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Abstract
In optimal planning as heuristic search, admissi-
ble pruning techniques are paramount. One idea is
dominance pruning, identifying states “better than”
other states. Prior approaches are limited to sim-
ple dominance notions, like “more STRIPS facts
true” or “higher resource supply”. We apply sim-
ulation, well-known in model checking, to com-
pute much more general dominance relations based
on comparing transition behavior across states. We
do so effectively by expressing state-space simu-
lations through the composition of simulations on
orthogonal projections. We show how simulation
can be made more powerful by intertwining it with
a notion of label dominance. Our experiments
show substantial improvements across several IPC
benchmark domains.

1 Introduction
Heuristic search is the predominant approach to cost-optimal
planning. But the number of states that must be explored
to prove optimality often grows exponentially even when us-
ing extremely well-informed heuristics [Helmert and Röger,
2008]. Therefore, recent years have seen substantial effort
devoted to identifying and exploiting structure allowing to
prune redundant parts of the state space. Known techniques
of this kind pertain to symmetries (e. g. [Fox and Long, 1999;
2002; Domshlak et al., 2012]), partial-order reduction based
methods like expansion-core [Chen and Yao, 2009] or strong
stubborn sets [Valmari, 1989; Wehrle and Helmert, 2012;
Wehrle et al., 2013; Wehrle and Helmert, 2014], and domi-
nance pruning [Hall et al., 2013]. We follow up on the latter
here.

Dominance pruning is based on identifying states “better
than” other states. For example, consider a Logistics task
where one truck must carry several packages to location G.
Consider the position of any one package p. All other state
variables having equal values, the best is to have p at G, and
it is better for p to be in the truck than at any location other
than G. We refer to this kind of relation between states as a
dominance relation. (Hall et al. use the term “partial-order”,
which we change here to avoid ambiguity with, e. g., partial-
order reduction.)

Two main questions need to be answered: (1) How to
discover the dominance relation? (2) How to simplify the
search (and/or planning task) given a dominance relation?
Hall et al. answered (2) in terms of an admissible pruning
method, pruning state s if a dominating state t, with an at-
most-as-costly path, has already been seen. We follow that
idea here, contributing a BDD implementation. Our main
contribution regards (1). Hall et al. use dominance rela-
tions characterized by consumed resources: state t domi-
nates state s if s and t are identical except that t(r) ≥ s(r)
for all resources r.1 Herein, we instead find the domi-
nance relation through simulation, used in model checking
mainly to compare different system models [Milner, 1971;
Gentilini et al., 2003].

A simulation is a relation � on states where, whenever
s � t, for every transition s → s′ there exists a transition
t → t′ using the same action, such that s′ � t′. In words,
t simulates s if anything we can do in s, we can do also in
t, leading to a simulating state. (For the reader familiar with
the use of bisimulation in merge-and-shrink [Helmert et al.,
2014]: simulation is “one half of” bisimulation.) A simula-
tion clearly qualifies as a dominance relation. But how to find
a simulation on the state space?

We employ a compositional approach, obtaining our simu-
lation relation on the state space from simulation relations on
orthogonal projections, i. e., projections whose variable sub-
sets do not overlap. We enhance simulation with a concept
of label (action) dominance, in addition to states. In our Lo-
gistics example above, e. g., for each package this detects the
described relation (G is better than being in the truck is bet-
ter than being at any location other than G). This yields a
very strong dominance relation that allows to ignore any state
in which a package is unnecessarily unloaded at an irrelevant
location. Empirically, we find that indeed our pruning method
often substantially reduces the number of expanded nodes.

For space reasons, we omit some proofs. Full proofs, and
more examples, will be made available in a TR.

1Precisely, Hall et al. consider numeric state variables r and ana-
lyze whether higher r is always good, or is always bad, or neither. In
Metric-FF’s [Hoffmann, 2003] linear normal form, this is equivalent
to the formulation above. Hall et al. also handle STRIPS facts, as
variables with domain {0, 1}. But, there, their notions trivialize to
“t dominates s if t ⊇ s”.



2 Background
A planning task is a 4-tuple Π = (V,A, I,G). V is a finite
set of variables v, each v ∈ V being associated with a finite
domainDv . A partial state over V is a function s on a subset
V (s) of V , so that s(v) ∈ Dv for all v ∈ V (s); s is a state
if V (s) = V . The initial state I is a state. The goal G is a
partial state. A is a finite set of actions, each a ∈ A being a
pair (prea, eff a) of partial states, called its precondition and
effect. Each a ∈ A is also associated with its non-negative
cost c(a) ∈ R+

0 .
A labeled transition system (LTS) is a tuple Θ =

(S,L, T, s0, SG) where S is a finite set of states, L is a fi-
nite set of labels each associated with a label cost c(l) ∈ R+

0 ,
T ⊆ S × L × S is a set of transitions, s0 ∈ S is the start
state, and SG ⊆ S is the set of goal states.

