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Abstract

We present the first approach capable of learning domain-
independent planning heuristics entirely from scratch. The
heuristics we learn map the hypergraph representation of the
delete-relaxation of the planning problem at hand, to a cost
estimate that approximates that of the least-cost path from the
current state to the goal through the hypergraph. We generalise
Graph Networks to obtain a new framework for learning over
hypergraphs, which we specialise to learn planning heuristics
by training over state/value pairs obtained from optimal cost
plans. Our experiments show that the resulting architecture,
STRIPS-HGNS, is capable of learning heuristics that are
competitive with existing delete-relaxation heuristics includ-
ing LM-cut. We show that the heuristics we learn are able to
generalise across different problems and domains, including
to domains that were not seen during training.

1 Introduction

Despite the prevalence of deep learning for perception tasks
in computer vision and natural language processing, its appli-
cation to problem solving tasks, such as planning, is still in
its infancy. The majority of deep learning approaches to plan-
ning use conventional architectures designed for perception
tasks, rely on hand-engineering features or encoding planning
problems as images, and do not learn knowledge that gener-
alises beyond planning with a different initial state or goal
(Buffet and Aberdeen 2009; Arfaee, Zilles, and Holte 2010;
Groshev et al. 2018). One exception is Action Schema Net-
works (ASNets) (Toyer et al. 2018; 2020), a neural network
architecture which exploits the relational structure of a given
planning domain described in (P)PDDL, to learn generalised
policies applicable to problems of any size within the domain.

The motivation of our work is to go even further than
architectures such as ASNets, and learn to plan — or at least
to guide the search for a plan — independently of the domain
considered. In particular, we consider the problem of learning
domain-independent heuristics that generalise not only across
states, goals, and object sets, but also across domains.

We focus on the well-known class of delete-relaxation
heuristics for propositional STRIPS planning (Bonet and
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Geffner 2001; Helmert and Domshlak 2009), of which h™*%%,
hadd and LM-cut are popular examples. These heuristics can
be seen as the least-cost path in the hypergraph representing
the delete-relaxed problem for a suitable aggregation func-
tion. The vertices of this hypergraph represent the problem’s
propositions and the hyperedges represent actions connecting
their preconditions to their positive effects. We can therefore
frame the problem of learning domain-independent heuristics
as that of learning a mapping from the hypergraph repre-
sentation of the delete-relaxed problem (and basic problem
features) to a cost estimate. To develop and evaluate this hy-
pergraph learning framework, we make three contributions:

1. Hypergraph Networks (HGNs), our novel framework
which generalises Graph Networks (Battaglia et al. 2018)
to hypergraphs. The HGN framework may be used to de-
sign new hypergraph deep learning models, and inherently
supports combinatorial generalisation to hypergraphs with
different numbers of vertices and hyperedges.

2. STRIPS-HGNS, an instance of a HGN which is de-
signed to learn heuristics by approximating least-cost paths
over the hypergraph induced by the delete relaxation of a
STRIPS problem. STRIPS-HGNS use a powerful recurrent
encode-process-decode architecture which allows them to
incrementally propagate messages within the hypergraph in
latent space.

3. A detailed empirical evaluation, which rigorously de-
fines the Hypergraph Network configurations and training
procedure we use in our experiments. We train and evalu-
ate our STRIPS-HGNS on a variety of domains and show
that they are able learn domain-specific, multi-domain and
domain-independent heuristics which potentially outperform
pmar  padd and I M-cut.

As far as we are aware, this is the first work to learn
domain-independent heuristics completely from scratch. Our
implementation of STRIPS-HGN along with the train-
ing/test problems we used are available online'.

2 Related Work

There is a large body of literature on learning for planning.
Jimenez et al. (2012) and Toyer et al. (2020) provide ex-

"https://github.com/williamshen-nz/STRIPS-HGN



cellent surveys on these existing approaches. Due to space
limitations, we focus on deep learning (DL) approaches to
planning which differ in what they learn, the features and
architectures they use, and the generality they confer.

What is learned? Existing DL approaches may be split
into four categories: learning domain descriptions (Say et
al. 2017; Asai and Fukunaga 2018), policies (Buffet and
Aberdeen 2009; Toyer et al. 2018; Groshev et al. 2018;
Issakkimuthu, Fern, and Tadepalli 2018; Garg, Bajpai, and
Mausam 2019), heuristics (Samadi, Felner, and Schaeffer
2008; Arfaee, Zilles, and Holte 2010; Thayer, Dionne, and
Ruml 2011; Garrett, Kaelbling, and Lozano-Pérez 2016), and
planner selection (Sievers et al. 2019; Ma et al. 2020). Our
work is concerned with learning heuristics. One of the key
differences of our approach with the existing state-of-the-art
is that we learn heuristics from scratch instead of improving
or combining existing heuristics. That said, STRIPS-HGN'S
are also suitable to learn heuristic improvements or combina-
tions, and with some adaptations, to learn actions rankings;
however, we have not experimented with these settings.

Features and Architectures. Most existing DL ap-
proaches to planning use standard architectures, and rely
on hand-engineered features or encodings of planning prob-
lems as images. For instance, Sievers et al. (2019) train Con-
volutional Neural Networks (CNNs) over graphical repre-
sentations of planning problems converted into images, to
determine which planner should be invoked for a planning
task. Ma et al. (2020) show that Graph Neural Networks
(GNNSs) built from these graphical representations obviate
the need for image conversion, provide better inference and
further improve planner selection. We demonstrate that these
advantages can also be obtained when learning heuristics.

