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Additional Experimental Results

Figure 2: Abstract MaxProb with FRET-LRTDP vs. VI
(value iteration). For each benchmark instance there is
a data point for the verification time of each bound pu
in {0, 0.05, . . . 0.95} during prob-CEGAR-PPA-inc with
(p∆, p

init
u ) = (0.05, 0), indicating whether FRET-LRTDP

or VI is faster.

Abstract MaxProb. Figure 2 compares abstract MaxProb
search with FRET-LRTDP vs. VI (value iteration), specif-
ically the verification time of individual pu during prob-
CEGAR-PPA-inc. FRET-LRTDP largely outperforms VI.
Constructing the reachable fragment of Θπ

P is often too ex-
pensive. FRET-LRTDP mitigates this thanks to incremen-
tal exploration of Θπ

P . VI dominates on some instances. We
observe that, thanks to its complete exploration of Θπ

P , VI
may select abstract counterexamples with short and realiz-
able paths in early CEGAR iterations.

Automated bound derivation. Table 3 shows results
for prob-CEGAR-PPA-inc for different configurations of
(p∆, p

init
u ). Overall, the runtime performance of all con-

figurations is similar, especially for pinitu = 0. This indi-
cates (1) there is a sweet spot during CEGAR after which
[P lo

u , P up
u ] can be tightened heavily (2) since linear search is

conducted incrementally the impact of p∆ is alleviated. That
said, p∆ = 0.01 never drastically faster than all other con-
figuration, but can be significantly slower (e.g., 4 Blocks,

CA, 32) showing that overly conservative p∆ may still be
counter-beneficial. (p∆ = 0.05, pinitu = 1) has a smaller
coverage (12 instances) than (p∆ = 0.05, pinitu = 0) (16
instances). For large (initial) pu, CeAna is more prone to
enumerate an infeasible number of paths until the accumu-
lated abstract probability Pr(upsP) exceeds pu. In contrast,
for small pu, CeAna may proceed to the computation of
maxPr [upsP ]; establishing non-trivial P lo

u . However, there
are also instances where pinitu = 1 dominates pinitu = 0.

Figure 3: Abstract state space computation prob-PPA vs.
non-prob-PPA, indicating whether prob-PPA or non-prob-
PPA is faster. Predicate set scales as per Vea (2022).

Computing Θπ
P . Figure 3 compares the time to compute

the reachable fragment of Θπ
P for prob-PPA vs. non-prob-

PPA over predicate sets of increasing size. It completes the
results presented in the main text (Figure 1), showing results
for all benchmarks. In line with our observations in the main
text, prob-PPA overall loses little performance in abstract
state space building compared to non-prob-PPA. There are
outliers for very coarse abstractions, i.e., small predicate sets
P , where non-prob-PPA finishes in seconds while prob-PPA
takes hours. For such P , SMT under π is notoriously expen-
sive (Vea 2022), and, thereby, more prone to outliers: Some
SMT calls take drastically longer than others. The additional
intricacy in prob-PPA leads to an increase of such outliers.



Benchmark NN App p∆ = 0.01 p∆ = 0.05 p∆ = 0.05, pinitu = 1 p∆ = 0.1
[P lo

u , P up
u ] Time [P lo

u , P up
u ] Time [P lo

u , P up
u ] Time [P lo

u , P up
u ] Time

4 Blocks (CI) 16 × [0.4, 0.41] 15 [0.37, 0.41] 18 [0.41, 1] - [0.37, 0.41] 16
16 ✓ [0.41, 0.64] - [0.41, 0.65] - [0.41, 0.66] - [0.41, 0.65] -
32 × [0.27, 0.27] 29 [0.25, 0.27] 33 [0.25, 0.27] 30 [0.2, 0.27] 29
32 ✓ [0.19, 1] - [0.19, 1] - [0.19, 1] - [0.19, 1] -
64 × [0.19, 0.19] 7200 [0.17, 0.19] 7553 [0.19, 0.19] 7157 [0.17, 0.26] 7560

6 Blocks (CI) 16 × [0.99, 1] 66 [0.95, 1] 79 [0.95, 1] 67 [0.9, 1] 67
16 ✓ [0.99, 1] 313 [0.95, 1] 321 [0.95, 1] 310 [0.9, 1] 315
32 × [0.27, 0.27] 12397 [0.27, 0.3] 14227 [0.27, 0.9] - [0.27, 0.3] 11762

8 Blocks (CI) 16 × [0.99, 1] 392 [0.95, 1] 454 [0.95, 1] 383 [0.9, 1] 386
16 ✓ [0.99, 1] 3493 [0.95, 1] 3396 [0, 1] - [0.9, 1] 3457
32 × [0.99, 1] 27260 [0.95, 1] 31376 [0.95, 1] 25743 [0.9, 1] 25873

8 Puzzle (CI) 16 × [0.99, 1] 4938 [0.95, 1] 5434 [0.95, 1] 33433 [0.92, 1] 4908
32 × [0.1, 1] - [0.1, 1] - [0.1, 1] - [0.1, 1] -
32 ✓ [0.1, 1] - [0.1, 1] - [0.1, 1] - [0.1, 1] -
64 ✓ [0.95, 1] - [0.95, 1] 9630 [0.95, 1] 13135 [0.9, 1] 48

