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Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies π. Applicability filtering is a com-
monly used practice in this context, restricting the action se-
lection in π to only applicable actions. Policy predicate ab-
straction (PPA) has recently been introduced to verify safety
of neural π, through over-approximating the state space sub-
graph induced by π. Thus far however, PPA does not permit
applicability filtering, which is challenging due to the addi-
tional constraints that need to be taken into account. Here we
overcome that limitation, through a range of algorithmic en-
hancements. In our experiments, our enhancements achieve
several orders of magnitude speed-up over a baseline imple-
mentation, bringing PPA with applicability filtering close to
the performance of PPA without such filtering.

1 Introduction
Neural networks (NN) are an increasingly important repre-
sentation of action policies in many contexts, including AI
planning (Issakkimuthu, Fern, and Tadepalli 2018; Groshev
et al. 2018; Garg, Bajpai, and Mausam 2019). But how to
verify that such a policy π is safe? Given a start condition
ϕ0 and an unsafety condition ϕu, how to verify whether an
unsafe state su |= ϕu is reachable from a start state s0 |= ϕ0
under π? Such verification is potentially very hard as it com-
pounds the state space explosion problem with the difficulty
of analyzing even single NN decision episodes. A promi-
nent line of work addresses neural controllers of dynami-
cal systems, where the NN output forms input to a continu-
ous state-evolution function (Tran et al. 2019; Huang et al.
2019; Dutta, Chen, and Sankaranarayanan 2019; Ivanov
et al. 2021). A recent thread explores bounded-length ver-
ification of neural controllers (Akintunde et al. 2018, 2019;
Amir, Schapira, and Katz 2021).

Here we follow up on work on policy predicate ab-
straction (PPA) by Vinzent et al. (2022; 2023) (henceforth:
VEA), which tackles neural policies π that take discrete ac-
tion choices in non-deterministic state spaces. Like classi-
cal predicate abstraction (Graf and Saı̈di 1997), PPA builds
an over-approximating abstraction defined through a set P
of predicates, i.e., linear constraints over the state variables.
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However, PPA abstracts not the full state space, but the sub-
graph induced by π. To compute the abstract state space
Θπ

P , one must repeatedly solve the sub-problem of decid-
ing whether there is a transition from abstract state sP to
abstract state s′P under π. This abstract transition problem
is encoded into satisfiability modulo theories (SMT) (Barrett
and Tinelli 2018), and answered querying solvers tailored to
NN analysis (Katz et al. 2019). If there does not exist a path
from ϕ0 to ϕu in Θπ

P , then π is safe. Counterexample-guided
abstraction refinement (CEGAR) (Clarke et al. 2003) is de-
ployed to iteratively refine P until either π is proven safe or
an unsafe counterexample is found. In an empirical evalua-
tion, VEA show that their approach outperforms encodings
into the state-of-the-art verification tool NUXMV (Cavada
et al. 2014).

VEA consider neural policies that may select any action
in any state, including inapplicable actions. This makes it
unnecessarily difficult to learn good policies. Instead, an es-
tablished practice is to filter the selection of π with respect
to applicability (Toyer et al. 2020; Stahlberg, Bonet, and
Geffner 2022). On the verification side, however, applicabil-
ity filtering is challenging since it introduces additional dis-
junctive behavior into the abstract transition problem: π may
select action label l depending on whether another action l′
is or is not applicable. Implemented straightforwardly, PPA
with applicability filtering suffers from a huge performance
loss. In our experiments on VEA’s benchmarks, it runs out
of time or memory on all but the smallest instances – which,
without applicability filtering, PPA tackles in a few seconds.
In this paper, we devise a range of algorithmic enhance-
ments that overcome this limitation. The enhancements ex-
ploit SMT-solver-specific encoding strategies, and simplify
disjunctions in the SMT encoding of the applicability filter
based on entailment of sub-constraints. Empirically, these
methods achieve runtime improvements of up to three or-
ders of magnitude, and bring PPA with applicability filtering
close to the performance of PPA without such filtering.

We also refine VEA’s notion of safety, in that we consider
the more accurate reach-avoid setting where the task of the
learned policy is to reach a goal state while avoiding unsafe
states. Policy executions in reach-avoid stop at goal states.
In VEA’s prior work, a policy can, at least in principle, be
unsafe even though unsafe states are encountered only after
reaching the goal.



2 Preliminaries
We consider discrete non-deterministic transition systems
described by a tuple ⟨V,L,O⟩ where V is a finite set of
bounded-integer state variables, L is a finite set of action la-
bels andO is a finite set of operators. We denote by Exp the
set of linear expressions over V , i.e., of the form

∑
v∈V

dv ·v+c

with coefficients dv ∈ Z for each v ∈ V and c ∈ Z. Accord-
ingly, C denotes the set of linear constraints, of the form∑
v∈V

dv · v ≥ c, and Boolean combinations thereof.1 An op-

erator o ∈ O is a tuple (l, g, u) with label l ∈ L, guard
g ∈ C (a conjunction of linear constraints), and (linear) up-
date u : V → Exp.

The state space of ⟨V,L,O⟩ is a labeled transition sys-
tem Θ = ⟨S,L, T ⟩. The set of states S is the finite set of
all complete variable assignments over V . The set of transi-
tions T ⊆ S × L × S contains (s, l, s′) iff there exists an
operator o = (l, g, u) such that g is satisfied over s, formally
g(s) evaluates to true, also abbreviated s |= o, and s′(v)
maps to the update u(v) evaluated over s for each v ∈ V ,
formally s′ = {v 7→ u(v)(s) | v ∈ V}, also abbreviated
s′ = sJoK. The separation between action labels and opera-
tors allows both, state-dependent effects (different operators
with the same label l applicable in different states) and ac-
tion outcome non-determinism (different operators with the
same label l applicable in the same state).

An action policy π is a function S → L. We consider
π represented by a neural network (NN). Specifically, we
focus on feed-forward NN with rectified linear unit (ReLU)
activations ReLU (x) = max(x, 0). These NN consist of
an input layer, arbitrarily many hidden layers, and an output
layer with one neuron per label l ∈ L. A safety property is a
pair (ϕ0, ϕu), where ϕ0 ∈ C and ϕu ∈ C identify the set of
start and unsafe states respectively. A policy π is unsafe with
respect to (ϕ0, ϕu) iff there exists a state path ⟨s0, . . . , sn⟩
such that s0 |= ϕ0, sn |= ϕu, and (si, π(si), si+1) ∈ T for
i ∈ {0, . . . , n− 1}. Otherwise π is safe.

