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Abstract
Dominance relations compare states to determine
whether one is at least as good as another in terms
of their goal distance. We generalize these qual-
itative yes/no relations to functions that measure
by how much a state is better than another. This
allows us to distinguish cases where the state is
strictly closer to the goal. Moreover, we may obtain
a bound on the difference in goal distance between
two states even if there is no qualitative dominance.
We analyze the multiple advantages that quantita-
tive dominance has, like discovering coarser dom-
inance relations, or trading dominance by g-value.
Moreover, quantitative dominance can also be used
to prove that an action starts an optimal plan from
a given state. We introduce a novel action selection
pruning that uses this to prune any other successor.
Results show that quantitative dominance pruning
greatly reduces the search space, significantly in-
creasing the planners’ performance.

1 Introduction
Most classical planners focus on reducing the search space.
Their success greatly depends on their ability to exploit the
structure of the problem in the form of heuristics or prun-
ing methods. Pruning methods reduce the search effort by
eliminating redundant states [Pochter et al., 2011] or avoiding
the application of some actions [Wehrle and Helmert, 2012]
while preserving at least one optimal plan. Dominance prun-
ing methods automatically construct a relation that compares
states, to eliminate those that are dominated by others. Pre-
vious approaches define a qualitative relation, �, in which t
is said to dominate s (s � t) if it is at least as close to the
goal [Hall et al., 2013]. In that case, s may be safely pruned
if its g-value is not lower than that of t.

We generalize the label-dominance (LD) simulation
method originally devised to compute qualitative domi-
nance [Torralba and Hoffmann, 2015] to a quantitative ver-
sion. Instead of a relation, we define a function D : S �S !
R[ f�1g that measures “by how much” does t dominate s.
A positive value D(s; t) > 0 means that t is strictly closer to
the goal than s. Negative values bound the difference in goal
distance between t and s.

Theoretically, quantitative dominance has several advan-
tages. First, it may find coarser relations, hereby strengthen-
ing previous dominance pruning methods. Second, and more
importantly, novel pruning methods may take advantage of
the additional information. One way is to trade-off domi-
nance and g-value. If D(s; t) > 0 we may prune s even if its
g-value is lower. If D(s; t) < 0 there is no qualitative domi-
nance but, we can still prune s if its g-value is large enough.
Another way is to use quantitative dominance to prove that an
action a starts an optimal plan from a given state s, whenever
the successor dominates s by an amount equal to the action
cost. We introduce a novel type of pruning, which we call
action selection pruning, that prunes any other successor re-
ducing the branching factor to one.

Empirically, we show that quantitative dominance can
greatly reduce the search space in many benchmark domains,
even when compared to the qualitative version. However,
there is a big overhead to perform as much pruning as pos-
sible so approximation methods may be desirable. Action se-
lection, on the other hand, achieves an impressive amount of
pruning with very low overhead. Moreover, it is complemen-
tary to previous dominance pruning methods and it greatly
improves their performance in many domains.

2 Background
A planning task is a tuple � = hV;A; I;Gi. V is a finite
set of variables v, each with a finite domain Dv . A partial
state is a function s on a subset V(s) of V , so that s(v) 2 Dv

for all v 2 V(s); s is a state if V(s) = V . I is the initial
state and the goal G is a partial state. A is a finite set of
actions. Each a 2 A is a tuple hprea; e� a; c(a)i where prea
and e� a are partial states, called its precondition and effect,
and c(a) 2 R+0 is its cost. An action a is applicable in a state
s if s(v) = prea(v) 8v 2 V(prea). In that case, the result of
applying a in s, denoted sJaK, is another state s.t. sJaK(v) =
e� a(v) if v 2 V(e� a), and sJaK(v) = s(v) otherwise.

A labeled transition system (LTS) is a tuple � =
hS;L; T; sI ; SGi where S is a finite set of states, L is a fi-
nite set of labels each associated with a label cost c(l) 2 R+0 ,
T � S�L�S is a set of transitions, sI 2 S is the start state,
and SG � S is the set of goal states. A planning task defines
a state space, which is an LTS where: S is the set of all states;
sI = I; s 2 SG iff G � s; L = A, and s

a
�! sJaK 2 T if a is



applicable in s. We will use s 2 � to refer to states in � and
s

a
�! t to refer to their transitions.
A plan for a state s is a path from s to any sG 2 SG.

We denote h�(s) (g�(s)) to the cost of a cheapest plan for s
(path from I to s). A plan for s is optimal iff its cost equals
h�(s) and is strongly optimal if its number of 0-cost actions
(denoted h�0(s)) is minimal among all optimal plans for s.