Transport 16 × [0.1, 1] - [0.1, 1] - [0, 1] - [0.1, 1] -
16 ✓ [0.1, 1] - [0.1, 1] - [0, 1] - [0.1, 1] -
32 × [0.1, 1] - [0.1, 1] - [0, 1] - [0.1, 1] -
32 ✓ [0.1, 1] - [0.1, 1] - [0, 1] - [0.1, 1] -

4 Blocks (CA) 16 × [0.34, 0.34] 44 [0.34, 0.36] 44 [0.02, 1] - [0.26, 0.36] 41
16 ✓ [0.34, 0.42] - [0.34, 0.42] - [0.03, 1] - [0.34, 0.47] -
32 × [0.27, 0.27] 19690 [0.27, 0.28] 1145 [0.27, 0.3] 422 [0.27, 0.3] 785
32 ✓ [0.22, 0.44] - [0.17, 0.44] - [0.14, 1] - [0.14, 1] -

6 Blocks (CA) 16 × [0.86, 1] - [0.86, 1] - [0, 1] - [0.86, 1] -
32 × [0.99, 1] 3589 [0.95, 1] 4121 [0.95, 1] 3591 [0.9, 1] 3637
32 ✓ [0.99, 1] 38160 [0.95, 1] 38289 [0.95, 1] 40772 [0.9, 1] 39409

8 Blocks (CA) 16 × [0.99, 1] 5283 [0.99, 1] 5692 [0.99, 1] 5029 [0.91, 1] 4866
32 × [0.84, 1] - [0.84, 1] - [0, 1] - [0.8, 1] -

8 Puzzle (CA) 16 × [0.1, 1] - [0.1, 1] - [0.1, 1] - [0.1, 1] -
16 ✓ [0.1, 1] - [0.1, 1] - [0.1, 1] - [0.1, 1] -
32 × [0.1, 1] - [0.1, 1] - [0.1, 1] - [0.1, 1] -
32 ✓ [0.1, 1] - [0.1, 1] - [0.1, 1] - [0.1, 1] -

Table 3: Results for prob-CEGAR-PPA-inc with FRET-LRTDP for different configurations of (p∆, pinitu ). Default pinitu = 0.

Verification of pu. Figure 2 compares the verification of a
specific bound pu with (prob-CEGAR)-PPA-pu vs. the ver-
ification time of that pu during (prob-CEGAR)-PPA-inc. It
completes the results presented in the main text (Table 2),
showing results for all benchmarks. The results are in line
with the observations in the main text. PPA-pu tends to dom-
inate and can be significantly faster. That said, PPA-inc is
overall competitive and can, in some cases, even make veri-
fication feasible in the first place (outliers).

Proofs – Probabilistic PPA
Wachter et al. (2007) show that probabilistic predicate
abstraction preserves satisfaction of safe PCTL formu-
lae (Bianco and de Alfaro 1995).
Theorem (Wachter et al. 2007). If ΘP satisfies a safe PCTL
formula Φ, then Θ also satisfies Φ.

Proposition 2 (safety in ΘP implies safety in Θ) follows
as a special case of Theorem . Proposition 4 (safety in Θπ

P
implies safety in Θπ) follows analogously.

Probabilistic Abstract State Expansion
Algorithm 3 shows pseudocode for probabilistic abstract
state expansion. The algorithm is an adaption of state expan-

sion for non-probabilistic PPA (Vea 2022). Specifically, we
deploy applicability (line 2) and T -transition tests (line 30)
to avoid costly SMT tests under π. Additionally, we lift the
latter to the probabilistic case (line 15). EnumPaDist (line
7) shows the enumeration of abstract successor distribution
(candidates). We first compute abstract successor states for
each individual update u ∈ Supp(ū) (line 9) using Vea’s
enumeration procedure (line 22). For the abstract transition
problem under π (line 5), we apply Vea’s enhancements to
efficiently handle π: continuous relaxation of integer state
variable to use NN-tailored SMT solvers (Katz et al. 2019)
embedded into a branch & bound framework. If the transi-
tion exists, it is “processed” for MaxProb search (line 6).

Proofs – prob-CEGAR-PPA
prob-CEGAR (Hermanns et al. 2008) maintains a set of
abstract unsafe paths upsP ⊆ Path(AP , s

0
P , ϕu). Han et

al. (2009) show that for all probabilistic counterexamples
(A, s0) – concrete or abstract – there exist a finite subset of
unsafe paths (with decreasing probability) that “witnesses”
the violation of pu. We use a slightly more general formula-
tion for any (infinite) subset induced by (A, s0). The proof
is adapted in a straight-forward manner.



Figure 4: Verification time of pu ∈ 0, 0.05, 0.1, 0.2, 0.3, 0.5
with (prob-CEGAR)-PPA-pu vs. during (prob-CEGAR)-
PPA-inc, indicating whether PPA-pu or PPA-inc is faster.

Lemma 9. Let ups ⊆ Path(A, s0, ϕu). Pr(ups) >
pu iff there exists a finite set of unsafe paths ups ′ ⊆
Path(A, s0, ϕu) such that Pr(ups ′) > pu and for all σ′ ∈
ups ′, σ ∈ ups \ ups ′ it holds Pr(σ′) ≥ Pr(σ).

