
Symmetry-based Task Reduction for Relaxed Reachability Analysis

Gabriele Röger and Silvan Sievers
University of Basel
Basel, Switzerland

{gabriele.roeger,silvan.sievers}@unibas.ch

Michael Katz
IBM Research

Yorktown Heights, NY, USA
michael.katz1@ibm.com

Abstract

Relaxed reachability analysis is relevant to efficient ground-
ing, invariant synthesis as well as the computation of
relaxation-based heuristics. Planning domains are typically
specified in a lifted representation, where the size of the tasks
grows exponentially with the number of objects in the world.
This growth also affects the analysis of relaxed reachability.
We present a task reduction based on symmetries of the lifted
representation that allows to perform the same analysis on
smaller tasks.

1 Introduction
In the field of automated planning, problems are often de-
scribed in a high level language, such as PDDL (McDermott
et al. 1998). However, most planning approaches do not op-
erate on the level of the schematic PDDL but on structurally
simpler, non-schematic formalisms such as STRIPS (Fikes
and Nilsson 1971) or SAS+ (Bäckström and Nebel 1995).
Therefore, a translation to one of these simpler formalisms
constitutes the first step of many planning systems.

Grounding denotes the transformation from a schematic
to a non-schematic representation. In principle, one just
needs to replace variables in the task description in all possi-
ble ways with constants. While it is unavoidable that ground-
ing can increase the task size exponentially, we can still do
much better than such naive grounding. For example, we do
not need to create an operator that will never be applicable
in any reachable state of the task.

For the transformation to the finite-domain representation
of SAS+ tasks, we need to detect so-called mutexes – pairs
of propositional variables of which at most one is true in any
reachable state. The resulting finite-domain representation is
crucial for the success of many heuristic functions, such as
abstraction based heuristics (Culberson and Schaeffer 1998;
Edelkamp 2001; Helmert et al. 2014; Katz and Domshlak
2010; Seipp and Helmert 2013). Mutexes also can be used
directly to enhance the quality of a heuristic, for example in
constrained PDBs (Haslum, Bonet, and Geffner 2005) or the
landmark heuristic (Richter and Westphal 2010).

Intelligent grounding and mutex detection depend on
properties of all reachable states. As the analysis of the

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reachable states is infeasible in general, these techniques are
commonly based on a relaxed reachability analysis that op-
erates on an over-approximation of the reachable states.

In this paper we examine the potential of structural sym-
metries of PDDL tasks (Sievers et al. 2017) for such reacha-
bility analysis: we will exploit symmetries to reduce the size
of the task before analyzing reachability, and re-construct
the result for the original task in a post-processing step. We
will consider both, the very strong relaxation typically used
for grounding, and the more moderate relaxation for mutex
detection. In both cases, we can perform a task reduction.

In our experimental evaluation we show that the approach
is most beneficial for mutex generation, leading to a substan-
tial speedup across several domains.

2 Background
In this paper, we cover the full fragment of non-numeric,
non-temporal PDDL tasks, working on a normalized repre-
sentation, which can cheaply be generated (Helmert 2009).

Normalized PDDL Tasks
A normalized PDDL task Π = 〈L,O,A, I, G〉 is defined
over a first-order language L that consists of a finite num-
ber of predicates, variables and constants. The predicates are
partitioned into fluent predicates and derived predicates. For
formulas over L the free variables are defined as usual in
first-order logic. Formulas not containing any free variables
are called ground.

The initial state specification I is a conjunction of ground
atoms with fluent predicates. The goal specification G is
a conjunction of ground literals. O and A are finite sets
of schematic operators and schematic axioms, respectively.
A schematic operator o = 〈pre(o), eff (o)〉 consists of
the precondition pre(o), which is a conjunction of literals
over L, and the effect eff (o). This effect is a conjunction
of universally quantified conditional effects e of the form
∀v1 . . . vk : cond(e).eff (e), where v1, . . . , vk are variables
from L, cond(e) is a conjunction of literals, and eff (e) is
a literal over L excluding derived predicates. If eff (e) is a
positive literal, we call e an add effect of o, otherwise we
call it a delete effect. A schematic axiom a has the form
head(a) ← body(a), where head(a) is an atom with a de-
rived predicate and body(a) is a conjunction of literals. All
free variables in body(a) must be free in head(a), and the

set of axioms must be stratifiable (Thiébaux, Hoffmann, and
Nebel 2005), which is an ordering property that guarantees
that the outcome of axiom-evaluation is well-defined.