The state space of a planning task Π is the LTS ΘΠ where:
S is the set of all states; s0 is the initial state I of Π; s ∈ SG
iff G ⊆ s; the labels L are the actions A, and s a−→ s′ is a
transition in T if s complies with prea, and s′(v) = eff a(v)
for v ∈ V (eff a) while s′(v) = s(v) for v ∈ V \ V (eff a). A
plan for a state s is a path from s to any sG ∈ SG. The cost of
a cheapest plan for s is denoted h∗(s). A plan for s0 is a plan
for Π, and is optimal iff its cost equals h∗(s0). As defined by
Wehrle and Helmert [2014], a plan for s is strongly optimal
if its number of 0-cost actions is minimal among all optimal
plans for s. We denote by h0∗(s) the number of 0-cost actions
in a strongly optimal plan of s.

Abstractions and abstract state spaces are quite common in
planning (e. g. [Helmert et al., 2007]). We build on this work,
but only indirectly. We use merge-and-shrink abstractions as
the basis from which our simulation process starts. That pro-
cess itself will be described in a generic form not relying on
these specific constructs. Hence, in what follows, we provide
only a summary view that suffices to present our contribution.

Say we have a task Π = (V,A, I,G) with state space
ΘΠ = (S,A, T, I, SG), and a variable subset W ⊆ V . The
projection onto W is the function πW : S 7→ SW from the
states S over V into the states SW over W , where πW (s)
is the restriction of s to W . The projected state space
ΘW

Π is the LTS (SW , A, TW , πW (I), SWG ), where TW :=
{(πW (s), l, πW (s′)) | (s, l, s′) ∈ T} and SWG := {πW (sG) |
sG ∈ SG}. Given two variable subsets W and U , (the pro-
jections onto) W and U are orthogonal if W ∩ U = ∅. Or-
thogonality ensures the following reconstruction property:
ΘW

Π ⊗ ΘU
Π = ΘW∪U

Π for orthogonal W and U , where ⊗
is the synchronized product operation. Namely, given any
two labeled transition systems Θ1 = (S1, L, T 1, s1

0, S
1
G) and

Θ2 = (S2, L, T 2, s2
0, S

2
G) that share the same set L of labels,

Θ1⊗Θ2 is the labeled transition system with states S1×S2,
labels L, transition (s1, s2)

l−→ (s′1, s
′
2) iff s1

l−→ s′1 ∈ T 1

and s2
l−→ s′2 ∈ T 2, start state (s1

0, s
2
0), and goal states

{(s1
G, s

2
G) | s1

G ∈ S1
G, s

2
G ∈ S2

G}.
Merge-and-shrink abstractions [Helmert et al., 2007; 2014]

construct more general abstraction functions, and the corre-
sponding abstract state spaces, by starting from atomic ab-
stractions (projections onto single state variables), and inter-
leaving merging steps (replacing two abstractions with their

synchronized product) with shrinking steps (replacing an ab-
straction with an abstraction of itself). It has been shown
that, if every shrinking step replaces the selected abstraction
with a bisimulation of itself, then the final abstraction is a
bisimulation of the overall state space ΘΠ. It has also been
shown that such shrinking can be combined with exact la-
bel reduction [Sievers et al., 2014]. A label reduction is
a function τ from the labels L into a set Lτ of reduced la-
bels preserving label cost i. e. c(l) = c(τ(l)). Given an LTS
Θ, denote by τ(Θ) the LTS identical to Θ except that all la-
bels l have been replaced by τ(l). Given a set {Θ1, . . . ,Θk}
of LTSs sharing labels L, a label reduction τ is exact if
τ(Θ1)⊗· · ·⊗τ(Θk) = τ(Θ1⊗· · ·⊗Θk). Reducing labels in
this way, and using bisimulation shrinking, merge-and-shrink
delivers a bisimulation of τ(ΘΠ).

3 Simulation Relations
Given a planning task with states S, a dominance relation is
a binary relation �⊆ S × S where s � t implies h∗(t) ≤
h∗(s) and, if h∗(t) = h∗(s) then h0∗(t) ≤ h0∗(s). This is
exactly what is needed for admissible pruning during search,
as discussed in the next section.

To find dominance relations in practice, we focus on
the special case of simulation relations. These are well
known in model-checking (e. g. [Grumberg and Long, 1994;
Loiseaux et al., 1995]). Here we use a variant adapted to plan-
ning (only) in making explicit the distinction between goal
states and non-goal states:

Definition 1 (Simulation) Let Θ = (S,L, T, s0, SG) be an
LTS. A binary relation �⊆ S × S is a simulation for Θ if,
whenever s � t (in words: t simulates s), for every transition
s

l−→ s′ there exists a transition t l−→ t′ s.t. s′ � t′. We call
� goal-respecting for Θ if, whenever s � t, s ∈ SG implies
that t ∈ SG.

We call � the coarsest goal-respecting simulation if, for
every goal-respecting simulation �′, we have �′⊆�.