The original result then follows as a corollary, i.e.,
Pr(A, s0, ϕu) > pu iff there exists finite ups ⊆
Path(A, s0, ϕu) (with decreasing probability) such that
Pr(ups) > pu.

Termination of CeAna. We first prove some lemma.

Lemma 10. Whenever Algorithm 1 enters loop (line 11 - 21)
it holds Pmax ≤ pu and can-add(upsP).

Proof. The statement holds initially. Moreover, whenever
T -analysis iterates it holds Pmax ≤ pu (line 19) and
can-add(upsP) (line 20).

Lemma 11. For any pε > 0. The set upsP := {σP ∈
Path(AP , s

0
P , ϕu) | Pr(σP) ≥ pε} is finite.

Proof. Proof by contradiction. For upsP with infinitely
many paths of probability at least pε, Pr(upsP) diverges.
However, Pr(ups) ≤ Pr(AP , s

0
P , ϕu) ≤ 1. Contradic-

tion.

Proof of Theorem 5 . It suffices to show that T -
analysis (line 11 - 21) terminates. By Lemma 10, in
each iteration loop (line 12 - 17) is entered. By Lemma 9
and Lemma 11, Pr(upsP) > pu and min

σP∈upsP
Pr(σP) < pε

for finite upsP respectively. Hence loop (line 12 - 17) has
only finitely many iterations over an invocation of CeAna.
Hence, T -analysis terminates.

Correctness of CeAna.

Lemma 12. During an invocation of CeAna it holds
maxPr [upsP ](Θ) ≤ Pmax ≤ Pr(ups).

Proof. The statement holds at initialization and is preserved
as an invariant: (line 16, 17): Let ups ′P = upsP ∪{σP}. Let
P ′
max = Pmax+Pr(σP). maxPr [ups ′P ] ≤ maxPr [upsP ]+

Pr(σP) ≤ Pmax + Pr(σP) = P ′
max . P ′

max = Pmax +
Pr(σP) ≤ Pr(upsP) + Pr(σP) = Pr(ups ′P).

(line 18): Trivial.

Lemma 12 shows that Pmax is an upper bound on the
maximal realizable probability as intended.

Lemma 13. While CeAna iterates loop (line 12 - 17) it
holds Pmax + Punused > pu.

Proof. The statement holds initially and is required when-
ever T -analysis iterates (line 20). Moreover, while loop (line
12 - 17) continues the sum Pmax +Punused , and thereby the
statement, are preserved (line 16, 17).

Lemma 13 guarantees that CeAna behaves well in that
whenever path computation is invoked (line 13) the |upsP |+
1-th path actually exists.

Proof of Theorem 6 . By π-all realization of ups∗P (line 25),
there exist s0 ∈ [s0P ] ∩ [ϕ0] such that for each σP ∈
ups∗P , there exists σ ∈ [σP ∧ ϕu](Θ

π) with s0(σ) =
s0, and thereby σ ∈ Path([Aπ

P ], s
0, ϕu). Let ups ⊆

Path([Aπ
P ], s

0, ϕu) denote the corresponding concrete path
set. By construction Pr(ups) = Pr(ups∗P) > pu and hence
π is unsafe.

Termination of prob-CEGAR-PPA.
Lemma 14. Let S0 ⊆ S such that

∣∣S0
∣∣ ≥ 2. Let⋃

v∈V

⋃
i∈1...,|S0(v)|−1

{v ≤ S0
i (v)} ⊆ P,

where S0(v) = {s(v) | s ∈ S0} and S0
i (v) ∈ S0(v) de-

notes the i-th smallest value. For all distinct s, t ∈ S0 it
holds s|P ̸= t|P .

Proof. s ̸= t and thereby s(v) ̸= t(v) for some v ∈ V . Let,
w.l.o.g., s(v) < t(v). There exists (v ≤ c) ∈ P such that
s |= v ≤ c while ¬(t |= v ≤ c). Hence, s|P ̸= t|P .

Lemma 15. Whenever CeAna invokes refinement for (ii-
a) (line 21) (or for (ii-b) (line 26)) there exist distinct
σP , σ

′
P ∈ upsP such that there exist unsafe concretiza-

tions σ ∈ [σP ∧ ϕu](Θ) and σ′ ∈ [σ′
P ∧ ϕu](Θ) (or

σ ∈ [σP ∧ ϕu](Θ
π) and σ′ ∈ [σ′

P ∧ ϕu](Θ
π) ) with

s0(σ) ̸= s0(σ′).

Proof. (ii-a): Consider maximal T -realizable subset
ups∗P ⊆ upsP with maximizing start state s0∗. By inner
loop condition (line 12), Lemma 12, and definition of
can-add(upsP), refinement for (ii-a) is invoked only once
Pr(upsP) > pu while maxPr [upsP ](Θ) ≤ pu (line 19).
Hence, upsP \ ups∗P is non-empty. Let σP ∈ ups∗P and
σ′
P ∈ upsP \ ups∗P . We know σP and σ′

P are T -path
realizable. Hence the statement holds for s0∗ and start state
s0(σ′) of any unsafe concretization σ′ ∈ [σ′

P ∧ ϕu].



(ii-b): The result for follows analogously. Since π-all re-
alization fails (line 25), there exist σP , σ

′
P ∈ ups∗P , which

are π-path realizable (line 23), such that s0(σ) ̸= s0(σ′) for
any two unsafe concretization paths σ ∈ [σP ∧ϕu](Θ

π) and
σ′ ∈ [σ′

P ∧ ϕu](Θ
π).