The notion of free variables is extended to operators and
axioms as follows: for an operator effect e1 ∧ · · · ∧ en
the free variables are free(e1) ∪ · · · ∪ free(en), where
free(∀v1 . . . vk : cond(ei) . eff (ei)) = (free(cond(ei)) ∪
free(eff (ei))) \ {v1, . . . , vk}. For operator o the free vari-
ables are free(pre(o)) ∪ free(eff (o)) and analogously for
axiom a free(head(a))∪ free(body(a)). We also refer to the
free variables as the parameters of the operators and axioms.

Before we can define the semantics of the task, we need
to explain what it means to ground operators and axioms.
During grounding, each schematic operator o gets replaced
with a set of ground operators induced by o that do not
contain any variables. Informally, we can describe this as
a two-step process. In a first step, each universally quanti-
fied conditional effect gets expanded into a conjunction of
conditional effects where the variables are replaced with all
possible combinations of constants. Afterwards, all variables
in the operator are free. A second step iterates over all pos-
sible assignments of constants to the parameters and adds a
copy of the operator where all variables are replaced with the
assigned constants. Analogously, each axiom head(a) ←
body(a) is replaced with ground axioms by substituting the
parameters in all possible ways with constants.

We now describe the semantics of a PDDL task in terms of
the induced ground task. A state s assigns values TRUE and
FALSE to all ground atoms with fluent predicates. The cor-
responding derived state JsK extends the assignment to all
ground atoms, evaluating the ground axioms as in stratified
logic programming. The initial state s0 of the task assigns
value TRUE to all atoms occurring in I , and FALSE to all
other fluent ground atoms.

A ground operator o is applicable in state s if JsK |=
pre(o). Ground atom A is true in the successor state if it has
been true in s and a has no effect ϕ . ¬A such that JsK |= ϕ
or if o has an effect ϕ . A with JsK |= ϕ.

A plan for the task is a sequence of ground operators
whose subsequent application leads from the initial state s0

to a state s? with Js?K |= G. As we are only concerned with
reachability, we do not discuss operator costs or plan quality.

Structural Symmetries
A symbol mapping σ over language L (Sievers et al. 2017)
is a permutation of L that permutes the predicates, variables
and constants individually (e. g. no predicate is mapped to a
constant). We write σ̃ for the natural extension of σ to ar-
bitrary expressions over language L. For some expression e
over L, σ̃(e) replaces all symbols s from L with σ(s).

A structural symmetry of a PDDL task 〈L,O,A, I, G〉
(Sievers et al. 2017) is a symbol mapping over L such that
I ≡ σ̃(I), for each operator o ∈ O there is σ̃(o) ∈ O, and
for each axiom a ∈ A there is σ̃(a) ∈ A (up to reordering of
conjuncts and renaming of variables). Intuitively, applying a
structural symmetry to a PDDL task results in a task with
semantically equivalent initial state, operators and axioms.
The set of all structural symmetries forms a group. In the
original definition of structural symmetries for non-ground

A

B

D

C

p1

t1

t2

p2

p3

t3

t4
t5

load(p, t, l) = 〈pac(p) ∧ truck(t) ∧ loc(l) ∧ at(p, l) ∧ at(t, l),
¬at(p, l) ∧ in(p, t)〉

unload(p, t, l) = 〈pac(p) ∧ truck(t) ∧ loc(l) ∧ in(p, t) ∧ at(t, l),
at(p, l)∧ ∈ (p, t)〉

drive(t, l, l′) = 〈truck(t) ∧ loc(l) ∧ loc(l′) ∧ at(t, l),

¬at(t, l) ∧ at(t, l′)〉

Figure 1: Running example (simple Logistics task).

PDDL tasks, Sievers et al. also require σ̃(G) ≡ G, but they
already discuss that this stabilization of the goal condition is
not necessary for reachability analysis applications.

3 Running Example
We will use the very simple Logistics task from Figure 1
as a running example: there are four locations, three pack-
ages and five trucks. The initial state specification states for
each constant whether it is a package, a truck or a location,
and for each truck and package that it is at the location indi-
cated in the figure. The packages need to be delivered at the
location indicated by the arrows, using the (schematic) op-
erators for loading/unloading packages to/from trucks and
for moving the trucks. In the example, any symbol mapping
that only permutes trucks at the same location and packages
at the same location is a structural symmetry. The destina-
tions of packages are irrelevant, because we only consider
reachability and hence can ignore the goal.