A unique coarsest goal-respecting simulation always ex-
ists and can be computed in time polynomial in the size of
Θ [Henzinger et al., 1995]. Note that the coarsest simula-
tion is always reflexive, i. e., s � s; the same is true of all
simulation relations considered here. Intuitively, every state
“dominates itself”.

Observe that s � t implies h∗(t) ≤ h∗(s), because any
plan for s can be also applied to t. Hence a goal-respecting
simulation over states is a dominance relation. But, for ob-
taining that property, goal-respecting simulation is unneces-
sarily strict. It suffices to preserve, not the label l of the tran-
sition s→ s′, but only its cost:

Definition 2 (Cost-Simulation) Let Θ = (S,L, T, s0, SG)
be an LTS. A binary relation �⊆ S × S is a cost-simulation
for Θ if, whenever s � t, s ∈ SG implies that t ∈ SG, and

for every transition s l−→ s′ there exists a transition t l′−→ t′

s.t. s′ � t′ and c(l′) ≤ c(l).2

2Hall et al. [2013] include an equivalent definition, calling it
“compatibility” and not relating it to simulation.



A cost-simulation still is a dominance relation, and any
goal-respecting simulation is a cost-simulation but not vice
versa. However, in our compositional approach where in-
dividual dominance relations are computed on orthogonal
projections, we need to preserve labels for synchronization
across these projections. Hence, to ensure we obtain a domi-
nance relation of the state space, we must use goal-respecting
simulation (rather than cost-simulation) on each projection.

For our notion of label dominance, it will be important to
consider LTSs with NOOPs added. For any LTS Θ, we de-
note by Θnoop the same LTS but with a new additional label
noop where c(noop) = 0 and, for every state s, a new tran-
sition s

noop−−−→ s. Obviously, any dominance relation over
Θnoop is a dominance relation over Θ. So for our purposes
it suffices to find a dominance relation over the state space
(ΘΠ)noop with NOOPs added.

4 Admissible Dominance Pruning
By A∗ with dominance pruning, we refer to the following
modification of A∗: Whenever a node N with state s(N) and
path cost g(N) is generated, check whether there exists a
nodeN ′ in the open or closed lists, with state s(N ′) and path
cost g(N ′), so that s(N) � s(N ′) and g(N ′) ≤ g(N). If so,
prune N , i. e. do not insert it into the open list, nor into the
closed list.

As s � t implies h∗(t) ≤ h∗(s), any plan through N costs
at least as much as an optimal plan through N ′, so A∗ with
dominance pruning guarantees optimality. In presence of 0-
cost actions, one must be careful to not prune s if this elimi-
nates all possible plans for t. However, s cannot belong to the
strongly optimal plan of t because s � t and h∗(t) = h∗(s)
implies h0∗(t) ≤ h0∗(s).

Dominance pruning can reduce A∗’s search space, but
comes with a computational overhead. First, checking cost,
the runtime required for checking whether there exists a node
N ′ in the open or closed lists, with the mentioned proper-
ties. Second, maintenance cost, the runtime and memory
required for maintaining whichever data structure is used to
keep checking cost (which is excessive in a naı̈ve implemen-
tation) at bay. Depending on which of these two costs tend to
be higher, variants of dominance pruning make sense.

Hall et al.’s [2013] dominance relations are characterized
by resources r. They maintain, for each r, the set S(r) of seen
states with a positive value for r. Given a new state s, their
check iterates over the states in the intersection of S(r) for
those r where s(r) is positive. This implementation has high
checking cost but low maintenance cost. Hence Hall et al.
perform the check not at node-generation time, but at node-
expansion time, reducing the number of checks that will be
made.

To deal with our much more general dominance relations,
we developed a BDD-based [Bryant, 1986] implementation.
This has low checking cost but high maintenance cost. Hence
we perform the check at node-generation time, but only
against the closed list, reducing the number of maintenance
operations needed. We maintain a BDD Bg for the set of
states simulated by any s(N ′) where N ′ is a previously ex-
panded node with g(N ′) = g. This is done for every g-value

of the expanded nodes so far. Every time a node N ′ is ex-
panded, we determine the set of states S�s(N ′) simulated by
s(N ′), and add S�s(N ′) into Bg(N ′). The checking operation
then is very fast: when a node N is generated, test member-
ship of s(N) in Bg for all g ≤ g(N). Each such test takes
time linear in the size of the state.

5 The Compositional Approach
As hinted, our approach is compositional, constructing the
dominance relation over the state space ΘΠ as the com-
position of simulation relations over orthogonal projections
thereof. Stating this in a generic manner (and simplifying to
the atomic case of two orthogonal projections), we have an
LTS Θ12 which equals the synchronized product Θ1 ⊗ Θ2

of two smaller LTSs. We obtain a simulation for Θ12 from
simulations for Θ1 and Θ2:

Definition 3 (Relation Composition) Let Θ1 =
(S1, L, T 1, s1

0, S
1
G) and Θ2 = (S2, L, T 2, s2

0, S
2
G) be

LTSs sharing the same labels. For binary relations
�1⊆ S1 × S1 and �2⊆ S2 × S2, the composition of �1 and
�2, denoted �1 ⊗ �2, is the binary relation on S1 × S2

where (s1, s2)(�1 ⊗ �2)(t1, t2) iff s1 �1 t1 and s2 �2 t2.