Lemma 16. In each iteration, CEGAR either terminates or
strictly refines the abstraction P ⊊ P ′ in that there exist
s, t ∈ S such that s|P = t|P in the original abstraction
while s|P′ ̸= t|P′ in the refined abstraction.

Proof. The statement holds for refinement of spuriousness
(i-a) and (i-b) as per Vea (2023) and by Lemma 14 and
Lemma 15 for refinement of spuriousness (ii-a) and (ii-
b).

Proof of Theorem 7 . Let s, t ∈ S. Since S is finite
(bounded-integer state variables) and by Lemma 16, s|P =
t|P iff s = t within finitely many iterations (Θπ

P ≡ Θπ).
Then also each abstract path is trivially realizable. Hence,
either CEGAR returns SAFE or CeAna returns REAL, and
hence CEGAR returns UNSAFE.

CEGAR for Automated Bound Derivation

Algorithm 2: prob-CEGAR-PPA-inc.
Input: ⟨V,L,O⟩, (ϕ0, ϕu, pu), p∆ ∈ (0, 1].

1 [P lo
u , P up

u ]← 0, 1 // maxPr(Θπ, ϕ0, ϕu) interval.
2 P ← {ϕu}
3 while 1 do
4 (Aπ

P , s
0
P)←

max-prob(⟨V,L,O⟩, (ϕ0, ϕu, pu),P, π)
5 P up

u ← min(P up
u ,Pr(Aπ

P , s
0
P , ϕu))

6 if P up
u − P lo

u ≤ p∆ then return
7 while P up

u ≤ pu do pu ← pu − p∆ // Safe pu.
8

9 upsP , Pmax ← ∅, 0
10 while 1 do
11 result ← CeAna(Aπ

P , s0P , upsP , Pmax)
12 if result = SPURIOUS then break
13 P lo

u ← max(P lo
u , Pmax )

14 if P up
u − P lo

u ≤ p∆ then return
// Unsafe pu.

15 while P lo
u > pu do pu ← pu + p∆

Algorithm 2 shows the adapted CEGAR loop with lin-
ear search on pu for automated bound derivation (prob-
CEGAR-PPA-inc). CEGAR continues until the interval
[P lo

u , P up
u ] is sufficiently tightened (line 6, 14). P up

u is up-
dated to the (maximal) abstract unsafety probability (line 5).
While pu is safe, it is decreased (line 7). upsP and Pmax

(line 9) are maintained over multiple invocations of CeAna
within a CEGAR iteration. The linear search pauses and
CEGAR iterates whenever CeAna returns SPURIOUS (line
12). If not, P lo

u is updated according to the maximal π-
realizable probability (line 13) computed by CeAna. pu is
increased (line 15).

By termination of prob-CEGAR-PPA-pu, each pu is
proven safe or unsafe within finitely many iterations. When
this case occurs, pu is decreased or increased until pu < P up

u
or P lo

u ≤ pu respectively. Moreover, due to the termina-
tion condition (line 6, 14), it also holds P lo

u < pu and
pu < P up

u respectively. In other words, pu is updated un-
til pu ∈ [P lo

u , P up
u ) and hence safety is no longer deducible.

Since P lo
u and P up

u are monotonically increasing and de-
creasing respectively, each pu is iterated at most once during
linear search. Hence, prob-CEGAR-PPA-inc terminates.

Neural Action Policy
A (ReLU) feed-forward neural network for Θ is a (real-
valued) function

fπ : S → Rdd , s 7→ fd(. . . f2(f1(s))),

where d denotes the number of layers in the NN, di for i ∈
{1, . . . , d} denotes the size of layer i, and

• f1 : S → Rd1 , s 7→ (s(v1π), . . . , s(v
d1
π ))

is the input layer function, where vjπ ∈ V for j ∈
{1, . . . , d1} denotes the state variable associated with in-
put neuron j.

• fi : Rdi−1 → Rdi , V 7→ ReLU (Wi · V +Bi),
for i ∈ {2, . . . , d − 1}, is the function of hidden layer i.
Wi is the weight matrix of layer i, i.e., (Wi)j,k denotes
the weight of the output of neuron k in layer i− 1 to the
input of neuron j in layer i. Bi is the bias vector, i.e.,
(Bi)j denotes the bias of neuron j in layer i.

• fd : Rdd−1 → Rdd , V 7→ Wd · V +Bd is the function of
output layer d . Here, no ReLU activation is applied.

We distinguish two variants of neural action policies im-
plemented by fπ . The no-filter neural action policy im-
plemented by fπ is the function πnapp : S → L, s 7→
argmax
l∈L\{τ}

f l
π(s), where f l

π denotes the output of fπ associ-

ated with l. The app-filter neural action policy implemented
by fπ is the function πapp : S → L,

s 7→

 argmax
{l∈L\{τ}|∃o∈Ol : s|=g(o)}

f l
π(s)

∃o ∈ O : l(o) ̸= τ
∧ s |= g(o)

τ otherwise

where Ol = {o ∈ O | l(o) = l} and τ is a special label,
defined to be selected (by πapp) iff there does not exist a
label l ∈ L \ {τ} that is applicable in s.

