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Abstract

Most techniques of domain independent planning are defined within a grounded setting,
e.g. FDR or STRIPS. Still, it is typical to define domains in PDDL, a lifted representation.
Recent research has shown, that in some domains, the transformation from the lifted
representation into the grounded equivalent comes with a undesired space blow up. Which
can in some cases be big enough, that the problem can’t be represented on standard
machines anymore. Recent work introduced a lifted successor generation, what can be
intuitively understood as applying this transformation (called grounding) on demand.

In this thesis I will extend this approach. I will first introduce a new relaxation,
called unary relaxation. Within this relaxation I construct a heuristic that is able operate
within the space bounds of lifted representation, without having to sacrifice run-time
performance. I analyze the performance of the heuristic and introduce extensions that
address the identified bottlenecks of the heuristic.
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Chapter 1

Introduction

AI planning is a research area that revolves around the question, how to solve decision
making problems. The setting of this paper is within domain independent planning, where
given an arbitrary decision making problem, a planner should find a sequence of decisions
that will lead to the goal. It is typical to create models ,that describe tasks, to address
arbitrary problems. These models contain facts (i.e. the things that can be achieved),
an initial state (i.e. what is already achieved in the beginning), a goal (i.e. what shall
be achieved) and the decisions that can be made to achieve new facts (potentially at the
cost of losing an previously achieved fact and just under a certain precondition). Years
ago, heuristic search was discovered to be promising. ?? By now it is one of the most, if
not the most, prominent approach within planning. In heuristic search the planer builds
a graph-like structure, called state space, from the model. In this structure nodes are
states (i.e. sets of facts) and the edges are described by the decisions, here called actions.
Heuristics are used to guide a search within this structure and potentially achieve the
goal faster.

So far most heuristics and search algorithms in domain independent planning are
defined within a grounded setting. FDR, also known as SAS+ [2], and STRIPS [4] are the
most common ways for such a grounded setting. However, in practice, domains (e.g. all
domains of the International Planning Competition (IPC)) are typically defined in a lifted
representation, called PDDL. [12] PDDL allows to represent domains in a really compact,
but readable, way. In order to search within such a domain, the lifted representation will
be grounded, i.e. transferred into a grounded representation. But this comes at a cost.
Even if there have been optimizations [6], for the grounding process over the years, losing
the compactness of the lifted presentation has shown to be undesirable in some cases. A
prime example for this is the Organic Synthesis domain. [10] Recent work has shown that
computing the model of full domains in Fast Downward [8] can be as high as 128GB. [11]
Using a model like this still seems infeasible for most machines as of today and is also far
fetched from the 8GB memory limit that was used in the latest IPC.

For such domains it seems desirable to have algorithms that can work directly on the
lifted representation, without coming at the cost of a huge run time blow up. Recent
work introduced a planning framework that supports a lifted successor generation, i.e.
the framework is able to search the state space without grounding the representation.
However, the framework does not provide any heuristics but goal grounding, which is a
really basic heuristic. A really successful heuristic within a grounded setting is hFF . ??
It creates a relaxed task, meaning a task that is similar to the original one, but easier
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to solve. In particular the relaxation is called delete relaxation. What this means will
be explained in the background section. hFF then extracts a plan in the relaxed model
and uses the plan cost as heuristic estimate. I introduce a new relaxation, called Unary
Relaxation, which is an extension to the the delete relaxation. It enables computing
heuristic values within polynomial time, with respect to the lifted representation, in a
hFF fashion.

The additional relaxation comes with a loss of information that leads to bad heuristics
estimates on a lot of domains. I will inspect some pitfalls and extend my approach that
address them. Furthermore I will evaluate the refined approach and list still existing
issues. With that I want to give some context of limitations and opportunities of my
approach and lifted planning in general.
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Chapter 2

Background

Here I will formalize the principles of planning and give the necessary background. I will
first introduce the running example to explain all definitions with the help of it.

2.1 Running Example

As running example I will use the IPC domain Transport. The domain is inspired by a
real world logistics task where trucks need to deliver packages to certain destinations. In
the beginning each truck is placed at some location and each package is placed at some
location or into some truck. To solve the task, trucks can perform the following actions:

• A truck can travel from location a A to a location B iff A and B are connected.

• A truck can load packages at its current location.

• A truck can unload previously loaded packages to its current location.

• Trucks can load unlimited packages.

The goal is reached when all packages are delivered.
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Figure 2.1: A simple illustration of a transport task.

Figure 2.1 illustrates an example of a Transport task. There are two trucks. I will
refer to the left truck as TL and to the right truck as TR. I will refer to their starting
locations as STL

and STR
respectively. There are also two packages. The R(ed) and B(lue)

package. I will refer to the packages as PR and PB respectively. Their starting location
is marked by the respectively colored package and will be referred to as SPR

and SPB
.
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Their destination is marked by an arrow above the package and is annotated with their
respective name. I will refer to the destinations as DPR

and DPB
respectively. The set

Locations := {SPB
, SPR

, STL
, STR,, DPB

, DPR
, B,D,E,G} denotes all locations within the

task.

2.2 Lifted and Grounded Planning

I will start by defining a grounded task that corresponds to a typical STRIPS represen-
tation. [4]

Definition 1: (Grounded Task)
A Grounded Task is a tuple (F ,AG, IG,GG) where F is a set of facts, A is a set of
grounded actions, IG ⊆ F is the grounded initial state, GG ⊆ F is the grounded goal.

• An action a ∈ AG is a triple of fact sets (prea, adda, dela) with adda ∩ dela = ∅.

• A state s ⊆ F is a set of facts.

• An action a ∈ AG is called applicable in s if prea ⊆ s.

• Applying a to s (denoted by sJaK) results in a state s′ = (s\dela)∪adda. s′ is called
a successor of s.

• Applying a sequence of actions a1, ..., an to a state s is defined as sJa1, ..., anK :=
sJa1KJa2, ..., anK.

• A sequence of actions a1, ..., an is called a plan, if GG ⊆ IGJa1, ..., anK.

Example 1: (Grounded Transport Task)
The task from figure 2.1 can be formalized as grounded task in the following way:

• Intuitively speaking facts are the things that differentiate states from another. For
the Transport domain these things are the location of the truck and the location of
the packages. So the set of facts is:

F := {at(T, L) | T ∈ {T1, T2}, L ∈ Locations}
∪ {at(T, L) | P ∈ {PR, PB}, L ∈ Locations}
∪ {in(P, T ) | P ∈ {PR, PB}, T ∈ {T1, T2}}

• Facts change when a trucks drives to another location, loads a package or unloads
a package. Thus the actions can be defined as follows:

DriveActions := {({at(T, L1)}, {at(T, L2)}, {at(T, L1)})
| T ∈ {TL, TR};L1, L2 ∈ Locations;
L1 and L2 are connected in the picture}
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LoadActions := {({at(T, L), at(P,L)}, {at(P,L)}, {in(P, T )})
| T ∈ {TL, TR}, L ∈ Locations, P ∈ {P1, P2}}

UnloadActions := {({at(T, L), in(P, T )}, {in(P, T )}, {at(P,L)})
| T ∈ {TL, TR}, L ∈ Locations, P ∈ {P1, P2}}

A := DriveActions ∪ LoadActions ∪ UnloadActions

• The initial state is the set of facts that are initially true, this means
{at(TL, STL

), at(TR, STR
), at(PB, SPB

), at(PR, SPR
)}.

• The goal is reached when both packages reached their destination. Meaning the
goal is {at(PB, DPB

), at(PR, DPR
)}

• Here I will refer to an action in DriveActions as drive(t, l1, l2), where t, l1 and l2 are
an according valid choice for T, L1 and L2 in the set builder condition of DriveAc-
tions. load(t, p, l) and unload(t, p, l) are defined in the same way. Then the following
sequence of actions could be used to deliver the blue package:

drive(TL, STL
, B), drive(TL, B, SPB

), load(TL, PB, SPB
), drive(TL, SPB

, B),

drive(TL, B, STL
), drive(TL, STL

, DPB
), unload(TL, PB, DPB

)

Extending this action sequence s.t. the red package will be also delivered (and
the blue package did not change its position) yields a plan. Note that it is not
mandatory to use both trucks.

In this example of our task, the grounded representation seems really compact, if you
judge it by the amount of text I have written down. But realize that this is just because
I used the set-builder notation. Representing these sets within a data structure means
that each fact will be listed separately.

