Focusing on What Really Matters: Irrelevance Pruning in M&S

Álvaro Torralba, Peter Kissmann
Saarland University, Germany

SoCS 2015, June 11
Session with ICAPS 2015
Motivation: Irrelevance Pruning

- Last Tuesday: h^2-based preprocessor
 - Simplify the task in a preprocessing step
 - Remove operators that cannot possibly belong to any plan
 - Very useful!!!!

- Today: Can we simplify the tasks even further?
Motivation: Irrelevance Pruning

- Last Tuesday: h^2-based preprocessor
 - Simplify the task in a preprocessing step
 - Remove operators that cannot possibly belong to any plan
 - Very useful!!!!!
Motivation: Irrelevance Pruning

- Last Tuesday: \(h^2 \)-based preprocessor
 - Simplify the task in a preprocessing step
 - Remove operators that cannot possibly belong to any plan
 - Very useful!!!!

- Today: Can we simplify the tasks even further?

Diagram:

- (Truck)
- (Package)
Merge-and-Shrink Heuristic

An admissible abstraction heuristic for cost-optimal planning

1. Start with the projection over variables: v_1, v_2, v_3, v_4
2. Merge: replace Θ_i and Θ_j by their product
3. Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

\[\text{L} \]

\[\Theta_1 \quad \Theta_2 \quad \Theta_3 \quad \Theta_4 \]
Merge-and-Shrink Heuristic

An admissible abstraction heuristic for cost-optimal planning

1. Start with the projection over variables: \(\nu_1, \nu_2, \nu_3, \nu_4 \)
2. Merge: replace \(\Theta_i \) and \(\Theta_j \) by their product
3. Shrink: replace \(\Theta_i \) by its abstraction \(\alpha(\Theta_i) \)

\[
\begin{array}{c}
\Theta_1 \otimes \Theta_2 \\
\Theta_3 \\
\Theta_4 \\
\end{array}
\]

\(\mathcal{L} \)
Merge-and-Shrink Heuristic

An admissible abstraction heuristic for cost-optimal planning

1. Start with the projection over variables: \(v_1, v_2, v_3, v_4 \)
2. Merge: replace \(\Theta_i \) and \(\Theta_j \) by their product
3. Shrink: replace \(\Theta_i \) by its abstraction \(\alpha(\Theta_i) \)

\[\vdots \]

\[\vdots \]

\[\vdots \]

\[\vdots \]
Merge-and-Shrink Heuristic

An admissible abstraction heuristic for cost-optimal planning

1. Start with the projection over variables: v_1, v_2, v_3, v_4
2. Merge: replace Θ_i and Θ_j by their product
3. Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

\[\mathcal{L} \]

\[\alpha_{1,2} \] \hspace{1cm} \[\alpha_{3,4} \]
Merge-and-Shrink Heuristic

An admissible abstraction heuristic for cost-optimal planning

1. Start with the projection over variables: v_1, v_2, v_3, v_4
2. Merge: replace Θ_i and Θ_j by their product
3. Shrink: replace Θ_i by its abstraction $\alpha(\Theta_i)$

\[
\mathcal{L}
\]

$\alpha_{1,2} \otimes \alpha_{3,4}$
Simulation-Based Dominance Pruning

Label-dominance simulation (Torralba and Hoffmann, IJCAI 2015):

1. Use M&S to compute a partition of the problem: \(\{ \Theta_1, \ldots, \Theta_k \} \)
2. Compute label-dominance simulation relation: \(\{ \preceq_1, \ldots, \preceq_k \} \)
 - **Label dominance**: \(l \) dominates \(l' \) in \(\Theta_i \) if for any \(s \rightarrow t \) exists \(s \rightarrow t' \) s.t. \(t \preceq t' \)
 - **State dominance** \(s \preceq t \): For any \(s \rightarrow s' \), exists \(t \rightarrow t' \) s.t.:
 - \(t \preceq t' \)
 - \(c(l') \leq c(l) \)
 - \(l' \) dominates \(l \) in the rest of the problem
3. In \(A^* \), prune any \(s \) s.t. \(s \preceq t, g(s) \geq g(t) \) for some \(t \)
Merge-and-Shrink Framework (Sievers et al. 2014)

Θ₁ Θ₂ Θ₃ Θ₄ Global Θ
Merge-and-Shrink Framework (Sievers et al. 2014)

