeration and thereby naive Q-learning,
is infeasible on all these benchmarks. Neural policies are
trained using deep Q-learning (Mnih et al. 2015). They are
provided in PYTORCH (Ansel et al. 2024) format. Each pol-
icy has two hidden layers of size 16, 32 or 64 respectively.
There are policies that are, vs. ones that are not, aware of
move costs. Vea consider policies with vs. without applica-
bility filter, i.e., pre-filtering the policy selection in each state
to the applicable actions (2024).

Configurations. We run prob-CEGAR-PPA-inc for auto-
mated bound derivation and prob-CEGAR-PPA-pu for ver-
ification of specific pu. We set pε = 10−5. The default

configuration for linear search on pu is p∆ = 0.05 and
pinitu = 0 (initial pu). We also compare prob-PPA, comput-
ing the reachable fragment of probabilistic PPA for a fixed
predicate set, with non-probabilistic PPA (non-prob-PPA)
(Vea 2022). The latter abstracts probabilistic transitions to
non-deterministic ones, introducing one (non-probabilistic)
transition per (probabilistic) outcome.

Encoding into SOA model checkers. We compare
with the probabilistic model checkers of the Quantita-
tive Verification Competition (Budde et al. 2021), specif-
ically STORM (2022), ePMC (2014), MODEST (2014),
PRISM (2011) and PET (2022). These tools do not natively
support neural policies π. Instead, the NN is encoded as an
individual automaton and composed with the automata net-
work that encodes the PTS. System transitions are controlled
by π via synchronization. The NN output is computed via
internal edges of the NN automaton. ePMC and MODEST
support a straightforward encoding of the NN with neuron
values encoded as real-valued variables. The other checkers
do not allow real-valued variables. Here, we discretize the
NN with finite precision. Neuron values are encoded as in-
teger variables. The NN output is computed using rational
arithmetic. This discretization does not guarantee to mimic
the true π-restricted system faithfully, but is the best possi-
ble basis for a performance comparison given the checkers’
limitations. We provide a detailed description in the TA.

We experiment with various configurations to com-
pute the maximal unsafety probability maxPr(Θπ, ϕ0, ϕu).
ePMC constructs the (π-restricted) state space explicitly
and runs value iteration. PET performs partial exploration
of Θπ . We run MODEST’s explicit engine and its FRET-
LRTDP implementation. For STORM and PRISM, we ex-
periment with their explicit and symbolic (binary decision
diagram) engines, as well as explicit-symbolic hybrids. Ad-
ditionally, we run STORM’s abstraction-refinement based on
a variant of (game-based) predicate abstraction similar to
prob-CEGAR.

Figure 1: Abstract state space computation prob-PPA vs.
non-prob-PPA. Predicate set scales as per Vea (2022).

Results: Computing Θπ
P . Figure 1 compares the time to

compute the reachable fragment of Θπ
P for prob-PPA vs.

non-prob-PPA over predicate sets of increasing size. The

figure shows results for a selection of benchmarks; similar
trends are observed in all benchmarks. prob-PPA loses little
performance compared to non-prob-PPA. So there is only
a small overhead incurred by enumerating abstract succes-
sor distributions µP instead of abstract successor states s′P .
This is presumably because the distribution size |Supp(µP)|
is bounded by the update support Supp(ū) per operator o,
which is typically small in practice.

Benchmark NN App [P lo
u , P up

u] plastu Time CE upsmax
P

4 Blocks (CI) 16 × [0.37, 0.41] ∋ 0.4 18 1 75
16 ✓ [0.41, 0.65] ∋ 0.45 - 43036 74220
32 × [0.25, 0.27] > 0.25 33 1 20
32 ✓ [0.19, 1] ∋ 0.2 - 42872 179662
64 × [0.17, 0.19] ≤ 0.2 7553 1 5

6 Blocks (CI) 16 × [0.95, 1] > 0.95 79 1 29
16 ✓ [0.95, 1] > 0.95 321 1 29
32 × [0.27, 0.3] ≤ 0.3 14227 1 258

8 Blocks (CI) 16 × [0.95, 1] > 0.95 454 1 29
16 ✓ [0.95, 1] > 0.95 3396 1168 20771
32 × [0.95, 1] > 0.95 31376 1 29

8 Puzzle (CI) 16 × [0.95, 1] > 0.95 5434 3 10
32 × [0.1, 1] ∋ 0.1 - 43 2
32 ✓ [0.1, 1] ∋ 0.1 - 191 2
64 ✓ [0.95, 1] > 0.95 9630 9603 209271