Still, the set-builder notation is really handy to represent planning tasks. And this is
why PDDL is designed to serve the same purpose. This means the lifted representation
will be defined in a way that actions and (the equivalent for) facts can be represented
in such a compact, parameterized way. Instead of directly representing facts they can
be represented by a combination of a predicate and objects. The predicate refers to a
property that shall be represented, e.g. at to describe that something is at a certain
position. The objects capture between which things this property should hold, e.g. TL
and D. If the predicate is combined with right amount of object something is created,
that looks like a previous fact. This will be referred to as atom.

Definition 2: (Predicate)
A predicate p is a tuple (pname, psize). I will also refer to psize as |p|. (The arity of p.) A
set of predicates is typically denoted by P .

In the following I will refer to the previously mentioned objects. Like facts, objects will
just be defined to be any set. You can think of objects as everything we want to put into
some relation.
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Definition 3: (Atom)
A tuple ( p, ~o ) is called an atom with respect to a set of parameters ?X, predicates P
and objects O if p ∈ P , | p | = |~o | and for i ∈ {1, . . . , |domp|} it holds that oi ∈ ?X ∪ O.

• The atom ( p, ~o ) can be also denoted as p( ~o ).

• The set of all such atoms is denoted by Atoms(?X,P ,O).

• A set Atoms(∅,P ,O) is called instantiated.

• If an atom is element of any instantiated set of Atoms, it is called instantiated.

Note that in this definition, atoms does not only capture objects, but also parameters.
Parameters will be place holders for objects and will be typically denoted with a question
mark in the front (e.g. ?x). Below I will define how a lifted task will be represented with
the help of predicates and objects and also how a place holder can be exchanged with a
concrete object. This replacement will be called instantiation. This definition of a lifted
task should remind you of PDDL syntax.

Definition 4: (Lifted Task)
A Lifted Task is a tuple (P ,O,AL, IL,GL) where P is a set of predicates, O is a set of
objects, AL is a set of lifted actions, IL ⊆ Atoms(∅,P ,O) is the lifted initial state and
GL ⊆ Atoms(∅,P ,O) is a lifted goal condition.

• An action a ∈ AL is a tuple (paramsa, prea, adda, dela), where prea, adda, dela ⊆
Atoms(params,P ,O) and params ∩ O = ∅.

• The set of all possible parameters in an action across a lifted task is denoted by ?X.
I will always assume that in any context it holds that ?X ∩ O = ∅

• Parameters of an action a can be instantiated by replacing parameters with objects,
i.e. a set S ∈ {prea, adda, dela} can be instantiated with the help of a function
f :?X ∪ O → O, f|O = id in the following way:

inst((p, (x1, ..., xn)), f) := (p, (f(x1), ..., f(xn)))

This way a whole action can be instantiated with such a function f :

inst((paramsa, prea, adda, dela), f) := (f(prea), f(adda), f(dela))

• I’ll denote the set of all instantiations by:

Inst(AL) := {inst(a, f) | a ∈ AL, f :?X ∪ O → O, f|O = id}

• One instantiation inst(a, f) can be also denoted by a(4) where
4 := (f(?x1), ..., f(?xn)) and (?x1, ..., ?xn) = paramsa.

I will omit the grounded / lifted notation when it is clear from the context.
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Example 2: (Grounded Transport Task)
The task from figure 2.1 can be formalized as grounded task in the following way:

• As predicates one needs at least the previously mentioned relations at and in. Ad-
ditionally the information that was used in the set-builder notation needs to be
captured in some way. This means if to locations are connected and that something
is a truck, location or package.

P := {(at, 2), (in, 2), (connected, 2), (truck, 1), (location, 1), (package, 1)}

• Objects are chosen as the trucks, packages and locations.

O := {TL, TR, PB, PR} ∪ Locations

• The actions will be defined in a similar fashion as in te grounded task. Note, how-
ever, that precondition now captures the information that te set builder condition
previously did.

drive := (

{?t, ?l1, ?l2},
{at(?t, ?l1), connected(?l1, ?l2), location(?l1), location(?l2), truck(?t)},
{at(?t, ?l2)},
{at(?t, ?l1)},

)

load := (

{?t, ?p, ?l},
{at(?t, ?l), at(?p, ?l), location(?l), package(?p), truck(?t)},
{in(?p, ?t)},
{at(?p, ?l)},

)

unload := (

{?t, ?p, ?l},
{at(?t, ?l), in(?p, ?t), location(?l), package(?p), truck(?t)},
{at(?p, ?l)},
{in(?p, ?t)},

)

A := {drive, load, unload}
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• An example instantiation for drive is drive is drive(TL, STL
, B) =

(

{at(TL, STL
), connected(STL

, B), location(STL
), location(B), truck(TL)},

{at(TL, B)},
{at(TL, STL

)},
)

• In the initial state it shall still be captured what the initial positions of trucks
and packages are. In addition that it now needs to be added which locations are
connected and which objects are a package, a truck or a location.

IL := {at(TL, STL
), at(TR, STR

), at(PB, SPB
)), at(PR, SPR

)}
∪ {truck(TL), truck(TR)}
∪ {location(l) | l ∈ Locations}
∪ {package(PR), package(PB)}
∪ {connected(l1, l2) | l1 and l2 are connected locations}

• The goal remains that the packages are at their destination.

GL := {at(PB, DPB
), at(PR, DPR

)}

Note how similar the notations for the lifted and grounded representation are. I designed
the definitions this way on purpose. It should highlight that the difference is rather in
the representation of some algorithm, than the understanding of the task (for us hu-
mans). Also note that in the grounded representation actions like drive(TL, TL, TL) or
drive(TL, B,G) do not exist, however in the lifted representation they do. One reason for
drive(TL, TL, TL) not to exist is that TL is not a location. The reason for drive(TL, B,G)
is that B and G are not connected. State of the are planner will recognize this (from the
information in the initial state) and use this information to ignore/prune such actions. I
will also exploit this information in later approaches. (Described in 4.2.)

In the example above I did not describe an example plan. The reason for this is that
there is no definition to search in the lifted task. In order to search in the lifted task, it
needs to be transferred to a grounded representation. This process is called grounding.
Below I will describe a naive way of doing this. In practice grounding is not done in such
a naive way, there are many optimizations. E.g. ignoring actions like drive(TL, B,G) as
I described above.
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Proposition 1: (Grounding a lifted task)
A Grounded Task Π′ = (F ,AG, IG,GG) can be obtained from a Lifted Task
Π = (P ,O,AL, IL,GL) by setting:

• F := Atoms(∅,P ,O)

• AG := Inst(AG)

• GG := GL

• IG := IL

In order to search with grounded semantics within a lifted representation, recent work
introduced lifted successor generation. Intuitively speaking this means that the search
only grounds what is necessary for the so far explored states. [1]

2.3 hFF

Before defining hFF , I’ll first recap what heuristics and relaxations are.

Definition 5: (Heuristic)
Let S be a set of states. A heuristic (function) h : S → R+

0 ∪ {∞} is an estimate for the
plan cost of a state. The perfect heuristic (denoted by h∗) returns the minimal plan cost
for for a state.

The general idea behind relaxation is to create a task Π′ for a task Π that is easier to
solve but still has a similar structure. In this case heuristic estimates can be obtained
from Π′ that show to be helpful for Π.

Definition 6: (Delete Relaxation)
Given a grounded task Π, the delete relaxed task Π+ is defined by setting dela = ∅ for all
a ∈ AG. I will refer to h+ for a task Π as the perfect heuristic for its corresponding task
Π+. Note that this is a valid heuristic for Π since the states for Π and Π+ are the same.
h+ is also called the optimal delete-relaxation heuristic.

A plan for a relaxed task can be computed by simply applying all applicable operands
until the goal is reached. However, it should be intuitive that this will not result in good
estimates for a real plan. On the other hand it was shown that is NP-hard to compute
h+. So the goal is to find a middle ground that delivers good heuristic estimates, but
is not to hard to compute. The planning framework FastForward ?? introduced, among
other novelties, a heuristic (hFF ) that extracts a more promsing plan.