Policy predicate abstraction (PPA) (Vinzent, Steinmetz,
and Hoffmann 2022) is an extension of classical predicate
abstraction (Graf and Saı̈di 1997). Unlike its classical coun-
terpart, PPA abstracts not the full state space, but the sub-
graph induced by π. Assume a set of predicates P ⊆ C . An
abstract state sP is a complete truth value assignment over
P . [sP ] = {s ∈ S | ∀p ∈ P : p(s) = sP(p)} denotes the set
of concrete states represented by sP . The policy predicate
abstraction of Θ over P and π is the labeled transition sys-
tem Θπ

P = ⟨SP ,L, T π
P ⟩where SP is the set of abstract states

over P and (sP , l, s
′
P) ∈ T π

P iff there exists (s, l, s′) ∈ T
such that s ∈ [sP ], s′ ∈ [s′P ] and π(s) = l.

Analogously to safety in Θ, π is said to be unsafe in Θπ
P

iff there exists an abstract path ⟨s0P , l0, . . . , ln−1, snP⟩ such
that s0 |= ϕ0 for some s0 ∈ [s0P ], s

n |= ϕu for some
sn ∈ [snP ], and (siP , l

i, si+1
P ) ∈ T π

P for i ∈ {0, . . . , n − 1}.
Otherwise π is safe in Θπ

P , in which case it is safe in
Θ as well. An (unsafe) abstract path in Θπ

P may be spu-
rious, i.e., there does not exist a corresponding path in

1Support extends to “≤” and “=” in a straight-forward manner.

Θ under π. Counterexample-guided abstraction refinement
(CEGAR) (Clarke et al. 2003) iteratively removes such spu-
rious abstract paths by refining P , until either the abstrac-
tion is proven safe, or a non-spurious abstract path is found
proving π unsafe. VEA provide a CEGAR framework spe-
cialized to PPA (Vinzent, Sharma, and Hoffmann 2023).

To compute Θπ
P , one must solve the abstract transition

problem for every possible abstract transition: (sP , l, s′P) ∈
T π
P iff for some l-labeled operator o ∈ O there exists a

concrete state s ∈ [sP ] such that s |= o, sJoK ∈ [s′P ] and
π(s) = l. In the classical setting where no policy is consid-
ered and thus condition π(s) = l is not needed, such abstract
transition problems are routinely encoded into satisfiability
modulo theories (SMT) (e.g. (Barrett and Tinelli 2018)). For
PPA however, the policy condition π(s) = l introduces a
key new source of complexity as the SMT sub-formula rep-
resenting the neural network π contains one non-linear con-
straint for every ReLU activation. VEA show how this can
be dealt with through approximate SMT checks – embedded
into an exact decision procedure. In particular, they use con-
tinuous relaxations of the bounded-integer state variables,
which can be dispatched to Marabou (Katz et al. 2019), an
SMT solver tailored to NN analysis.

3 Applicability Filtering
VEA consider neural action policies that are obtained by ap-
plying argmax to the output of the NN. Let πl(s) be the
NN output for label l ∈ L given input state s ∈ S , then
π(s) = argmax

l∈L
πl(s). Such π may select any label in any

state, even if it is not applicable, i.e., there does not exist
s′ ∈ S such that (s, l, s′) ∈ T , or equivalently, there does
not exist an l-labeled operator o with s |= o.

From a learning perspective, allowing π to select inap-
plicable actions is unnecessarily difficult, as π must learn
which actions are applicable in which state. A simple com-
monplace technique to avoid this is to filter the selection of
π with respect to applicability (e.g. (Toyer et al. 2020)). For-
mally, the policy under applicability filtering is defined

π(s) =

 argmax
{l∈L|∃o∈Ol : s|=o}

πl(s) if ∃o ∈ O : s |= o

τ otherwise

where Ol = {(l, g, u) ∈ O} is the sef of l-labeled operators
and τ ∈ l is a noop-label τ ∈ L with Oτ = ∅, which we de-
fine to be selected iff s is terminal and argmax is undefined
(cf. Section 5).

From a verification perspective, applicability filtering also
is desirable because, without such filtering, a policy may
be safe simply because of stalling, selecting an inapplicable
action which ends policy execution. However, applicability
filtering adds an additional source of complexity to the ab-
stract transition problem, specifically to the policy condition
π(s) = l. In what follows, we focus on the SMT encoding of
this sub-problem. The encoding of the neural network itself
remains unaffected. We provide a full specification of the
SMT encoding in the appendix.



Let πl denote the SMT variable representing the NN out-
put of label l. Without filtering, the policy selection condi-
tion is a simple conjunction

∧
l′∈L\{l}

πl > πl′ . Under ap-

plicability filtering however, each conjunct here becomes a
disjunction

∧
l′∈L\{l}

(πl > πl′ ∨¬
∨

o∈Ol′

go) where go denotes

the guard of operator o. In words: either the output value
of l is greater than that of l′, or l′ is not applicable.2 Since
each go is a conjunction of linear constraints, the selection
condition expands to

∧
l′∈L\{l}

πl > πl′ ∨ ¬
∨

o∈Ol′

∧
i∈{1,...,m}

gio


where sub-guard gio denotes the i-th linear constraint of
guard conjunction go and m is the guard size. To simplify
notation, we assume that m is constant over all guards –
any guard can be extended to some maximal m by adding
trivially-true constraints.

4 Enhancements
Applicability filtering extends the SMT encoding of the ab-
stract transition problem by a layer of convoluted disjunc-
tions. To tackle this new source of complexity, we devise
a range of encoding enhancements that target disjunctions
in general and the applicability filter in particular. In the
appendix, we provide additional details how these enhance-
ments are deployed as part of VEA’s verification algorithm.