4 Relaxed Reachability
We are interested in the following kind of relaxed reachabil-
ity of literals:
Definition 1. The set of k-reachable ground literals ` (k ∈
N0) is the smallest set that contains literal ` if
• ` is true in the initial state, or
• k > 0 and there is a ground operator o such that

– o has an effect ϕ . `, and
– each literal in ϕ and in pre(o) is k − 1-reachable, or

• there is a ground axiom `← ψ such that each literal in ψ
is k-reachable.

This notion is very closely related to the concept of re-
laxed reachability that is underlying the maximum heuristic
(Bonet and Geffner 2001), extending it from atoms to liter-
als by treating them like independent atoms. It relaxes the
task in two ways: first, the interaction of literals occurring in
conditions is not considered but it is sufficient if the literals

are individually relaxed reachable. Second, operator effects
that make a literal false are ignored. This corresponds to the
well-known delete relaxation.

A ground atom is k-reachable if it occurs in layer k of
the Graphplan (Blum and Furst 1997) planning graph in the
absence of mutual exclusion relations, which happens natu-
rally in the delete relaxation (Hoffmann and Nebel 2001).

The important property of relaxed reachability is that it is
an over-approximation of the actual reachability of literals:
if a literal is relaxed unreachable then it will be false in every
reachable (derived) state of the planning task.

5 Symmetry-based Reduction and Expansion
The task reduction will be based on sets C of pair-wise
symmetric constants, where each symbol mapping that just
swaps two elements of C is a structural symmetry of the
task. As each permutation of C can be viewed as a sequence
of such swaps and the structural symmetries form a group,
this is equivalent to the following definition:
Definition 2 (C-permutation, symmetric constant set). Let
Π be a PDDL task over L with constants C and let C ⊆ C.

A C-permutation is a symbol mapping σ : L → L with
σ(x) = x for x 6∈ C.

If each C-permutation is a structural symmetry of Π then
C is a symmetric constant set.

For a C-permutation σ, the restriction σ|C of σ to C is a
permutation of C.

Also, the set of C-permutations, together with the func-
tion composition operator, forms a group. In particular, if σ
is a C-permutation then also σ−1 is a C-permutation.

A subset C ′ of a symmetric constant set C is a symmetric
constant set since each C ′-permutation is a C-permutation.

For an illustration in the example task, consider C1 =
{t3, t4, t5} and C2 = {t1, p1}. Symbol mapping σ with
σ(t3) = t4, σ(t4) = t5, σ(t5) = t3 and σ(x) = x other-
wise is a C1-permutation. Also σ−1, mapping t3 to t5, t5 to
t4, and t4 to t3, is a C1-permutation. It is easy to see that all
C1-permutations are structural symmetries, so C1 is a sym-
metric constant set. There are only twoC2-permutations: the
identity mapping, and the mapping that only swaps t1 and
p1. As the latter is not a structural symmetry, C2 is not a
symmetric constant set.

While the previous definition considered sets of constants,
the following one considers sets of ground literals:
Definition 3 (C-symmetric set of literals). Let C be a set of
constants. A set of ground literals L is C-symmetric if for
each ` ∈ L and C-permutation σ it holds that σ̃(`) ∈ L.

Using C1 as above, set {in(p1, t3), in(p1, t4), in(p1, t5)}
is C1-symmetric, while {in(p1, t3), in(p1, t4)} is not.

The following notion of reduction will build the core of
our approach. Intuitively, it simply removes all parts from
the task that mention a constant that should not be preserved.
Definition 4 (Reduction). Let Π = 〈L,O,A, I, G〉 be a
PDDL task. For a set C of constants in L and C ′ ⊆ C, the
reduction from C to C ′ of Π is the PDDL task RC↓C′(Π) =
〈RC↓C′(L), RC↓C′(O), RC↓C′(A), RC↓C′(I), RC↓C′(G)〉,
where

• RC↓C′(L) removes from L all constants from C \ C ′,
• RC↓C′(O) and RC↓C′(A) remove all operators and ax-

ioms mentioning a constant from C \ C ′, and
• RC↓C′(I) and RC↓C′(G) remove all conjuncts mention-

ing a constant from C \ C ′.
For a set L of literals over L, the reduction RC↓C′(L)

consists of all ` ∈ L that are also literals over RC↓C′(L).

In our example task, the only change in the reduction
from C1 to C ′1 = {t3, t4} is the removal of at(t5, D)
and truck(t5) from the initial state specification. If there
was an operator that mentioned specifically truck t5,
the entire operator would be removed. For a set L =
{in(p1, t3), in(p1, t4), in(p1, t5)} of literals, RC1↓C′

1
(L) =

{in(p1, t3), in(p1, t4)}.
Next we show that reductions preserve all symmetries that

do not map preserved constants to removed constants:

Lemma 1. Let C be a set of constants of task Π with lan-
guage L and let C ′ ⊆ C. For every structural symmetry σ
of Π with σ(c) ∈ C \ C ′ for all c ∈ C \ C ′, the symbol
mapping σ′ := σ

∣∣
RC↓C′ (L)

is a structural symmetry of task

RC↓C′(Π).