Proposition 1 Let Θ12 = Θ1 ⊗ Θ2, and let �1 and �2 be
goal-respecting simulations for Θ1 and Θ2 respectively. Then
�1 ⊗ �2 is a goal-respecting simulation for Θ12.

The proof is direct by definition, and is almost identical
to that of a similar result concerning bisimulation, stated by
Helmert et al. [2014].

Our basic idea can now be described as follows. Say we
have a planning task Π = (V,A, I,G) with state space ΘΠ,
a partition V1, . . . , Vk of the task’s variables, and a goal-
respecting bisimulation abstraction αi of each τ(ΘVi

Π ) where
τ is an exact label reduction. This is precisely the input we
will get from merge-and-shrink abstraction. We will hence-
forth refer to this input as our initial abstractions. Say we
construct a goal-respecting simulation �i for each abstract
state space Θαi . Because bisimulation is a special case of
simulation, �i is a goal-respecting simulation for τ(ΘVi

Π ).
Applying Definition 3 and Proposition 1 iteratively,

⊗
i �i

is a goal-respecting simulation for
⊗

i τ(ΘVi

Π ). Because τ is
exact,

⊗
i τ(ΘVi

Π ) = τ(
⊗

i ΘVi

Π ), and by the reconstruction
property τ(

⊗
i ΘVi

Π ) = τ(ΘΠ). Because the label reduction
is cost-preserving,

⊗
i �i is a cost-simulation for ΘΠ, and

hence a dominance relation as desired.
One can use this result and method as-is, obtaining a new

dominance pruning method as a corollary of suitably assem-
bling existing results and methods. However, empirically,
this method’s ability to find interesting dominance relations
is quite limited. We now extend the simulation concept to
overcome that problem.

6 Label-Dominance Simulation
Sievers et al. [2014] introduce label “subsumption”, where
l′ subsumes l if it labels all transitions labeled by l. To in-
tertwine dominance between labels with dominance between
states, we extend that concept as follows:



Definition 4 (Label Dominance) Let Θ be an LTS with
states S, let � ⊆ S × S be any binary relation on S, and
let l, l′ be labels. We say that l′ dominates l in Θ given � if
c(l′) ≤ c(l), and for every transition s l−→ s′ there exists a

transition s l′−→ t′ s.t. s′ � t′.
The relation � here is arbitrary, but will be a simulation in

practice. Hence, intuitively, a label dominates another one if
it “applies to the same states and always leads to an at least
as good state”. To give a simple example, consider the LTS
corresponding to a single vehicle’s position, and say we have
a 0-cost “beam” action which takes us from any position to
the vehicle’s goal. Provided that every position is, per �,
simulated by the goal position, “beam” dominates all other
labels.

In IPC benchmarks, typically Definition 4 is important not
for regular actions, but for NOOPs. For illustration, say we
have a truck variable vT , two locations A and B, and a pack-
age variable vP whose goal is to be at B. Our variable parti-
tion is the trivial one, V1 = {vT } and V2 = {vP }. Bisimula-
tion using exact label reduction will return LTSs as shown in
Figure 1. The “load” and “unload” actions get reduced in a
way allowing to synchronize with the correct truck position;
the distinction between the truck “drive” actions is irrelevant
so these are reduced to the same label. Clearly, no label dom-
inates any other in either of these two LTSs. However, con-
sider Θ1 and Θ2 with NOOPs added. The new label noop
dominates the load/unload actions in Θ1, and dominates the
drive actions in Θ2, provided �1 and �2 are reflexive as will
be the case in practice.

Θ1:
(truck) A B

dr

dr

lA lB

Θ2:
(package) A T B

lA

lA

lB

lB

dr dr dr

Figure 1: Label-reduced bisimulations, i. e. the input to our
simulation process, in the Logistics example.

This behavior allows us, e. g., to conclude that, in Θ2, B
dominates T : While T has an outgoing transition to B, la-
beled lB , B itself has no such outgoing label. However, B
has the outgoing label noop leading to B. The transition
B

noop−−−→ B simulates T lB−→ B, except that it uses label
l′ = noop instead of label l = lB . This is admissible (only)
if l′ dominates l in all other LTSs involved. In our case here,
the only other LTS is Θ1, and indeed the label l′ = noop
dominates l = lB in that LTS. We exploit this kind of infor-
mation as follows:

Definition 5 (Label-Dominance Simulation) Let
T = {Θ1, . . . ,Θk} be a set of LTSs sharing the same labels.
Denote the states of Θi by Si. A set R = {�1, . . . ,�k}
of binary relations �i⊆ Si × Si is a label-dominance
simulation for T if, whenever s �i t, s ∈ SGi implies that

t ∈ SGi , and for every transition s l−→ s′ in Θi, there exists a

transition t l′−→ t′ in Θi such that c(l′) ≤ c(l), s′ �i t′, and,
for all j 6= i, l′ dominates l in Θj given �j .