Per-operator disjunctions. One type of enhancements
exploits the way disjunctions are encoded in Marabou,
the NN-tailored SMT solver underlying VEA’s framework.
Marabou supports disjunctions in disjunctive normal form
(DNF), i.e.,

∨
i

∧
j ϕ

j
i with linear constraints ϕji . Naively

rewriting the top-disjunction πl > πl′ ∨¬
∨

o∈Ol′

∧
i g

i
o into

DNF one obtains πl > πl′ ∨
∧

o∈Ol′

∨
i ¬gio and then

πl > πl′ ∨
∨

f∈(Ol′→{1,...,m})

∧
o∈Ol′

¬gf(o)o

where Ol′ → {1, . . . ,m} is the set of sub-guard combina-
tions over Ol′ . Since there are m|Ol′ | combinations in total,
this encoding is prone to result in a blow-up in size. We over-
come this scalability issue by an alternative encoding that
splits the top-disjunction into smaller disjunctions

πl > πl′ ∨
∨

i∈{1,...,m}

¬gio

one for each operator o ∈ Ol′ (PER-OP-DISJ).

Reusing slack variables. Marabou transforms every dis-
junction ϕ to only contain bound tightenings v ≥ c. Specif-
ically, every non-bound constraint

∑
v∈V

dv · v ≥ c in ϕ is

transformed to an equation
∑
v∈V

dv · v + a = c where a is a

2Applicability of l itself is constrained by the full encoding.

fresh slack variable. This transformed equation is added to
the global encoding in a conjunctive manner. The constraint
in ϕ is replaced by a bound tightening a ≤ 0.

We enhance this transformation in that we check for con-
straints with identical linear combinations

∑
v∈V

dv · v over

all disjunctions (OPT-SLACK-VAR). This check detects con-
straints with multiple occurrences, but also constraints that
only differ in the linear offset c. For each such constraint set,
we introduce only a single slack variable a, and add a sin-
gle transformed equation

∑
v∈V

dv · v + a = 0 to the global

encoding. In all disjunctions, each constraint is replaced by
a bound tightening a ≤ −c, where c is the respective off-
set of the constraint. In particular, this enhancement pertains
to PER-OP-DISJ, where πl > πl′ occurs multiple times. A
formal correctness proof is attached in the appendix.

Entailed sub-constraints. Another type of enhancements
exploits entailment to simplify the encoding. Given con-
straints ψ, ϕ ∈ C , we say ψ entails ϕ, written ψ ⊢ ϕ, iff for
every assignment s ∈ S such that s |= ψ it also holds s |= ϕ.
Let ϕ be a disjunction

∨
i

∧
j ϕ

j
i contained in conjunction ψ.

If, for some i and j, ψ ⊢ ϕji, then ϕ can be simplified re-
moving ϕji, i.e.,

∨
i

∧
j,i ̸=i∨j ̸=j ϕ

j
i . If, for some i, ψ ⊢ ϕji for

every j, then ψ entails disjunct i and so the entire disjunc-
tion ϕ. Hence, ψ can be simplified removing ϕ. If ψ ⊢ ¬ϕji
for some j, then the entire disjunct i is infeasible and ϕ can
be simplified removing i, i.e.,

∨
i ̸=i

∧
j ϕ

j
i . If all disjuncts i

are infeasible, then the entire disjunction ϕ is infeasible and
so is ψ. We apply entailment information to optimize the
encoding of disjunctions on two levels.

Firstly, on a per operator level (ENTAIL-OP). For each op-
erator o, VEA’s algorithm to compute Θπ

P runs an applica-
bility test ∃s ∈ [sP ] : s |= o. If this test fails then the guard
conjunction go is entailed to be infeasible in abstract state
sP . Say o is l′-labeled. We can use this entailment informa-
tion to simplify the policy condition for any label l ̸= l′.

Secondly, on a generic linear level (ENTAIL-GEN) with
entailed ϕ in the form of a linear constraint

∑
v∈V

dv · v ≥ c.

Let lov(ψ) and upv(ψ) denote a lower and upper bound
for v entailed by ψ respectively. Then ψ entails ϕ if∑

v∈V+

dv · lov(ψ) +
∑
v∈V−

dv · upv(ψ) ≥ c

where V+ = {v ∈ V | dv > 0} denotes the variable set
with positive coefficients, and V− = {v ∈ V | dv < 0}
the variable set with negative coefficients. Analogously, ψ
entails ¬ϕ, we also say ϕ is infeasible, if∑

v∈V+

dv · upv(ψ) +
∑
v∈V−

dv · lov(ψ) < c.

ψ in the form of the abstract transition problem syntac-
tically entails variable bounds in that many predicates in P
are bound constraints v ≥ c and, thereby, the conditions
s ∈ [sP ] and sJoK ∈ [s′P ] involve bound tightenings. In ad-
dition, Marabou deploys techniques to derive tight bounds
on the NN outputs (e.g., (Singh et al. 2019)).



The generic entailment check on general linear constraints
extends a native check in Marabou for infeasible bound con-
straints in disjunctions – in our experiments the native check
is enabled in our baseline.

5 Reach-Avoid Verification
VEA verify safety of π against an unsafety condition ϕu
given a start condition ϕ0. However, the task of a practical
policy is not only to avoid unsafe states, but also to reach
a goal G – here, a conjunction

∧
iGi of linear constraints

Gi ∈ C . Policy execution stops onceG is reached. This cor-
responds to a reach-avoid property: avoid ϕu while not G.
Formally, a policy π is unsafe with respect to (ϕ0, ϕu, G) iff
there exists a path ⟨s0, . . . , sn⟩ such that s0 |= ϕ0, sn |= ϕu,
(si, π(si), si+1) ∈ T for i ∈ {0, . . . , n− 1} and si ̸|= G for
i ∈ {0, . . . , n}. Otherwise π is safe.

VEA do not consider reach-avoid, thus potentially report-
ing unsafe paths that contain goal states. Such counterexam-
ples are not relevant in practice. Hence, we refine VEA’s ap-
proach to support reach-avoid. Specifically, reach-avoid can
be encoded in VEA’s framework by annotating the unsafety
condition ϕu and the guard g of each operator o ∈ O with
the non-goal condition ¬G – making goal states terminal.

On the algorithmic level, reach-avoid adds another source
of complexity to the abstract transition problem, specifi-
cally the non-goal disjunction

∨
i ¬Gi. Our enhancements

introduced for applicability filtering can be applied to sim-
plify this disjunction as well. This pertains in particular to
ENTAIL-GEN, and ENTAIL-OP with the adapted test ∃s ∈
[sP ] : s |= G. If this test fails, then G is infeasible in sP .