Proof sketch. We need to show that whenever the reduction
preserves a component, it also preserves all symmetric ones
or, vice versa, whenever it removes a component, it removes
all inversely symmetric ones. We show this exemplarily for
an operator: let o be an operator that gets removed because o
mentions a constant c ∈ C \C ′. No c′ 6∈ C \C ′ has σ(c′) ∈
C\C ′ because then the injective σ could not stabilizeC\C ′.
Hence, σ−1(c) ∈ C\C ′ and therefore also σ̃−1(o) mentions
a constant from C \ C ′ and gets removed by the reduction.
The restriction of σ to the reduced language is just a formal
necessity that removes “unused” mappings.

Expansions build the counterpart of reductions:

Definition 5 (Expansion). For a literal ` and a set C of
constants, the expansion of ` with C is the set EC(`) =
{σ̃(`) | σ is a C-permutation}. For a set of literals L, it is
EC(L) =

⋃
`∈LEC(`).

For example, the expansion of P (a, b, a, c) with
{a, b, d} is the set {P (a, b, a, c), P (a, d, a, c), P (b, a, b, c),
P (b, d, b, c), P (d, a, d, c), P (d, b, d, c)}, where each ele-
ment is obtained from P (a, b, a, c) by applying one of the 3!
permutations of {a, b, d}. For instance, P (d, a, d, c) is ob-
tained from the permutation {a 7→ d, b 7→ a, d 7→ b}.

Continuing the running example using C1 and L from
above, the expansion of RC1↓C′

1
(L) with C1 recovers

in(p1, t5), for instance from in(p1, t3) with the permutation
that swaps t3 and t5. Hence the expansion of the reduction is
exactly the original set L. This is no coincidence: for sym-
metric constant sets, the rest of this section identifies a help-
ful relationship between reduction and expansion.

Lemma 2. Let C be a symmetric constant set and C ′ ⊆
C. Let L be a set of literals not mentioning a constant
from C \ C ′. Then L ⊆ RC↓C′(EC(L)). Moreover, L =
RC↓C′(EC(L)) iff L is C ′-symmetric.

Proof. If ` ∈ L then σ = id is a C-permutation that estab-
lishes ` ∈ EC(L). Moreover, σ̃(`) = ` contains no constant
from C \ C ′ and is therefore preserved by the reduction.
RC↓C′(EC(L)) consists of all σ̃(`) with ` ∈ L and σ a

C-permutation that maps no constant from ` to a constant
from C \ C ′. This is exactly the set of all σ̃(`) with ` ∈ L
and σ a C ′-permutation. This set is equal to L iff L is C ′-
symmetric.

Informally, for symmetric constant sets, the reduction of
an expansion of a symmetric set is the original set.

Conversely, we can reduce aC-symmetric set of literals to
a (sufficiently large) subset C ′ ⊆ C and re-gain the removed
literals by an expansion. A key argument will be that we can
swap all constants from C that are not in the preserved set
C ′ with constants from C ′.

Lemma 3. Let C be a symmetric constant set and C ′ ⊆ C.
Let L be a C-symmetric set of literals. Let b be the maximal
number of different constants fromC occurring in any literal
from L.

1. EC(RC↓C′(L)) ⊆ L.
2. If |C ′| ≥ b then L = EC(RC↓C′(L)).

Proof. 1. If ` ∈ EC(RC↓C′(L)), there is an `′ ∈ RC↓C′(L)
and a C-permutation σ such that ` = σ̃(`′). As also σ−1 is
a C-permutation and L is C-symmetric, `′ = σ̃−1(`) ∈ L.

2. Consider a literal ` ∈ L and let C ′′ be the set of con-
stants from C that occur in `. As |C ′′ \ C ′| = |C ′′| −
|C ′| + |C ′ \ C ′′| and |C ′′| ≤ b ≤ |C ′|, it holds that
|C ′′ \ C ′| ≤ |C ′ \ C ′′|. Thus there exists a symbol map-
ping σ that swaps each constant from C ′′ \C ′ (the constants
from ` that get removed by the reduction) with a constant
from C ′ \ C ′′ (constants in C ′ that do not occur in `) and
maps everything else to itself. As σ is a C-permutation and
L is C-symmetric, it holds that `′ := σ̃(`) is in L. Since `′
contains no constant from C \C ′, it is inRC↓C′(L). As σ−1

also is a C-permutation, ` is in the expansion of `′.