We consider a representation of the planning task as a set
of LTSs on a common set of labels, f�1; : : : ;�kg [Helmert
et al., 2007; 2014]. Whenever it is not clear from the context,
we will use subscripts to differentiate states in the state space,
� (s; s0; t) and in the individual components �i (si; s0i; ti).
The synchronized product of two LTSs �1 
 �2 is another
LTS with states S = f(s1; s2) j s1 2 �1 ^ s2 2 �2g, tran-
sitions T = f(s1; s2)

l
�! (s01s

0
2) j s1

l
�! s01 ^ s2

l
�! s02g, s.t.

(s1; s2) 2 SG iff s1 2 SG1 and s2 2 SG2 .

3 Simulation-Based Qualitative Dominance
This section describes the label-dominance (LD) simulation
method we build upon [Torralba and Hoffmann, 2015]. Given
a planning task with states S, a dominance relation is a re-
lation �� S � S where s � t implies h�(t) < h�(s) or
h�(t) = h�(s) and h�0(t) � h�0(s). Such relation can be
used to prune states during the search: A search node ns (rep-
resenting state s) can be pruned at any point if there exists a
node nt 2 open [ closed s.t. g(nt) � g(ns) and s � t.

A relation � is goal-respecting if whenever s � t, t 2
SG _ s 62 SG. � is a simulation relation if, whenever s � t,
for all s l

�! s0, there exists t
l
�! t0 s.t. s0 � t0. A cost-

simulation allows the transition from t to use a different label
of lower or equal cost, i.e., whenever s � t, for every s l

�! s0,

there exists a transition t
l0

�! t0 s.t. s0 � t0 and c(l0) � c(l).
In a compositional approach, we take as input a set of LTSs
f�1; : : : ;�kg and compute a relation �i on each �i to ob-
tain a goal-respecting cost-simulation of the whole state space
�1 
 : : : 
 �k. LD simulation computes all of them simul-
taneously, using label dominance to ensure that the property
still holds after merging every �i.

Definition 1 (LD Simulation) A set f�1; : : : ;�kg of rela-
tions �i� Si � Si is a label-dominance (LD) simulation for
f�1; : : : ;�kg if all �i are goal-respecting and, whenever

s �i t, for all s l
�! s0 2 �i, there exists a transition t

l0

�! t0

in �i s.t. s0 �i t0, c(l0) � c(l), and for all j 6= i, l0 dominates
l in �j given �j . We say that l0 dominates l in �j given �j
if for all s l

�! s0 2 �j there exists s l0

�! t0 2 �j s.t. s0 � t0.

Intuitively, t dominates s in �i if, for every outgoing tran-
sition from s, t has an at least as good transition where the
targets are compared according to �i and the labels are com-
pared in all other �j to ensure that there is no negative side
effect. For any LD simulation f�1; : : : ;�kg, we can define a
relation� s.t. s � t iff si �i ti for each �i. This relation is a
goal-respecting cost-simulation and hence, a valid dominance
relation for the state space � � �1 
 : : :
�k.

A typical example is a logistics task where a single truck
must transport n packages from location A to B. Figure 1

TA TB
dr

lA lB

(a) �1 (truck)

PA PT PB

lA lB

dr drdr

(b) �2 (package)

Figure 1: LTSs describing our logistics running example.

shows the LTSs of the case with a single package. In this ex-
ample, LD simulation finds a relation where PA � PT � PB ,
i.e., having a package at its destination is at least as good as
having it in the truck, which is at least as good as having it
anywhere else. This holds independently of the position of
the truck or the other packages in case there are any. This
allows to prune, for example, state hTA; PAi if hTA; PT i has
lower or equal g-value. This is quite useful, as it prunes away
any state in which a package has been unloaded in any loca-
tion other than its destination. However, in the next sections
we see that quantitative dominance can do much more.

4 Quantitative Dominance
First, we generalize the definition of dominance relations.

Definition 2 (Quantitative Dominance Function) A func-
tion D : S � S ! R [ f�1g is a quantitative dominance
function for an LTS � iff D(s; t) � h�(s) � h�(t) and, if
h�(s) = h�(t) and h�0(s) < h�0(t), then D(s; t) < 0.

Intuitively, if D(s; t) > 0, then t is strictly closer to the
goal than s; if D(s; t) = 0 then t is at least as close to the
goal as s; and if �1 < D(s; t) < 0, t can get as close
to the goal as s by paying a price of �D(s; t). Finally, if
D(s; t) = �1, we did not discover any dominance of t over
s. The second part of the definition ensures that the pruning
is safe in domains with 0-cost actions, where s should not be
dominated by t if it is in the path from t to the goal. Given a
function D, we can define dominance relations based on it.

Definition 3 (Quantitative Dominance Relation) Let D be
a quantitative dominance function on an LTS � and let C 2
R be a constant. We define theC-dominance relation as s �CD
t iff D(s; t) � C.