Transport 16 × [0.1, 1] ∋ 0.1 - 113 2
16 ✓ [0.1, 1] ∋ 0.1 - 593 2
32 × [0.1, 1] ∋ 0.1 - 1688 2
32 ✓ [0.1, 1] ∋ 0.1 - 9193 2

4 Blocks (CA) 16 × [0.34, 0.36] ∋ 0.35 44 1 305
16 ✓ [0.34, 0.42] ∋ 0.35 - 43054 104411
32 × [0.27, 0.28] ≤ 0.3 1145 393 6853
32 ✓ [0.17, 0.44] ∋ 0.2 - 41818 162006

6 Blocks (CA) 16 × [0.86, 1] ∋ 0.9 - 43043 420997
32 × [0.95, 1] > 0.95 4121 1 29
32 ✓ [0.95, 1] > 0.95 38289 1 29

8 Blocks (CA) 16 × [0.99, 1] > 0.95 5692 1 3
32 × [0.84, 1] ∋ 0.85 - 15661 224957

8 Puzzle (CA) 16 × [0.1, 1] ∋ 0.1 - 10 2
16 ✓ [0.1, 1] ∋ 0.1 - 28 2
32 × [0.1, 1] ∋ 0.1 - 33 2
32 ✓ [0.1, 1] ∋ 0.1 - 56 2

Table 1: Results for prob-CEGAR-PPA-inc over differ-
ent benchmarks distinguishing cost-aware (CA) and cost-
ignoring (CI) policies, and policies with/out applicability-
filter. [P lo

u , P up
u]: derived probability bounds. plastu : unsafety

bound pu at termination. [P lo
u , P up

u] verifies (≤), falsifies
(>), or contains (∋) plastu . Total runtime in seconds. - in-
dicates runs that exceed the resource limit (12h, 4 GB). CE:
time spent on counterexample analysis. upsmax

P : size of the
maximal abstract unsafe path set constructed.

Results: Automated bound derivation. Table 1 shows re-
sults for prob-CEGAR-PPA-inc. It terminates with a com-
plete analysis on 16 out of the 32 benchmark instances.
On the remaining instances, it derives tightened probability
bounds – in 5 cases with an interval size smaller than 0.3 –
demonstrating its anytime behavior.

Counterexample analysis (CeAna) is often a major bot-
tleneck. On 6 instances (5 timeouts) more than 50% of the

time is spent on CeAna, showcasing the complexity of prob-
abilistic counterexample analysis. One source of complexity
during CeAna are costly π-spuriousness checks. On Trans-
port instances, e.g., almost the entire CE-time is spent on
π-path checks. On many instances, however, the complexity
arises from the size of the abstract unsafe path set upsmax

P .
On 8 instances (6 timeouts), upsmax

P exceeds 104. Notably,
on all instances upsmax

P is constructed while abstract proba-
bility is insufficient Pr(upsP) ≤ pu, and hence independent
of minimal path probability pε.

CeAna is particularly challenging for policies with ap-
plicability filtering (9 timeouts out of 13). This aligns with
findings for non-probabilistic PPA (2024): while applicabil-
ity filtering simplifies learning, it adds complexity to ab-
stract state space computation. In probabilistic PPA, it also
adds complexity to CeAna: abstract counterexamples here
are prone to induce many low-probability paths (6 out of 8
instances with large upsmax

P).
Table 1 shows results for (p∆, p

init
u) = (0.05, 0). We

also experimented with p∆ ∈ {0.01, 0.1} and (p∆, p
init
u) =

(0.05, 1). Overall, the runtime performance of all configura-
tions is similar. We show detailed results in the TA.

pu 4 Blocks CI 64 4 Blocks CA 32 4 Blocks CA 32 (app)
safe PPA-pu PPA-inc safe PPA-pu PPA-inc safe PPA-pu PPA-inc

0.0 × 7119 7553 × 345 375 × 901 920
0.05 × 7328 7553 × 592 631 × 903 920
0.1 × 7149 7553 × 399 631 × 906 920
0.2 ✓ 7130 7553 × 428 667 ? - -
0.3 ✓ 7258 7553 ✓ 805 1145 ? - -
0.5 ✓ 7279 7553 ✓ 399 1145 ✓ - 2056

Table 2: Verification time of specific pu with (prob-
CEGAR)-PPA-pu vs. during (prob-CEGAR)-PPA-inc.

Results: Verification of pu. Table 2 compares the verifica-
tion of a specific bound pu with (prob-CEGAR)-PPA-pu vs.
the verification time of that pu during (prob-CEGAR)-PPA-
inc. We show results for a selection of benchmarks; similar
trends are observed on all benchmarks.