6 Reachability under Symmetry Reduction
We now establish that we can perform relaxed-reachability
analysis on a reduced version of the planning task and gain
the result for the original task by an expansion.

For a PDDL task defined over L, we will use three bounds
blit
C , b

op
C and bax

C relative to a constant set C for Π, where blit
C is

an upper bound on the number of different constants from C
that can occur together in a reachable ground literal over L.
For schematic operator o of Π, we can bound the number of
constants from C occurring in any ground operator induced
by o by the number of the operator parameters plus the num-
ber of constants from C occurring in o. With bop

C we denote
the maximum such bound over all operators. Analogously,
bax
C is the maximum bound, over all axioms a of Π, of the

number of the parameters of a plus the number of constants
from C occurring in a.

The following theorem is the key result that establishes
the correctness of our approach:

Theorem 1. Let C be a symmetric constant set for some
PDDL task Π and let C ′ be a subset of C of size |C ′| ≥
max{blit

C , b
ax
C , b

op
C }. For k ∈ N0, let Rk be the set of k-

reachable ground literals of Π andR′k the set of k-reachable
ground literals of RC↓C′(Π). Then Rk = EC(R′k).

In principle, this can be shown with one very long proof
by induction. As this would be incomprehensible, we split
it up into several steps. The first two lemmas cover the case
where an axiom makes a literal relaxed reachable.

Lemma 4. LetC be a symmetric constant set for PDDL task
Π defined over L and let C ′ ⊆ C have size |C ′| ≥ bax

C . Let L
be a C-symmetric set of ground literals over L. Then ground
literal ` over L can be derived from L with an axiom of Π
iff there is an `′ that can be derived from RC↓C′(L) with an
axiom of task RC↓C′(Π) such that ` ∈ EC(`′).

Proof. “⇐”: Let `′ be a ground literal that can be derived
from RC↓C′(L) with ground axiom a′ = `′ ← ϕ, induced
by axiom A in RC↓C′(Π), such that ` ∈ EC(`′). Let σ be a
C-permutation such that ` = σ̃(`′). As σ is a structural sym-
metry of Π, there is an axiom σ̃(A) which induces ground
axiom σ̃(`′) ← σ̃(ϕ). As all literals `′′ in ϕ are included in
L and L is C-symmetric, it also contains all literals in σ̃(ϕ),
so we can derive σ̃(`′) = ` from L.

“⇒”: Let A be some schematic axiom of Π that induces a
ground axiom a = ` ← ϕ where all ground literals from ϕ
are true in L (` can be derived with a). Let C ′′ denote the set
of constants from C that occur in a. By an analogous rea-
soning as for Lemma 3, |C ′ \ C ′′| ≥ |C ′′ \ C ′| and we can
define a symbol mapping σ that swaps each constant from
C ′′ \ C ′ with a constant from C ′ \ C ′′ and maps all other
symbols to themselves. As σ is a C-permutation and there-
fore a structural symmetry, it holds that σ̃(A) is an axiom of
Π. As it does not mention any constant from C \C ′, σ̃(A) is
preserved by the reduction. Furthermore, since all constants
occurring in σ̃(a) are preserved by the reduction of the lan-
guage, σ̃(A) induces a ground axiom σ̃(a) in RC↓C′(Π). Its
body σ̃(ϕ) contains only literals `′′ with σ̃−1(`′′) ∈ L. As L
isC-symmetric and also σ−1 is aC-permutation, L contains
all literals from σ̃(ϕ), and as they do not mention constants
fromC\C ′, these are preserved by the reduction. Therefore,
we can derive σ̃(`) in the reduction. The claim follows with
` ∈ EC(σ̃(`)).

The next lemma establishes that the axiom case of the re-
laxed reachability definition preserves C-symmetry.

Lemma 5. Let C be a symmetric constant set for task Π
and L be a C-symmetric set of ground literals. Let a be a
ground axiom induced by Π. If all literals from body(a) are
inL, then for allC-permutations σ, Π induces ground axiom
σ̃(a) and all literals from body(σ̃(a)) are in L.

Proof sketch. The ground axiom σ̃(a) exists because all C-
permutations are symmetry mappings and the literals of the
body are in L because L is C-symmetric.

The following two lemmas will be used to cover the case
where a literal is relaxed reachable due to an operator.

Lemma 6. Let C be a symmetric constant set for PDDL
task Π defined over L and let C ′ ⊆ C have size |C ′| ≥
bop
C . Let L be a C-symmetric set of ground literals over L.