For learning generalised policies and heuristics, Groshev
et al. (2018) train CNNs and GNNs with images obtained via
a domain-specific hand-coded problem conversion. In con-
trast, our approach does not require hand-coded features and
instead learns latent features directly from a rich hypergraph
representation of the planning problem.

Another approach is ASNets (Toyer et al. 2018), a neural
network architecture dedicated to planning, composed of
alternating action and proposition layers which are sparsely
connected according to the relational structure of the action
schemas in a (P)PDDL domain. A disadvantage of ASNets is
its fixed receptive field which limits its capability to support
long chains of reasoning. Our STRIPS-HGNS architecture
does not have such an intrinsic receptive field limitation.

Generalisation. Existing approaches and architectures for
learning policies and heuristics have limited generalisation
capabilities. Many generalise to problems with different ini-
tial states and goals, but not to problems with different sets
or numbers of objects. Exceptions include ASNets, whose
weight sharing scheme allows generalisation to problems of
any size from a given (P)PDDL domain, and TRAPSNET
(Garg, Bajpai, and Mausam 2019), whose graph attention net-
work can be transferred between different numbers of objects
in an RDDL domain. As our experiments show, not only does
STRIPS-HGNS support generalisation across problem sizes,
but it also supports learning domain-independent heuristics
that generalise to domains that were not seen during training.
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Figure 1: Our formulation of a hyperedge for an action o € O
with 2 preconditions and 3 add-effects. The preconditions are
the ‘senders’, while the add-effects are the ‘receivers’.

3 Planning Heuristics

We are concerned with classical planning problems repre-
sented in propositional STRIPS (Fikes and Nilsson 1971).
Such a problem is a tuple P = (F, O, I, G, ¢) where Fis the
set of propositions; O is the set of actions; I C F’ represents
the initial state; G C F represents the set of goal states; and
¢(o) is the cost of action 0 € O. Each action o € O is defined
as a triple (Pre(o), Add(0), Del(0)) where the precondition
Pre(0) is the set of propositions which must be true in order
for o to be applied, while the add- and delete-effects Add(o)
and Del(o) are the sets of propositions which the action
makes true and false, respectively, when applied.

A solution plan ™ = 01, ..., 0, for a STRIPS problem is
a sequence of applicable actions leading from the initial state
to the goal, i.e., ™ induces a sequence of states sj, ..., Sy+1
suchthat sy =1,G C sp41,andforallie{1,...,n} s;11 =
(si \ Del(0;)) U Add(o;) and Pre(o;) C s;. The cost of a
plan is the sum of the costs of its actions 3, ¢ 3 ¢(0;).
An optimal plan is a plan which has minimum cost.

Heuristics. Let S C 2F be the state space. A heuris-
tic function h: & — R provides an estimate of the cost
to reach a goal state from a state s, allowing a search al-
gorithm to focus on promising parts of the state space.
The perfect heuristic h*(s) is the heuristic that gives the
cost of the optimal plan to reach a goal state from s. A
heuristic h is admissible iff it never overestimates this op-
timal cost, i.e., h(s) < h*(s) Vs € S, and is inadmis-
sible otherwise. Many heuristics are obtained by approxi-
mating the cost of the optimal plan for a relaxation of the
original problem P. A well-known relaxation, the delete-
relaxation PT of P is obtained by ignoring the delete-effects
Del(o) of all actions in P, i.e., PT = (F,O', I, G, c), where
O’ = {(Pre(o), Add(0),0) | o € O}. This works consid-
ers three baseline domain-independent heuristics which are
based on the delete-relaxation: A%* (admissible), A% (in-
admissible) (Bonet and Geffner 2001), and the Landmark-Cut
heuristic (admissible) (Helmert and Domshlak 2009).

Hypergraph Induced by the Delete-Relaxation. A hy-
pergraph is a generalisation of a graph in which a hyper-
edge may connect any number of vertices together. Clearly,
a delete-relaxed problem P induces a directed hypergraph,
whose vertices represent the set of propositions F' and whose
hyperedges represent the set of delete-relaxed actions O’.
Each hyperedge links the preconditions Pre(o) of an action
o € O toits add-effects Add(o). An example of a hyperedge
for a delete-relaxed STRIPS action is depicted in Figure 1.



4 Hypergraph Networks

Hypergraph Networks (HGNs) is our generalisation of the
Graph Networks (Battaglia et al. 2018) framework to hyper-
graphs. HGNs may be used to represent and extend existing
DL models including CNNs, graph neural networks, and
state-of-the-art hypergraph neural networks. We will not ex-
plore HGNSs in great detail, as it is not the focus of this paper.
We refer the reader to (Shen 2019) for more information.

Hypergraph Definition. A directed hypergraph in the
HGN framework is defined as a triple G = (u,V,E)
where: u represents the hypergraph-level (global) features;
V = {v; :i € {1,...,N"}} is the set of NV vertices
where v; represents the i-th vertex’s features; and £ =
{(er, Rk, Sk): k € {1,...,N°}} is the set of N¢ hyper-
edges, where ey, represents the k-th hyperedge’s features, Ry
is the vertex set which contains the indices of the vertices that
are in the head of the k-th hyperedge (i.e., receivers), and S},
is the vertex set which contains the indices of the vertices that
are in the tail of the k-th hyperedge (i.e., senders). This is in
contrast to Graph Networks, where Ry, and S}, are singletons,
i.e., |Rg| = |Sk| = 1. Note that the hypergraph itself is not
an input feature: it is the structure over which information is
propagated and over which we learn.