This generalizes qualitative dominance, since�0D is a qual-
itative dominance relation. For any other �CD, we distinguish
between positive and negative dominance relations depend-
ing on whether C > 0 or C < 0. For unspecified C, s �CD t
serves as a shorthand for D(s; t) > �1.

4.1 Quantitative Compositional LD Simulation
We follow a compositional approach. Given a set of LTSs
f�1; : : : ;�kg, we define a quantitative dominance for each
of them so that their aggregation is a quantitative dominance
function of the state space of the planning task, �1
: : :
�k.

To operationalize this definition, we draw upon LD simu-
lation relations. Let s and t be two states for which s � t.
Then, in the standard notion of simulation any plan �s for s
must also be a plan for t. As this is too restrictive for deriv-
ing useful dominance relations, LD simulation allows to use
different labels in the plan �t from t and, if a noop action is



considered, �t can be shorter than �s. A limitation is that
it still requires the plan for t not to be longer than that from
s. This is fine in qualitative dominance because there is usu-
ally a strong correlation between plan cost and length [Radzi,
2011]. However, it is an impediment to infer negative dom-
inance since if there exists a path t !�s of cost c we would
like to infer that D(s; t) � �c. Consider the position of the
truck in our example. In an LD simulation, TA 6�1 TB be-

cause of the transition TA
lA�! TA for which TB does not

have any counterpart (noop or lB do not dominate lA in the
other LTSs). However, since the movements of the truck do
not depend on any other variable,D1(TA; TB) = �1 because
from TB we can always reach TA without having any side
effects on other variables.

We avoid this restriction by considering weak simulation
relations [Hennessy and Milner, 1985]. Weak simulations
consider a set of internal � -labels that are not relevant to de-
scribe the behavior of the system. Therefore, each transition
s

l
�! s0 can be simulated by a path t

�
�!�u

l
�! u0

�
�!�t0 s.t.

s0 � t0. In our case, � -labels are those that do not have any
preconditions or effects in other LTSs, like dr for the position
of the truck in our example.
Definition 4 (� -label) Let f�1; : : : ;�kg be a set of LTSs.

Label l is a � -label for �i iff s l
�! s 2 �j 8�j 6= �i; s 2 �j .

The actions in a � -path are not relevant, only its cost is. We
model this by defining the � -distance between any two states.
Definition 5 (� -distance) Let s and t be two states in an LTS
�. The, � -distance from s to t, written h� (s; t), is the cost of
a minimum-cost path from s to t in � using only transitions
with � labels or 1 if no such path exists. 0-cost transitions
are considered to have an infinitesimal cost �.

We define goal-respecting functions so that non-goal states
can only dominate goal states if they have a � -path to the goal.
Definition 6 (Goal-respecting function) A function D is
goal-respecting for � iff for all s 2 SG and t 2 S, D(s; t) �
maxsg2SG �h

� (t; sg).
Finally, we extend the definition of label dominance to the

quantitative case, by defining a function DL(l; l0) that cap-
tures the relation between labels.
Definition 7 (Label-dominance function) Let D be a func-
tion for �, we define its corresponding label-dominance func-
tion as DL(l; l0) = min

s
l
�!s02�

max
s
l0

�!s002�
D(s0; s00)

If DL(l; l0) > 0, then whenever l is applicable in any state
s, applying l0 will lead to a better state. If�1 < DL

j (l; l
0) <

0, we can reach an at-least-as-good state by paying the corre-
sponding price.
Definition 8 (QLD Simulation) Let DF = fD1; : : : ;Dkg
be a set of goal-respecting functions for T = f�1; : : : ;�kg.
DF is a quantitative label-dominance (QLD) simulation
for T if for all �i 2 T and s; t 2 �i, Di(s; t) �
fQLD(T ;DF ; i; s; t) where fQLD(T ;DF ; i; s; t) :=

min
s
l
�!s0

max
u

l0

�!u0

Di(s
0; u0)�h� (t; u)+c(l)�c(l0)+

X

j 6=i

DL
j (l; l

0)

where s l
�! s0 2 �i; u

l0

�! u0 2 �i

s1 s′1

t1

ll

�
C1

u1

ua1

u′1

τ ∗
la

l′

�
C1

�
C1

s2

s′2

t2

ll

�
C2

u2

sa2

u′2
τ ∗

la

l′

�
C2

�
C2

Figure 2: Illustration of Thm 2’s proof. �1 (left) and �2.

Intuitively, we compare all transitions from s (s l
�! s0),

against the best alternative from t (t �
�!�u

l
�! u0)1 by

summing up the difference in goal-distance of the targets
(Di(s0; u0)), the cost of the transition from s (c(l)), mi-
nus the cost of the path from t (h� (t; u) + c(l0)). Finally,P

j 6=iD
L
j (l; l

0) estimates the benefit or penalty for using l0

instead of l in the other LTSs. Applying this definition to
our example, we now find some dominance for the truck
D1(TA; TB) = D1(TB ; TA) = �1. For the package, we find
thatD2(PA; PT ) = 1,D2(PT ; PB) = 1 soD2(PA; PB) = 2.
This is similar to the result of LD simulation PA � PT � PB ,
but with the additional information that is strictly closer in-
stead of at least as close to the goal.