In the following I describe a way to compute hFF . The computation is divided in two
steps. The first one is a forwards exploration in that the information is retrieved, how a
fact can be reached. The second one is a backwards exploration, where starting at the
goal, a plan is extracted by using the information retrieved before to achieve necessary
facts.
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1. Compute a best supporter function: There are multiple ways to choose a best
supporter function. Here I describe a concrete one. In each iteration all actions that
are currently applicable are applied. For all newly reached facts, the best supporter
is marked as an action that reached the fact. Note that this results in being the
action that reached a fact first in this context. This process is repeated until the
goal is reached. (See Algorithm 1.)

2. Extract the delete relaxed plan: Once the necessary best supporter are com-
puted, the relaxed plan can be extracted. This can done by selecting the best
supporter of the goal and recursively the supporter of their preconditions until all
preconditions will be fulfilled. (See Algorithm 2.)

Algorithm 1: bs computation

1 C ← IG, bs← emptyMap
2 while GG 6⊆ C do
3 for each a ∈ A do
4 if a applicable in C then
5 C ′ ← CJaK
6 for each f ∈ C ′ \ C

do
7 bs[f ]← a

8 C ← C ′

9 return bs

Algorithm 2: Plan Extraction

1 Open← GG \ IG,
2 Closed← IG,
3 Rplan← ∅
4 while Open 6= ∅ do
5 select g ∈ Open
6 Closed← Closed ∪ {g}
7 Rplan← Rplan{bs(g)}
8 Open← (Open\{g})∪(prebs(g)\Close)
9 return Rplan

Note that this doesn’t extract a plan as defined above. However, this doesn’t matter since
it yields the amount of actions for the plan what will be the heuristic value. The depicted
algorithm is the naive computation. There is an optimization called “counter based”,
which directly detects if an action a is applicable by tracking the amount if inapplicable
preconditions for it. When this amount reaches 0, the action will be marked to be applied
in the next iteration. [9]
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Chapter 3

Unary Relaxation

In this chapter I will introduce a new relaxation, called Unary Relxation. This relaxation
is an addition to the already known delete relaxation. (The task will be even more
relaxed.) In this setting, I introduce a plan extraction within a lifted task. Through
the delete relaxation it is possible to extract plans in poly-time. And trough the unary
relaxation it is possible keep the representation within the (asymptotic) space bounds of
the lifted representation.

3.1 Construction

When inspecting the lifted representation of the Transport task, you may notice that
there are some predicates for that there are no respective facts in the grounded task.
Intuitively one could say that this is not information that the grounded task is missing,
but rather information that is already incorporated in the grounded setting. Even if the
lifted representation has to store more predicates/information this way, the representation
will be smaller in almost all commonly known domains. The representation of facts in
the naively grounded representation uses θ(

∑
p∈P |O||p|) whereas the lifted representation

uses θ(|O| + |P|) space. The space consumption of lifted vs. naively grounded actions
shows a similar difference.

Even if this is just the space consumption of the naive grounded representation, which
does also not incorporate the previously mentioned information, it should be quite intu-
itive that on many tasks there is a big difference in the space consumption of the lifted
and grounded representation. Note that for this argument to be correct, I and G of the
lifted task have to stay within the previously mentioned space bounds.

The blowup in space will not be relevant when the arity of all predicates and actions is
less or equal to 1. Below I will introduce an action that makes use of this thought by
losing the connection between the indexes in predicates. Per convention I will assume that
there exists no predicates with arity 0. This is possible since any predicate with arity 0
can be transformed into a predicate of arity 1 by adding atoms with one fixed arbitrary
object as instantiation of these atoms.

Definition 7: (Unary Predicate)
A Unary Predicate is a predicate of the form ((p, i), 1) where i ∈ N and p is element of a
set of predicates from another task. A predicate ((p, i), 1) is also notated as pi.
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Proposition 2: (Unary Predicate Transformation)
A set of Unary Predicates UnPr(p) ⊆ (P × N) × N is obtained from a predicate p ∈ P
by setting:

UnPr(p) := {((pname, i), 1) | 1 ≤ i ≤ |p|}
The set of all unary predicates for a set of predicates P is denoted by UnPr(P) :=⋃

p∈P UnPr(p).

Example 3: (Unary Predicates for at)
The set of Unary Predicates UnPr(at) is {at1, at2} (in the Transport example). So the
unary predicates only measure that there exist trucks and packages (with at1) and that
something is at some location (with at2).

Defining Unary Atoms is straight forward. It’s basically just transferring the instantia-
tion/parameter at each index to the according predicate. E.g. at(TL, STL

) to {at1(TL), at2(STL
)}

or
at(?t, B) to {at1(?t), at2(B)}.
Definition 8: (Unary Atom)
A Unary Atom is an Atom with a Unary Predicate. A set of Unary Atoms for an
Atom( p, ~o ) can be obtained as UnAt( p, ~o ) := {(pi, ~oi) | 1 ≤ i ≤ |p|}. The set of
Unary Atoms for a set of Atoms At is defined as UnAt(At) :=

⋃
at∈At UnAt(at).

The idea behind Unary Relaxed Actions is a little bit more complicated. I will start by
defining them.

Definition 9: (Unary Relaxed Action)
A Unary Relaxed Action a is a tuple (P,A) with parameters P = (p1, ..., pn) and a set

of actions A = {ac, ap1 , ..., apn}. Action ac has arity 0. Actions ap1 , ..., apn have arity 1. I
refer to ac as the constant part of a and call A the Split Actions of a.

• An instantiation au(o1, ..., on) is applicable if ac() is applicable and ap1(o1), ..., apn(on)
are applicable. I.e. preau(o1,...,on) :=

⋃
1≤i≤n preapi (oi) ∪ {preac()}.

• The add list addau for an instantiation au(o1, ..., on) is the join of the according split
instantiations, i.e. addau(o1,...,on) :=

⋃
1≤i≤n addapi (oi) ∪ {addac()}.

• Unary relaxed actions feature no delete list (or an equivalent to that).

• The arity of au is set to the amount of parameters, i.e. |au| := |P |.

The idea behind this definition is that since all predicates are unary, there is at most
one parameter in an atom. So the different atoms can be handled through sub-actions,
depending on their parameter/instantiation. The constant part of a relaxed action repre-
sents all those Unary Atoms that are already instantiated. A Split Action a?x represents
all those Unary Atoms that depend on ?x. This means a transformation can be defined
in the following way:

Proposition 3: (Unary Relaxed Action Transformation)
A unary relaxed action au = (paramsa, A) can be obtained from an action a =
(paramsa, prea, adda, dela) in a Lifted Task Π = (P ,O,A, I,G) by constructing A =
{ac, a1, ..., a|paramsa|} as follows:
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• ac := ({p(o) ∈ UnAt(prea) | o ∈ O}, {p(o) ∈ UnAt(adda) | o ∈ O}, ∅)

• For 1 ≤ i ≤ |paramsa|:

a(paramsa)i := ({pi(?x) ∈ UnAt(prea) |?x ∈?X}, {pi(?x) ∈ UnAt(adda) |?x ∈?X}, ∅)

A transformation for a whole set of actions a is deonted by ra(A) :=
⋃

a∈A{ra(a)}

Example 4: (Unary Relaxed Action for drive)
Here I construct the Unary Relaxed action driveU := (P,A) for the action drive from the
Transport example. Recall that drive has the parameters ?t, ?l1 and l2, so P = {?t, ?l1, l2}.
Thus A = {drivec, drive?t, drive?l1 , drive?l2} is constructed as follows:

drivec := (

{},
{},
{},
{}

drive?t := (

{?t},
{truck1(?t)},
{at1(?t)},
{}

drive?l1 := (

{?l1},
{location1(?l1), connected1(?l1)},
{},
{}

drive?l2 := (

{?l2},
{location1(?l2), connected2(?l2)},
{at2(?l2)},
{}

)

Note that the constant part is empty, since there are no objects in any atoms of drive.
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By this construction the task is always delete relaxed, since there is no delete list in any
action. The reason for this is that when you would define the delete list in a similar fashion
as the add list, the relaxed task would become unsolvable at times when the real task is
solvable. E.g. by deleting at1(TL) when applying driveu(TL, STL

, B) in the example from
figure 2.1. So this definition would contradict the intuition behind a relaxation. (Strictly
speaking, creating such actions isn’t possible, since eff ∩ add 6= ∅.)
If you consider the amount of instantiation that can be used with a unary relaxed action,
this is still the same amount as with the original action. However, note that applying
some action au(a, b) and au(b, a) will lead to the same result as applying au(a, a) and
au(b, b). The reason for this phenomenon is that in bot cases the add-lists of ac, a?a(a),
a?a(b), a?b(a) and a?b(b) will be combined. Below I will define a way of applying this at
once, denoted as au({a, b}, {a, b}).