Hypergraph Network Block. A Hypergraph Network
(HGN) block is a hypergraph-to-hypergraph function which
forms the core building block of a HGN. The internal struc-
ture of a HGN block consists of a number of update and
aggregation functions. Update functions are used to update
the latent representation of vertices, hyperedges and global
features from the features of the hypergraph elements con-
nected to them, emulating message passing through the hyper-
graph. Aggregation functions are used to collect/pool features.
This internal structure is identical to a Graph Network block
(Battaglia et al. 2018), except now the hyperedge update func-
tion ¢° supports multiple receivers and senders. Formally, a
full HGN block is composed of 3 update functions, ¢°, ¢

and ¢*, and 3 aggregation functions, p°~?, p~* and p? %
;CZ(z)‘(ekHRk,Sk;,u) e _pP—H)(E)
::Qb ( , Vi, u ) e :peﬁu(E/)
u = o (e v u) v = p'u—>u(V/)

where R, = {v;: j € Ry} and S, = {v;: j € Si} are
the sets representing the vertex features of the receivers and
senders of the k-th hyperedge, respectively. Additionally,
for the i-th vertex, we define E/ = {(e},Rk,Sk): k €
{1,....,N°}st.i € R}, V! = {vi: 1 € {1,...,N°}},
and E' = |J, E! = {(e},, Rk, Sk): k € {1,...,N°}}. Es-
sentially, E! represents the updated hyperedges where the
i-th vertex is a receiver vertex, F’ represents all the updated
hyperedges, and V' represents all the updated vertices.
Computation Steps. In a single forward pass of a HGN
block, the hyperedge update function ¢° is first applied to all
hyperedges to compute per-hyperedge updates. Each updated
hyperedge feature e}, is computed using the current hyper-
edge’s feature ey, the features of the receiver and sender
vertices Ry and Sg, and the global features u. Next, the
vertex update function ¢ is applied to all vertices to com-
pute per-vertex updates. Each updated vertex feature v/ is
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Figure 2: The full HGN block configuration which predicts
global, vertex and hyperedge outputs based on the incom-
ing global, vertex and hyperedge attributes (Figure 4a from
Battaglia et al. 2018). The incoming arrows to an update
function ¢ represent the inputs it receives.

computed using the aggregated information €, from all the
hyperedges the vertex ‘receives’ a signal from (i.e., of which
it is a receiver), the current vertex’s feature v;, and the global
features u. Finally, the global update function ¢* is applied
to compute the new global features using the aggregated in-
formation @ and V' from all the hyperedges and vertices in
the hypergraph along with the current global features u.

Configuring HGN Blocks. Each update function ¢ in a
HGN block must be implemented by some function f, whose
signature determines its inputs (Battaglia et al. 2018). For ex-
ample, the function that implements ¢° in a full HGN block
(Figure 2) is a function f: (e, Ry, Sk, u) — e}, which
accepts the global, vertex, and hyperedge attributes. Each
function f may be implemented in any manner, as long as
it accepts the input parameters and conforms to the required
output. In our experiments, we implement our update func-
tions as multilayer perceptrons (MLP). Since the input to the
aggregation functions are essentially sets, each p must be per-
mutation invariant to ensure that all permutations of the input
give the same aggregated result. Hence p could, for example,
be a function that takes an element-wise summation of the
input, maximum, minimum, mean, etc. (Battaglia et al. 2018).
In our experiments, we utilise element-wise summation.

S STRIPS-HGNS

Given that HGN blocks are hypergraph-to-hypergraph func-
tions, we may compose blocks sequentially and repeatedly ap-
ply them. STRIPS-HGNS is our instantiation of a HGN for
learning heuristics, which composes several HGN blocks into
a recurrent encode-process-decode architecture (Battaglia et
al. 2018). In this architecture, which is detailed below, an
encoder HGN block encodes the input features into latent
space, a core/processing HGN block is recurrently applied
to emulate “message passing”, and a decoder HGN block
essentially performs regression to obtain a heuristic value
from the latent features. The core processing block is applied
recurrently, meaning the output of the block is fed in as the
input to the block in the next step. That is, the same block
is applied sequentially M times before being decoded. The
HGN framework is used to more easily express the 3 blocks,
making STRIPS-HGNS highly adaptable to different input
features for each proposition and action, as well as being
agnostic to the implementation of each update function.
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Figure 3: The recurrent encode-process-decode architecture
of a STRIPS-HGN (modified from Figure 6¢ in Battaglia
et al. 2018). The merging line for G{; and GL;' indicates
concatenation, while the splitting lines that are output by
the HGN_,.. block indicate copying (i.e., the same output is
passed to different locations). The grey dotted line indicates
that the output G}, is used as input to the HGN ., block in
the next time step t + 1.

Hypergraph Representation. The input to a STRIPS-
HGN is a hypergraph Ginp = (Uinp, Vinp, Einp) Which follows
the hypergraph structure of the relaxed STRIPS problem
Pt = (F,0',1,G,c), and contains the input proposition
and action features for the state s, where:

e ui,, = (), as global features are not required as input to a
STRIPS-HGN. Nevertheless, it is easy to adapt STRIPS-
HGNSs to support global features, e.g., we could supple-
ment a STRIPS-HGN with a heuristic value h(s) com-
puted by another heuristic h such that the network learns
an “improvement” on h.

o Vi ={v; :i€{l,...,|F|}} contains the input features
for the | F'| propositions in the problem. Features for a
proposition could include whether it is true for the current
state or goal state, and whether the proposition is a fact
landmark for the state s (Richter and Westphal 2010).

e Einp = {(ex, Rk, Sk): k € {1,...,]|0'|}} for the |0’
actions in the relaxed problem P*. For an action o €
O’ represented by the k-th hyperedge, e, represents the
input features for o (e.g., its cost ¢(0) or whether it is in a
disjunctive action landmark from state s) and Ry, = Add(o)
(resp. S, = Pre(0)) is the vertex set containing the indices
of the vertices in the add-effects (resp. preconditions) of o.