Theorem 1 A unique maximal QLD simulation exists.

Proof Sketch: The “identity” function (Di(si; ti) = �1 if
si 6= ti and 0 otherwise) is always an QLD simulation. Given
any two QLD simulations, their maximum is also an QLD
simulation so a unique maximal QLD simulation exists. �

Theorem 2 Let fD1; : : : ;Dkg be an QLD simulation on
f�1; : : : ;�kg. Then, D1 + � � � + Dk is a quantitative domi-
nance function on �1 
 : : :
�k.

Proof Sketch: If there is a single LTS, it can be proved that
D(s; t) � h�(s) � h�(t) for all s; t 2 � by induction on the
length of a shortest optimal plan for s. If there are multiple
LTSs, it can be proved that QLD simulation is invariant under
merge, i.e., the result of replacing �1 and �2 by �1
�2 and
D1 and D2 by D1 +D2 is still a QLD simulation. The key is
to show that for any transition s = (s1; s2)

l
�! (s01; s

0
2) = s0,

there exists a transition (u1; u2)
l0

�! (u01; u
0
2) s.t. (*)D(s; t) �

D(s0; u0) + c(l)� h� (t; u)� c(l0) +
P

j23;:::;k D
L
j (l; l

0).
Figure 2 illustrates the following steps. In �1, since

s1 �
C
D1 t1, there must exist u1

la

�! ta1 s.t. (E1) D1(s1; t1) �
D1(s

0
1; t

a
1)�h� (t1; u1)+ c(l)� c(la)+

P
j22;:::;k D

L
j (l; l

a).

This implies that l �L2 la. In �2, since l �L2 la and s2
l
�! s02,

there must exist s2
la

�! sa2 s.t. (E2) DL
2 (l; l

a) � D2(s
0
2; s

a
2).

Now, since s2 �
C
D2 t2 there must exist u2

l0

�! u02 s.t. (E3)
D2(s2; t2) � D2(s

a
2 ; u

0
2) � h� (t1; u1) + c(la) � c(l0) +P

j22;:::;k D
L
j (l

a; l0). This implies that la �L1 l. Going back

to �1, since la �L1 l, there must exist u1
l0

�! u01 such that (E4)
DL
1 l

a; l0 � D1(t
a; u01). To prove that the inequality (*) holds,

we substitute the inequalities (E1-E4) in the left part. A full
proof is included in an extended version [Torralba, 2017] �

1The path u0
�
�!�t0 is implicitly considered by D(s0; u0).



Algorithm 1: Quantitative LD simulation
Input: LTSs: T = f�1; : : : ;�kg, Limit: K 2 N
Output: Dominance Function DF = fD1; : : : ;Dkg

1 Di[s; t] maxsg2SGi �h
� (t; sg) 8t 2 �i; s 2 SGi

2 Di[s; t] h�(s)� h�(t) 8t 2 �i; s 62 SGi
3 while 9i 2 [1; k]; s; t 2 �i s.t.
Di[s; t] > fQLD(T ;DF ; i; s; t)

4 if fQLD(T ;DF ; i; s; t) > �K then
5 Di[s; t] fQLD(T ;DF ; i; s; t)
6 else
7 Di[s; t] �h

� (t; s)
8 return fD1; : : : ;Dkg

4.2 Computing Quantitative LD Simulations
Algorithm 1 shows how to compute an QLD simulation for
a set of LTSs T , given a parameter, K. Each Di is ini-
tialized as the maximal goal-respecting function. Then, at
each iteration it checks whether the property Di(s; t) �
fQLD(T ;DF ; i; s; t) is violated for some Di(s; t). In that
case, it updates the value and repeats until the result is a valid
QLD simulation. For sufficiently large K (e.g., if K is greater
than the maximum cost of any plan of the task, which can
be easily bounded by j�1 
 : : :
�kj(maxl2L c(l))), Algo-
rithm 1 will find the maximal QLD simulation.
Theorem 3 Algorithm 1 has a worst-case running time poly-
nomial in j�1j� : : :� j�kj�jLj�maxsi2�i