Verification tailored to a specific pu can be significantly
faster, in particular on instances where pu is significantly
larger than the concrete unsafety probability (4 Blocks, CA,
32, 0.5). That said, verification time during PPA-inc is of-
ten on par. This demonstrates that linear search on pu, if
conducted incrementally, is practical. On instances with pu
close to the concrete unsafety probability, PPA-inc can even
make verification feasible in the first place (4 Blocks, CA,
32, app, pu = 0.5).

Results: Comparison with SOA model checkers. The
probabilistic model checkers are almost universally unsuc-
cessful. All configurations exceed either time or memory
limits on all benchmark instances. The only exception is
STORM’s explicit engine which successfully terminates on
6 Blocks (CI) NN 16 without app-filter after 180 seconds.
This is more than double the runtime of prob-CEGAR-PPA-
inc with p∆ = 0.01, 0.05 or 0.10 (less than 80 seconds).

Conclusion
We have extended PPA to probabilistic systems. Our ap-
proach enables both, verification of upper bounds on un-
safety probability, and automated derivation of interval
bounds. Our experiments show that probabilistic PPA is su-
perior to encodings into non-NN tailored model checkers.

Future work may further strengthen our method. Compact
abstract path set representations (Han et al. 2009) might im-
prove counterexample analysis where enumeration is infea-
sible. Another important future direction for PPA is liveness
verification, e.g., that π will eventually achieve a goal.

Acknowledgments
This work was funded by DFG Grant 389792660 as part of
TRR 248 – CPEC (https://perspicuous-computing.science).

References
Amir, G.; Corsi, D.; Yerushalmi, R.; Marzari, L.; Harel, D.;
Farinelli, A.; and Katz, G. 2023. Verifying Learning-Based
Robotic Navigation Systems. In TACAS, volume 13993 of
LNCS, 607–627. Springer.
Ansel, J.; Yang, E. Z.; He, H.; Gimelshein, N.; Jain, A.; Voz-
nesensky, M.; Bao, B.; Bell, P.; Berard, D.; Burovski, E.;
Chauhan, G.; Chourdia, A.; Constable, W.; Desmaison, A.;
DeVito, Z.; Ellison, E.; Feng, W.; Gong, J.; Gschwind, M.;
Hirsh, B.; Huang, S.; Kalambarkar, K.; Kirsch, L.; Lazos,
M.; Lezcano, M.; Liang, Y.; Liang, J.; Lu, Y.; Luk, C. K.;
Maher, B.; Pan, Y.; Puhrsch, C.; Reso, M.; Saroufim, M.;
Siraichi, M. Y.; Suk, H.; Zhang, S.; Suo, M.; Tillet, P.; Zhao,
X.; Wang, E.; Zhou, K.; Zou, R.; Wang, X.; Mathews, A.;
Wen, W.; Chanan, G.; Wu, P.; and Chintala, S. 2024. Py-
Torch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation. In Pro-
ceedings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, Volume 2 ASPLOS 2024, La Jolla, CA, USA,
27 April 2024- 1 May 2024, 929–947. ACM.
Bacci, E.; and Parker, D. 2020. Probabilistic Guarantees
for Safe Deep Reinforcement Learning. In Formal Mod-
eling and Analysis of Timed Systems - 18th International
Conference, FORMATS 2020, Vienna, Austria, September
1-3, 2020 Proceedings, volume 12288 of LNCS, 231–248.
Springer.
Bertsekas, D. P. 1995. Dynamic Programming and Optimal
Control. Athena Scientific.
Bjørner, N. S.; and Phan, A. 2014. νZ - Maximal Satisfac-
tion with Z3. In 6th International Symposium on Symbolic
Computation in Software Science, SCSS 2014, Gammarth,
La Marsa, Tunisia, December 7-8, 2014, volume 30 of EPiC
Series in Computing, 1–9. EasyChair.
Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns, A.;
Junges, S.; and Turrini, A. 2017. JANI: Quantitative Model
and Tool Interaction. In TACAS, volume 10206 of LNCS,
151–168.
Budde, C. E.; Hartmanns, A.; Klauck, M.; Kretı́nský, J.;
Parker, D.; Quatmann, T.; Turrini, A.; and Zhang, Z. 2021.

