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Abstract

Abstraction heuristics are a leading approach for deriving
admissible estimates in cost-optimal planning. However, a
drawback with respect to other families of heuristics is that
they require a preprocessing phase for choosing the abstrac-
tion, computing the abstract distances, and/or suitable cost-
partitionings. Typically, this is performed in advance by a
fixed amount of time, even though some instances could be
solved much faster with little or no preprocessing.
We interleave the computation of abstraction heuristics with
search, avoiding a long precomputation phase and allowing
information from the search to be used for guiding the ab-
straction selection. To evaluate our ideas, we implement them
on a planner that uses a single symbolic PDB. Our results
show that delaying the preprocessing is not harmful in general
even when an important amount of preprocessing is required
to obtain good performance.

Introduction

Abstraction heuristics are a dominant approach for auto-
matically finding admissible heuristics in cost-optimal plan-
ning. They estimate goal-distance by mapping states into
an abstract state space and computing the goal distance
from the corresponding abstract state to the abstract goals.
There are different methods to compute abstractions, in-
cluding Pattern Databases (Culberson and Schaeffer 1998;
Edelkamp 2001), Merge-and-Shrink (Helmert et al. 2014),
and Cartesian abstractions (Seipp and Helmert 2018). All
these methods precompute the abstract distances in an of-
fline phase, before starting the search. Then, in the search
phase A∗ uses the resulting heuristic to solve the task.

Most approaches are optimized to maximize the Inter-
national Planning Competition (IPC) metrics, i.e., number
of instances solved within a 30 minutes time limit. They
split the time available, e.g., investing half of it for each
phase. This means that most instances are not solved un-
til the precomputation phase is finished (e.g., after 15 min-
utes), even though search with a worse heuristic could solve
most of them in a few seconds. This is an important draw-
back, and one of the reasons why other heuristics, like Lm-
Cut (Helmert and Domshlak 2009), are still popular despite
their worse overall performance in IPC settings.
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In the context of domain-dependent heuristic search,
some alternatives have been proposed to avoid the expen-
sive precomputation phase. Hierarchical A∗ avoids precom-
puting abstract distances altogether by computing them in
an online fashion (Holte et al. 1996; Holte, Grajkowski,
and Tanner 2005; Leighton, Ruml, and Holte 2011). How-
ever, these methods assume a fixed abstraction hierarchy
as input, which is not simple to obtain in a domain-
independent setting where typically a search in the space of
possible abstractions (Haslum et al. 2007; Edelkamp 2006;
Franco et al. 2017) and/or suitable cost-partitionings (Seipp,
Keller, and Helmert 2017; Seipp 2017) is needed. In domain-
independent planning, some methods refine the heuristic as
the search progresses (Torralba, Linares López, and Borrajo
2016; Fickert and Hoffmann 2017; Eifler and Fickert 2018).
Their focus is on how to improve heuristic estimates for the
current search considering a particular class of heuristics.

In this paper, we explore the simple idea of interleav-
ing the heuristic precomputation with the search, instead of
performing a full precomputation before the search starts.
In principle, this can be done with any method that pre-
computes abstraction heuristics and improves their quality
over time, either by incrementally computing an ensemble
of heuristics, by computing new cost-partitionings, or by
continuing the abstract search. As a case study, we use the
Gamer method to derive a single symbolic PDB using a large
amount of variables (Kissmann and Edelkamp 2011). This is
a relatively simple algorithm (i.e., does not need to compute
cost-partitionings over ensembles of heuristics), that clearly
requires an important amount of precomputation to be ef-
fective. Moreover, despite not taking advantage of combin-
ing multiple PDBs either by taking the maximum (Holte
et al. 2006), or the sum (Felner, Korf, and Hanan 2004;
Haslum et al. 2007), it is still a competitive approach.

We aim to analyze two questions in our case study: (i) Is
delaying the heuristic precomputation harmful for the over-
all performance? and (ii) Can some information from the
search be used to compute better abstractions?

Our experiments show that interleaving the preprocessing
and search phases is a viable approach to speed-up the plan-
ning process without reducing the overall coverage. This
leads to more robust methods that work for any time limit
without specifying in advance how much time should be
spent in precomputing the heuristic.