(h�(si) +K)�
gcd(fcl j l 2 Lg).
Proof Sketch: Each iteration takes polynomial time in the
size of the input, i.e., the LTSs and L. At each iteration the
value of some Di(s; t) decreases by at least gcd(fcl j l 2
Lg), so the number of iterations is polynomially bounded by
the number of times the number can decrease. The maximum
value in the initialization is bounded bymaxsi2�i

h�(si), and
the minimum by -K. �

In practice we setK to a lower value. While this diminishes
the power to infer negative dominance below�K, those are of
little use anyway, since they will only be useful to prune states
with very large g-value. Note that, even though the algorithm
does not run in polynomial time (since h�(si) may be expo-
nential in the size of the input, depending on the labels’ cost),
this is not a major inconvenience in practice. Other prun-
ing techniques, like symmetry pruning [Pochter et al., 2011;
Domshlak et al., 2012], also rely on non-polynomial algo-
rithms in their precomputation phase. This is not a problem,
as soon as the algorithm finishes in a reasonable amount of
time for tasks that are solvable without any pruning.

4.3 Advantages of Quantitative LD Simulation
Qualitative dominance pruning methods prune a node ns if
there exists another nt s.t. g(nt) � g(ns) and s � t. An
advantage of quantitative dominance is that, even when re-
stricted to this type of pruning, QLD simulations will find
coarser relations.
Theorem 4 Let � and D be the coarsest qualitative and
maximal quantitative LD simulation, respectively. Then,
���0D and there are cases where ���0D.

Proof Sketch: For ���0D. Define D(s; t) = 0 if s � t and
�1 otherwise. Then, D is an QLD simulation.

For ���0D, consider our example where no qualitative
dominance can possibly be found for states that differ in the
position of the truck. However, TBPA �0D TAPT , since
D(TA; TB) = �h� (TB ; TA) = �1, and D(PA; PT ) = 1,
we can compensate the truck being at a different location if
we have picked up or delivered more packages. �

Moreover, we can trade off dominance and g-value to fur-
ther increase the amount of pruning.

Theorem 5 Let D be a dominance function. Let ns be a
search node with state s. If there exists nt 2 open [ closed
s.t.D�(s; t)+g(ns)�g(nt) � 0 whereD�(s; t) = D(s; t)��
if D(s; t) < 0 and D(s; t) otherwise. Then, pruning ns pre-
serves completeness and optimality of the algorithm.

Proof Sketch: Since g(nt) + h�(t) � g(ns) + h�(s), if an
optimal plan from I to G goes through ns, then g(ns) =
g�(s) and there is another optimal plan through nt. If s is in
the path from t to the goal, then D(s; t) < 0. This means that
g(nt) + h�(t) + � = g�(s) + h�(s) + � � g(ns) + h�(s), so
g�(s) < g(ns), reaching a contradiction. �

Theorem 5 generalizes the qualitative pruning condition.
For nodes ns, nt s.t. g(ns) = g(nt) nothing changes, since
ns is pruned iff s �0D t. However, if g(ns) 6= g(nt) we can
leverage quantitative dominance to get more pruning:

� If g(ns) < g(nt), qualitative dominance cannot prune
ns. Now, ns may still be pruned if D(s; t) is high
enough. This is specially relevant in A�. If there is some
nt in the closed list with a higher g-value than that of ns,
nt was preferred by the heuristic, so there are chances of
D(s; t) > 0, assuming that dominance and the heuristic
are correlated.

� If g(nt) < g(ns), we replace the relation �0D by the
coarser �g(nt)�g(ns)+�D . This may be useful in practice
because the successors of t do not necessarily dominate
s or its successors according to �0D.

5 Action Selection Pruning
Instead of pruning states that are deemed worse than others,
we may use quantitative dominance to perform action selec-
tion. Upon expansion of a node ns, if there exists an applica-
ble action a s.t. s �c(a)D sJaK, then only that successor needs
to be generated, reducing the branching factor to 1. This is
safe because a starts an optimal plan from s if one exists.

Theorem 6 Let D be a dominance function. Let s be a state
and a an applicable action on s. If D(s; sJaK) � c(a), then a
starts an optimal plan from s to the goal if one exists.

Proof Sketch: As D(s; sJaK) � c(a), then h�(s) �
h�(s[a]) + c(a). If c(a) > 0, sJaK is strictly closer to the
goal. If c(a) = 0, then h�(s) = h�(t). By the definition
of dominance function, h�0(sJaK) � h�0(s). Therefore, s[a]
has a path to the goal that does not go through s. �

In our running example, this is extremely powerful. When-
ever a package may be loaded into the truck or unloaded at its



Blind LM-cut
# Qualitative Quantitative Action Selection POR # Qualitative Quantitative Action Selection POR