We call R the coarsest label-dominance simulation if, for
every label-dominance simulation R′ = {�′1, . . . ,�′k} for
T , we have �′i ⊆�i for all i.

A unique coarsest label-dominance simulation always ex-
ists, and can be computed in time polynomial in the size of
T . We will prove this in the next section as a corollary of
specifying our algorithm for doing this computation.

In the example, T �2 B holds because s l−→ s′ in Θ2 is

T
lB−→ B, and the simulating t l′−→ t′ in Θ2 is B

noop−−−→ B,
which works because c(noop) = 0 ≤ 1 = c(lB), B �2 B,
and noop dominates lB in Θ1. In the same fashion, pro-
vided that A �2 B, the transition T lA−→ A is simulated by
B

noop−−−→ B. Note that neither of these two inferences could
be made with the standard concept of simulation (even after
exact label reduction), because that concept insists on using
the same labels, not dominating ones.

We now prove soundness of label-dominance simula-
tion, i. e., that label-dominance simulations R yield cost-
simulations of the original state space. Similarly to before,
we iteratively composeR’s element relations, as captured by
the following lemma:
Lemma 1 Let T = {Θ1, . . . ,Θk} be a set of LTSs shar-
ing the same labels, and let R = {�1, . . . ,�k} be a label-
dominance simulation for T . Then {�1 ⊗ �2,�3, . . . ,�k}
is a label dominance simulation for {Θ1⊗Θ2,Θ3, . . . ,Θk}.
Proof Sketch: The claim regarding �3, . . . ,�k is simple.
For �1 ⊗ �2, consider states (s1, s2) �12 (t1, t2) and a
transition (s1, s2)

l−→ (s′1, s
′
2). We identify a dominating tran-

sition (t1, t2)
l′−→ (t′1, t

′
2) as follows: 1. As s1 �1 t1, obtain

a transition t1
ltmp

−−→ ttmp
1 dominating s1

l−→ s′1 in Θ1. 2.

As ltmp dominates l in Θ2, obtain a transition s2
ltmp

−−→ stmp
2

dominating s2
l−→ s′2 in Θ2. 3. As s2 �2 t2, obtain a tran-

sition t2
l′−→ t′2 dominating s2

ltmp

−−→ stmp
2 in Θ2. 4. As l′

dominates ltmp in Θ1, obtain a transition t1
l′−→ t′1 dominat-

ing t1
ltmp

−−→ ttmp
1 in Θ1. �

Theorem 1 Let T = {Θ1, . . . ,Θk} be a set of LTSs shar-
ing the same labels, and let R = {�1, . . . ,�k} be a
label-dominance simulation for T . Then

⊗
i �i is a cost-

simulation for
⊗

i Θi.
Proof: Applying Lemma 1, we get that

⊗
i �i is a label-

dominance simulation for {
⊗

i Θi}. Now, for such a single-

ton set of LTSs, the requirements on the transition t l′−→ t′

replacing s l−→ s′ are that c(l′) ≤ c(l), and s′ �i t′. Hence
label-dominance simulation simplifies to cost-simulation, and
the claim follows. �

To clarify the overall process, assume now again the initial
abstractions provided by merge-and-shrink abstraction, i. e.,



a partition V1, . . . , Vk of the variables, and a goal-respecting
bisimulation abstraction αi, with abstract state space Θαi , of
each τ(ΘVi

Π ) where τ is an exact label reduction. We compute
the coarsest label-dominance simulation R = {�1, . . . ,�k}
for T := {Θα1

noop , . . . ,Θ
αk
noop}. As adding NOOPs does not

affect bisimulation and is interchangeable with the synchro-
nized product, with Theorem 1 we have that

⊗
i �i is a cost-

simulation for [
⊗

i τ(ΘVi

Π )]noop , and hence a cost-simulation
for ΘΠ as desired.

7 ComputingR
We now show how to operationalize Definition 5: Given T =
{Θ1, . . . ,Θk}, how to compute the coarsest label-dominance
simulationR for T ?