FDR task: $\langle V, O, I, G \rangle$

v_1 v_2 v_3 v_4

State space
Merge-and-Shrink Framework (Sievers et al. 2014)

M&S: Framework for transformation of planning tasks

<table>
<thead>
<tr>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge</td>
</tr>
<tr>
<td>Shrink</td>
</tr>
<tr>
<td>Exact Label Reduction</td>
</tr>
<tr>
<td>Bisimulation shrinking</td>
</tr>
<tr>
<td>Reachability pruning</td>
</tr>
</tbody>
</table>

Global Θ
Merge-and-Shrink Framework (Sievers et al. 2014)

\[\Theta_1 \quad \Theta_2 \quad \Theta_3 \quad \Theta_4 \quad \text{Global } \Theta \]

M&S: Framework for transformation of planning tasks

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation to global LTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge</td>
<td>None</td>
</tr>
<tr>
<td>Shrink</td>
<td>Abstraction</td>
</tr>
<tr>
<td>Exact Label Reduction</td>
<td>Change labels</td>
</tr>
<tr>
<td>Bisimulation shrinking</td>
<td>Preserves h^*</td>
</tr>
<tr>
<td>Reachability pruning</td>
<td>Keeps reachable/solvable part</td>
</tr>
</tbody>
</table>
Merge-and-Shrink Framework (Sievers et al. 2014)

M&S: Framework for transformation of planning tasks

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation to global LTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge</td>
<td>None</td>
</tr>
<tr>
<td>Shrink</td>
<td>Abstraction</td>
</tr>
<tr>
<td>Exact Label Reduction</td>
<td>Change labels</td>
</tr>
<tr>
<td>Bisimulation shrinking</td>
<td>Preserves h^*</td>
</tr>
<tr>
<td>Reachability pruning</td>
<td>Keeps reachable/solvable part</td>
</tr>
<tr>
<td>Subsumed transition pruning</td>
<td>Preserves h^*</td>
</tr>
</tbody>
</table>
Plan Preserving Transformations of Planning Tasks

Plan preserving:
1. Does not add any new optimal plan to the task
2. At least one optimal plan for the original task is preserved \((h^*(I)) \)

Unreachable/dead-end pruning is plan preserving

In this paper: subsumed transition pruning
- remove transitions from M&S transition systems
- globally \(h \)-preserving \((h^*(s) \text{ for every } s) \)
Subsumed Transition Pruning

Definition (Subsumed transition)

\(s_i \xrightarrow{l} t_i \) is \textbf{subsumed} by \(s_i \xrightarrow{l'} t'_i \) if:

1. \(t_i \preceq t'_i \) and
2. \(c(l') \leq c(l) \) and
3. \(l' \) dominates \(l \) in all \(\Theta_j \) for \(j \neq i \).

Thm: Remove subsumed transitions is globally \(h \)-preserving.
Subsumed Transition Pruning

Definition (Subsumed transition)

$s_i \xrightarrow{l} t_i$ is subsumed by $s_i \xrightarrow{l'} t'_i$ if:

1. $t_i \preceq t'_i$ and
2. $c(l') \leq c(l)$ and
3. l' dominates l in all Θ_j for $j \neq i$.

Thm: Remove subsumed transitions is globally h-preserving
Subsumed Transition Pruning

Definition (Subsumed transition)

\[s_i \overset{l}{\rightarrow} t_i \text{ is subsumed by } s_i \overset{l'}{\rightarrow} t'_i \text{ if:} \]

1. \(t_i \preceq t'_i \) and
2. \(c(l') \leq c(l) \) and
3. \(l' \) dominates \(l \) in all \(\Theta_j \) for \(j \neq i \).

Thm: Remove subsumed transitions is globally \(h \)-preserving

\[\begin{align*}
A \rightarrow B \rightarrow C \rightarrow D \\
\overline{\mathcal{I}} \rightarrow E \rightarrow \mathcal{G}
\end{align*} \]

\[\mathcal{I} \rightarrow A \text{ is subsumed by } \mathcal{I} \rightarrow E \\
\mathcal{G} \rightarrow D \text{ is subsumed by } \mathcal{G} \rightarrow E \]
Subsumed Transition Pruning

Definition (Subsumed transition)

\(s_i \xrightarrow{I} t_i \) is **subsumed** by \(s_i \xrightarrow{I'} t'_i \) if:

1. \(t_i \preceq t'_i \) and
2. \(c(l') \leq c(l) \) and
3. \(l' \) dominates \(l \) in all \(\Theta_j \) for \(j \neq i \).