� �
0�

D
�0

D
D� D — �

p
D

D � �
0�

D
�0

D
D� D — �

p
D

D

Airport(50) 15 1.3 1.3 1.3 1.3 1.3 1.1 1.1 1.3 4.3 24 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Driverlog(20) 7 12.6 13.3 20.8 12.6 21.1 3.7 6.9 27.4 1.0 13 1.4 1.5 2.3 3.6 4.3 1.5 1.8 4.3 1.0
Floortile(40) 2 140.5 140.5 140.5 140.5 140.5 1.0 140.5 140.5 1.2 13 3.5 3.5 3.5 3.5 3.5 1.0 3.5 3.5 1.0
Gripper(20) 7 2.0 2.1 2.1 2.0 2.1 1.0 1.0 2.1 1.0 7 2.0 2.1 2.1 2.8 2.8 1.0 1.0 2.8 1.0

Logistics(63) 12 16.8 67.4 149.1 16.8 150.9 35.0 46.5 166.0 1.1 26 1.4 4.9 47.4 80.5 81.2 29.6 30.2 83.9 2.3
Maintenance(5) 5 8848.4 8848.4 35338.8 8848.4 36181.5 11617.2 46540.2 102514.3 3513.7 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Miconic(150) 50 23.9 75.9 325.2 23.9 328.1 7.6 142.6 376.4 1.0 141 1.0 1.4 1.4 1.7 1.7 1.2 1.2 1.7 1.0
Mystery(30) 11 1.3 1.3 1.3 1.3 1.3 1.0 1.0 1.3 1.0 16 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0

NoMystery(20) 8 693.3 693.3 891.5 693.3 891.5 605.8 1249.2 10538.4 1.1 14 4.0 4.0 4.0 45.3 45.3 16.7 18.4 52.7 1.0
OpenStack(100) 30 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.2 35 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.9 1.2

ParcPrint(50) 16 815.3 840.7 955.5 820.5 955.5 622.9 942.8 3542.1 16446.1 31 7.0 7.2 7.4 78.4 78.9 25.3 29.3 94.8 1455.6
Path-noneg(30) 4 11.1 13.4 23.2 11.1 23.2 1.6 12.5 26.8 29.7 5 1.7 1.9 2.7 3.3 3.4 1.3 2.0 3.4 9.4

Psr-small(50) 48 1.9 1.9 1.9 1.9 1.9 1.7 1.9 1.9 1.2 48 1.7 1.7 1.7 1.7 1.7 1.5 1.6 1.7 1.1
Rovers(40) 5 29.6 93.7 396.9 29.6 396.9 62.8 203.9 1065.8 34.7 7 2.3 3.7 9.6 10.9 12.2 3.7 5.1 14.8 4.4

Satellite(36) 5 90.9 100.7 142.8 90.9 142.8 1.0 39.5 142.8 122.4 7 2.1 2.2 2.6 2.9 2.9 1.0 2.0 2.9 25.7
Scanalyzer(50) 9 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.1 1.0 19 1.0 1.0 1.2 2.1 2.1 1.0 1.0 2.1 1.0

Sokoban(50) 21 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.3 1.0 40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Tidybot(20) 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.4 9 10.3 10.3 10.3 10.3 10.3 1.0 1.0 10.3 1.3

TPP(30) 6 16.3 17.5 86.5 16.3 86.5 6.6 10.9 102.4 1.0 6 1.8 1.8 2.5 5.9 6.7 24.7 24.7 30.9 1.0
Trucks(30) 6 44.1 44.1 44.2 44.1 44.3 1.3 7.2 44.3 1.0 10 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0

VisitAll(40) 12 27.8 31.1 31.1 27.8 34.9 1.0 1.0 35.2 1.0 14 5.9 6.0 6.0 5.9 6.1 1.0 1.0 6.1 1.0
Woodwork(50) 11 1626.8 1796.1 2818.2 1630.5 2820.0 480.5 2618.2 10795.6 549.5 29 5.8 5.9 8.6 52.2 52.5 2.8 2.8 76.5 133.7
Zenotravel(20) 7 5.5 8.8 21.5 5.5 21.5 2.1 2.5 22.5 1.1 13 3.9 4.0 4.7 7.3 7.3 1.3 1.5 7.5 1.0

Table 1: Ratio of expansions until the last f -layer by each method against the baseline in commonly solved instances (#). Domains where
none of the methods obtains at least a ratio of 1:2 are excluded.

destination this is automatically done. Since the state result-
ing of unloading a package in any other location is dominated
by its parent, combining both types of pruning the search will
only branch over driving actions.

Action selection pruning is related to other heuristic or
learning methods that detect useless actions [Wehrle et al.,
2008] or even directly decide what action(s) to apply in
certain states [Leckie and Zukerman, 1998; de la Rosa et
al., 2011; Krajnansky et al., 2014]. Contrary to our prun-
ing, these methods do not preserve completeness and opti-
mality. Partial-order reduction techniques like strong stub-
born sets [Wehrle and Helmert, 2012; Wehrle et al., 2013;
Wehrle and Helmert, 2014] also reduce the branching factor.
However, they are based on a different notion of action inter-
ference, and indeed they do not apply in our running example
because (un)load actions interfere with driving actions.