6 Experiments
We implemented our approach on top of VEA’s C++ code
base. The enhancements are largely implemented directly
into Marabou, in particular OPT-SLACK-VAR and ENTAIL-
GEN, which is a contribution to improve Marabou’s perfor-
mance on disjunctions in general. All experiments were run
on machines with Intel Xenon E5-2650 processors at 2.2
GHz, with time and memory limits of 12 h and 4 GB. Our
tool (and all experiments) are publicly available (2024).

Benchmarks. We use VEA’s benchmarks. These are non-
deterministic variants of the planning domains Blocksworld,
SlidingTiles and Transport encoded in JANI (Budde et al.
2017). For each domain instance, there are three NN policies
trained by VEA using Q-learning (Mnih et al. 2015), each
with two hidden layers of size 16, 32 and 64 respectively,
and with ReLU activation nodes. There are policies that do,
and ones that do not, take move costs into account.

The policies by VEA are trained without applicability fil-
tering. In our evaluation, we verify these same policies with
and without applicability filtering, to allow direct compar-
ison of verification performance. As goal condition G for
reach-avoid, we set the goal used by VEA during training.
Training episodes stop at G, which exactly matches reach-
avoid semantics.

Configurations. We compare a range of algorithmic con-
figurations combining different enhancements for abstract

transition computation with applicability filter and reach-
avoid as part of VEA’s verification algorithm.

• NoOpt disables and AllOpts enables all enhancements.

• OnlyPerOp, OnlySlack, OnlyOp, OnlyGen only enables
PER-OP-DISJ, OPT-SLACK-VAR, ENTAIL-OP, ENTAIL-
GEN respectively.

• NoPerOp, NoSlack, NoOp, NoGen enables all enhance-
ments except PER-OP-DISJ, OPT-SLACK-VAR, ENTAIL-
OP, ENTAIL-GEN respectively.

• Vea verifies the policy without applicability filtering and
without reach-avoid as done by VEA.

With vs. without enhancements. Table 1 shows our re-
sults. AllOpts clearly dominates NoOpt. The latter only ter-
minates on the smallest problem instances, with a runtime
offset of up to three orders of magnitude.

Ablation study. OnlyPerOp covers 10 additional in-
stances compared to NoOpt. In addition, OnlyPerOp always
decreases runtime by at least one order of magnitude on in-
stances covered by NoOpt. This indicates that the choice of
encoding (PER-OP-DISJ or not) is a crucial factor for effi-
ciency. That said, also the other configurations with a single
enhancement, especially OnlyGen, increase coverage com-
pared to NoOpt. OnlyGen and OnlyOp often decrease run-
time by at least one order of magnitude. OnlySlack is less
successful, usually performing on par with NoOpt. AllOpts
outperforms every single-enhancement configuration and al-
ways covers additional instances. This shows that also the
combination of enhancements is crucial.

NoPerOp performs competitive on 8-puzzle and smaller
Blocksworld instances, but fails on larger ones similar to
NoOpt. On Transport it performs consistently slower than
AllOpts. Again, this demonstrates the relevance of PER-OP-
DISJ. NoOp tends to be more efficient than NoGen. This in-
dicates that ENTAIL-GEN is more crucial than ENTAIL-OP.
NoSlack usually performs on par with AllOpts. In line with
the results for OnlySlack, this shows that OPT-SLACK-VAR
is the least crucial enhancement.

While AllOpts does never dominate any “all-but-one-
enhancement” configuration over all instances, it always
dominates in terms of accumulated runtime. This demon-
strates that on average enabling all enhancements is more
successful.

Comparison to Vea. Clearly, the additional complexity of
applicability filtering and reach-avoid in SMT can increase
verification time. On Blocksworld, AllOpts is worse than
Vea, covering four instances less. On 8-puzzle, on the other
hand, AllOpts covers three more instances than Vea and is
competitive on the remaining ones. This is presumably due
to the actual verification results – on NN 32 (cost-ign), the
policy is safe without applicability filtering, but is unsafe
with applicability filtering. This exemplifies that, without
applicability filtering, a policy may be safe due to stalling.
This questionable form of safety is no longer possible under
applicability filtering. Presumably, the same issue occurs in
the 8-puzzle instances not covered by Vea. On Blocksworld



Benchmark NN Safe Time Vea
NoOpt OnlyPerOp OnlySlack OnlyOp OnlyGen NoPerOp NoSlack NoOp NoGen AllOpts Safe Time

16 ✓ 8550 27 8654 24 18 19 17 18 18 17 ✓ 5
4 Blocks 32 ✓ 14568 87 14545 91 45 42 30 33 71 31 ✓ 8
(cost-ign) 64 ✓ 29202 1534 29153 1306 226 222 217 218 1294 214 ✓ 14

16 ✓ - 39090 - - - - 23013 26605 23385 22756 ✓ 98
6 Blocks 32 ✓ - 21132 - - - - 7556 8043 11486 7620 ✓ 68
(cost-ign) 64 ? - - - - - - - - - - ✓ 613

16 ? - - - - - - - - - - ✓ 7918
8 Blocks 32 ? - - - - - - - - - - ? -
(cost-ign) 64 ? - - - - - - - - - - ? -

16 × - 77 1242 - 216 79 70 67 70 67 × 38
8-puzzle 32 × - 13820 - - 14868 12086 12022 12810 12336 12263 ✓ 15789
(cost-ign) 64 × - 12921 - - 13519 10752 11800 11885 11686 11309 ? -

16 ✓ 41459 113 42023 95 44 41 41 44 87 40 ✓ 27
4 Blocks 32 ✓ - 4011 - 2690 417 421 429 432 2617 426 ✓ 311
(cost-awa) 64 ? - - - - - - - - - - ✓ 36369

16 ✓ - - - - - - 23848 27013 33597 23530 ✓ 7374
6 Blocks 32 ? - - - - - - - - - - ✓ 25019
(cost-awa) 64 ? - - - - - - - - - - ? -

16 × - 964 - - - - 671 658 684 674 × 82
8 Blocks 32 ? - - - - - - - - - - ? -
(cost-awa) 64 ? - - - - - - - - - - ? -

16 × - 2096 - - 5092 1857 1742 1833 1769 1738 × 2411
8-puzzle 32 × - 11716 - - 12572 10205 10399 10976 10455 10226 ? -
(cost-awa) 64 × - 35663 - - 31834 28836 31430 30264 31667 28908 ? -

16 × 24 0.5 24 24 10 10 0.5 0.4 0.5 0.5 × 0.3
Transport 32 × 25 1 25 25 11 11 1 1 1 1 × 0.5

64 × 42 0.5 42 42 23 23 1 0.5 1 1 × 0.4

Table 1: Runtime results in seconds for the evaluated configurations of enhancements for applicability filtering with reach-avoid
over different benchmarks and NN policies. (distinguishing cost-aware policies and cost-ignoring policies where applicable).
- indicates runs that exceed the resource limit of 12h time and 4 GB memory. Vea shows results for verification without
applicability-filtering and without reach-avoid.

and Transport, there are no such verification result differ-
ences. In particular, on the former many policies are safe
with and without applicability filtering.