The output of a STRIPS-HGN is a hypergraph G, =
(Wouts Vout, Eour) Where ugy € R1*1 is a 1-dimensional vec-
tor representing the heuristic value for s, thus we enforce
both V5, and E,y to be the empty set.

5.1 Architecture

A STRIPS-HGN is composed of three main HGN blocks:
the encoding, processing (core), and decoding block. Our
architecture follows a recurrent encode-process-decode de-
sign (Hamrick et al. 2018; Battaglia et al. 2018), as depicted
in Figure 3. The input hypergraph Gy, is firstly encoded to
a latent representation Gﬁid by the encoder block HGN,,.
at time step ¢ = 0. This allows the network to operate on a
richer representation of the input features in latent space.
Next, the initial latent representation of the hypergraph
G4 is concatenated with the previous output of the pro-
cessing block HGN,,,.. Initially, when HGN,,,. has not
been called (i.e., at time step ¢ = 1 just after Gi,p has been
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computed), G, is concatenated with itself. Note that the

hypergraph structure for G\, and Gf@l is identical because
the HGN blocks do not update the senders or receivers for
a hyperedge. Implementation-wise, concatenating a hyper-
graph with another involves concatenating the features for
each corresponding vertex v; together, and the features for
each corresponding hyperedge e together (the global fea-
tures are not concatenated as they are not required as input to
a STRIPS-HGN). This results in a broadened feature vector
for each vertex and hyperedge.

The core processing block HGN,,,,-., which outputs a hy-
pergraph G}, for each time step ¢ € {1,..., M}, is applied
M times with the initial encoded hypergraph G, concate-
nated with the previous output of HGN_,,.. as the input (see
Figure 3). Evidently, this results in A/ —1 intermediate hyper-
graph outputs, one for each for time step ¢ € {1,..., M —1},
and one final hypergraph for the time step ¢ = M. The de-
coder block takes the hypergraph output by the HGN_ ;..
block and decodes it to the hypergraph G, Which contains
the heuristic value for state s in the global feature ug,. Ob-
serve that we can decode each latent hypergraph which is
output by HGN,,,.. to obtain a heuristic value for each time
stept € {1,...,M}. We use this fact to train a STRIPS-
HGN by optimising the loss on the output of each time step.

Core Block Details. We can interpret a STRIPS-HGN as
a message passing model which performs M steps of mes-
sage passing (Gilmer et al. 2017), as the shared processing
block HGN,,,. is repeated M times using a recurrent archi-
tecture. A single step of message passing is equivalent to
sending a ‘signal’ from a vertex to its immediate neighbour-
ing vertices. Although this means that a vertex only receives
a ‘signal’ from other vertices at most M hops away, we theo-
rise that this is sufficient to learn a powerful function which
aggregates proposition and action features in the latent space.

In contrast to architectures such as ASNets and CNNss,
which have a fixed receptive field that is determined by the
number of hidden layers, the receptive field of a STRIPS-
HGN is effectively determined by the number of message
passing steps. Evidently, we can increase or decrease the
receptive field of a STRIPS-HGN by scaling the number of
message passing steps, hence providing a significant advan-
tage over networks with fixed receptive fields.

Within-Block Design. The encoder block (Figure 4a)
HGN,,,. encodes the vertex and hyperedge input features
independently of each other using its ¢¥ and ¢°, respectively.

The core processing block of a STRIPS-HGN (Figure 4b)
takes the concatenated vertex and hyperedge features from
the latent hypergraphs G, and G} as input. ¢¢ computes
per-hyperedge updates based on these hyperedge and vertex
features. ¢V computes per-vertex updates based on the ver-
tex features and the aggregated features of the hyperedges
where the vertex is a receiver, which is computed using p¢—".
Finally, ¢* uses the aggregated vertex and aggregated hyper-
edge features calculated with p” " and p“ 7, respectively,
to compute a latent representation for the heuristic value.

The decoder block (Figure 4c) takes the latent represen-
tation of the global features uf,; of the hypergraph returned
by the core HGN block and uses its ¢* to decode it into a
one-dimensional heuristic value. The vertex and hyperedge
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Figure 4: The encoding (a), core (b) and decoding (c) blocks of a STRIPS-HGN. The encoding block independently encodes
the vertex and hyperedge features into latent space. The core block computes per-hyperedge and per-vertex updates using the
concatenated input hypergraph, and additionally computes a latent heuristic feature uf,;;. The decoding block decodes the latent

heuristic features ul., into a single heuristic value.

features are not used as ul,, already represents an aggregation
of these features as computed by HGN,..

The choice of learning model for the update functions ¢°,
¢" and ¢" within each block is not strict, as long as the model
conforms to the input and output requirements. The choice
of aggregation functions p*—?, p¢~*, and p~* should be
permutation invariant to the ordering of the inputs, otherwise
different heuristic values could be obtained for different per-
mutations of the same STRIPS problem. We detail our choice
of update and aggregation functions in Section 6.1, which
describes our experimental setup.