SMT Encodings
We provide a specification of the various SMT checks de-
ployed during PPA computation as well as CeAna. The en-
codings are largely compositional, and hence presented in a
modular manner.

Encodings without π. Given a copy V of state variables
V , we denote the encoding of a constraint ϕ ∈ C (V) over
V by Φ(ϕ, V ). The the state variable bound encoding Φ(V )
is the conjunction

⋃
v∈V

lo(v) ≤ v ∧ v ≤ up(v), where lo(v)



and up(v) denote the lower and upper bound of the corre-
sponding state variable respectively. The abstract state en-
coding of sP ∈ SP , denoted Φ(sP , V ), is the conjunction⋃
p∈sP

{
Φ(p, V ) sP(p) = 1

¬Φ(p, V ) sP(p) = 0.

For update u ∈ U let V u denote a u-indexed copy
of V . The update encoding of u, denoted Φ(u, V, V u),
is the conjunction

∧
v∈V

vu = Φ(u(v), V ), where vu ∈

V u denotes the u-copy of v. The probabilistic up-
date encoding of ū, denoted Φ(ū, V ), is the conjunction∧
u∈Supp(ū)

Φ(u, V, V u). The abstract distribution encoding

of µP ∈ Dist(U × SP), denoted Φ(µP , V ), is the conjunc-
tion

∧
(u,s′P)∈Supp(µP)

Φ(s′P , V
u).

The (no-π) abstract transition problem encod-
ing of (sP , o, µP) ∈ SP × O × Dist(U × SP),
denoted Φ((sP , o, µP), TP , V ) conjoins: Φ(V ),∧
u∈Supp(ū(o))

Φ(V u), Φ(sP , V ), Φ(g(o), V ), Φ(ū(o), V ),

Φ(µP , V ). We assume, w.l.o.g., that ū(o) and µP agree on
U , i.e., (u, s′P) ∈ Supp(µP) only if u ∈ Supp(ū(o)), and
for each u ∈ Supp(ū(o)) there exists exactly one s′P ∈ SP
such that (u, s′P) ∈ Supp(µP) with µP(u, s

′
P) = ū(o)(u).

For index i let V i denote a i-indexed copy of V . The
T -path realization encoding (i-a) of abstract unsafe path
σP ∈ Path(ΘP , ϕu), denoted Φ(σP ,Θ, V ) conjoins:∧
0≤i≤|σP |

Φ(V i), Φ(ϕ0, V
0),

∧
0≤i≤|σP |

Φ(siP(σP), V
i),∧

0≤i<|σP |
Φ(gi(σP), V

i) ∧ Φ(ui(σP), V
i, V i+1),

Φ(ϕu, V
|σP |).

Note that (1) Φ(¬ϕu, V
i) for 0 ≤ i < |σP | is entailed by

over-approximation of σP and hence not explicitly encoded;
(2) Φ(σP ,Θ, V ) – and thereby all compositional encodings
thereof – is distribution-insensitive in that it constrains siP
but not µi

P . A solution to this encoding is a concrete path σ
such that |σ| = |σP | and oi(σ) = oi(σP), ui(σ) = ui(σP),
si(σ) ∈ [sσP

P ] – but not necessarily µi(σ) ∈ [µi
P(σP)] – for

i ∈ {0, . . . , |σ|}. This is a commonplace enhancement (Her-
manns et al. 2008), which allows off-the-shelf checking and
refining of path spuriousness without adaptions for spu-
riousness induced by µi

P . It preserves correctness in that
when counterexample analysis derives realizable, there ex-
ists ups ⊆ Path(A, s0, ϕu) such that Pr(ups) > pu for
some adversary A but not necessarily concretization [AP ].

For abstract path σP let bσP denote a fresh bi-
nary variable. The T -probabilistic maximal realization
encoding (ii-a) of abstract unsafe path set upsP ⊆
Path(ΘP , ϕu), denoted Φmax (upsP ,Θ, V ) has maxi-
mization objective

∑
σP∈upsP

Pr(σP) · bσP , and conjoins

∧
σP∈upsP

(
¬bσP ∨ (Φ(σP ,Θ, V σP ) ∧

∧
v∈V

v = vσP ,0)

)
.

Φ(upsP ,Θ, V ) maximizes the probability mass of paths
that are realizable from some common concrete start state s0∗
encoded over V . Intuitively, bσP constrains that, only if σP

is realizable from s0∗, it contributes to the maximization.

Encodings with π. Given a copy V of state variables V
and a neural network fπ , x i

j and z ij denote real-valued aux-
iliary variables of neuron (i, j), which are implicitly V -
indexed. The NN encoding of neural network fπ , denoted
Φ(fπ, V ), conjoins:

∧
1≤j≤d1

x 1
j = vjπ ,

∧
2≤i≤d−1

∧
1≤j≤di

z ij =

di−1∑
k=1

(Wi)j,k ·x i−1
k +(Bi)j ,

∧
2≤i≤d−1

∧
1≤j≤di

x i
j = ReLU (z ij ),

and
∧

1≤j≤dd

xd
j =

dd−1∑
k=1

(Wd)j,k ·xd−1
k +(Bd)j . Note that this

encoding is solver specific in that it assumes a special con-
struct for ReLU constraints (Katz et al. 2019).