Definition 10: (Quick action application)

Given a unary relaxed action au and an instantiation ~O with | ~O| = |a| and ~Oi ⊆ O for

1 ≤ i ≤ |O|. au( ~O) is called applicable when all a(paramsa)i(o) for 1 ≤ i ≤ | ~O|, o ∈ ~Oi

and ac is applicable. The add list of au( ~O) is the join of all previously listed splits, i.e.⋃
1≤i≤| ~O|, o∈ ~Oi

adda(paramsa)i
(o) ∪ addac().

Applying the action au in some state S means applying au( ~O) where ~O consists of the

maximal sets s.t. au( ~O) is applicable.

A quick precondition check can be defined in the same way. By applying definition 10 ac-
tions can be applied in linear time with respect to the object amount in their instantiation.
Applying au is (naively) possible in O(|O|·|a|) by just checking for each index and object if
the according split action is applicable. (Whereas there |O||a| many different instantiation
fore the action.)

Defining the structure of the relaxed task and transformation only consists of combining
what was done before:

Definition 11: (Unary Relaxed Task)
A Unary Relaxed Task Πu is a tuple (Pu,O,Au, Iu,Gu) where:

• Pu is a set of Unary Predicates.

• O is a set of objects.

• Au is a set of Unary Relaxed Actions.

• Iu and Gu are sets of Unary Atoms.

Intuitively the atoms in I and G can be interpreted as facts, since they do not contain
any parameters. Since being applicable and the add list of a unary relaxed action au are
defined via their grounded Split Actions, a search can be defined in a similar fashion as
in a grounded task.
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Definition 12: (Search in a Unary Relaxed Task)
Given a state s ⊆ Atoms(∅,P ,O) within a unary relaxed task:

• An action a can be applied to s when it is called applicable (prea ⊆ s).

• Applying a to s (denoted by sJaK) results in a state s′ = s ∪ adda.

• Applying a sequence of actions a1, ..., an to a state s is defined as sJa1, ..., anK :=
sJa1KJa2, ..., anK.

• A sequence of actions a1, ..., an is called a unary relaxed plan, if G ⊆ IJa1, ..., anK.

Note that the heuristic value of the optimal heuristic, denoted as hU∗, in an ultra relaxed
task is bounded by h+ since every delete relaxed plan is also a unary relaxed plan. The
task transformation is defined by applying all previously defined transformations.

Proposition 4: (Unary Relaxed Task Tansformation)
A Unary Relaxed Task Πu = (Pu,O,Au, Iu,Gu) can be obtained from a Lifted Task Π =
(PL,O,AL, IL,GL) by setting:

• Pu := UnPr(PL)

• {au | a ∈ A}

• Iu := UnAt(IL)

• Gu := UnAt(GL)

Example 5: (Unary Relaxed Goal and Initial State)
Previous examples already showed how to obtain a unary predicate and action in the
running example. Here I want to extract the unary goal and inital state, since I will refer
to them later on.

• I := {at1(PB, ), at2(SPB
), at1(PR), at2(SPR

) at1(TL, ), at2(STL
), at1(TR), at2(STR

)}
∪ {connected1(l) | l ∈ Locations}
∪ {connected2(l) | l ∈ Locations}
∪ {truck1(TL), truck1(TR)}
∪ {location1(l) | l ∈ Locations}
∪ {package1(PR), package1(PB)}

• G := {at1(PB), at2(DPB
), at1(PR), at2(DPR

)}
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3.2 Plan Extraction
The plan extraction is done in a similar way as in hFF . It starts with a forward iteration
where the best supporter function is computed and extracts a plan with that. The best
supporter function here maps unary atoms to split actions.

For the best supporter computation the main difference, apart from using atoms in-
stead of facts, is that now the first possible instantiation of each parameter in an action
is additionally tracked. This will be denoted by the first function. Why this is necessary
becomes clear when looking at the plan extraction. To highlight differences I marked the
modified parts (of the original hFF algorithm) in blue.

Algorithm 3: bs computation

1 C ← I, bs← emptyMap
2 first← map(ai 7→ none | a ∈ A ∧ 1 ≤ i ≤ |a|)
3 while G 6⊆ C do
4 for each a ∈ A do
5 for each ax ∈ asplits, o ∈ O do
6 if ax(o) applicable in C ∧ first[ax] = none then
7 first[ax]← o

8 if a applicable in C then
9 for each ax ∈ asplits do

10 C ′ ← CJaxK
11 for each pi(o) ∈ C ′ \ C do
12 bs[pi(o)]← ax

13 C ← C ′

14 return bs

I already mentioned that for the plan extraction we need the first function. Consider
the following example to get an idea why this is necessary:

Example 6: (The unary relaxed plan extraction problem)
When extracting a plan for the running example, at2(DPB

) and at2(DPR
) still need to

be achieved. (The rest of the goal is true in the initial state.) Assume bs(at2(DPB
)) =

drive?l2(DPB
). So the plan will contain driveu( , , DPB

), but it is not clear, what the
blanks should be.

As solution for this problem I choose the first possible instantiation of the corresponding
parameter in an action. The intuition behind this is that this should not introduce too
much overhead, since this parameter will be achieved “quickly”. Following this idea, the
rest of the plan extraction is straight forward. The open list will consist of unary atoms.
Step by step the elements that are (still) in the open list are select. For each element
the best supporter is determined. For the best supporter a action instantiation can be
selected with the help of the first function. The precondition of this action instantiation
is added to the open list and the effect is marked as achieved.

This time I did not mark common/different parts, since the syntax of both plan
extraction algorithms differs too much. However the general structure of both algorithms
is still the same.
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Algorithm 4: Plan Extraction

1 Open← G \ I,
2 Closed← I,
3 Rplan← ∅
4 while Open 6= ∅ do
5 select pj(o) ∈ Open
6 Closed← Closed ∪ {pj(o)}
7 ax ← bs[pj(o)]
8 inst← tuple of size |a|
9 for each i ∈ {1, ..., |a|} ∪ {c} do

10 o′ ← o if x = (paramsa)i else first(ai)
11 ax ← a(paramsa)i

12 Open← Open ∪ preax(o′)
13 Closed← Closed ∪ effax(o′)
14 if i 6= c then
15 inst[i] = o′

16 Open← (Open \ Closed)
17 Rplan← Rplan ∪ {a(inst)}
18 return Rplan

I will refer to the heuristic that is computed this way as hUff .

Example 7: (Unary Relaxed Plan)
A unary relaxed plan for the running example is driveu(TL, STR

, DPB
), driveu(TL, STR

, DPR
).

It is possible to apply these actions, since connected1 and connected2 is true for any lo-
cation and at1(STR

) is initially true. Since driveu(TL, STR
, DPB

) achieves at2(DPB
) and

driveu(TL, STR
, DPR

) achieves at2(DPR
) the goal is fulfilled.
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Chapter 4

Refining the approach

As you may have already realized, the unary relaxation loses a lot information. This
raises the question how good the heuristic estimates are, which I will partially answer by
doing a first evaluation. This evaluation will give a rough idea of potential pitfalls. I will
address some pitfalls in more detail and introduce potential solutions for them.

4.1 An initial evaluation

The technical details and improvements of the concrete implementation are described in
5.2. Since the ambition is to improve the performance of the planner, I compare hUff to
Goal Counting (GC) and breadth first search (BFS), which are both search options that
are currently available. The tasks used are from past optimal IPCs.

Definition 13: (Goal Counting)
Goal Counting is the heuristic hGC that counts all unachieved goals.

hGC : S → N, s 7→ |G \ s|

When inspecting the coverage table in figure 4.1 you can see that there are three domains;
namely Agricola, Childsnack and PNetAlignment; which are were completely unsolved by
GC and BFS, but hUff was at least able to solve some instances. In PNetAlignment
hUff even solves all instances. So in terms of being able to solve new domains, hUff al-
ready achieved something new. When comparing the overall performance within coverage,
however, GC solves 239 instances more than hUff , which is the result of many domains
where GC solves more instances.