5.2 Training Algorithm

We consider learning a heuristic function % as a regression
problem, where h ideally provides near-optimal estimates of
the cost to go. We train our STRIPS-HGNS with the values
generated by the perfect heuristic h*. Given a set of training
problems P = { Py, ..., P,}, we run an optimal planner for
each P, € P to obtain an optimal state-value pair (s, h*(s))
for each state s encountered in the optimal plan. We then
generate the delete-relaxed hypergraph G for P; and the state
s to get a training sample (G, h*(s)). We denote by T the
set containing all training samples.

We train our networks on h* rather than on the optimal
delete-relaxed plan length ht, as we believe that STRIPS-
HGNS may potentially learn a tighter value than h*. In
particular, at least in the domain-specific setting, a network
trained with A* might be able to learn the offset between h™
and h* since the delete effects are always the same. However,
it could be argued that learning from A™ may be beneficial in
the multi-domain and domain-independent settings as these
offsets would be different for each domain. Our preliminary
experiments found that learning with h™ performs worse
than learning from h*, except for Blocksworld in the domain-
independent setting, where it edges out over learning from
h* on the smaller test problems.

Weight Optimisation. We use supervised learning and
assume that each update function in the encoder, core, and
decoder blocks of a STRIPS-HGN has some weights that
need to be learned. For simplicity, we aggregate these weights
into a single variable 6. Let h? be the heuristic learned by a
STRIPS-HGN which is parameterised by the weights 6.

Recall that we can decode the latent hypergraph that is out-
put by the core HGN block at each time step ¢ € {1,..., M}
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into a heuristic value hY. Our loss function averages the losses
of these intermediate outputs at each time step to encourage a
STRIPS-HGN to find a good heuristic value in the smallest
number of message passing steps possible (Battaglia et al.
2018). We use the mean squared error (MSE) loss function:

1 1 2
Ly(B) = @ Z M Z (hf(G) - h*(s))
(G, h*(s))eB  te{l,...,M}

where 5 C 7T is a minibatch within the entire training set
T, M is the number of message passing steps, and G is the
input hypergraph for state s in a problem.

We use minibatch gradient descent to update the weights
0 in the direction which minimises Ly by using the gradient
dLy(B)/df. In a single epoch, we apply this update to every
minibatch 5. We repeatedly apply more epochs until we reach
a maximum number of epochs or exceed a fixed training time.
During evaluation time, we use the heuristic value 2%, output
at the last message step t = M.

5.3 Limitations of STRIPS-HGNS

Firstly, it is expensive to compute a single heuristic value
using a STRIPS-HGN, given the computational cost of the
matrix operations required for a single step of message pass-
ing; these costs scale with the number of vertices and hyper-
edges in the hypergraph. However, this cost may pay off if
the learned heuristic provides very informative estimates near
the perfect heuristic h*, as it may reduce the total CPU time
required to find a near-optimal solution.

The number of message passing steps M for the core
HGN block is a hyperparameter which, in theory, should be
adaptively selected based on how ‘far’ away the current state
is from the goal. However, determining a good value for M
is not trivial, and should ideally be automatically determined
by a STRIPS-HGN by using its intermediate outputs. In
practice, we found that setting M = 10 was sufficient to
achieve promising results.

Finally, although we train STRIPS-HGNS on the perfect
heuristic values, the heuristics they learn are typically not
admissible. This can be seen in our experiments below, where
A* guided by the learned heuristics frequently returns subop-
timal plans. Moreover, it is unfeasible to analyse a network
to understand what it is exactly computing, so that even if
an admissible heuristic was learned, we would be unable to
provide any formal guarantees that this is indeed the case.



6 Empirical Evaluation

Our experiments are aimed at showing the generalisation ca-
pability of STRIPS-HGNS to problems they were not trained
on — including problems with a larger number of objects and
actions, and even problems from unseen domains. For each
experiment, we select a small pool of training problems (po-
tentially from several domains) and train a STRIPS-HGN.
We then evaluate the learned heuristic on a larger pool of test-
ing problems with differing initial/goal states, problem sizes
and even domains. We repeat each experiment for STRIPS-
HGN s 10 times, resulting in 10 different trained networks,
to measure the influence of the randomly generated problems
and the training procedure.

6.1 Experimental Setup

Hardware. All experiments were conducted on an Amazon
Web Services c¢5.2x1arge server with an Intel Xeon Plat-
inum 8000 series processor running at 3.4Ghz. To ensure
fairness between STRIPS-HGN and our baselines, each ex-
periment was limited to a single core. We enforced a 16GB
memory cutoff; however, only blind search reached this cut-
off and the other planners never exceeded 2GB.

Search Configuration. We compare STRIPS-HGNS
against the following baselines: no heuristic (i.e., blind),
hmer T M-cut, and h%%, These baselines all represent heuris-
tics computable using the same input as used by STRIPS-
HGNSs— the delete-relaxation hypergraph — making this
a fair comparison. We use A* search to compare the dif-
ferent heuristics, since STRIPS-HGNS are trained using
perfect heuristic values and we believe that its estimates are
sufficiently informative to find near-optimal solutions.

To generate the training data for each training problem,
we used Fast Downward (Helmert 2006) configured with A*
search and the LM-cut heuristic with a timeout of 2 min-
utes. As STRIPS-HGNS are implemented in Python, we
used Pyperplan (Alkhazraji et al. 2011) for evaluation. Each
heuristic is evaluated on each testing problem by running
Pyperplan’s A* search once with a 5 minute timeout. Since
the heuristic implementations in Pyperplan are much slower
than in Fast Downward, our CPU times are preliminary.