Thm: Remove subsumed transitions is globally \(h \)-preserving

\[\begin{align*}
 &A \quad B \quad C \quad D \\
 &\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
 &I \quad E \quad G
\end{align*} \]

\(I \rightarrow A \) is subsumed by \(I \rightarrow E \)
\(G \rightarrow D \) is subsumed by \(G \rightarrow E \)
A, B, C, D become unreachable
Example: Subsumed Transition Pruning

Θ_1: $s_1 \xrightarrow{l} t_1 \quad (s_1, s_2) \xrightarrow{l} (s_1, t_2)$

Θ_2: $s_2 \xrightarrow{l} t_2 \quad (t_1, s_2) \xrightarrow{l} (t_1, t_2)$

$\Theta_1 \otimes \Theta_2$: $s_1 \xrightarrow{l} t_1 \quad (s_1, s_2) \xrightarrow{l} (s_1, t_2)$

Don't remove a transition if the label dominance changes!
Example: Subsumed Transition Pruning

Θ_1:
$s_1 \xrightarrow{l} t_1$

Θ_2:
$s_2 \xrightarrow{l''} t_2$

$\Theta_1 \otimes \Theta_2$:
$(s_1, s_2) \xrightarrow{l} (s_1, t_2)$

$(t_1, s_2) \xrightarrow{l''} (t_1, t_2)$

$s_1 \xrightarrow{l} t_1$ is subsumed by $s_1 \xrightarrow{l''} t_1$
Example: Subsumed Transition Pruning

\[\Theta_1: \]
\[s_1 \xrightarrow{l} t_1 \]
\[s_1 \xrightarrow{l'} t_1' \]

\[\Theta_2: \]
\[s_2 \xrightarrow{l} t_2 \]
\[s_2 \xrightarrow{l'} t_2' \]

\[\Theta_1 \otimes \Theta_2: \]
\[(s_1, s_2) \xrightarrow{l} (s_1, t_2) \]
\[(s_1, s_2) \xrightarrow{l'} (s_1, t_2') \]

- \(s_1 \xrightarrow{l} t_1 \) is subsumed by \(s_1 \xrightarrow{l'} t_1 \)
- \(s_2 \xrightarrow{l'} t_2 \) is subsumed by \(s_2 \xrightarrow{l} t_2 \)

Don't remove a transition if the label dominance changes!
Example: Subsumed Transition Pruning

\[\Theta_1: \]
\[s_1 \xrightarrow{l} t_1 \]

\[\Theta_2: \]
\[s_2 \xrightarrow{l'} t_2 \]

\[\Theta_1 \otimes \Theta_2: \]
\[(s_1, s_2) \xrightarrow{l} (s_1, t_2) \]
\[(t_1, s_2) \xrightarrow{l'} (t_1, t_2) \]

- \(s_1 \xrightarrow{l} t_1 \) is subsumed by \(s_1 \xrightarrow{l'} t_1 \)
- \(s_2 \xrightarrow{l'} t_2 \) is subsumed by \(s_2 \xrightarrow{l} t_2 \)

Don’t remove a transition if the label dominance changes!
Taking Advantage of Plan-Preserving Transformations

1. Search task Π' instead of Π
 - implementation overhead (future work)

2. Remove dead operators: after subsumed transition and unreachability pruning

3. M&S heuristics: If Θ' is a plan-preserving transformation of Θ,
 - abstractions of Θ' are not admissible for Θ
 - It's not a bug, it's a feature!!!

 \Rightarrow less expanded states
 - globally admissible (preserve h^* in at least one optimal plan)
 - A^* returns optimal solutions

Subsumed transition pruning + unreachability analysis must be applied before any shrinking (except bisimulation)

Torralba, Kissmann

From Dominance to Irrelevance Pruning

SoCS 2015
Taking Advantage of Plan-Preserving Transformations

1. Search task Π' instead of Π
 - implementation overhead (future work)

2. Remove dead operators:
 - after subsumed transition and unreachability pruning

It's not a bug, it's a feature!!!
→ less expanded states
globally admissible
A^* returns optimal solutions

Subsumed transition pruning + unreachability analysis must be applied before any shrinking (except bisimulation)
Taking Advantage of Plan-Preserving Transformations