It is well known that the coarsest simulation can be com-
puted in time polynomial in the size of the input LTS [Hen-
zinger et al., 1995]. The algorithm starts with the most gener-
ous relation � possible, then iteratively removes pairs s � t
that do not satisfy the simulation condition. When no more
changes occur, the unique coarsest simulation has been found.
This method extends straightforwardly to label-dominance
simulation.
Proposition 2 Let T = {Θ1, . . . ,Θk} be a set of LTSs shar-
ing the same labels. Then a unique coarsest label-dominance
simulation for T exists.
Proof: The identity relation is a label-dominance simulation.
If R = {�1, . . . ,�k} and R′ = {�′1, . . . ,�′k} are label-
dominance simulations, then {�1 ∪�′1, . . . ,�k ∪�′k}, also
is a label-dominance simulation. �

Denote the states of Θi by Si. Define the Boolean function
Ok(i, s, t), where s �i t, to return true iff the condition for
label-dominance simulation holds, i. e., iff s ∈ SGi implies

that t ∈ SGi , and for every transition s l−→ s′ in Θi there exists

a transition t l′−→ t′ in Θi such that c(l′) ≤ c(l), s′ �i t′, and,
for all j 6= i, l′ dominates l in Θj given �j . Our algorithm
proceeds as follows:
For all i, set �i:= {(s, t) | s, t ∈ Si, s 6∈ SiG or t ∈ SiG}
while ex. (i, s, t) s.t. not Ok(i, s, t) do

Select one such triple (i, s, t)
Set �i:=�i \{(s, t)}

endwhile
returnR := {�1, . . . ,�k}
Proposition 3 Let T = {Θ1, . . . ,Θk} be a set of LTSs
sharing the same labels. Our algorithm terminates in time
polynomial in the size of T , and returns the coarsest label-
dominance simulation for T .
Proof: Each iteration reduces one �i by one element. This
gives a polynomial bound on the number of iterations, and
every iteration takes polynomial time.

The returned R is a label-dominance simulation as that
is the termination condition. R is coarsest as every label-
dominance simulation must refine the initial relations {(s, t) |
s, t ∈ Si, s 6∈ SiG or t ∈ SiG}, and every time we remove a
pair (s, t) we know that s 6�i t in any label-dominance simu-
lation. �

8 Experiments

Our techniques are implemented in Fast Downward (FD)
[Helmert, 2006]. We ran all optimal-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 – IPC’14). All experiments were conducted on
a cluster of Intel E5-2660 machines running at 2.20 GHz,
with time (memory) cut-offs of 30 minutes (4 GB). We run
A∗ with FD’s blind heuristic, and with LM-cut [Helmert
and Domshlak, 2009]. We perform an ablation study of
label-dominance simulation, vs. standard simulation (neither
NOOPs nor label-dominance), vs. bisimulation as computed
by merge-and-shrink (not doing any work on top of merge-
and-shrink, just using its output for the pruning). To represent
the state of the art in alternative pruning methods, we include
the best-performing partial-order reduction based on strong
stubborn sets, which dominates other partial-order pruning
approaches such as expansion-core [Wehrle et al., 2013].

Our initial abstractions are obtained using merge-and-
shrink with exact label reduction, bisimulation shrinking, and
the non-linear merge DFP strategy [Dräger et al., 2006; 2009;
Sievers et al., 2014]. We impose two bounds on this process,
namely a time limit of 300 seconds, as well as a limit M
on the number of abstract transitions. When either of these
limits is reached, the last completed abstractions form the
starting point for our simulation process, i. e., are taken to be
the initial abstractions. With this arrangement of parameters,
the trade-off between merge-and-shrink overhead incurred vs.
benefits gained is relatively easy to control. The bound on
transitions works better than the more usual bound on abstract
states, because the same number of abstract states may lead
to widely differing numbers of transitions and thus actual ef-
fort. A reasonably good “magic” setting forM , in our current
context, is 100k. For M = 0, i. e. computing the component
simulations on individual state variables only, performance
is substantially worse. For M = 200k, the overhead be-
comes prohibitive. In between, overall coverage undergoes
relatively small changes only (in the order of 5 instances).

Consider Table 1. With our pruning method, nodes are
first generated and then checked for pruning, so the evaluated
states are exactly the non-pruned generated ones. Hence the
number of evaluated states assesses our pruning power, and
the ratio between generated nodes and search time assesses
the average time-per-node. The “safety belt” disables prun-
ing if, after 1000 expansions, no node has been pruned. This
is a simple yet effective method to avoid runtime overhead in
cases where no or not much pruning will be obtained.

Compared to partial-order reduction, simulation-based
pruning tends to be “stronger on its own, but less com-
plementary to LM-cut”. Consider first the blind heuristic,
which assesses the pruning power of each technique “on
its own”. Simulation-based pruning typically yields much
stronger evaluation reductions, the only clear exception be-
ing ParcPrinter where partial-order reduction excels. This
results in much better coverage in many domains and over-
all. With LM-cut, on the other hand, while simulation-based
pruning still applies more broadly – there are 14 test suites
where it reduces evaluations but partial-order reduction does
not – the extent of the reduction is dramatically diminished.



Blind LM-cut
Coverage Evaluations Gen/sec. Coverage Evaluations Gen/sec.