STRIPS-HGNS Configuration. We generate the hyper-
graph of each planning problem from the delete-relaxed
problem computed by Pyperplan. For a STRIPS problem
P =(F,0,1I,G,c) and a given state s C F, we encode the
input features for each proposition (vertex) p € F' as a vector
[x5, z4] of length 2 where: z, = 1 (respectively x4 = 1) iff p
is true in state s (respectively in the goal ), and 0 otherwise.
The input feature for each action o € O represented by a
hyperedge e is a vector [w,, 7, S¢], Where w, is the cost ¢(0)
of 0, and r. = |Add(0)| and s, = |Pre(o)| are the number
of positive effects and preconditions for action o, respectively.
re and s, are used by a STRIPS-HGN to determine how
much of a ‘signal’ it should send from a given hyperedge.

We set the number of message passing steps M for the
recurrent core HGN block to 10, and implement each up-
date function as a Multilayer Perceptron (MLP) with two
sequential fully-connected (FC) layers, each with an output
dimensionality of 32. We apply the LeakyReL.U activation
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function (Maas, Hannun, and Ng 2013) following each FC
layer. We add an extra FC layer with an output dimension-
ality of 1 in ¢* of the decoding block. Since the input to a
MLP must be a fixed-size vector, we concatenate each update
function’s input features before feeding them into the MLP.
However, for the hyperedge update function ¢° in the core
block, the number of receiver 7. and sender s, vertices may
vary with each hyperedge. For a given set of domains, we can
compute the maximum number of preconditions Ngender
and positive effects Nycceiver Of €ach possible action by
analysing their action schemas — this allows us to fix the size
of the feature vectors for the receiver and sender vertices. We
convert the set of input vertices Ry, (resp. S) into a fixed-size
vector determined by Ny.cceiver (r€Sp. Nsender), by stacking
each vertex feature v € Ry, (resp. v € Sy) in alphabetical
order by their proposition names, and padding the vector
with zeros if the required length is not reached. Due to the
locality assumption underlying STRIPS, each action schema
has a very small number of preconditions and effects, and our
approach will work for any domain where these numbers are
less than the maximums used. For the aggregation functions
P70, p¢ % and p " in the core block of a STRIPS-HGN,
we use element-wise summation. We denote the heuristic
learned by this configuration of STRIPS-HGN as h#GN
Training Procedure. We split the training data into n
bins using quantile binning of the target heuristic values
and use stratified k-fold to split the training set into folds
F ={f1,..., fr}, with each fold containing approximately
the same percentage of samples for each heuristic bin. For
each fold f € F, we train a STRIPS-HGN using F'\ f
as the training set and f as the validation set, and select the
network at the epoch which achieved the lowest loss on the
validation set f. Since we train one STRIPS-HGN for each
of the k folds, we are left with k separate networks. We select
the network which performed best on its validation set as
the single representative STRIPS-HGN for an experiment,
which we then evaluate on a previously unseen test set.
Although k-fold is more commonly used for cross vali-
dation, we use it to reduce potential noise and demonstrate
robustness over the training set used. Whilst this limits the
training time per experiment, our training procedure lets us
demonstrate the expected performance of STRIPS-HGNS.
We use the Adam optimiser with a learning rate of 0.001
and a L2 penalty of 0.00025 (Kingma and Ba 2014). We set
the minibatch size to 1 as it resulted in a learned heuristic with
the best performance and helped the loss function converge
much faster despite the ‘noisier’ training procedure. This may
be attributed to the small size of our training sets.

6.2 Domains and Problems Considered

The actions in the domains we consider have a unit cost. The
problems we train and evaluate on are randomly generated
and unique. The domains we consider are 8-puzzle, Matching
Blocksworld, Sokoban (Fern, Khardon, and Tadepalli 2011),
Blocksworld (Slaney and Thiébaux 2001), Zenotravel (Long
and Fox 2003), Gripper, Ferry and Hanoi’. Details regarding
the domains and experiments are shown in Table 1.

*https://fai.cs.uni-saarland.de/hoffmann/ff-domains.htm]