Let l ∈ L \ {τ}. Let xd
l denote the auxiliary variable

of the output neuron associated with label l. The policy se-
lection encoding of π and l, denoted Φ(π, l, V ), conjoins
Φ(fπ, V ) and

∧
l′∈L\{l,τ}

xd
l > xd

l′ (if π is a no-filter pol-

icy) or
∧

l′∈L\{l,τ}

(
xd
l > xd

l′ ∨ ¬
∨

o∈Ol′

Φ(g(o), V )

)
(if π is

an app-filter policy).
The π-abstract transition problem encoding of

(sP , o, µP) ∈ SP × O × Dist(U × SP), de-
noted Φ((sP , o, µP), T π

P , V ), is the conjunction
Φ((sP , o, µP), TP , V ) ∧ Φ(π, l(o), V ).

The π-path realization encoding (i-b) of abstract unsafe
path σP ∈ Path(Θπ

P , ϕu), denoted Φ(σP ,Θ
π, V ) is the

conjunction Φ(σP ,Θ, V ) ∧
∧

0≤i<|σP |
Φ(π, l(oi(σP)), V

i).

The π-all realization encoding (ii-b) of abstract unsafe
path set upsP ⊆ Path(ΘP , ϕu), denoted Φ(upsP ,Θ

π, V )
conjoins

∧
σP∈upsP

Φ(σP ,Θ
π, V σP ) ∧

∧
v∈V

v = vσP ,0.

Automata Network
Vea’s code base supports PTS encoded in the automata lan-
guage JANI (Budde et al. 2017). We now show the automata
network structure underlying the generic PTS description
⟨V,L,O⟩ in the main text.

A network of automata is a tuple ⟨V, L,A, Sync⟩, where

• V is a finite set of variables, each with a bounded integer
domain.

• L is a finite set of labels, excluding the silent label τ /∈ L.

• A is a finite set of automata.

• Sync ⊆ (A → L) × (L ∪ {τ}) is a finite set of synchro-
nization constraints.

An automaton a is a tuple ⟨Loc,E⟩, where Loc is a non-
empty finite set of locations, and E is a finite set of edges of
a. An edge e of a is a tuple (l, locs, g, ū) ∈ E with

• label l ∈ L for labeled edges or l = τ for silent edges.

• source location locs ∈ Loc.

• guard g ∈ C (V).



• probabilistic update ū ∈ Dist(Loc × (V → Exp(V))),
where each (locd, u) ∈ Supp(ū) is composed of a desti-
nation location locd and a partial variable update u with
dom(u) ⊆ V.

An automaton consists of a set of locations connected by
edges. Each edge links from a source location to finitely
many destination locations, each weighted with some non-
zero probability. An edge can be taken, i.e., the automaton
can transit from the source to some destination of the edge,
only if its guard evaluates to true over the current variable
assignment. If an edge is taken, the variables are updated
according to the update associated with the destination loca-
tion. While silent edges can be taken independently, labeled
edges can only be taken as part of a synchronization. Here,
a synchronization constraint specifies for each automaton –
possibly from a subset of participating automata – an action
label. Additionally, it specifies the label of the synchroniza-
tion. Under this label, the participating automata may syn-
chronize taking edges whose label combination agrees with
the synchronization constraint.

The state space description ⟨V,L,O⟩ of an automata net-
work ⟨V, L,A, Sync⟩ is obtained as follows:
• V = V ∪ {va | a ∈ A}, where va is the location vari-

able of automaton a. D(va) = Loc(a) is interpreted as a
bounded-integer interval.

• L = L ∪ {τ}.
• O contains an operator (l, g, ū)

– for each silent edge (τ, locs, g, u, locd) ∈ E(a) in each
automaton a ∈ A where g := va = locs∧g, l := τ , and
u ∈ Supp(ū) for each (locd, u) ∈ Supp(ū) with u =
u∪{va 7→ locd}∪{v 7→ v | v ∈ V \ (dom(u)∪{a})}
and ū(u) = ū(u),

– for each synchronization constraint (λ, l) ∈ Sync with
dom(λ) = {a1, . . . , an} and each combination of
edges e1 ∈ E(a1), . . . , en ∈ E(an) such that ei =

(λ(ai), locis, g
i, ūi) for i ∈ {1, . . . , n}, where l = l,

g := ∧n
i=1(vai = locis∧gi), and u ∈ Supp(ū) for each

combination u1 ∈ Supp(ū1), . . . , un ∈ Supp(ūn)

with u =
(⋃n

i=1 u
i ∪ {vai 7→ locid}

)
∪ {v 7→ v | v ∈

V \
⋃n

i=1(dom(ui) ∪ {vai})} and ū(u) =
n∏

i=1

ū(u).

The silent label τ models edges and synchronizations that
can be taken independent of a control policy π. That is,
T π = {(s, o, µ) ∈ T | π(s) = l(o) ∨ l(o) = τ}. We
silently ignore this special case in our approach. Its imple-
mentation, e.g., for abstract state expansion or realization
checks, is straight forward.

Encoding the Policy Into the Automata
Network

In our approach, the neural policy π is a distinctive compo-
nent of the safety problem. Alternatively, the composition of
π and π-controlled PTS (modeled as an automata network),
can again be encoded as an automata network. This enables
us to feed the neural policy safety analysis into off-the-shelf
probabilistic model checkers.