Unlike applicability filtering, reach-avoid does not affect
the safety results for the verified policies. That is, any policy
safe under reach-avoid is also safe for Vea. In other words,
VEA’s policies are safe “behind” the goal. Furthermore, we
remark that verifying reach-avoid adds no significant run-
time overhead compared to applicability filtering without
reach-avoid, i.e., the increase in complexity compared to Vea
is dominated by applicability filtering. We provide addi-
tional results (applicability filtering without reach-avoid and
reach-avoid without applicability filtering) in the appendix.

7 Conclusion
The verification of neural action policies is important. Here
we contribute enhancements for PPA with applicability fil-
tering, getting rid of much of the additional complexity suf-
fered by a baseline implementation. We also show how to
verify safety for the more practical reach-avoid setting.

Important future directions for PPA include liveness prop-
erties, in particular the guarantee that a policy will even-
tually reach the goal; partial safety verification, continuing
CEGAR on instances already proved to be unsafe, in order
to identify safe regions of the state space; and the extension

to probabilistic and/or continuous-state transition systems.
Our enhancements are orthogonal to all these extensions.
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A Additional Experiments
Applicability Filtering without Reach-Avoid. Table 2
shows results for a complementary evaluation of our en-
hancements for applicability filtering without reach-avoid.
All observations for verification of applicability filtering
with reach-avoid (Table 1) directly translate to verification
without reach-avoid (Table 2). In particular, the verification
results are identical, i.e., VEA’s policies are safe “behind”
the goal. The runtime results are largely similar, i.e., reach-
avoid adds no significant runtime overhead. There are in-
stances where verification without reach-avoid takes longer.
This is presumably due to internal heuristics of the SMT
solver.

Reach-Avoid without Applicability Filtering. Table 3
shows results for reach-avoid without applicability filtering.
In accordance with our previous observations, AllOpts per-
formance on par with Vea. Safety results are identical.

AllOpts covers two additional instances compared to
NoOpt. There is a consistent runtime speedup of up to one
order of magnitude. This demonstrates that our enhance-
ments are crucial for reach-avoid. That said, the efficiency
gain is clearly more substantial for applicability filtering.

The ablation study shows that ENTAIL-GEN is most rel-
evant: OnlyGen performs particularly well under the con-
figurations with a single enhancement enabled, NoGen per-
forms particularly bad under the configurations with a single
enhancement disabled. Conversely, OnlySlack and OnlyOp
perform on par with NoOpt, while NoSlack and NoOp
perform on par with AllOpts, indicating that OPT-SLACK-
VAR and ENTAIL-OP are negligible for reach-avoid. In fact,
NoSlack tends to perform slightly better than AllOpts, sug-
gesting that OPT-SLACK-VAR is actually counterproductive
for reach-avoid without applicability filtering.

B Neural Action Policy
A (ReLU) feed-forward neural network for Θ is a (real-
valued) function

fπ : S → Rdd , s 7→ fd(. . . f2(f1(s))),

where d denotes the number of layers in the NN, di for i ∈
{1, . . . , d} denotes the size of layer i, and

• f1 : S → Rd1 , s 7→ (s(v1), . . . , s(vd1))
is the input layer function, where vj ∈ V for j ∈
{1, . . . , d1} denotes the state variable associated with in-
put neuron j.

• fi : Rdi−1 → Rdi , V 7→ ReLU (Wi · V +Bi),
for i ∈ {2, . . . , d − 1}, is the function of hidden layer i.
Wi is the weight matrix of layer i, i.e., (Wi)j,k denotes

the weight of the output of neuron k in layer i− 1 to the
input of neuron j in layer i. Bi is the bias vector, i.e.,
(Bi)j denotes the bias of neuron j in layer i.

• fd : Rdd−1 → Rdd , V 7→Wd · V +Bd is the function of
output layer d . Here, no ReLU activation is applied.

The neural action policy implemented by fπ is the func-
tion

π : S → L, s 7→

 argmax
{l∈L|∃o∈Ol : s|=o}

f lπ(s) if ∃o ∈ O : s |= o

τ otherwise

where f lπ denotes the output of fπ associated with l (ab-
breviated πl in the main text). The noop-label τ ∈ L with
Oτ = ∅ is selected iff s is terminal.3 This in particular per-
tains to goal states in reach-avoid verification.

C Abstract Transition Problem in SMT
In this section, we outline the SMT encoding of the abstract
transition problem, i.e., given operator o = (l, g, u)4 does
there exist a concrete state s ∈ [sP ] such that s |= o, sJoK ∈
[s′P ] and π(s) = l. Importantly, our encoding differs from
the encoding used by VEA only in the label selection of the
policy and the non-goal condition for reach-avoid.

Each state variable v ∈ V , occurs in an unprimed form;
representing the state variable in the source state and a
primed form v′ representing the updated state variable in the
successor state.

To encode the neural network structure we introduce real-
valued auxiliaries variables:

{vi,j | i ∈ {1, . . . , d}, j ∈ {1, . . . , di}}
and

{v i,j | i ∈ {2, . . . , d − 1}, j ∈ {1, . . . , di}}
corresponding to neuron inputs and outputs. More precisely,
vi,j corresponds to the neuron output and v i,j to the input of
hidden layer neurons. For i = 1, vi,j is syntactic sugar for
the respective state variable vj in the input layer.

The abstract transition problem is then encoded by the
conjunction of the constraints:

(i) lov ≤ v and v ≤ upv as well as lov ≤ v′ and v′ ≤ upv
for each v ∈ V , where lov denotes the lower bound and
upv denotes the upper bound of state variable v.