Train time

Domain(s) (per fold) Hyperparams. Training Set Test Set
8-puzzle 10 min Default 10 problems 50 problems
Blocksworld (BW) 10 min Default 10 x {3,4,5 blocks} = 30 problems 20 x {6,...,10 blocks} = 100 problems
Ferry 3 min I — 5 folds {2, 3,4 locations} x {1,2,3 cars} {2,3,...,10Iocations} x {5, 10, 15, 20 cars}
=9 problems =36 problems
Q
= . ] e {1, 2,3 balls} = 3 problems, B ]
3 Gripper 90 sec n = 3 bins resample 20 pairs to 60 samples {4,...,20 balls} = 17 problems
2 .
) . . o {3,4 disks} = 2 problems, . _
% Hanoi 5 min n = 3 bins resample 24 pairs to 50 samples {3,...,10 disks} = 8 problems
E Matching BW 15 min Default é ;<0{3, 4,5 blocks} x {1,2 towers} %(] x {5, 6 blocks} +25 {7,8 blocks}
A = 30 problems =90 problems, varying 1, ..., 5 towers
Sokoban 20 min n = 5 bins, 10 x {5, 7 grid size} = 20 problems 20 x {5, 7 grid size} + 10 x {8 grid size} = 50
: k = 5 folds 2 boxes and varying 3-5 walls problems, 2 boxes and varying 3-5 walls
. 10 x {2, 3 cities} = 20 problems {2,3, 4 cities} x {2,3,4,5 planes}
Zenotravel (Zeno) 10 min Default Varying 1-4 planes and 2-5 people x{3,4,5,6, 7 passengers} = 60 problems
=
3 B —
£ Blocksworld BW: 5 x {4_7 5 blocks} = 10 problems . . _
&+ Gripper 15 min Default Gripper: training set for domain-specific Respective test sets for domain-specific
5 4 Zenotravel Zeno: 5 x {2, 3 cities} = 10 problems  Blocksworld, Gripper and Zenotravel
;: Varying 1-4 planes and 2-5 people
. Gripper + Zenotravel . Training sets for multi-domain . .
g; Evaluate on Blocksworld 10 min Default Gripper and Zenotravel Test set for domain-specific Blocksworld
= Blocksworld + Zenotravel . Training sets for multi-domain . . .
.g Evaluate on Gripper 10 min Default Blocksworld and Zenotravel Test set for domain-specific Gripper
£ Blocksworld + Gripper . . Training sets for multi-domain . i . .
Do Evaluate on Zenotravel 10 min Default Blocksworld and Gripper Test set for domain-specific Zenotravel

Table 1: The configurations for our experiments. For each experiment, we depict the domains considered, training time per fold,
hyperparameters and training/test set used. The default hyperparameters are n = 4 bins and k£ = 10 folds. We apply stratified

sampling with replacement for resampling.

6.3 Experimental Results

Our experiments may be broken down into learning a domain-
specific, multi-domain or domain-independent heuristic. A
multi-domain heuristic is a generalisation of domain-specific
heuristics to multiple domains, i.e., it can be applied to a
set of predefined domains. For each of the experiments we
describe below, we present the results for the number of
nodes expanded, CPU time, and deviation from the optimal
plan length when using A* (Figures 5, 6 and 8). For h#/¢N
the results are presented as the average and 95% confidence
interval over the 10 different experiments.

Additionally, the coverage ratio on the testing problems
for each heuristic is shown in Table 2. For h7N | we cal-
culate the average coverage for the 10 repeated experiments.
Figure 7 depicts the proportional errors of the estimates given
by RGN in the initial state so over all test problems with
known optimal plans. Only runs of AN which achieved
coverage on the respective test problems are considered.

Can we learn domain-specific heuristics? In order to
evaluate this, we train and test STRIPS-HGNS separately
on the domain-specific experiments described in Table 1.
Figure 5 depicts the results of these experiments. Firstly, for 8-
puzzle and Blocksworld, 7@V expands fewer nodes than all
the baselines including 2%%?, yet h/&N deviates significantly
less from the optimal plan. For Ferry, Matching Blocksworld
and Zenotravel, h7¢N requires fewer node expansions than
the admissible heuristics and is able to solve larger-sized
problems. K@Y also obtains a smaller deviation from the
optimal than h*?®. For Gripper, h’ ¢V requires remarkably
fewer node expansions than the baselines and is able to find
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BHGN

blind 2™ R LM-cut spec. multi indep.
8-puzzle 1 1 1 1 1 - -
Ferry 042 036 1 047 077 - -
Hanoi 1 1 1 088 070 - -
Mat. BW 0.85 0.85 1 098 083 - —
Sokoban 1 1 1 096 091 - -
BW 078 068 1 097 095 097 0.60
Gripper 0.71 059 0.59 041 095 0.69 0.29
Zeno 062 055 1 082 071 0.60 0.26

Table 2: Coverage Ratio (to 2 d.p.) on the test problems
for each heuristic. The lower average coverage of h7“Vis
attributed to our noisy training procedure, which leads to
networks with varying performance across experiments.

solutions to the larger test problems within the limited search
time (blind and LM-cut are occluded by ~A"*** for the nodes
expanded). For Sokoban, 27" expands marginally more
nodes than h%? and LM-cut, but finds near-optimal plans. On
the other hand, K¢ is unable to outperform the baselines
for Hanoi and scale up to larger problems — this may be due
to the difficulty of learning the exponential plan length.

We may observe from the proportional errors in Figure 7
that &N provides reasonably accurate estimates for all
domain-specific experiments bar Gripper and Hanoi. The
large overestimation of Gripper may be due to overtraining
on problems with 1-3 balls, leading to numerical instability
when scaling up to larger problems. Thus, we have shown that
STRIPS-HGNS are able to learn domain-specific heuristics
which potentially outperform our baseline heuristics.
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Figure 6: The plots for the results of our multi-domain experiments described in Section 6.3.
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mates given by A7V in the initial state so. Negative values
correspond to inadmissible heuristic estimates. For Gripper
the 1st, 2nd and 3rd quartiles are -37.11, -4.75 and -0.90.

Figure 7: Proportional errors

Can we learn multi-domain heuristics? To determine
whether this is feasible, we train a STRIPS-HGN using
data from multiple domains at once: the training set of
each domain is binned and stratified into k-folds then, for
i € {1,...,k}, the folds f; of all considered domains are

merged into a single fold f; and F' = {fy,..., fi} is used as
the training set. Using this procedure, we train and evaluate
STRIPS-HGNS on Blocksworld, Gripper and Zenotravel to-
gether as detailed in Table 1. Notice that each testing domain
has been seen by the network during training.