Proceedings of the Twelfth International  
Symposium on Combinatorial Search (SoCS 2019)

130



Interleaving Search and Heuristic

Improvement

Instead of having two separated phases, heuristic pre-
promputation and search for a solution, we interleave them.
As previous methods (e.g. Gamer) use half of the time for
each phase, we choose a simple strategy that preserves this
balance, shown in Algorithm 1. The algorithm starts spend-
ing 10 seconds for constructing an initial heuristic. After
that, we use the same time for search. The time limit T im-
posed to the HeuristicImprovement function is not
strictly enforced, so it may sometimes be exceeded. In those
cases, we update T to ensure that time is always evenly split
between the two phases. If the search does not find a solu-
tion, the time limit is progressively doubled. The main rea-
son is that typically heuristic improvements suffer from di-
minishing returns, i.e., as time passes it becomes harder to
find improvements and obtaining further improvement may
require to spend enough time in a single call to this function.

Algorithm 1: Interleaved Search
1 T ← 10s ;
2 open← {I} ;
3 while not solved do
4 h← HeuristicImprovement(T, open) ;
5 T ← elapsedTime;
6 open← Search(h, T ) ;
7 T ← 2 · T ;

The search algorithm is A∗ with a minor modification.
To take advantage of the heuristic improvement and keep
consistency, we need to re-evaluate nodes upon expansion.
Every time a node is fetched from the open list, it is re-
evaluated resulting in three possibilities. If the new heuristic
value is ∞, then the node is a dead end and it is removed
from the open list without expanding it. If the heuristic value
has not increased, then the node is expanded as usual. Fi-
nally, if the heuristic value has increased, the node is re-
inserted into open with its new f -value.

Alternatively, one could restart the search from the ini-
tial state whenever a heuristic improvement has been found.
This would avoid re-evaluating states before expanding them
but would re-expand potentially many states more than once.
In our case, this is not desirable, since PDBs are very fast to
evaluate compared to the re-expansion time.

Interleaving heuristic improvement and search does have
an associated cost because of two main reasons: (a) some
nodes will be expanded because the heuristic has not been
improved enough yet when they are extracted them from the
open list, and (b) the heuristic function is evaluated multiple
times for the same state, e.g., all expanded states are evalu-
ated at least twice.

On the other hand, interleaved search also offers an oppor-
tunity to tailor the heuristic improvement using information
from the search. In particular, one can use the open list, i.e.,
the nodes that have already been generated but not expanded
in order to optimize the heuristic for those nodes since this
will have an immediate impact.

The algorithm can work with any heuristic improvement
function. However, to limit the overhead, the following
properties are desirable:

• (P1) Monotonic improvements The heuristic function
after a call to HeuristicImprovement must dom-
inate the previous heuristic. In other words, the quality
of the heuristic function should not degrade. If this prop-
erty is met, the overall heuristic is consistent and no re-
expansions are required.

• (P2) Time sensitive: When provided a time limit T ,
the HeuristicImprovement function must stop af-
ter approximately that time.

• (P3) Fast node evaluation: h should be very fast since
many nodes will be evaluated multiple times.

Next, we analyze what modifications are needed to one
abstraction method in order to satisfy these properties.

Case Study: Symbolic PDB Construction

Pattern Database abstractions simply ignore a subset of the
variables of the task. The pattern is the set of variables that
are considered, and all other variables are ignored in the ab-
stract task. The goal-distances of all abstract states are usu-
ally computed by a backward search starting from the ab-
stract goal (Sievers, Ortlieb, and Helmert 2012).

Symbolic PDBs use a symbolic representation based on
BDDs (Bryant 1986) to exhaustively explore the abstract
state space (Edelkamp 2002; Torralba et al. 2017). This al-
lows considering any number of variables in the pattern,
even all variables. If too many variables are considered for
the exploration to be completed, it is stopped after explor-
ing a perimeter around the abstract goal. This results in a
partial PDB where all not seen abstract states are assigned
a goal-distance equal to the perimeter radius plus the mini-
mum action cost (Anderson, Holte, and Schaeffer 2007).

To construct a symbolic PDB, the most important decision
is what variables to include in the pattern. We follow the
algorithm used in Gamer (Kissmann and Edelkamp 2011),
which is inspired in the iPDB procedure (Haslum 2007).

Gamer Pattern Databases

Gamer uses a hill-climbing search in the space of patterns,
starting with a pattern containing all goal variables. In each
iteration, it compares the current pattern to all candidate pat-
terns that result of adding one casually connected variable
to the current pattern. All patterns are evaluated by con-
structing the corresponding PDB, and calculating the aver-
age heuristic value over all states, which can be efficiently
computed thanks to the symbolic representation.

At the end of each iteration, Gamer adds to the current
pattern all those variables whose candidates raise the aver-
age heuristic value the most. If two or more variables raise
the average heuristic value within a delta interval of the best
(set to 0.1% in our experiments) then all those variables will
be added in one go, hence reducing the number of iterations
required to find a good pattern.