6 Experiments
We run experiments on all the optimal-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 – IPC’14). All experiments were conducted on a
cluster of Intel Xeon E5-2650v3 machines with time (mem-
ory) cut-offs of 30 minutes (4 GB). Our main objective is to
compare quantitative and qualitative dominance. We run A�

with the blind heuristic and LM-cut [Helmert and Domshlak,
2009]. We use the same initial set of LTSs for all configu-
rations, derived by running M&S with the merge DFP strat-
egy [Dräger et al., 2006; 2009; Sievers et al., 2014], without
label reduction nor any shrinking, and with a time limit of
10 000 abstract transitions and 300 seconds. We useK = 10.2
These limits are adequate to finish the precomputation phase
in a reasonable time (under 30s in most domains, though it
runs out of time in a few cases). For comparison against other
pruning methods, we include partial-order reduction (POR)
based on strong stubborn sets [Wehrle and Helmert, 2014].

2Larger values for K are possible, but they were not observed to
significantly affect the results during our preliminar experiments.

6.1 Pruning power
We start by analyzing the potential of action selection (AS)
and dominance pruning based on comparing each node
against previously expanded states. Table 1 shows the ratio of
expansions until the last f -layer of each configuration com-
pared to the baseline without pruning. We consider multiple
variants, ranging from qualitative pruning (�) to full quan-
titative pruning (D). In the middle, we consider several ap-
proximations to analyze where the gain comes from. �0�D and
�0D perform the same pruning as�, constructing a qualitative
relation out of the quantitative dominance function. �0�D de-
fines each�i as si �i ti iffDi(si; ti) � 0 and then composes
them. �0D is always stronger since it trades negative domi-
nance in one Di by positive dominance in another. Quanti-
tative dominance methods use the full strength of the quan-
titative function by comparing against states with different g
value. D� disables � -labels to measure their relevance.

To implement all of the above, we adapt the BDD-based
method used by [Torralba and Hoffmann, 2015] in which for
each possible g-value they generate a BDD with all the states
dominated by any state expanded with that g-value. For quan-
titative dominance, every time a state t is expanded, we in-
sert the sets of states dominated by it in the corresponding
g(t) � D(s; t) bucket. This has an important computational
overhead in the qualitative case, which often becomes pro-
hibitive with quantitative dominance. To obtain a more prac-
tical method, we use an approximation �pD that prunes any
state that is dominated by its parent. This greatly reduces the
overhead since it ignores all previously expanded states.

Obs. 1: Quantitative dominance is applicable in the same
domains as qualitative dominance, but has a larger pruning
potential. The only exception is Scanalyzer where qualita-
tive dominance does not achieve any pruning, but positive
dominance has synergy with the LM-cut heuristic. However,
among the domains where both techniques apply, quantita-
tive dominance reduces the number of states in one or two or-
ders of magnitude more than qualitative dominance. The gain
comes from difference sources. In some domains, �0�D is al-



Blind LM-cut
B � AS POR B � AS POR

� �TH �
p
D

�0

D
� �TH �

p
D

�0

D

Airport(50) 22 15 15 22 15 21 28 28 28 27 26 29
Driverlog(20) 7 9 9 10 8 7 13 13 13 13 14 13
Elevators(50) 26 25 25 26 24 26 40 40 40 40 40 40
Floortile(40) 2 11 11 16 11 2 13 16 16 16 16 13
FreeCell(80) 20 20 20 20 20 14 15 15 15 15 15 15
Gripper(20) 8 8 14 8 8 8 7 7 14 7 7 7
Hiking(20) 11 11 11 11 11 8 9 9 9 9 9 9

Logistics(63) 12 21 20 27 25 12 26 26 26 33 28 27
Miconic(150) 55 60 61 77 62 50 141 141 141 142 141 141

Mprime(35) 20 19 19 20 19 19 22 22 22 22 22 22
Mystery(30) 15 11 12 15 11 15 17 16 17 17 17 17

NoMystery(20) 8 16 18 20 20 8 14 20 20 20 20 14
OpenStack(100) 49 51 53 55 56 50 47 51 48 52 53 49

ParcPrint(50) 16 32 31 44 28 50 31 35 31 48 40 50
Path-noneg(30) 4 4 4 5 4 4 5 5 5 5 5 5

PipesNT(50) 17 17 17 17 17 14 17 17 17 17 17 17
PipesT(50) 12 13 12 12 13 9 12 12 12 12 12 12

Psr-small(50) 49 49 49 48 48 49 49 49 49 48 48 49
Rovers(40) 6 8 8 8 8 7 7 9 9 10 8 10

Satellite(36) 6 6 6 6 6 6 7 10 10 12 11 12
Scanalyzer(50) 21 19 21 17 17 13 27 21 23 23 23 27