(ii) p if sP(p) = 1 and ¬p if sP(p) = 0 as well as
p′ if s′P(p) = 1 and ¬p′ if s′P(p) = 0
for each p in P where p′ denotes the predicate in its
primed form, i.e., with primed variables.

(iii)
∧

i∈{1,...,m} g
i
o

(iv) v′ = u(v) for each v ∈ V

(v) v i,j =
di−1∑
k=1

(Wi)j,k · vi−1,k + (Bi)j and

vi,j = ReLU (v i,j)
for each hidden layer i ∈ {2, . . . , d − 1} and each
neuron j ∈ {1, . . . , di},

3Only if since Oτ = ∅ and thus τ is never applicable.
4VEA apply SMT checks on a per-operator basis and iterate

operators as part of their search algorithm, cf. Section E.



Benchmark NN Safe Time Vea
NoOpt OnlyPerOp OnlySlack OnlyOp OnlyGen NoPerOp NoSlack NoOp NoGen AllOpts Safe Time

16 ✓ 8577 25 8478 24 18 18 17 17 17 17 ✓ 5
4 Blocks 32 ✓ 16324 89 16118 94 45 46 35 36 74 34 ✓ 8
(cost-ign) 64 ✓ 27975 1481 28347 1233 227 222 214 212 1205 216 ✓ 14

16 ✓ - 38453 - - - - 22103 25058 23049 22193 ✓ 98
6 Blocks 32 ✓ - 22354 - - - - 8251 8400 11445 8093 ✓ 68
(cost-ign) 64 ? - - - - - - - - - - ✓ 613

16 ? - - - - - - - - - - ✓ 7918
8 Blocks 32 ? - - - - - - - - - - ? -
(cost-ign) 64 ? - - - - - - - - - - ? -

16 × - 78 1237 - 202 78 68 69 67 65 × 38
8-puzzle 32 × - 13380 - - 14488 12270 12352 12860 12620 12677 ✓ 15789
(cost-ign) 64 × - 12812 - - 13195 10735 11870 11379 11757 11137 ? -

16 ✓ 41597 111 40589 88 41 41 42 42 79 40 ✓ 27
4 Blocks 32 ✓ - 3958 - 2520 416 420 420 437 2529 417 ✓ 311
(cost-awa) 64 ? - - - - - - - - - - ✓ 36369

16 ✓ - - - - - - 23507 25387 32917 23958 ✓ 7374
6 Blocks 32 ? - - - - - - - - - - ✓ 25019
(cost-awa) 64 ? - - - - - - - - - - ? -

16 × - 975 - - - - 683 647 693 674 × 82
8 Blocks 32 ? - - - - - - - - - - ? -
(cost-awa) 64 ? - - - - - - - - - - ? -

16 × - 2073 - - 4907 1843 1823 1799 1815 1717 × 2411
8-puzzle 32 × - 10932 - - 11868 10063 10574 10971 10533 10483 ? -
(cost-awa) 64 × - 35034 - - 32008 28749 29604 29769 31437 28800 ? -

16 × 24 0.5 24 24 10 10 0.4 0.5 0.5 0.5 × 0.3
Transport 32 × 25 1 26 25 11 11 1 1 1 1 × 0.5

64 × 42 0.5 42 42 23 22 1 0.5 0.5 0.5 × 0.4

Table 2: Runtime results in seconds for the evaluated configurations of enhancements for applicability filtering without reach-
avoid over different benchmarks and NN policies. (distinguishing cost-aware policies and cost-ignoring policies where appli-
cable). - indicates runs that exceed the resource limit of 12h time and 4 GB memory. Vea shows results for verification without
applicability-filtering and without reach-avoid.

(vi) vd,j =
dd−1∑
k=1

(Wd)j,k · vd−1,k + (Bd)j for the output

layer d and each neuron j ∈ {1, . . . , dd},

(vii)
∧

l′∈L\{l}

(
vd,j > vd,k ∨ ¬

∨
o∈Ol′

∧
i∈{1,...,m} g

i
o

)
where j ∈ {1, . . . , dd} is the output neuron associated
with l and k ∈ {1, . . . , dd} \ {j} is the output neuron
associated with l′ (abbreviated πl and πl′ in the main
text),

(viii)
∨

i ¬Gi.
(i) constrains the variables to respect the corresponding

state variable domains, such that every satisfying assignment
to the SMT encoding corresponds to a valid state pair s, s′.
(ii) then encodes s ∈ [sP ] and s′ ∈ [s′P ]. (iii) encodes s |= o,
and (iv) encodes s′ = sJoK. π(s) = l is encoded by (v – vi,
neural network) and (vii, label selection) – applicability of
label l itself is entailed by s |= o (iii). (viii) encodes the
non-goal condition for reach-avoid.

Note that the presented encoding is specific to the NN-
tailored solver Marabou (Katz et al. 2019) in that it as-
sumes a special construct for ReLU constraints. Further-
more, Marabou only supports real-valued variables, i.e.,
integer state variables are continuously-relaxed. VEA es-
tablish integer support via a branch & bound loop around

Marabou (Vinzent, Steinmetz, and Hoffmann 2022).

D Proofs
We attach a formal proof that slack variable transformation
as per OPT-SLACK-VAR preserves satisfiability.

Proposition 1. Let C = {c1, . . . , cn}. For any assignment
s ∈ S such that

s |=
∧
c∈C

∑
v∈V

dv · v ≥ c

there exists an assignment ŝ over V ∪ {a} such that

ŝ |=
∑
v∈V

dv · v + a = 0

ŝ |=
∧
c∈C

a ≤ −c

and vice versa.