If no candidate PDB raised the average heuristic value,
Gamer is finished and the search starts immediately with the
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current PDB. The algorithm may also finish before the 900s
time limit when the pattern with all variables is selected and
the initial state is expanded during PDB construction. In that
case, an optimal plan for the original task has been found
by the backward symbolic search. When the time limit is
reached, Gamer interrupts the generation of candidate pat-
terns and returns the best PDB generated up to that point.

We suggest a variation of Gamer that, instead of using the
average heuristic value of all states in the state space (includ-
ing unreachable states), it uses a sample of states generated
via random walks, as done in iPDB’s implementation of Fast
Downward (Helmert 2006). If no improvement is found on
any sampled state, Gamer’s criterion is used as tie-breaker.

Interleaved Gamer

The biggest challenge to use Gamer’s method in an inter-
leaving context is to be able to stop the computation accord-
ing to a time limit (P2). Since each single iteration of the
algorithm requires evaluating a set of candidate patterns by
exploring the entire abstract state space, this may very well
exceed the time limit. Stopping after evaluating only a subset
of candidates would bias the pattern search towards the eval-
uated patterns. To avoid this, we uniformly split the avail-
able time among all candidates. If a candidate PDB cannot
be fully constructed, we consider the resulting partial PDB
instead.

If no improvement was made by any candidate and all
candidate PDBs were fully constructed, then no more heuris-
tic improvements are possible and we continue doing only
search. However, if some candidates were not fully gener-
ated, their construction will continue in the next call to the
heuristic improvement method.

As the algorithm monotonically adds new variables to the
current pattern, the heuristic estimates cannot possibly de-
crease when PDBs are fully constructed. However, the use
of partial PDBs may cause the heuristic to become worse for
some states if the new PDB has not been fully constructed.
If this happens, to ensure (P1) instead of replacing the pre-
vious PDB by the new one we keep both of them and take
their maximum.

Finally, in order to guide the pattern selection towards pat-
terns that are helpful for current states in our search, we re-
place the random walk sampling performed by the baseline
by sampling states from the open list. All states in the open
list are chosen with the same probability, in order to ensure
diversity in the set of states considered.

Experiments
We performed systematic experiments on the optimal
STRIPS benchmark suite from all previous IPCs, which con-
sists of 1,827 planning tasks and 48 unique domains. The ex-
periments were run on a cluster of Intel E5-2660 machines
running at 2.20GHz using a time limit of 30 minutes and a
memory limit of 4GB. All configurations use the h2 prepro-
cessor (Alcázar and Torralba 2015) for eliminating irrelevant
operators and finding mutexes used to enhance the symbolic
PDBs (Torralba et al. 2017).

First, we evaluate whether interleaving the computation
is harmful for the number of problems solved up to the

(a) Gamer Configurations

G R IG IR IO tot

G – 5 11 9 11 1080
R 13 – 18 10 10 1097
IG 5 7 – 4 3 1059
IR 16 9 18 – 7 1101
IO 16 10 17 8 – 1106

(b) State of the art

IO LC C2 Sc CO tot

IO – 34 14 16 27 1106
LC 6 – 4 3 6 894
C2 23 39 – 17 27 1145
Sc 22 39 21 – 32 1191
CO 12 33 10 3 – 955

10s 100s 300s 600s 900s 1200s IO tot

10s – 3 4 5 8 15 5 980
100s 19 – 4 5 10 17 7 1048
300s 20 9 – 7 11 17 8 1078
600s 21 11 12 – 9 19 13 1096
900 20 12 14 7 – 16 10 1097

1200s 17 11 12 5 4 – 8 1072
IO 19 12 14 11 10 16 – 1106

(c) R’s preprocessing time

Table 1: Per-domain comparison. Each row and column cor-
respond to a planner configuration. A cell in row x and col-
umn y indicates in how many domains x obtains a higher
coverage than y. Tot is the total number of tasks solved.

time limit compared to having separated preprocessing and
search phases. Table 1a shows coverage after 30 minutes of
the different Gamer configurations. G stands for the origi-
nal version of Gamer’s method, I for interleaved, R for the
variant using random walks to sample states, and O for the
variant sampling states from the open list. The results show
that the interleaved search does not have a negative impact
on coverage results and in fact, some interleaved versions
like IR and IO solve more problems than the best baseline
configuration, R. This is not the case for all configurations
though, e.g. IG solves less problems than G. The best over-
all option in terms of coverage and domain is IO, but the
difference with respect to IR is not very significant.