Then Π induces a ground operator o with effect ϕ . ` and
all literals from ϕ and pre(o) in L iff RC↓C′(Π) induces a
ground operator o′ with effect ϕ′ . `′ and all literals from ϕ′

and pre(o′) in RC↓C′(L) such that ` ∈ EC(`′).

Proof. “⇐”: Let o′ be a ground operator of RC↓C′(Π)
with effect ϕ′ . `′ and all literals from ϕ′ and pre(o′) in
RC↓C′(L) such that ` ∈ EC(`′). Let σ be a C-permutation
such that ` = σ̃(`′). From o′ also being an operator of Π,
σ being a structural symmetry of Π, and grounding being
symmetry-preserving, it holds that Π also induces ground
operator σ̃(o′). As all literals from pre(o′) and from ϕ′ are
in RC↓C′(L) ⊆ L and L is C-symmetric, also σ̃(pre(o′))
and σ̃(ϕ′) are in L, and hence σ̃(o′) is the required operator.

“⇒”: Let O be the schematic operator of Π that induces
o. Let C ′′ denote the set of constants from C that occur in
o. We can argue as in Lemma 3 that |C ′ \ C ′′| ≥ |C ′′ \ C ′|.
Therefore there is a variable mapping σ that swaps each con-
stant fromC ′′\C ′ with a constant fromC ′\C ′′ and maps all
other symbols to themselves. As σ is a C-permutation and
hence a structural symmetry of Π, Π also contains schematic
operator O′ = σ̃(O). Neither O′ nor σ̃(o) contain constants
from C \ C ′, so Π′ := RC↓C′(Π) contains O′ and all con-
stants occurring in σ̃(o). Therefore, O′ induces σ̃(o′) in Π′.
This operator has effect σ̃(ϕ) . σ̃(`) and all literals from
σ̃(ϕ) and pre(a′) = σ̃(pre(a)) are in L because it is C-
symmetric. As they do not contain constants from C \ C ′,
they are also preserved in the reduction RC↓C′(L). More-
over, σ−1 is a C-permutation and ` = σ̃−1(σ̃(`)), so ` is in
the expansion of σ̃(`).

For the analogon of Lemma 5 for operators, we omit the
(analogous) proof for the sake of brevity:

Lemma 7. LetC be a symmetric constant set for task Π and
L be a C-symmetric set of ground literals. If literal ` is k-
reachable due to an induced ground operator o then for all
C-permutations σ literal σ̃(`) is k-reachable due to σ̃(o).

We now combine everything to prove the main theorem:

Proof of Theorem 1. By induction:
k = 0: The set LI of ground literals that are true in the

initial state of Π isC-symmetric because allC-permutations
are structural symmetries of Π and thus map I onto itself. By
the definition ofRC↓C′(I), the set L′I of literals that are true
in the initial state ofRC↓C′(Π) is exactly the setRC↓C′(LI).
For these sets it holds by Lemma 3 that LI = EC(L′I).

All other ground literals can only be 0-reachable due
to an axiom. Let A be the set of ground axioms a in-
duced by Π where all literals from body(a) are in LI . Let
A′ be the analogous set for RC↓C′(Π) and L′I . We define
LA =

⋃
a∈A head(a) and LA′ =

⋃
a∈A′ head(a). Accord-

ing to Lemma 4, LA = EC(LA′). By Lemma 5, L′I ∪ LA′

is C ′-symmetric, so according to Lemma 2 L′I ∪ LA′ =
RC↓C′(LI∪LA). Moreover, due to Lemma 5, LI∪LA isC-
symmetric. A repeated application of Lemma 4 and analo-

gous arguments leads to R0 = EC(R′0), R0 is C-symmetric
and RC↓C′(R0) = R′0.

Inductive step: Let Lk ⊆ Rk be the set of literals that are
k-reachable due to an operator and not k− 1-reachable, and
let L′k be the corresponding set for RC↓C′(Π). By Lemma
6 it holds that Lk = EC(L′k). By Lemma 7, R′k−1 ∪ L′k
is C ′-symmetric, so according to Lemma 2 R′k−1 ∪ L′k =
RC↓C′(Rk−1∪Lk). Also due to Lemma 7,Rk−1∪L′k is C-
symmetric. Hence the premises of Lemma 4 are satisfied and
a repeated application of Lemma 4 plus an argumentation as
above establishes the claim of the theorem as well as the fact
that Rk is C-symmetric and RC↓C′(Rk) = R′k.