Proof. Let s over V such that (
∑
v∈V

dv·v)(s) ≥ c for each c ∈

C. We set ŝ = s ∪ {a 7→ −(
∑
v∈V

dv · v)(s)}. It immediately

follows (
∑
v∈V

dv · v + a)(ŝ) = 0. Moreover, for each c ∈ C,



Benchmark NN Safe Time Vea
NoOpt OnlySlack OnlyOp OnlyGen NoSlack NoOp NoGen AllOpts Safe Time

16 ✓ 17 17 17 7 7 7 17 7 ✓ 5
4 Blocks 32 ✓ 36 36 36 8 8 8 36 9 ✓ 8
(cost-ign) 64 ✓ 206 207 201 15 14 15 202 14 ✓ 14

16 ✓ 151 151 148 102 99 101 147 109 ✓ 98
6 Blocks 32 ✓ 265 266 263 71 70 70 263 70 ✓ 68
(cost-ign) 64 ✓ 8745 8781 8562 623 615 626 8616 622 ✓ 613

16 ✓ 11072 11621 10818 8189 7767 8011 10825 7961 ✓ 7918
8 Blocks 32 ? - - - - - - - - ? -
(cost-ign) 64 ? - - - - - - - - ? -

16 × 45 45 47 38 38 39 45 38 × 38
8-puzzle 32 ✓ 40572 40694 41198 16498 15829 16304 39902 15563 ✓ 15789
(cost-ign) 64 ? - - - - - - - - ? -

16 ✓ 77 77 77 28 28 28 77 29 ✓ 27
4 Blocks 32 ✓ 2566 2562 2553 316 315 319 2548 317 ✓ 311
(cost-awa) 64 ✓ - - - 36455 36396 36438 - 36495 ✓ 36369

16 ✓ 10208 10189 10060 7411 7329 7429 10104 7511 ✓ 7374
6 Blocks 32 ✓ - - - 25496 25096 25470 - 25294 ✓ 25019
(cost-awa) 64 ? - - - - - - - - ? -

16 × 404 404 402 83 82 82 402 83 × 82
8 Blocks 32 ? - - - - - - - - ? -
(cost-awa) 64 ? - - - - - - - - ? -

16 × 4359 4478 4300 2486 2410 2451 4257 2418 × 2411
8-puzzle 32 ? - - - - - - - - ? -
(cost-awa) 64 ? - - - - - - - - ? -

16 × 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 × 0.3
Transport 32 × 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.5 × 0.5

64 × 3 3 3 0.4 0.4 0.4 3 0.4 × 0.4

Table 3: Runtime results in seconds for the evaluated configurations of enhancements for reach-avoid without applicability-
filtering over different benchmarks and NN policies. (distinguishing cost-aware policies and cost-ignoring policies where
applicable). - indicates runs that exceed the resource limit of 12h time and 4 GB memory. Vea shows results for verification
without applicability-filtering and without reach-avoid.

since
∑
v∈V

dv · v ≥ c ≡ −
∑
v∈V

dv · v ≤ −c, it also holds

ŝ(a) ≤ −c.
Let ŝ over V ∪ {a} such that (

∑
v∈V

dv · v+ a)(ŝ) = 0, and

ŝ(a) ≤ −c for each c ∈ C. We set s = {v 7→ ŝ(v) | v ∈ V}.
Since ŝ(a) = −(

∑
v∈V

dv ·v)(ŝ) = −(
∑
v∈V

dv ·v)(s) it follows

−ŝ(a) = (
∑
v∈V

dv · v)(s). Moreover, for each c ∈ C, since

a ≤ −c ≡ −a ≥ c, it follows (
∑
v∈V

dv · v)(s) ≥ c.

E Enhancements during Abstract State
Expansion

Algorithm 1 shows an adapted version of VEA’s abstract
state expansion algorithm. Given an abstract state sP to be
expanded, VEA construct the SMT encoding ψ incremen-
tally, iterating labels (line 7), operators (line 10) and succes-
sor candidates (line 14). We exploit the incremental nature
of this process to apply our enhancements efficiently.

We test applicability for each operator o at expansion
start (line 3) – originally VEA simply apply this test on-the-
fly (line 11). In reach-avoid, we also test for satisfiability of
G (line 2). We consider this an adapted version of ENTAIL-

OP. If this test fails, ¬G is entailed. Otherwise, we apply
ENTAIL-GEN to enhance the encoding of ¬G .

We use the operator applicability information, to enhance
the encoding of the policy selection condition (line 9), ap-
plying ENTAIL-OP, but also the other enhancements (PER-
OP-DISJ, OPT-SLACK-VAR, ENTAIL-GEN). Here, incremen-
tality enables us to reuse one round of enhancements over
multiple transition tests (line 18). During the transition test,
we again apply the generic enhancements (OPT-SLACK-
VAR, ENTAIL-GEN) – on the implementation level, as part of
Marabou– exploiting potentially tightened variable bounds.

F CEGAR
To find a suitable predicate set P automatically, VEA
provide a CEGAR framework tailored to PPA (Vinzent,
Sharma, and Hoffmann 2023). Starting from an initially
coarse predicate set P = ∅, they iteratively search for an
abstract unsafe path σP in Θπ

P . If σP is spurious, i.e., with-
out concretization in Θ under π, short Θπ , they refine P by
adding predicates based on the source of spuriousness in σP ,
and iterate. If σP is not spurious then π is proven unsafe.
Conversely, if no σP exists then π is proven safe.

VEA introduce a new technique for refinement of policy-
induced spuriousness that adds predicates based on a con-
cretization state sc ∈ S reachable in Θ under π and an



Algorithm 1: Abstract state expansion (Vinzent,
Steinmetz, and Hoffmann 2022) – adapted version
and illustration.

Input: sP ∈ SP
1 ψ ← s ∈ [sP ] // Incremental SMT encoding.

2 if check(ψ ∧ s |= G) then ψ ← ψ ∧ enhance(¬G)
3 for each o ∈ O do
4 if check(ψ ∧ s |= o) then mark o applicable
5 else mark o inapplicable
6 end
7 for each l ∈ L do
8 push(ψ) // Incremental stack.

9 ψ ← ψ ∧ enhance(π(s) = l)

10 for each o ∈ O with o = (l, g, u) do
11 if o is marked inapplicable then continue
12 push(ψ)
13 ψ ← ψ ∧ s |= o

14 for each successor candidate s′P ∈ SP do
15 if reached(s′P) then continue
16 push(ψ)
17 ψ ← ψ ∧ sJoK ∈ [s′P ]

18 if check(enhance(ψ)) then
19 if check(s′ ∈ [s′P ]∧ s′ |= ¬G∧ϕu) then
20 trigger CEGAR
21 end
22 mark s′P for expansion
23 end
24 pop(ψ)
25 end
26 pop(ψ)
27 end
28 pop(ψ)
29 end

(unreachable) abstract transition witness sw ∈ S. Follow-
up research (Vinzent et al. 2023) finds that this refinement
approach is prone to significant runtime variances. Specifi-
cally, sw and sc are extracted as solutions to SMT formulae,
and are, hence, subject to internal heuristics of the deployed
SMT solver – in general more than one solution exists. Dif-
ferent sw, sc may result in different P and, thereby, poten-
tially varying runtime performance, which may accumulate
over several CEGAR iterations.