Since hUff has a huge overhead in computation time compared to GC, it is interesting
to know, how informed the search is. To investigate this, I plotted the amount of expansion
of GC vs. hUff in a scatter plot. (Figure 4.2a) As you can see, this gives no clear result.
To make a little more sense of this expansions within different domains are illustrated in
figure 3 of the appendix. This shows how domain dependent the different performance
of the heuristics is. The reason for this is probably the different natures of the heuristic.
While GC is only concerned about the goal, hUff is not goal aware (h(s) = 0 iff s is a
goal).

To get an idea if the heuristic is informative in general, I plotted the amount of expansions
in all commonly solved instances of hUff vs. BFS. I colorized those domains, where the
domain wise difference in expansions was the highest. Here you can observe that for

19



Domain BFS GC hUff

Agricola (20) 0 0 4
Airport (50) 16 22 19
Barman (34) 0 18 4
Blocks (35) 15 35 17
Childsnack (20) 0 0 3
DataNetwork (20) 9 15 14
Depot (22) 2 11 3
DriverLog (20) 5 15 5
Elevators (30) 7 30 12
Floortile (40) 0 2 0
Freecell (80) 13 30 42
GED (20) 15 20 17
Grid (5) 1 2 0
Gripper (20) 6 20 6
Hiking (20) 8 8 9
Logistics (63) 11 30 11
Miconic (150) 40 150 134
Movie (30) 30 30 30
Mprime (35) 14 18 1
Mystery (19) 11 13 2
Nomystery (20) 6 9 6
Openstacks (80) 12 37 77
OrgSynth (20) 10 12 12
OrgSynth-split (20) 6 6 8

Domain BFS GC hUff

Parcprinter (30) 7 14 8
Parking (40) 0 2 0
Pathways (30) 3 5 5
Pegsol (36) 31 36 35
Pipes-notank (50) 11 32 6
Pipes-tank (50) 6 18 7
PNetAlignment (20) 0 0 20
PSR (50) 39 46 46
Rovers (40) 4 15 17
Satellite (36) 2 6 4
Scanalyzer (30) 6 30 13
Snake (20) 1 5 6
Sokoban (30) 9 14 15
Termes (20) 3 15 2
Tetris (17) 5 17 15
Tidybot (40) 1 26 1
TPP (30) 5 10 6
Transport (60) 13 58 21
Trucks (30) 1 2 9
VisitAll (40) 7 40 40
Woodworking (30) 5 27 7
Zenotravel (20) 5 13 6

Sum (1622) 401 964 725

Figure 4.1: A comparison of breadth first search (BFS), Goal Counting (GC) and the newly intro-
duced heuristic (hUff ) in all solvable instances from the optimal tracks of the International Planning
Competitions up to 2018, that do not have conditional effects or axioms.

some domains the heuristic is “misleading”, even if it seems to be informative for most
domains.. In the following sections I will investigate some of these problems.

4.2 Static Unrelaxation

I’ve already mentioned a lot of times that within the Transport task the predicates
connected, truck, package and loacation play a different role than at and in. Here we will
categorize them as static. Intuitively speaking, static information is the information that
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Figure 4.2: Comparison of expansions within the different searches.
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does not change while exploring the task. Static predicates are widely recognized to be
important for effective grounding. [6] While grounding a lot of actions can be rendered to
be inapplicable just form the static information. Example 7 shows that within the unary
relaxation, any location can be reached in the running example. Figure 4.3 illustrates
really nicely, why this is a problem.

Definition 14: (Static Predicates)
A predicate p ∈ P is called static, if there exits no action a ∈ A, ~o ∈ ?X ∪ O|p| s.t.
p( ~o ) ∈ effa.

• The set of all static predicates is called stPr.

• An atom p( ~o ) is called static if p is static.

• The set of all static atoms within I is called stAt.

4K
AI

B1 B2

B3

C D ... end
ø

KZ

Figure 4.3: An illustration of a NoMistery task with one truck and one package. The truck already
picked up the package and is currently in A. The package needs to be delivered to Z.

Example 8: (No distance measurement)
The search of the actual task, depicted in figure 4.3, has 4 successor states for which the

heuristic will be queried for:

• Drive the truck to B3.

• Drive the truck to B1.

• Drive the truck to C.

• Drop the package at A.

In the unary relaxed task, connected1(l) and connected2(l) is true for every l ∈ Locations.
This means any location can be reached within one driveu action. So for any state the
heuristic value will be one, since the goal can still be reached with driveu(T,A, Z). The
heuristic does not capture the following properties of the task:

1. B1 leads away from Z.

2. The road over B3 is shorter than any other road.

3. The package should be in the truck to travel.
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Here I want to introduce an extension that addresses the listed problem 1 and 2 in example
8. I want to do this by introducing additional preconditions to unary relaxed actions. I
will do an example computation of this additional preconditions first.

Example 9: (Computing Additional Preconditions)
Consider the drive action from the running example. And the task depicted in figure 4.3.
Assume that at(T,C) is achieved. Then ?t has to be instantiated with T and ?x with C.
Since the precondition contains connected(?x, ?y), ?x needs to be instantiated with some
X in a way s.t. connected(X,C) is fulfilled. From stAt it can be concluded that there
are two options for ?x: A and D. This means in order to achieve at(T,C), at(?t, A) or
at(?t,D) has to be true. This requirement is useless in the actual task, since it is always
true when the precondition is fulfilled. However transferring this to the lifted unrelaxation
you can now require predrive?x(A) or predrive?x(D) to be ⊆ s in order for drive?y(C) to be
applicable in some state s. predrive?x(A) and predrive?x(D) can be used here, since they
denote exactly those preconditions where ?x was substituted by D.

In algorithm 5 a way of computing this additional preconditions in a generic way is
introduced. The idea behind this algorithm is the same as the idea described in example
9. Note that this additional preconditions are actually conditions (logical) terms, opposed
to just sets as normal preconditions. Strictly speaking ∧ and ∨ are not defined for atoms.
The definition however, would be straight forward by interpreting an atom a as true iff
it is element of the current state. To reduce the runtime overhead of this extraction, the
relations are just quadratic, i.e. this check is only done for pairs of positions/objects.

Algorithm 5: Quadratic Extraction of Additional Pres of ax(o)

1 add pre← true
2 for each static Atom p(~o) ∈ preax do
3 for each i with ~oi = x do
4 for each j 6= i ∧ 1 ≤ j ≤ |p| do
5 if ~oj ∈ O then

6 if ¬∃p(~o′) ∈ stAt : ~o′i = o ∧ ~o′j = ~oj then
7 return false

8 else
9 add pre← add pre ∧ (

∨
o′∈O prea~oj (o′))

10 return add pre

The check in line 3 can be changed to ~oi ∈ O to run use the algorithm with ac. To
incorporate the additional precondition within a relaxed task, Definition 9 would need to
be changed to: An instantiation au(o1, ..., on) of a Unary Relaxed Action au is applicable
in a state s if the following two statements are true:

• The additional precondition of ac evaluates to true in s and preac() ⊆ s.

• For each 1 ≤ i ≤ |au|: pre(paramsa)i(oi) ⊆ s and the additional precondition of
pre(paramsa)i(oi) evaluates to true.

This basically means that both the additional precondition and normal precondition have
to be true in the current state.
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4.3 Predicate Splitting

In previous examples the extracted plans in the unary relaxation only consisted of driveu
actions. This is the case because in the unary relaxation it is only captured that something
is at a certain position, not what. Here I want to introduce an extension s.t. at least a
package has to be at this position instead of a truck.

Example 10: (Perfect for Predicate Splitting)
In the task, depicted in figure 4.4, the goal is already achieved within the unary relaxation.
Now assume that within Logistics tasks the location of packages would be determined via a
predicate at package and the location of trucks via a predicate at truck. Then also within
the unary relaxation the task is not solved yet since only at truck2(DPR

) is fulfilled, but
not at package2(DPR

). In this particular case it holds that h+ = hU∗.

I C ... D

K

b2
ø

KR
4

Figure 4.4: An illustration of a NoMistery task with one truck and one package. The truck did not
deliver the package yet and is currently in the destination of the package.

Intuitively splitting up the at predicate as proposed in example 10 is possible, since
trucks and packages are completely different things and so are handled separately. “Being
handled separately” is an important point here. For all atoms at(?x, ?l) in prea ∪ effa
of some action a, ?x is constrained to either truck(?x) or package(?x) in prea. In the
task there is no object that fulfills truck and package at the same time. So the at atoms
will always have different instantiations and thus can be consequently renamed without
changing the semantics of the task. In the next extension you can see that similar things
are also possible when the atoms share instantiations. However, this would introduce
additional actions. Here only one predicate is added to the task, which is a negligible
addition in terms of space. In the following I introduce an algorithm that detects such
predicates and “renames” them.