Many SOA probabilistic model checkers, e.g., STORM,
focus on discrete state systems in that they do not fully sup-
port real-valued state variables. We thus provide two dis-
tinct encodings of the neural policy, one with real-valued
variables and another that discretizes the NN structure with
finite precision n based on rational arithmetic.

Encoding with real-valued variables. Let π be a neural
action policy, and let n = ⟨V, L,A, Sync⟩ be the π-controlled
automata network. The (n | π)-composition is the automata
network ⟨V ∪ Vπ, L,A ∪ {aπ}, Syncπ⟩ where
• Vπ is the set of neural policy variables. xj ∈ Vπ for

each neuron index j ∈ 1, . . . , di over the even-index
layers i ∈ 2, . . . , d , where D(xj) is the least tight
interval as per interval arithmetic (Moore et al. 2009)
over all corresponding neurons (i, j). yj ∈ Vπ for each
neuron index j ∈ 1, . . . , di over the odd-index layers
i ∈ 3, . . . , d , with D(yj) analogously to even-index vari-
ables. If π is app-filter, then vl ∈ Vπ for each l ∈ L,
where D(vl) = {0, 1}.

• aπ = ⟨Locπ,Eπ⟩ is the policy automaton.
• Syncπ = {(λ ∪ {aπ 7→ l}, l) | (λ, l) ∈ Sync ∧ l ̸= τ} ∪
{(λ, τ) ∈ Sync} is the policy-annotated synchronization
set.

The policy automaton aπ = ⟨Locπ,Eπ⟩ is composed of
locations Locπ = {loci | i ∈ {1, . . . , d}} and edges Eπ ,
• for each layer 1 < i ≤ d − 1 a deterministic to-hidden-

layer edge (τ, loci−1, 1, ū) ∈ Eπ where Supp(ū) =

{(loci, u)} and u(zij) = ReLU (
∑di−1

k (Wi)j,k · zi−1
k +

(Bi)j) for each j in 1, . . . , di. zij denotes vjπ for the input
layer i = 1, xj for even layers i and yj for odd layers
i > 1.

• a deterministic to-output-layer edge (τ, locd−1, 1, ū) ∈
Eπ where Supp(ū) = {(loci, u)} and u(zdj ) =∑dd−1

k (Wd)j,k · zd−1
k + (Bd)j for each j in 1, . . . , dd ,

and if π is app-filter, then u(vl) =
∨

o∈Ol

g(o) for each

l ∈ L with Ol as induced by n.
• for each l ∈ L a synchronization edge (l, locd , g, ū) ∈ Eπ

with Supp(ū) = {(loc1, u)}, u = ∅ and g =
∧

l′∈L\{l}
zl >

zl′ for no-filter and alternatively g =
∧

l′∈L\{l}
zl > zl′ ∨

¬vl′ for app-filter, where zl denotes the encoding vari-
able of the output neuron associated with l.

The encoding distinguishes between neural policies with
and without applicability filter. π is encoded as an addi-
tional automaton in the network. Labeled transitions are con-
trolled by π via synchronization constraints. We introduce
additional state variables to encode the NN output computa-
tion.1 The layer-wise structure allows to introduce two sets
of real-valued variables only, one for even-index layers and
one for odd-index layers, rather than one variable per neu-
ron in the network. Given the domain bounds of the state

1A compact symbolic encoding of the NN output, i.e., recur-
sively inlining the layer structure, results is an infeasible blow up
in encoding size due to the piecewise-linear ReLU activations.



variable inputs, interval arithmetic (Moore et al. 2009) can
be applied to derive bounds on each neuron in the NN. The
domain of zij is then the least tight interval, i.e., the small-
est lower bound and the largest upper bound over all corre-
sponding neurons. Alternatively, if supported by the model
checker, e.g., ePMC and MODEST, the domain can be un-
bounded. The NN output computation is encoded by the
silent and deterministic to-hidden-layer and to-output-layer
edges. ReLU (z) is syntactic sugar for max(z, 0). Alterna-
tively, one could also use an if-then-else construct. If strictly
limited to linear expressions, the piecewise-linear case dis-
tinction (z > 0) could be encoded via two distinct edges.

For applicability-filtering, we introduce an additional set
of binary applicability flags. These are set by the to-output-
layer edge. In the start constraint ϕ0 of a safety property,
each variable v ∈ Vπ is fixed to an arbitrary value. The initial
location is loc0.

Discretized encoding with rational arithmetic. The dis-
cretized encoding has finite precision n ∈ N and uses ratio-
nal arithmetic. It maintains a unified denominator q = 10n.
NN weights and biases, in floating representation, are ap-
proximated with precision n by a rational number with de-
nominator q. For instance, let n = 4, then 2.12341 . . . is
approximated by 21234

10000 . The denominator is maintained im-
plicitly.2

The neuron policy variables z ∈ Vπ encode the numer-
ators of the underlying rational values. D(z) is an integer
interval. The lower and upper bound is the numerator of the
floor and ceil value of the real-valued interval bounds trans-
formed to denominator q respectively.