7 Finding Symmetric Constant Sets
In the previous sections, we established the necessary the-
ory to use symmetric constant sets for symmetry-based task
reduction and expansion. We now discuss how to find such
symmetric constants sets for a PDDL task Π. Sievers et al.
(2017) describe how a subset of the structural symmetries of
Π can be computed as automorphisms of a graph representa-
tion of Π. In an empirical analysis they showed that almost
all tasks from the standard benchmark exhibit symmetries
and that most of the detected symmetry generators σ have
order two, i. e. σσ = id. Most commonly, these symme-
try generators are transpositions, i. e. permutations that just
swap two constants.1

To determine symmetric constant sets from a set Σ of
symmetries, we use the following reasoning: The only C-
permutation of a set C = {c} is the identity permutation,
which is a trivial structural symmetry. Thus, each singleton
is a symmetric constant set. If there are two disjoint symmet-
ric constant sets C1 and C2 and there exists a symmetry that
swaps exactly two constants, one from C1 and one from C2,
then also C1∪C2 is a symmetric constant set. To see this, let
σ be such a transposition that swaps c1 ∈ C1 with c2 ∈ C2.
With σ, we can show that any transposition of such constants
is a symmetry mapping of Π: let c′1, c

′
2 be any two constants

with c′1 ∈ C1 and c′2 ∈ C2 and let σ′ be the transposition
that swaps them. For i ∈ {1, 2}, let σi be the transposition
that swaps ci and c′i. As Ci is a symmetric constant set and
σi a Ci-permutation, each σi is a symmetry mapping of Π.
The desired mapping σ′ can be represented as a composition
σ′ = σ1σ2σσ2σ1 of symmetry mappings. As the symmetry
mappings form a group (Sievers et al. 2017), also σ′ is a
symmetry mapping of Π. The fact that C1 ∪ C2 is a sym-
metric constant set, i. e. every (C1 ∪ C2)-permutation is a
symmetry mapping of Π, follows because each such permu-
tation can be written as a composition of transpositions of
constants from C1 ∪ C2.

These insights give rise to Algorithm 1. If the input trans-
positions are structural symmetries of the task, then all sets
in the computed set C are symmetric constant sets. Given
the symmetry generators of a symmetry group of a PDDL
task, Algorithm 1 can thus be run with the subset of these
symmetry generators that are transpositions.

1In our experiments, 88% of the 18875 detected symmetry gen-
erators that only permute constants were transpositions.

Algorithm 1 Partitioning in symmetric constant sets.
Input: Set C of constants, set T of transpositions
C ← {{c} | c ∈ C}
for t ∈ T do

c, c′ ← constants swapped by t
S ← set from C with c ∈ S
S′ ← set from C with c′ ∈ S′
C ← (C \ {S, S′}) ∪ {S ∪ S′}

end for
return C

8 Tightening the Bounds
Theorem 1 uses three bounds blit

C , b
ax
C , and bop

C that specify
the minimum number of symmetric constants that need to
be preserved (for a given symmetric constant set C and a
PDDL task Π defined over L). A closer examination reveals
that these must be an upper bound on the number of different
symmetric constants that can occur together in a ground lit-
eral, axiom, or operator. Moreover, from the ground axioms
only those are relevant where all literals in the body are re-
laxed reachable. Analogously, bop needs to cover only the
operators where all preconditions and relevant effect con-
ditions are relaxed reachable. Also, Lemma 6 only consid-
ers individual effects, so it is sufficient if the bound is large
enough to cover each possible effect individually (always to-
gether with the operator precondition).

We use a simple procedure to tighten these bounds, using
a logic program with the following facts, relative to a set of
constants C:
• P -k expresses that there is a relaxed reachable ground

atom for predicate P where the k-th argument is from C.
• o-x expresses that there can be an instantiation of operator
o where parameter x is replaced with a constant from C
and where all positive literals from the precondition are
relaxed reachable.

• o-e-i expresses that there can be an instantiation of op-
erator o where the i-th quantified variable of effect e is
replaced with a constant from C and all positive literals
of the effect condition are relaxed reachable.

• a-x expresses that all positive literals in the body of an
instantiation of axiom a, where parameter x has been re-
placed with a constant from C, are relaxed reachable.
From a conceptual perspective, we use several relax-

ations: we ignore all negative literals in effect and precon-
ditions and in axiom bodies. Furthermore, we only examine
parameters of atoms individually and not whether they can
occur together. Consider for example operator owith param-
eters x and y, such that the precondition is not relaxed reach-
able if both x and y are instantiated with constants from C.
Still, both o-x and o-y can be true, so we would (possibly
unnecessarily) set bop

C ≥ 2.
As determining the exact values of the facts is as hard

as computing the set of relaxed reachable literals, the logic
program computes an over-approximation of the true values,
i. e. no fact may be false in the computed model if the real
value would be true, but the opposite is allowed.