One equivalence class, computed by algorithm 6, is the join of all possible instantiations
that share at least one atom. Note that a equivalence relation has to be transitive So if
p(~o1) and p(~o2) share one instantiation, p(~o2) and p(~o3) share one instantiation, but p(~o3)
and p(~o1) don’t, their instantiations are still combined to on equivalence class. Something
is considered to be a possible instanatiation when the instantiation does not contradict any
static atom in the precondition with arity 1. The equivalence classes for at in the running
example are {(t, l) | t ∈ {TL, TR}, l ∈ locations} and {(p, l) | t ∈ {PB, PR}, l ∈ locations}.
The renaming is done with help of these equivalence classes.

Definition 15: (Instantiation Equivalence Classes)
Algorithm 6 describes a way to extract the instantiation equivalence class of objects for
a predicate p ∈ P . This will be denoted as P/J·Kp. Where J·Kp is the implicit equivalence
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Algorithm 6: Extract object equivalence classes for p

1 EquvClasses← ∅
2 for each a ∈ A, p(~o) ∈ prea ∪ effa do
3 new class[|p|]
4 for each 1 ≤ i ≤ |p| do
5 sp← {p ∈ stPr | |p| = 1 ∧ p(~oi) ∈ prea}
6 new class[i]← {o ∈ O | ∀p ∈ sp : p(o) ∈ stAt}
7 for each cl ∈ EquvClasses :
8 ∀1 ≤ i ≤ |p| : new class[i] ∩ cl[i] 6= ∅ do

9 EquvClasses← EquvClasses \ cl
10 for each 1 ≤ i ≤ |p| do
11 new class[i]← new class[i] ∪ cl[i]

12 EquvClasses← EquvClasses ∪ new class

13 return EquvClasses

relation. The join of all so computed equivalence classes
⋃

p∈P P/J·Kp is denoted by P/J·K.

To “rename” predicates, the predicates become a tuple of the old predicate and one
equivalence class. In the following I define a function that returns the new predicate for
an atom.

Definition 16: (Split Function)
The Split Function spf is defined in the following way:

spf : Atoms(∅,P ,O)→ P ×P/J·K,

p(o) 7→ (p, JoKp)

With this, transforming atoms without parameters will be straight forward. However
transforming the atoms within action needs some extra care, since this has to be done
with reference to the precondition of the according action. In the following I define an
algorithm that creates a function that maps parameters to a substantiation that matches
the constraints introduced by the static atoms with arity 1 in the precondition of some
action a.

Algorithm 7: Action substitution for a ∈ A
1 obj map← {o 7→ o | o ∈ O}
2 constraints← {p 7→ ∅ | p ∈?X}
3 for each static atom p(?x) ∈ prea with |p| = 1 ∧ ?x ∈?X do
4 constraints[?x]← constraints[?x] ∪ {p}
5 return {o 7→ o | o ∈ O}
6 ∪ {?x 7→ o |?x ∈?X, o ∈ O,∀p ∈ constraints[?x] : p(o) ∈ stAt}

Definition 17: (Parameter Substitution)
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A function psubsta : ?X ∪ O → O for some a ∈ A is defined as the result of algorithm 7.

This valid instantiation mapping can be used to determine the predicate. The following
function does that and directly places it into an atom with the same instanatiation as the
input.

Definition 18: (Condition Transformation)
The Condition Transformation function for an action a ∈ A is defined in the following
way:

ctra : Atoms(?X,P ,O)→ Atoms(?X,P ,O),

p(o1, ..., on) 7→ (spf(p(psubsta(o1), ..., psubsta(on))), (o1, ..., on))

The task transformation then combines all previous definitions:

Proposition 5: (Predicate Splitting)
A Partial Instantiation Lifted Task ΠSP = (PSP ,O,ASP , ISP ,GSP ) can be obtained from
a Lifted Task Π = (PL,O,AL, IL,GL) by setting:

• PSP := PL × PL/J·K

• ASP := {(paramsa, ctr(prea), ctr(adda), ctr(dela)) | a ∈ AL}

• ISP :=
⋃

p(~o)∈IL{(spf(p(~o)), ~o)}

• GSP :=
⋃

p(~o)∈GL{(spf(p(~o)), ~o)}

4.4 Partial Instantiation

With predicate splitting it is now possible to detect that a package is in a certain location
within a Transport task. Still, it is not possible to differentiate which package is at a
certain location. Here will again introduce an extension that addresses this problem via
a task transformation.

Example 11: (Perfect Package Instantiation)
In the task, depicted in figure 4.5, the goal is already achieved within the unary relaxation.
Now assume that within this task the location of package PB and Pr is determined via
two different predicates at PR and at PB. Then also within the unary relaxation the task
is not solved yet, since only at PR(DPB

) and at PB(DPR
) is fulfilled, but not at PB(DPB

)
and at PR(DPR

). In this particular case it holds that h+ = hU∗.

The problem with such a transformation is that it does not only introduce additional
predicates, but also additional actions.

Example 12: (Action blow up with partial instantiation)
Revisit the action load. The precondition contains the predicates at(?t, ?l) and at(?p, ?l).
Ignoring any further analyses, ?t and ?p can both be instantiated with PR. So when
introducing at PR to track the position of PR you need to consider 4 cases:
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Figure 4.5: An illustration of a NoMistery task with one truck and two packages. The truck did not
deliver any package. package R(ed) is currently in the destination of package B(lue). And package B(lue)
is currently in the destination of package R(ed).

• Neither ?t and ?p are instantiated with PR.

• Only ?t is instantiated with PR.

• Only ?p is instantiated with PR.

• Both ?t and ?p are instantiated with PR.

Which are all addressed by different combinations of the predicates at and at PR, this is
why 4 actions are needed instead of one. In this particular example it could be detected
that ?t can not be instantiated with at PR. This would be implicitly the case when
applying Predicate Splitting before, since ?t then wouldn’t be considered as potential
parameter. In general however, it is possible that blow up of newly introduced actions is
even bigger.

Still it may be worth to accept this blow up in space in really rare cases when the gain of
information is big enough. Here I want to introduce a task transformation that basically
pre-instantiates one particular position of one one predicate with a particular object. In
order for the relaxation to “recognize” this, it will be done by renaming the predicate,
similar to the way in the previous example. The following transformation will be fixed
for p ∈ P , o ∈ O and i ∈ N. As new predicate name I will use (p, o, i) to denote that the
predicate p was instantiated at position i with object o.

Definition 19: (Partially Instantiated Predicate)
As Pinst I denote P extended by the newly introduced predicate:

Pinst := P ∪ {pinst}

Where inst pinst is the newly introduced predicate

pinst := ((p, o, i), |p| − 1)

For convenience, I’ll define a function that removes an element from a vector, before
defining the actual transformation function.
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Definition 20: (Truncate)
The truncate function for a vector ~o ∈ On with n ∈ N∗ is defined as:

trn : On → On−1,

((o1, ..., on), i) 7→


(o2, ..., on) , if i = 1

(o1, ..., on−1) , if i = n

(o1, ..., oi−1, oi+1, ..., on) , otherwise

The usage of tr(~o) implicitly refers to tr|~o|(~o).

To handle the permutations I will use decisions function f :?X → {true, false} that
decide if a parameter should be instantiated or not. Below I will define a Transformation
Function that transforms atoms with predicate p and ignores every other predicate.

Definition 21: (Transformation Function)
The Transformation Function tff , a is defined with respect to a function f :?X →
{true, false} and an action a ∈ A in the following way:

tff : Atoms(?X,P ,O)→ Atoms(?X,Pinst,O)

p′( ~o ) 7→ subst(x), x =


pinst(tr(~o, i)), if p′ = p ∧ ~oi = o

pinst(tr(~o, i)), if p′ = p ∧ ~oi ∈?X ∧ f(~oi)

p′( ~o ), otherwise

Where subst is the function that replaces all parameters ?x in an atom with when for
that it holds that f(?x) ∧ ∃p′(~o) ∈ prea : ~oi =?x ∧ p′ = p. Meaning tat ?x occurred once
at position i of an atom with predicate p. I’ll denote (f, a) = ε, in cases where it does
not matter what f is chosen. This is the case if ?X = ∅.