Domain # A L0 L S B P L S B P L P A L0 L S B P L S B P L P
Airport 50 22 -7 -7 -7 0 -1 1.2 1.2 1 4.4 341 11.3 28 -3 -1 -1 -1 +1 1 1 1 4.7 1.1 2
Driverlog 20 7 +2 +2 0 0 0 15.8 2 2 1 4.8 2.8 13 0 0 0 0 0 1.9 1.2 1.2 1 1.1 1.2
Elevators08 30 14 -1 0 0 0 0 1 1 1 1.1 0.9 4.1 22 0 0 0 0 0 1 1 1 1.3 1 1.2
Elevators11 20 12 -1 0 0 0 0 1 1 1 1.1 1 4.2 18 0 0 0 0 0 1 1 1 1.2 1 1.2
Floortile11 20 2 +4 +4 +4 0 0 177 177 1.8 1.3 5.7 3.7 7 +1 +1 +1 0 0 6.4 6.4 1 1 1.1 1.1
Floortile14 20 0 +5 +5 +5 0 0 – – – – – – 6 +2 +2 +2 0 0 6.3 6.3 1 1 1.3 1.1
FreeCell 80 20 -7 0 0 0 -6 1 1 1 1 1 31.2 15 -1 0 0 0 0 1 1 1 1 0.9 1.4
Gripper 20 8 +6 +6 +6 +6 0 53968 53968 28353 1 292 3.1 7 +7 +7 +7 +7 0 14662 14662 10049 1 31.9 1.3
Hiking14 20 11 0 0 0 0 -3 2.4 1.9 1.8 1 3.1 30.5 9 0 0 0 0 0 1.7 1.5 1.5 1 1.9 1.8
Logistics00 28 10 +7 +6 0 0 0 32.7 3.1 1.2 1 9.3 3 20 0 0 0 0 0 1.9 1.1 1.1 2.9 0.8 1.4
Logistics98 35 2 +1 +1 0 0 0 6.7 1.2 1.2 1.5 4 4.4 6 0 0 0 0 0 1.3 1 1 4.3 0.9 1.3
Miconic 150 55 +6 +6 -1 0 -5 58.3 8.7 3.4 1 15.6 5.5 141 0 0 0 0 0 2.1 1.5 1.1 1 0.6 1.1
Mprime 35 20 -1 -1 0 0 -1 1.1 1 1 1 18 18.5 22 0 0 0 0 0 1.1 1 1 1 1 1.1
Mystery 30 15 -3 -3 -3 0 0 1.9 1.9 1 1.1 29.2 14.2 17 0 0 0 0 0 3.5 3.5 1 1.4 3.4 1.8
NoMystery 20 8 +10 +10 +1 +1 0 2497 128 29.1 1.1 46.4 23 14 +6 +6 +3 0 0 6.5 3.1 1 1 0.6 1.2
OpenStack08 30 22 +2 +2 +2 +1 0 2.1 2 1.8 2 8.1 9.3 21 0 0 0 0 0 2.5 2.4 2.1 1.8 2.3 2
OpenStack11 20 17 +2 +2 +2 +1 0 2.1 2 1.8 2 7.8 9.3 16 0 0 0 0 0 2.5 2.4 2.1 1.8 2.3 2.1
OpenStack14 20 3 0 0 0 0 +1 2.8 2.8 2.5 1.8 7 7.8 3 0 0 0 0 0 2.9 2.8 2.5 1.8 2.4 2.1
ParcPrint08 30 10 +6 +5 +3 +1 +20 862 10 1.5 18349 13.6 532 18 0 0 0 0 +12 5 1.2 1.1 1028 2.2 20.3
ParcPrint11 20 6 +6 +5 +3 +1 +14 869 10 1.5 21826 11.2 371 13 0 0 0 0 +7 5 1.2 1.1 1246 2.4 17.8
PegSol08 30 27 0 0 0 0 0 1 1 1 1 1 3.8 28 -1 0 0 0 -1 1 1 1 1 1 1.4
PegSol11 20 17 0 0 0 0 0 1 1 1 1 1 3.8 18 -1 0 0 0 -1 1 1 1 1 1 1.4
PipesNoTank 50 17 -8 -1 -1 0 -3 1 1 1 1 1.1 10.3 17 -3 0 0 0 0 1 1 1 1 1 1.1
PipesTank 50 12 -1 0 0 0 -3 1.1 1.1 1.1 1 16.8 25.2 12 0 0 0 0 -1 1.8 1.8 1.8 1 1.1 1.2
Rovers 40 6 +2 +2 +1 0 +1 33.4 9.6 1.7 2 20.6 3 7 +2 +2 +1 +1 +2 6.1 3.8 1.2 4.4 1.8 1.8
Satellite 36 6 0 0 0 0 0 72.9 35.3 9.9 10.7 8.4 3.8 7 +3 +3 +3 +3 +4 4.8 1.8 1.7 21.5 0.9 2.3
Scanalyzer08 30 12 0 0 0 0 -4 1 1 1 1 1 8.7 15 -1 -1 -1 0 0 1 1 1 1 1 1.2
Scanalyzer11 20 9 0 0 0 0 -4 1 1 1 1 1 8.7 12 -1 -1 -1 0 0 1 1 1 1 1 1.2
Sokoban08 30 22 -9 0 0 0 -1 1 1 1 1 1.7 8.2 29 -7 -1 0 0 0 1 1 1 1 1.1 1.2
Sokoban11 20 19 -9 0 0 0 -1 1 1 1 1 1.6 8.1 20 -2 0 0 0 0 1 1 1 1 1.1 1.2
Tetris 17 9 -6 -1 -1 -1 -4 1 1 1 1 5.2 52.2 6 -3 -2 -2 -2 -1 1 1 1 1 1 1.3
Tidybot11 20 9 -8 -7 -7 -1 -2 5.5 5.5 1 1.8 59.4 8.5 14 -2 -2 -2 0 0 6.8 6.8 1 1.5 2.6 1.3
Tidybot14 20 2 -2 -2 -2 -1 -2 – – – – – – 9 -7 -7 -7 -1 -1 3.9 3.9 1 1.7 3.1 1.4
TPP 30 6 0 0 0 0 0 6.5 3.4 1 1 22.7 3.3 6 +1 +1 +1 +1 0 1.2 1.1 1 1 1.3 1.1
Transport14 20 7 0 0 0 0 -1 1 1 1 1 1 9.1 6 0 0 0 0 0 1.4 1.4 1.4 1 1.4 1.2
Trucks 30 6 +2 +2 0 0 0 24.8 21.9 2.8 1 13.8 6 10 0 0 0 0 0 2.7 2.3 1 1 1.2 1.2
VisitAll11 20 9 0 0 0 0 0 30 25.5 1 1 104 3.5 10 +1 +1 +1 0 0 7 6.8 1 1 1.5 1.1
VisitAll14 20 3 +1 +1 +1 0 0 27.8 23.4 1 1 92.8 3.5 5 0 0 0 0 0 5.2 5.1 1 1 1.6 1.1
Woodwork08 30 8 +10 +10 +5 +4 +7 981 112 87.8 488 7.6 7.5 17 +7 +7 +5 +5 +10 91.4 23.7 16.9 762 1.8 3.1
Woodwork11 20 3 +9 +9 +5 +4 +6 1059 116 92.2 514 6.7 6.3 12 +5 +5 +4 +4 +7 91.6 23.8 17 772 1.8 2.9
Zenotravel 20 8 +1 +1 0 0 0 41.6 1.5 1.1 1 4.3 6.2 13 0 0 0 0 0 3.6 1.6 1 1 1 1.2∑