The encoding of to-hidden-layer edges for layer i < d−1
and neuron j is adapted from the real-valued encoding as
follows

u(zij) = ReLU (

di−1∑
k

⌊
num((Wi)j,k) · zi−1

k

q

⌋
+num((Bi)j))

where num(w) denotes the numerator of the rational num-
ber approximation of w with precision n. The encoding of
the to-output-layer edge is adapted accordingly. The division
by q preservers the unified denominator in that ReLU (p1

q ·
p2

q + p0

q ) ≡ ReLU (
p1·p2

q

q + p0

q ) ≡ ReLU (
p1·p2

q +p0

q ) ≡
ReLU (

p1·p2
q +p0)

q . Note that, due to the division, the update
encoding is non-linear. That said, the SOA model checkers
we deploy all support this language fragment. The encod-
ing of the synchronization edge remains syntactically un-
modified, with respect to the real-valued encoding, since
z
q > z′

q ≡ z > z′.
Due to the finite precision approximation on the encod-

ing level, the discretization does not guarantee to mimic the
true policy-restricted system faithfully. Imprecision may ac-
cumulate over systems executions. Given the checkers’ limi-
tations, this is the best possible basis for a performance com-

2Explicitly encoding the denominator via an additional variable
for each neuron value variable is bound to overflow issues due to
denominator unification for addition.

parison. In particular, the size of the NN-controlled system
is equal across encodings.

In our evaluation, we experiment with n = 3, . . . , 7. We
obtain similar results independent of n: All configuration ex-
ceed either time or memory limits on all problem instances.
The only exception is STORM’s sparse engine which suc-
cessfully terminates on 6 Blocks (CI) NN 16 (without app-
filter) after 150 to 180 seconds for n ≤ 5. In the main text,
we report the runtime for n = 5.

JANI-to-PRISM translation. The PRISM and the PET
support input models in PRISM’s own input language only.
We translate automata networks encoded in JANI to PRISM
in a straight-forward manner. Each (JANI) automaton be-
comes a (PRISM) module, with the automaton location en-
coded as an additional bounded-integer module variable. In
PRISM all modules that share a common label must partic-
ipate in the synchronization under this label. While this is a
strict subset of the synchronization constraints supported in
JANI, it is sufficient for our purposes (on our benchmarks).

Start state enumeration. The probabilistic model check-
ers that we experiment with support sets of start states com-
pactly represented by a constraint ϕ0. The only exception
is MODEST. Here, we encode rejection-based enumeration
of ϕ0 directly into the automata network. In a initialization
step, the automata network non-deterministically assigns a
value to each variable v ∈ V. If the resulting state s satis-
fies ϕ0, the system execution proceeds from s. Otherwise s
is terminal.
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(c) (ii-a) T -probabilistic spuriousness: Individual paths of upsP
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(d) (ii-b) π-probabilistic spuriousness: upsP is realizable in Θ
and individual paths of upsP are realizable in Θπ , but they are
not realizable from a common start state s0 |= ϕ0 in Θπ .

Figure 5: Sources of spuriousness in prob-CEGAR-PPA.

Algorithm 3: Probabilistic abstract state expansion.
Input: sP ∈ SP .

1 for each o ∈ O do
// Applicability test:

2 if ¬(sP |= g(o)) then continue
3 for each µP ∈ EnumPaDist(sP , o) do
4 g, ū, l← g(o), ū(o), l(o)

// π-transition test:
5 if ∃s ∈ [sP ] : s |= g ∧ sJūK ∈ [µP ] ∧ π(s) = l

then
6 process (sP , o, µP)

7 Procedure EnumPaDist(sP , o):
8 for each u ∈ Supp(ū(o)) do
9 S′

P(u)← EnumPaSuc(sP , o, u)

10 DistP , µP ← ∅, {(u, s′P) 7→ 0 | (u, sP) ∈ U × SP}
11 EnumPaDist(DistP , µP)
12 return DistP

13 Procedure EnumPaDist(DistP , µP):
14 if Supp(µP) = Supp(ū(o)) then

// T -transition test:
15 if ∃s ∈ [sP ] : s |= g(o) ∧ sJū(o)K ∈ [µP ] then
16 DistP ← DistP ∪ {µP}
17 return
18 Select u ∈ Supp(ū(o)) \ Supp(µP)
19 for each s′P ∈ S′

P(u) do
20 µ′

P ← µP ∪ {(u, s′P) 7→ ū(o)(u)}
21 EnumPaDist(DistP , µP ’)

// Adopted from Vea (2022):
22 Procedure EnumPaSuc(sP , o, u):
23 S′

P , s
′
P ← ∅, ∅

// Operator entailment:
24 for each (p, b) ∈ P × {0, 1} do
25 if ∀s ∈ [sP ] ∩ [g(o)] : p(sJuK) = b then

s′P(p)← b

26 EnumPaSuc(S′
P , s′P)

27 return S′
P

28 Procedure EnumPaSuc(S′
P , s

′
P):

29 if dom(s′P) = P then
// Non-prob. T -transition test:

30 if ∃s ∈ [sP ] : s |= g(o) ∧ sJuK ∈ [s′P ] then
31 S′

P ← S′
P ∪ {s′P}

32 return
33 Select p ∈ P \ dom(s′P)
34 for each b ∈ {0, 1} do
35 s′′P ← s′P ∪ {p 7→ b}

// Predicate entailment:
36 for each (p′, b′) ∈ (P \ dom(s′′P))× {0, 1} do
37 if ∀s ∈ S : p(s) = b→ p′(s) = b′ then

s′′P(p
′)← b′

38 EnumPaSuc(S′
P , s′′P)