Figure 6 depicts our results. In general, multi-domain
hHGN performs marginally worse than the domain-specific
hHGN for each test domain in terms of node expansions and
average coverage. Multi-domain A7V is able to match or
outperform our baseline heuristics in terms of the number
of node expansions on a large proportion of test problems,
and also deviates significantly less from the optimal plan
in comparison to 2%%_ Interestingly, the deviation from the
optimal plan length for multi-domain Gripper is less than
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that for domain-specific Gripper. This is likely due to over-
training in domain-specific Gripper which has led to large
overestimation, as indicated by the boxplot in Figure 7. In
contrast, the boxplot for multi-domain Gripper shows that its
heuristic estimations are far more accurate.

Evidently, STRIPS-HGNS are capable of learning multi-
domain heuristics which generalise to problems from the
domains a network has seen during training. This is a very
powerful result, as existing approaches rely on features de-
rived from existing heuristics, while we are able to learn
heuristics from scratch.

Is h7GN capable of learning domain-independent
heuristics which generalise to unseen domains? To de-
termine whether this is the case, we train STRIPS-HGNSs
on problems from a set of domains, and evaluate them on
problems from a distinct unseen domain. We use the same
training data generation procedure as described for learn-
ing multi-domain heuristics. Our experiments are detailed in
Table 1.

Figure 8 depicts the results of our experiments. For
Blocksworld, KGN outperforms A" and blind search in
terms of node expansions and deviates significantly less from
the optimal plan length than h29¢, This is despite the fact that
the network did not see any Blocksworld problems during
training. On the other hand, A" ¢" is unable to outperform
the baselines for Gripper (b is occluded by h™%* for
the nodes expanded), suggesting it has not learned any useful
knowledge from the training domains Blocksworld and Zeno-
travel. RV is also unable to scale up to larger problems
(9+ balls), due to the large time required to compute a single
heuristic estimate. For Zenotravel, h &N outperforms blind
search and /™ but is unable to scale up to large problems.
This suggests that STRIPS-HGNS has learned some form of
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Figure 8: The plots for the results of our domain-independent experiments described in Section 6.3.

informative knowledge from Blocksworld and Gripper that
allows Zenotravel problems to be more readily solved.

The results of our domain-independent experiments show
that it is possible for 7N to generalise across to problems
from domains it has not seen during training. Unsurprisingly,
hHEN suffers a loss in planning performance, both in terms
of nodes expanded and average coverage, in comparison to
STRIPS-HGNS trained directly on the unseen domain.

Why is h7¢N not competitive in terms of CPU time?
This may be attributed to our current sub-optimal implemen-
tation of STRIPS-HGNS, and the cost of evaluating the net-
work (i.e., M message passing steps). Consequently, there is
significant room for improvement in this regard. Despite this,
our results show that STRIPS-HGNS is a feasible and ef-
fective approach for learning domain-specific, multi-domain
and domain-independent heuristics.

7 Conclusion and Future Work

We have introduced STRIPS-HGNS, a recurrent encode-
process-decode architecture which uses the Hypergraph Net-
works framework to learn heuristics which are able to gen-
eralise not only across states, goals, and object sets, but also
across unseen domains. In contrast to existing work for learn-
ing heuristics, STRIPS-HGNS are able to learn powerful
heuristics from scratch, using only the hypergraph induced by
the delete-relaxation of the STRIPS problem. This is achieved
by leveraging Hypergraph Networks, which allow us to ap-
proximate the perfect heuristic values by performing message
passing on features in a rich latent space. Our experimental
results show that STRIPS-HGNS are able to learn domain-
specific, multi-domain and domain-independent heuristics
which are competitive, in terms of the number of node ex-
pansions required by A*, with heuristics that are computed
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over the same hypergraph, namely A%, h%4¢ and LM-cut.
This suggests that learning heuristics over hypergraphs is a
promising approach, deserving investigation in further detail.

Potential future work includes using different hypergraph
representations of STRIPS problems (e.g., hypergraph under-
lying h?). Notice that our Hypergraph Networks framework
already supports arbitrary hypergraphs. Another future work
direction is to use a richer set input features, such as, disjunc-
tive action landmarks, fact landmarks, and features related
to the delete effects which can be automatically extracted
from the STRIPS problems. These features may help the net-
work learn a better heuristic estimate and reduce the number
of message passing steps required to obtain an informative
heuristic estimate. Moreover, the time required to compute
a single heuristic value (~0.01 to 0.02 seconds) could be
reduced significantly by optimising our implementation (e.g.,
using multiple CPU cores or GPUs, optimising matrix oper-
ations and broadcasting), adapting the number of message
passing steps in real time, or even pruning the vertices and
hyperedges in the hypergraph of the relaxed problem. Other
improvements could come from a careful study of the hy-
perparameter space, in the same vein as concurrent work by
Ferber et al. (2020) on learning domain-specific heuristics
with feed-forward neural nets.

We may also improve the generalisation performance and
remove the need for zero padding in a STRIPS-HGN by
using permutation invariant models, including Deep Sets
(Zaheer et al. 2017), instead of MLPs as the update functions.
This will ensure STRIPS-HGNSS are permutation invariant
to all changes in a planning problem, including the renaming
of actions which is not supported when using MLPs.

Finally, we also plan to investigate how to adapt STRIPS-
HGNSs for Stochastic Shortest Path problems (SSPs). It may



be possible to use Hypergraph Networks to learn an infor-
mative heuristic that preserves the probabilistic structure of
actions (Trevizan, Thiébaux, and Haslum 2017) by deriving
suitable hypergraphs from factored SSPs.
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