The benefits of interleaving the PDB computation and
search are shown in Figure 1a, which analyzes how many
tasks are solved in x seconds or less. Both interleaved ver-
sions (IO and IR) significantly improve over the baseline in
this metric. All variants have a preprocessing stage during
10s so they behave very similarly up to that point. During
the preprocessing phase some instances are solved because
Gamer’s method may solve the instance (with a PDB with
all variables) or terminate the preprocessing phase early be-
cause no improvements could be made. After the first 10 sec-
onds, the interleaved versions start the search phase greatly
increasing the number of problems solved while the base-
line continues improving the heuristic. The gap keeps in-
creasing until around 900 seconds, which is when the non-
interleaved versions start the search phase. Nevertheless,
the interleaved versions dominate the baseline in number of
problems solved across any timeouts.

To confirm the dominance of interleaved configurations
over variants using a preprocessing phase, we run exper-
iments varying the time spent in preprocessing, e.g., 10s
uses the remaining 1790s for the A∗ search. Table 1c shows
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Figure 1: Cumulative solved instances as a function of total time.

the per-domain comparison against IO, whereas Figure 1c
shows the cumulative coverage over time. Interestingly, IO
dominates all variants across all timeouts. This confirms that
interleaved is not only useful to avoid a long preprocessing
phase, but also eliminates one parameter (time spent in pre-
processing) that had to be manually specified. The result is a
configuration that works well independently of the time limit
chosen. Particularly interesting is the comparison against the
R configuration with 10s preprocessing. Both variants be-
have similarly at the beginning but, after 50s the perfor-
mance of the variant without interleaving degrades due to
the lower quality of the heuristic, causing it to solve sig-
nificantly less instances. In this case, the interleaved search
benefits from not having to choose a fixed time a priori.

Our last set of experiments in Table 1b and Figure 1b
shows that Gamer is competitive against a diverse set of
popular methods, including the top abstraction-based plan-
ners in the last IPC, Complementary2 (C2) (Franco, Lelis,
and Barley 2018), and Scorpion((Sc) (Seipp 2018) . Also,
for comparison we run two heuristics without preprocessing
phase: Lm-Cut (LC), and a variant of Cartesian abstractions
with online refinement(CO) (Eifler and Fickert 2018). Both
Sc and C2 solve more tasks and perform better in more do-
mains but IO remains reasonably competitive, beating C2 in
14 domains and Sc in 16. The cumulative plot shows how C2
and Sc were specifically optimized for the IPC setting solv-
ing as many tasks as possible after 30 minutes. Sc only starts
the solving phase after 200 seconds, where the heuristic has
already been optimized. C2 solves more problems at the be-
ginning because it starts building a perimeter with symbolic
backward search for up to 250 seconds, which may solve
the task altogether. However, afterwards it does not solve
any instance until the 900 seconds threshold when the search
phase begins. Compared to these more complex methods, IO
is more stable across all timeouts. Lm-Cut and CO do not
have any preprocessing phase, but they solve less instances
overall.

As mentioned before, the main disadvantage of inter-
leaved is that some states may be unnecessarily expanded
and/or re-evaluated. Since this was not reflected in the cov-
erage results, we evaluate this by comparing R and IR in
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Figure 2: Comparison of R vs. IR.

terms of expanded nodes and time. Figure 2 shows the neg-
ative impact of interleaved: IR expands significantly more
nodes than the baseline R. For example, many instances
solved without search by the baseline now perform some
search. However, the comparison in terms of total time does
not show the same trend, meaning that significantly less time
was spent in precomputing the heuristic. The overall conclu-
sion is that the aforementioned (P3) is essential, i.e., inter-
leaved is effective for heuristics with a low evaluation time.

Conclusions

One important drawback of current abstraction heuristic
methods is that they spent a fixed amount of preprocess-
ing time to derive a heuristic function that is later used in
the search. This requires to configure them for a fixed time
limit. In this paper, we suggest to interleave the heuristic pre-
computation and the search phase, to solve more problems
across any time limit. This can be applied with any method
to derive heuristics where (1) the heuristic improves mono-
tonically, (2) the heuristic generation can be provided a time
limit, and (3) the evaluation of the resulting heuristic is fast.
Our case study with symbolic PDBs has very encouraging
results, showing that for methods that fit the three charac-
teristics above, interleaving the precomputation and search
phases can lead to more robust planners that do not depend
on the time limit without harming their performance.
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These properties are also shared by other abstraction
heuristic methods like additive ensembles of PDB, Carte-
sian, or M&S abstractions, so we expect our results to carry
over to those methods as well. Future work will tackle the
challenge of how to split their precomputation on small in-
cremental steps so that they can be interrupted and continued
afterwards without a large overhead on runtime or memory.
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Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S. 2017.
Efficient symbolic search for cost-optimal planning. Artificial In-
telligence 242:52–79.
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