In our ablation study, we experiment with different en-
coding optimizations, and, hence, potentially different SMT
solutions. To enable comparability in our ablation study, we
deploy an adapted version of VEAs CEGAR framework tai-
lored to prevent SMT-solution-induced runtime variance. We
find that the performance of this version is competitive with
the original. Completeness is preserved. Algorithm 2 shows
the adapted abstraction refinement. There are two key mod-
ifications.

1) In the original version, VEA check policy-induced
spuriousness with respect to a specific concretization in

Θ sampled as a SMT solution when checking for spu-
riousness induced by the transition semantics of Θ (line
2). While the overall CEGAR framework is complete, this
check is incomplete – another concretization in Θ without
policy-induced spuriousness may exist – and SMT-solution-
dependent. The adapted version deploys a complete check
for policy-induced spuriousness (line 8). Analogously to
Θ-spuriousness, it incrementally checks for a prefix con-
cretization i under π. On the implementation level, this
check is encoded in SMT using the NN-tailored SMT solver
Marabou (Katz et al. 2017). This multi-π-step encoding is
feasible, since the policy selection ⟨o0, . . . , oi−1⟩ is fixed.
This is inherently different to SMT encodings for bounded-
length verification (cf. (Vinzent, Steinmetz, and Hoffmann
2022)). In addition, multi-π-step encodings are enhanced by
PER-OP-DISJ, OPT-SLACK-VAR and ENTAIL-GEN.

2) If concretization fails for some i, the detected coun-
terexample is spurious. Here, lines 11 through 21 replace
the witness-based refinement of the original version. We first
compute state variable values that are entailed by the path
semantics (lines 12 & 30), and – analogously to the original
version – add predicates using weakest precondition compu-
tation (line 14). If new predicates are added (line 16), refine-
ment concludes. If not, we add new predicates using binary
search on the state variable domain (lines 18 & 38).

An additional modification under reach-avoid involves
that existence checks in Algorithm 2 constrain sj ̸|= ¬G
at each path step j ∈ {0, . . . , i}. Recall, formally ¬G
is encoded into g and ϕu, and, thereby, implicitly sub-
sumed by ⟨s0, o0, . . . , oi−1, si⟩ ∈ Θ and si |= gi respec-
tively. On the implementation level, we check reach-avoid-
induced spuriousness individually, i.e., via an additional ex-
istence check ∃s0, . . . , si ∈ S : s0 ∈ [s0P ] ∧ s0 |= ϕ0 ∧
⟨s0, o0, . . . , oi−1, si⟩ ∈ Θ ∧ si ̸|= ¬G (preceding line 2),
and refine analogously to gi-induced spuriousness (line 3),
i.e., P ← P ∪ WP(G, ⟨o0, . . . , oi−1⟩ ).



Algorithm 2: Abstraction refinement (Vinzent,
Sharma, and Hoffmann 2023) – adapted version.

Input: s0P |= ϕ0, ⟨o0, . . . , on−1⟩ with oi = (gi, li, ui),
and gn := ϕu.

// Check Θ-spuriousness.
1 for i ∈ {0, . . . , n} do
2 if ¬∃s0, . . . , si ∈ S : s0 ∈ [s0P ] ∧ s0 |=

ϕ0 ∧ ⟨s0, o0, . . . , oi−1, si⟩ ∈ Θ ∧ si |= gi then
3 P ← P ∪ WP(gi, ⟨o0, . . . , oi−1⟩ )
4 return SPURIOUS
5 end
6 end
// Check π-spuriousness.

7 for i ∈ {0, . . . , n} do
8 if ∃s0, . . . , sn ∈ S : s0 ∈ [s0P ] ∧ s0 |=

ϕ0 ∧ ⟨s0, o0, . . . , on−1, sn⟩ ∈ Θ ∧ sn |=
ϕu ∧ ⟨s0, o0, . . . , oi, si+1⟩ ∈ Θπ then

9 continue
10 end
11 P ′ ← P
12 entails ← CompEntail(s0P , ⟨o0, . . . , on−1⟩ , i )
13 for (v, c) ∈ entails do
14 P ← P ∪ WP((v= c), ⟨o0, . . . , oi−1⟩ )
15 end
16 if P ̸= P ′ then return SPURIOUS
17 for v ∈ V \ dom(entails) do
18 p← ProposeSplit(v, lov , upv)
19 if p ̸= NONE then P ← P ∪ {p}
20 end
21 return SPURIOUS
22 end
23 return NON-SPURIOUS

24 Procedure WP(ϕ, ⟨o0, . . . , oi−1⟩):
25 ϕi

wp ← ϕ
26 for j ∈ {i− 1, . . . , 0} do
27 ϕj

wp ← wpuj (ϕj+1
wp )

28 end
29 return {ϕ0

wp , . . . , ϕ
i
wp}

30 Procedure CompEntail(s0P , ⟨o0, . . . , on−1⟩, i):
31 entails ← ∅
32 let s0c , . . . , snc ∈ S : s0c ∈ [s0P ] ∧ s0 |=

ϕ0 ∧ ⟨s0c , o0, . . . , on−1, snc ⟩ ∈ Θ ∧ sn |= ϕu

33 for v ∈ V do
34 if ∃s0, . . . , sn ∈ S : s0 ∈ [s0P ] ∧ s0 |=

ϕ0∧⟨s0, o0, . . . , on−1, sn⟩ ∈ Θ∧si(v) ̸= sic(v)
then continue

35 entails ← entails ∪ {v 7→ sic(v)}
36 end
37 return entails

38 Procedure ProposeSplit(v, l , u):
39 I ← [(l , u)]
40 while I ̸= ∅ do
41 (l , u)← I .pop front()
42 c ← ⌊(l + u)/2⌋
43 if (v ≥ c) /∈ P then return v ≥ c
44 if l < c then I .push back((l , c − 1))
45 if u > c then I .push back((c + 1, u))
46 end
47 return NONE