Sokoban(50) 41 43 44 43 43 39 50 49 48 49 49 50
Tetris(17) 9 9 9 8 8 5 6 6 5 6 6 6

Tidybot(40) 16 1 1 15 1 7 23 10 14 22 10 22
TPP(30) 6 6 6 6 6 6 7 7 7 8 8 6

Transport(70) 24 24 24 24 24 23 23 23 23 23 23 23
Trucks(30) 6 8 8 8 8 6 10 10 10 10 10 10

VisitAll(40) 12 13 13 12 13 12 15 16 16 15 16 15
Woodwork(50) 11 30 30 38 36 24 29 48 43 50 50 46
Zenotravel(20) 8 9 9 9 8 8 13 13 13 13 13 13

Others(231) 91 91 91 91 91 91 112 112 112 112 112 112
Total(1612) 610 659 671 738 669 613 835 856 856 896 869 881

Table 2: Coverage of the baseline (B), qualitative dominance, ac-
tion selection (AS) with quantitative dominance, and partial-order
reduction (POR).

ready stronger than�, showing the ability of QLD simulation
to find coarser relations. Trading off negative and positive
dominance to construct a relation (�0D) already achieves most
of the pruning in several domains, specially in blind search.
Trading off dominance and g-value (D) is more relevant with
heuristics (e.g., NoMystery). The potential of quantitative
dominance is also reflected in the comparison against POR,
since it is able to achieve stronger pruning in most domains.
Finally, the consideration of � labels can be seen important in
around half of the domains, sometimes increasing the pruning
in one order of magnitude.

Obs. 2: Action selection pruning is highly complementary
to previous dominance pruning methods. In most domains,
the combination of both methods is stronger than any of them.
Moreover, since the overhead of action selection is quite low,
it is almost always worth to use it whenever a quantitative
dominance function has been computed.

6.2 Overall Performance
Table 2 compares the coverage of our two best methods,
AS with pruning against the parent or against previously ex-
panded nodes, against qualitative dominance and POR. For a
fair comparison, we include qualitative pruning with the same
input LTSs as our approach (D) and the configuration used by
Torralba and Hoffmann[2015] (�TH ) which uses exact label
reduction [Sievers et al., 2014], bisimulation shrinking [Nis-
sim et al., 2011] and a larger LTS size (100k). All configura-
tions except�pD use the “safety belt” that disables the method
if no pruning has been achieved after 1000 expansions.

Obs. 3: AS + �pD has huge pruning power and low over-
head, greatly increasing the capabilities of heuristic search
planners. It obtains the best overall coverage, solving 128
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Figure 3: Expansions until last f -layer and search time of AS + �pD
against the baseline with LM-cut.

instances over the baseline in blind search and 61 with LM-
cut, much higher than POR or qualitative dominance. Some
domains like NoMystery that are hard even when using good
heuristics, become simple under the analysis of quantitative
dominance, which even with blind search is able to solve all
tasks. Figure 3 directly compares the number of expanded
nodes and search time of AS + �pD against the baseline. It
obtains reductions of several orders of magnitude in the num-
ber of expansions with little overhead. Note that this ignores
the precomputation time (which can be of up to 300s to com-
pute the LTSs plus the computation of the QLD simulation),
but, as the coverage improvement shows, the precomputation
time is highly compensated by the search space reduction in
instances that are not quickly solved by the baseline.

Obs. 4: The overhead of current methods for exploiting
the full potential of quantitative dominance (D) is too high
to pay off. The D configuration did not improve the other
methods anywhere and was excluded from the table. This
contrasts with the results of Table 1 that show a great po-
tential. However, there are a few domains where the addi-
tional pruning when using �0D to complement AS pays off
like Driverlog, Openstacks or VisitAll. Further exploring this
trade-off between pruning power and overhead (e.g., using
dominance-based methods for irrelevance pruning [Torralba
and Kissmann, 2015]) is an interesting topic for future work.

7 Conclusion
We have introduced the notion of quantitative dominance
for optimal planning, which extends previous approaches of
qualitative dominance. This extension is more effective at
analyzing the structure of the task, which leads to stronger
pruning. More importantly, the quantitative information en-
ables new ways of pruning. We introduced action selection
pruning, a novel pruning method that applies a single action
on a state if the action starts an optimal plan from the state
according to the quantitative dominance function. Our exper-
iments show that action selection is highly complementary to
previous dominance pruning methods, greatly extending the
capabilities of heuristic search planners.
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Andreas Podelski. Directed model checking with distance-
preserving abstractions. In Proceedings of the 13th In-
ternational SPIN Workshop (SPIN 2006), volume 3925
of Lecture Notes in Computer Science, pages 19–34.
Springer-Verlag, 2006.
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