On Correctness, Precision, and Performance in Quantita-
tive Verification - QComp 2020 Competition Report. In
Intl. Symp. on Leveraging Applications of Formal Methods,
ISoLA, volume 12479 of LNCS, 216–241. Springer.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic
model checking. JACM, 50(5): 752–794.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient
SMT Solver. In TACAS, volume 4963 of LNCS, 337–340.
Springer.
Graf, S.; and Saı̈di, H. 1997. Construction of Abstract State
Graphs with PVS. In CAV, volume 1254 of LNCS, 72–83.
Springer.
Hahn, E. M.; Li, Y.; Schewe, S.; Turrini, A.; and Zhang, L.
2014. iscasMc: A Web-Based Probabilistic Model Checker.
In Formal Methods, World Congress, FM, volume 8442 of
Lecture Notes in Computer Science, 312–317. Springer.
Han, T.; and Katoen, J. 2007. Counterexamples in Proba-
bilistic Model Checking. In TACAS, volume 4424 of LNCS,
72–86. Springer.
Han, T.; Katoen, J.; and Damman, B. 2009. Counterexample
Generation in Probabilistic Model Checking. IEEE Trans.
Software Eng., 35(2): 241–257.
Hartmanns, A.; and Hermanns, H. 2014. The Modest
Toolset: An Integrated Environment for Quantitative Mod-
elling and Verification. In TACAS, volume 8413 of LNCS,
593–598. Springer.
Hensel, C.; Junges, S.; Katoen, J.; Quatmann, T.; and Volk,
M. 2022. The probabilistic model checker Storm. Intl. J. on
Soft. Tools for Tech. Transfer, 24(4): 589–610.
Hermanns, H.; Wachter, B.; and Zhang, L. 2008. Proba-
bilistic CEGAR. In CAV, volume 5123 of LNCS, 162–175.
Springer.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G. J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Trans. Em-
bed. Comput. Syst., 20(1): 7:1–7:26.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.;
Dill, D. L.; Kochenderfer, M.; and Barrett, C. 2019. The
Marabou Framework for Verification and Analysis of Deep
Neural Networks. In CAV, volume 11561 of LNCS, 443–
452. Springer.
Katz, S. M.; Julian, K. D.; Strong, C. A.; and Kochenderfer,
M. J. 2023. Generating probabilistic safety guarantees for
neural network controllers. Mach. Learn., 112(8): 2903–
2931.
Kwiatkowska, M. Z.; Norman, G.; and Parker, D. 2011.
PRISM 4.0: Verification of Probabilistic Real-Time Sys-
tems. In CAV, volume 6806 of LNCS, 585–591. Springer.
Lopez, D. M.; Choi, S. W.; Tran, H.; and Johnson, T. T.
2023. NNV 2.0: The Neural Network Verification Tool. In
CAV, volume 13965 of LNCS, 397–412. Springer.
Meggendorfer, T. 2022. PET - A Partial Exploration Tool
for Probabilistic Verification. In Automated Technology for

Verification and Analysis, Intl. Symp., ATVA, volume 13505
of LNCS, 320–326. Springer.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533.
Stahlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In ICAPS, 629–
637. AAAI Press.
Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016. Goal
Probability Analysis in Probabilistic Planning: Exploring
and Enhancing the State of the Art. JAIR, 57: 229–271.
Strong, C. A.; Wu, H.; Zeljic, A.; Julian, K. D.; Katz, G.;
Barrett, C. W.; and Kochenderfer, M. J. 2023. Global op-
timization of objective functions represented by ReLU net-
works. Mach. Learn., 112(1): 3685–3712.
Vinzent, M.; and Hoffmann, J. 2024. Neural Action Policy
Safety Verification: Applicablity Filtering. In ICAPS, 607–
612. AAAI Press.
Vinzent, M.; Sharma, S.; and Hoffmann, J. 2023. Neural
Policy Safety Verification via Predicate Abstraction: CE-
GAR. In AAAI, 15188–15196. AAAI Press.
Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neural
Network Action Policy Verification via Predicate Abstrac-
tion. In ICAPS. AAAI Press.
Wachter, B.; Zhang, L.; and Hermanns, H. 2007. Probabilis-
tic Model Checking Modulo Theories. In Fourth Interna-
tional Conference on the Quantitative Evaluaiton of Systems
(QEST 2007), 17-19 September 2007, Edinburgh, Scotland
UK, 129–140. IEEE Computer Society.
Wang, Y.; Zhou, W.; Fan, J.; Wang, Z.; Li, J.; Chen, X.;
Huang, C.; Li, W.; and Zhu, Q. 2024. POLAR-Express: Ef-
ficient and Precise Formal Reachability Analysis of Neural-
Network Controlled Systems. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 43(3): 994–1007.