1. Search task Π' instead of Π
 - implementation overhead (future work)

2. Remove dead operators:
 - after subsumed transition and unreachability pruning

3. M&S heuristics: If Θ' is a plan-preserving transformation of Θ, abstractions of Θ' are not admissible for Θ
Taking Advantage of Plan-Preserving Transformations

1. Search task Π' instead of Π
 - implementation overhead (future work)

2. Remove dead operators:
 - after subsumed transition and unreachability pruning

3. M&S heuristics: If Θ' is a plan-preserving transformation of Θ, abstractions of Θ' are not admissible for Θ
 - It’s not a bug, it’s a feature!!! \rightarrow less expanded states
 - **globally admissible** (preserve h^* in at least one optimal plan) \Rightarrow A^* returns optimal solutions

Subsumed transition pruning + unreachability analysis **must be applied before any shrinking** (except bisimulation)
Similarity Shrinking

- Shrink s, t iff $s \preceq t$ and $t \preceq s$
- Globally h-preserving \Rightarrow derives perfect heuristics
- Coarser than bisimulation (s and s' are similar but not bisimilar)

Redundant with subsumed transition pruning (mod label reduction)
Experiments

- **Configuration \(P^i \):**
 - Incremental computation: recompute simulation after each merge
 - No label reduction, no shrinking

- Preprocess successful in 1463 of 1612 tasks
- Takes around 100s but up to 500-1000s in larger tasks
 - Suitable for optimal but not for satisficing planning
Experiments: M&S Heuristic

Expanded nodes

Total time (s)

M&S with P^e

Torralba, Kissmann

From Dominance to Irrelevance Pruning

SoCS 2015
Experiments: Removing Irrelevant Operators

<table>
<thead>
<tr>
<th>Domain</th>
<th>% pruned operators</th>
<th>Coverage LM-cut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P^i h^2 $h^2 + P^i$</td>
<td>- P^i h^2 $h^2 + P^i$</td>
</tr>
<tr>
<td>Floortile11</td>
<td>28 38 38</td>
<td>7 1 7 7</td>
</tr>
<tr>
<td>Logistics00</td>
<td>67 0 67</td>
<td>20 1 0 1</td>
</tr>
<tr>
<td>NoMystery</td>
<td>49 23 49</td>
<td>14 4 0 4</td>
</tr>
<tr>
<td>ParcPrint11</td>
<td>77 70 79</td>
<td>13 6 4 6</td>
</tr>
<tr>
<td>Rovers</td>
<td>71 0 71</td>
<td>7 3 0 2</td>
</tr>
<tr>
<td>Satellite</td>
<td>50 0 50</td>
<td>7 2 0 2</td>
</tr>
<tr>
<td>TPP</td>
<td>25 56 61</td>
<td>6 1 0 1</td>
</tr>
<tr>
<td>Trucks</td>
<td>90 38 90</td>
<td>10 1 0 1</td>
</tr>
<tr>
<td>Woodwk11</td>
<td>89 51 88</td>
<td>12 8 3 8</td>
</tr>
<tr>
<td>Total (1612)</td>
<td>32 23 42</td>
<td>833 29 46 65</td>
</tr>
</tbody>
</table>

+13 problems for symbolic bidirectional uniform-cost search (over 964)
Experiments: Comparison with State of the Art

HHJ (Haslum, Helmert, and Jonsson ICAPS 2013)

- Analyzes path subsumption in DTGs
- Current implementation only applicable to unary domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Operators P^i</th>
<th>LM-Cut P^i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocksworld</td>
<td>0.01 0.81</td>
<td>28 28 35</td>
</tr>
<tr>
<td>Driverlog</td>
<td>0.05 0.05</td>
<td>13 13 14</td>
</tr>
<tr>
<td>Logistics00</td>
<td>0.65 0.52</td>
<td>20 21 21</td>
</tr>
<tr>
<td>Logistics98</td>
<td>0.38 0.09</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Miconic</td>
<td>0.58 0.57</td>
<td>141 142 142</td>
</tr>
<tr>
<td>Total</td>
<td>208 210 218</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Take home messages:

1. **M&S** is suitable for transformation of planning tasks
2. Simulation relations useful for:
 - Subsumed transition pruning \rightarrow very good in practice!
 - Similarity shrinking:
 - perfect shrinking better than bisimulation but...
 - redundant with subsumed transition pruning + bisimulation
3. **Irrelevance pruning** greatly simplifies planning tasks

Future work:

- Extensions of label-dominance simulation
- Path subsumption
- More types of problem transformations
Thanks for your attention!

Questions?