1271 605 +19 +57 +16 +16 +8 833 +3 +20 +14 +17 +38

Table 1: Experiments. “A”: A∗ without pruning. ”L0”, “L”: label-dominance simulation; “S”: simulation; “B”: bisimulation;
“L0” is without safety belt (see text), all others with safety belt. “P”: partial-order reduction. Domains where no changes in
coverage occur anywhere are omitted. “Evaluations” is the factor by which the per-domain summed-up number of evaluated
states, relative to “A”, decreases. “Gen/sec.” is the factor by which the per-node runtime (summed-up number of generated
nodes divided by summed-up search time), relative to “A”, increases.

Partial-order reduction suffers from this as well, but retains
much of its power in ParcPrinter and Woodworking, and con-
sistently causes very little runtime overhead relative to this
slow heuristic function. Thus partial-order reduction has bet-
ter overall coverage. It does not dominate simulation-based
pruning though, which yields better coverage in Floortile,
Gripper, NoMystery, TPP, and VisitAll.

Label-dominance simulation clearly pays off against stan-
dard simulation as well as bisimulation. The latter already
is very helpful in some domains, like Gripper and Wood-
working. Simulation does add over this, but suffers in some
domains, like Tidybot, from the runtime overhead. Label-
dominance simulation has such issues as well, but makes up
for them by more pronounced gains on other domains.

The per-node runtime overhead in simulation-based prun-
ing is almost consistently outweighed by the search space
size reduction (compare the respective “Gen/sec.” vs. “Eval-
uations” columns in Table 1). The most substantial runtime
overhead stems from computing the simulation relations. Our
current implementation of that process is largely naı̈ve. We

experimented with ideas from model checking for doing this
more effectively, but with limited success due to the different
context (especially, label-dominance). It remains an impor-
tant open topic to improve this part of our machinery.

9 Conclusion
The idea of pruning states based on some form of “dom-
inance” is old, but has previously been incarnated in plan-
ning with simple special cases (“more facts true”, “more re-
sources available”) only. Simulation relations are the natural
framework to move beyond this. Our work constitutes a first
step towards leveraging the power of simulation relations in,
as well as extending them for, admissible pruning in plan-
ning. The method is orthogonal to existing pruning methods,
and empirically exhibits complementary strengths relative to
partial-order reduction, so there is potential for synergy. A
major challenge in our view is how to intelligently control
initial-abstraction size, investing a lot of overhead where sim-
ulation pruning is promising and, ideally, avoiding any over-
head altogether where it is not.
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