Proposition 6: (Partial Instantiation)
A Partial Instantiation Lifted Task ΠPG = (PPG,O,APG, IPG,GPG) can be obtained from
a Lifted Task Π = (PL,O,AL, IL,GL) by setting:

• APG :=
⋃

a∈AL

{(paramsa,

tff,a(prea) ∪ {allow(?x) |?x ∈?X,¬f(?x) ∧ ∃p′(~o) ∈ prea : ~oi =?x ∧ p′ = p},

tff,a(adda), tff,a(dela) | f :?X → {true, false}}

• PPG := (PL)inst ∪ {allow}

• IPG := tfε(IL) ∪ {allow(o′) | o′ ∈ O \ {o}}

• GPG := tfε(GL)

The construction above seems really complicated, however the idea is simple. Say for
each action a the parameters ?P are determinted to be potentially instantiated. Now
an action is created for each x ∈ 2?P . (All possible combinations of instantiating/not
instantiating a parameter.) When a parameter ?x is not instantiated, allow(?x) is added
to the precondition of the according action. This atom is used to forbid the instantiation
of ?x with o in this action. (allow is true for every object except o.)
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Chapter 5

Results

Here I will do an evaluation of all previously described extensions to the original ap-
proach. I start by listing implementation specific details and then continue to analyze the
benchmarks I’ve run. To conclude, what I think was not captured by the benchmarks, I
introduce a new hard to ground domain.

5.1 Implemtation specific optimizations

Negated preconditions:
The lifted framework is still in an early stage and therefore does not provide many features.
E.g. it does not support conditional effects or negated preconditions, i.e. single atoms that
should not be true in the current state in order for the action to be applicable. To support
the later, I introduce a naive transformation. Note that negations are also not introduced
within the formalism of this paper. However, they appear in many benchmarks and so
are interesting to support. The transformation substitutes every negated atom p(~o) that
appears in some precondition with a non-negated atom neg p(~o) (in this precondition).
Additionally some neg p(~o) is added to the add list of an action when p(~o) occurs in the
delete list of this action. Some neg p(~o) is added to the delete list of an action when
p(~o) occurs in the add list of this action. And for all ~o, neg p(~o) is added to Iif p(~o) is
not part of the initial state. Especially adding that many atoms to Ihas the potential
of introducing a big overhead. However in all benchmarks the arity of negated atoms in
a precondition is ≤ 3. In no benchmark the transformation took longer than 1 minute
which is a neglectable overhead within the 30 minute time-frame for the benchmarks.

Types:
Types are completely omitted in the formal definition of this paper. However, they are
defined in all commonly used PDDL domains. You can think of the types as the static
predicates of arity that were exploited before, the reason behind this is that they originate
from the respective types. In many definitions and propositions of the paper I consider
any object as instantiation for any parameter. In reality (i.e. the actual implementation)
this is not the case. There I will always only consider the objects for the respective type
of that parameter.

I also use types for the implementation of algorithm 6. The common object object can
be done by checking if there is an object that has the type of both parameters (through
inheritance), By this parameters can be used for the check instead of objects and an
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inheritance check instead of a subset check. This is presumably a lot faster. Note that
this does potentially not capture all static predicates of arity 1. Namely, if such a predicate
does not originate from a type. However, in reality this is rarely the case.

Counter based approach:
Similar to the counter based approach in hff , I implemented a counter based approach
in the forward iteration within the unary unrelaxation.

For the original configuration this is straight forward by having one counter for the
precondition of each split action and one counter for amount of split actions for that there
exists a valid instantiation already.

Within the static unrelaxation an additional counters are needed to track if an addi-
tional preconditions are true. Meaning that these counters track the amount of clauses
of the outer most conjunction that do not yet evaluate to true. Since these clauses are
disjunctions, this can be done by tracking that one precondition within in the disjunction
became true. Note that this the case when in the original relaxation the action becomes
applicable, so this mechanism can be used. Additionally, a counter, like the counter for
normal preconditions is needed, to track the amount of split actions for that there exists
an instantiation s.t. the additional precondition is true.

5.2 Evaluation

I implemented my approaches on top of the Power Lifted Planner [3]. All task trans-
formations were added within the translation unit, the heuristic were plugged into the
already existing greedy best first search. In all searches Yannakakis’ Algorithm [14] was
used as as successor generation. The experiments were run using the Lab framework [13]
on a cluster of machines with Intel Xeon E5-2650 CPUs with a clock speed of 2.30GHz.
Each instance of an experiment was run with time and memory limits of 30 minutes and
4 GB respectively. The following benchmark suites were used:

1. All solvable instances from the optimal tracks of the IPCs up to 2018 that do
not have conditional effects, either typed predicates or axioms. Resulting in a
total of 1622 unique instances from 46 domains. Note that most of this domains
can be grounded without a problem by state-of-the art planners. However, these
benchmarks offer a wide variety of domains, which is not the case for hard to ground
benchmarks, so far. I decided for the optimal benchmark set, even if the planner is a
satisfying planner, since the performance is expected to be rather bad, compared to
state-of-the-art planner, these benchmarks were designed for. The reason for this is
that state-of-the art planner have been optimized in many ways which was not the
case for the lifted planning framework so far. I believe that these benchmark set is
the best currently available option to get an idea about the quality of the heuristic.

2. The set of hard to ground benchmarks from “Lifted Successor Generation using
Query Optimization Techniques” [1], to compare the already currently available
options of the framework. This totals 418 task on 6 domains.

For comparison with already existing grounded techniques, I used the hmax, hFF and GC
implementations of Fast Downward [5] (also combined with GBFS). The experiments were
also run on the same cluster, using the Lab framework and with same time and memory
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configuration description

BFS Breadth first search
GC Goal counting (in the Power Lifted Planner)
hUff hFF -like extraction within the unary relaxed task
hUmax hmax-like extraction within the unary relaxed task

hU
2
ff hFF -like extraction within the unary relaxed task (with static unrelaxation)

n hU
2
max hmax-like extraction within the unary relaxed task (with static unrelaxation)

spl(·) denotes that predicate splitting is applied before
pinst(·) denotes that partial instantiation is applied before
greedy(·) denotes that during the plan extraction the greedy strategy is used
hFF hFF in Fast Downward
hmaxx hmax in Fast Downward
GCFD Goal Counting in Fast Downward

Figure 5.1: Abbreviations for all benchmark configurations.

limits. I will start by assessing the different approaches within the IPC benchmarks. This
was already partially done in 4.1. The coverage scores are obtained from the coverage
table in the appendix. I will refer to the configurations by the abbreviations introduced
in figure 5.1. In this list there are configurations that I did not define before. I will do
this in the following:

Definition 22: (hmax)
hmax is a heuristic. for a given state s, hmax returns the amount of forward iterations it
took to compute the best supporter function in hFF .

Definition 23: (hUmax , hU
2
max)

Similar to the definition of hmax, the values of hUmax , hU
2
max can be set to the amount of

forward iterations in hUff , hU
2
ff respectively.

Definition 24: (Greedy plan extraction)
Recall how the plan extraction in te unary relaxation is defined. (Algorithm 4.) The
additional instantiation are chosen via the first function. Here I introduce an alternative:
When it is possible to choose an instantiation s.t. some atom in the open list is reached,
choose that. (Otherwise fall back to the first function.) This should generally extract
smaller plans.

Static unrelaxation:
In total the quadratic unrelaxation (hU

2
ff ) solves 27 more instances than the original

configuration (hUff ) within the IPC benchmarks. Also the heuristic estimates seem to
be a little higher, but still lower than hFF . The highest difference can be found in an
instance of pathways. (88 vs. 195, see figure 9.) In figure 6 of the appendix, you can see

that hU
2
ff has more expansions per time. The reason for this is that in hU

2
ff the heuristic

values (and so extracted plans) seem to shrink faster. This intuition should be really
clear from the previous Logistics example in figure 4.3, where the h-value of hUff does
not change when driving around, however for hU

2
ff it does. The noise within the total
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expansions scatterplot is expected, since there are still many pitfalls for both heuristics
so tie breaking for such states matters a lot. Overall it seems reasonable to assume that
hU

2
ff is a slightly more qualitative heuristic than hUff .

Split Predicate Transformation:
In earlier benchmarks, without the counter based version and with other successor gen-
erators, the Split Predicate Transformation showed a significant positive effect on both
coverage and expansion. Now, however, this effect seems negligible. In total hU

2
ff solves

6 more instances with the transformation, than without it. However, there are also in-
stances, e.g. 3 in Sokoban, that are not solved anymore. Also in figure 1 of the appendix,
both configurations seem nearly indistinguishable. In the plot for the initial heuristic val-
ues between 0−10 there seems to be a little difference, but this could easily be the reason
of a new predicate order through the newly introduced predicates. Since the transforma-
tion is really fast ≤ 20 seconds across all tasks, it should not have a negative impact to
use the transformation, but it also does not seem like there is a need to use it. Note that
this transformation may be not that effective, because it was already intuitively done by
the task creator. E.g. the predicate in of the logistics task could have also be represented
as at.

Partial Instantiation:
pinst(spl(hU

2
ff )) initially performs multiple partial instantiations. Namely for each (p, o, i) ∈

{(p, ~o1, 1) | p(~o) ∈ G}. Intuitively this means the first position of all goal atoms is in-
stantiated. It is not surprising that this works well within the IPC domains, since these
domains can be grounded. Note however, that in reality this is not entirely true since
my implementation is really naive. E.g. in Organic Synthesis or Visitall the run time
overhead of the partial instantiation is so big that less instances are solved. In Organic
Synthesis and Organic Synthesis-split this even means that no instance will be solved
anymore. Still, pinst(spl(hU

2
ff )) solves 149 more instances than spl(hU

2
ff ). This show that

even just such a partially grounded representation already provides a lot more information
about the task that can be exploited.

Quality of the heuristic value computation
Still, hFF solves 438 more instances than pinst(spl(hU

2
ff )). Here I want to analyze different

parts of the heuristic computation to get an idea what potential reasons for this could be. I
will start by questioning the plan extraction. For this I compare standard hU

2
ff to hU

2
ff with

the greedy plan extraction (greedy(hU
2
ff )) in figure 7 of the appendix. You can see that

this way the plans are indeed shorter, since the initial heuristic values are (almost strictly)
smaller. However the amount of total expansions increases and the coverage decreases.
(177 instances solved less in total.) So the usual plan extraction is at least better than
the greedy plan extraction. Note that this potentially means that it is not desirable to
compute hU∗.

To get a better idea about how useful the plan extraction is, I compare hUff to
hUmax and hU

2
max to hU

2
ff in figure 4 and 5 of the appendix respectively. From both

figures, it is very clear that the respective plan extractions outperform the simple forward
iterations. This is also confirmed by the coverage difference. (725 vs. 476 and 752 vs.
482) With this it can not be concluded that this a good plan extraction in a sense of that
alternatives wouldn’t perform better, but at least this shows that the plan extraction
makes a significant difference.
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Coverage BFS GC hUff hU
2
ff spl(hU

2
ff ) hFF GCFD

genome-edit-distance (156) 20 156 25 26 24 62 156
genome-edit-distance-split (156) 18 156 19 20 20 35 156
organic-synthesis-alkene (18) 16 16 14 14 17 15 15
organic-synthesis-MIT (18) 14 14 12 11 13 2 2
organic-synthesis-original (20) 3 6 1 1 2 1 1
pipesworld-tankage-nosplit (50) 10 21 10 9 9 13 16
Sum (41) 81 369 81 81 85 128 346

Figure 5.2: Coverage table for the hard to ground domains.

As a last measure I compare hU
2
max to hmax and spl(hU

2
ff ), pinst(spl(hU

2
ff )) to hFF in

figure 8. Here it seems like the difference in initial heuristic values decreases from left
to right. Meaning that spl(hU

2
ff ) and pinst(spl(hU

2
ff )) are closer to hFF than hU

2
max is to

hmax. My suspicion is that the reason for this phenomenon is that the heuristic value
increases a lot by extracting a lot of actions that differ in only one split action. It would
be interesting to return the amount of extracted split actions as heuristic value and see if
this is a even more qualitative heuristic.

Hard to ground benchmarks:
Figure 5.2 shows the hard to ground benchmarks the Power Lifted Framework was initially
tested on. The coverage scores of my tested approaches are comparably low, however
this is expected, since hFF also has comparably low coverage scores compared to GC
within FD. Note however, that in organic-synthesis-alkene spl(hU

2
ff )scores the highest

coverage score and so solves all instances of this domain except one. Predicate splitting
seems to work well within Organic Synthesis in general. In all organic synthesis domains,
spl(hU

2
ff ) solves more instances than hFF .

5.3 A new hard to ground domain:

Visitall is a domain where a player has to visit all fields in a n× n grid from his starting
position. A field is considered to be visited when the player walked on it once. The player
can only walk to adjacent fields in the grid.

Here I introduce a set of domains, called visit-a-d that is closely related to visitall.
a stand for some amount of fields that shall be visited and d for a dimension, meaning
that the player moves in across positions in {1, ..., n}d. The player can move from one
position to another when the positions differ in only one position and in this position the
difference of the elements is one. The goal is that the player visit a pre selected fields.
This means visitall = visit-n2-2.

Example 13: (visit-a-4)
Assume the player would be at position (1,2,7,1) of a visit-a-4 task. Then the player can
move to the following positions:

• (1,1,7,1)

• (1,2,6,1)

• (2,2,7,1)

• (1,3,7,1)

• (1,2,8,1)

• (1,2,7,2)
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I believe that doing further research with this domain will show strengths of the unary
relaxation that I was not able to capture so far. And also addresses the following problems
with recent lifted benchmarks:

• In the hard to ground domains above, there exists no predicate with an arity ≥ 3.
As the arity of predicates grows, the amount of potential state grows. In the other
domains this growth corresponds to the amount of transitions between states, not
the amounts of states. With visit-a-d tasks there exists the option to scale the arity
of predicates to any amount. In my opinion the rising amount of states is a really
interesting problem to tackle with the lifted planning framework. E.g. consider
a visit-a-4 task with a ridiculously high n, like n = 109. Then no planner would
be able to compute a plan to go from (1, 1, 1, 1) to (n, n, n, n), since just printing
it would already take too long. However, reaching (1, 1, 1, n) could possibly work,
since then only c ∗ n states need to be computed. Maybe 109 is still too much, but
the general idea should be understandable.

• In addition to the not too big state spaces, most current hard to ground task feature
rather many goals. This means Goal Counting is expected to perform well. However,
when this would not be the case, Goal Counting does not work well anymore and
thus it will be a lot harder compute estimates. This is exactly the case in visit-a-d
tasks. They can be designed to contain a small amount of goals in an enormous
state space. I believe that in such a setting the unary relaxation will show to be
more successful.
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Chapter 6

Conclusion

With the help of the unary relaxation and the thereto related heuristics I was able to
solve multiple tasks that the Power Lifted Planner was not able to solve so far. However,
judging by the coverage in the IPC domains, goal counting is still has an edge over the
here introduced benchmarks.

Even tough I described a potential way of further improving the heuristic with partial
instantion, so far, I was not able to find a promising partial instantiation configuration.
But I still believe that this has great potential of improving the heuristic. In order to do
this, finding well working parameters is mandatory. Maybe one should start by doing this
for some concrete domains and only generalize the approach from there.

Partial instantiation could also be extended even further. Instead of introducing a
new predicate that represents one instantiation, the new predicate could also represent
multiple instantiations. I.e. it will be only captured if this predicate is fulfilled for at least
one of the instantiations. This would be similar to already existing work where equivalence
classes are introduced to minimize the amount of atoms that need be computed. ?? The
difference however is, that in the related work this equivalence classes are used to search in
a smaller state space in a grounded fashion. The idea here would be to use the information
of the equivalence classes to find proper parameters for such a partial instantiation and
then continue using the unary relaxation.

Additionally the unary relaxation is not bound to a hFF like plan extraction. E.g. one
could try an approach similar to hlm−cut [7].

The most important remaining question in my opinion, is how accurate the benchmarks
with IPC benchmarks are with respect to hard to ground domains. The problem is, that
currently it is really hard to benchmark the quality of lifted heuristics. IPC domains offer
a wide variety, but are not hard to ground. Whereas there exist hard to ground domains,
but these are really few and are lacking potentially important lifted structures. In my
opinion it is crucial to invent new domains that are hard to ground and introduce different
challenges for lifted heuristics for a further research of lifted heuristics.
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Appendices
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Figure 1: The comparison of expansions and initial heuristic values for spl(hU2
ff ) and hU2

ff .
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