We use the following rules in the program for a given con-
stant set C.

1. For each ground atom P (c1, . . . , cn) that is initially true
with ci ∈ C, there is a rule P -i.

2. For each operator o and parameter x of o there is a rule
o-x :- ϕ, where for each atom P (x1, . . . , xn) in the pre-
condition of o with x = xi, ϕ contains the fact P -i.

3. For each effect e = ∀v1 . . . vk : ψ . P (x1, . . . , xn) of
operator o and i ∈ {1, . . . , k} there is a rule o-e-i :- ϕ,
where ϕ contains Q-m for each occurrence of vi as m-th
argument of a positive literal with predicate Q in ψ.

4. For each effect e = ∀v1 . . . vk : ψ . P (x1, . . . , xn) of
operator o and i ∈ {1, . . . , n} there is a rule P -i :- ϕ if
xi is a variable or a constant from C. If xi is a constant
then ϕ is empty. If xi = vj for some j ∈ {1, . . . , k}
then ϕ = o-e-j. Otherwise, xi is a parameter of o and
ϕ = o-xi.

5. For each axiom a and parameter x of a there is a rule a-x
:- ϕ, where for each atom P (x1, . . . , xn) in the body of
a with x = xi, ϕ contains the fact P -i.

6. For each axiom a with head P (x1, . . . , xn) there is a rule
P -i :- ϕ if xi is a variable or a constant from C. If xi is
a constant then ϕ is empty. If xi is a variable, ϕ = a-xi.

We use an additional enhancement, exploiting static
atoms: if a fluent predicate P does not occur as an affected
literal of any operator effect then we can analyze whether
position i can contain an object from C by scanning the ini-
tial state specification. If not, we discard all rules from cases
2, 3, and 5 whose body contains P -i.

All rules are Horn clauses, so we can efficiently compute
a minimal model M of a program defined for a PDDL task
Π = 〈L,O,A, I, G〉 and a subset C of the constants from
L. We set blit

C to maxP∈predicates(L) |{i | P -i ∈ M}|. For
the other bounds, we need to consider that schematic oper-
ators and axioms can mention constants. For schematic op-
erator o, let Co,pre denote the constants from C mentioned
in the precondition of o and for each effect e, let Co,e de-
note the constants from C in the effect that do not also oc-
cur in the precondition. We can replace the bound bop

C with
maxo∈O(|Co,pre|+|{x | o-x ∈M}|+maxeffect e of o(|Co,e|+
|{k | o-e-k ∈ M}|)). For schematic axiom a, let Ca denote
the constants from C mentioned in a. We can tighten bax

C to
maxa∈A(|Ca|+ |{x | a-x ∈M}|), or 0 if there is no axiom.

In our example, there are three symmetric constant sets:
{t1, t2}, {t3, t4, t5}, and {p2, p3}. For each of them, we get
the bounds blit = bop = 1 and bax = 0.

9 Using Several Symmetric Constant Sets
The analysis in Section 6 only considers reductions for a sin-
gle symmetric constant set. It would be interesting to exploit
several such sets together. We therefore extend our concepts
to collections C of symmetric constant sets.

Ideally, we would want to compute such a collection on
a PDDL task Π and then apply Theorem 1 on subsequent
reductions to suitable subsets of the symmetric constant sets.
For this purpose, we first establish that for disjoint constant

sets, a reduction with one set does not break the symmetry
property of the others.

Lemma 8. Let C be a set of constants of task Π and C ′ ⊆
C. If C ′′ with C ∩ C ′′ = ∅ is a symmetric constant set for
Π, then C ′′ is a symmetric constant set for RC↓C′(Π).

Proof sketch. We need to show that each C ′′-permutation
σ′′ is a symmetry mapping of RC↓C′(Π). As it is a symme-
try mapping of Π, it is sufficient to show that if the reduction
from C to C ′ removes a component mentioning a constant
from C ′′, it also removes all symmetric (wrt. C ′′) compo-
nents. We do this exemplarily for the operators. Let o be a
schematic operator mentioning a constant from C ′′ that is
removed by the reduction from C to C ′ because it mentions
a constant c ∈ C \ C ′. As σ′′ is the identity for all symbols
that are not in C ′′, σ̃′′(o) mentions c and therefore also gets
removed by the reduction.

Theorem 1 relies on three bounds blit
C , bax

C , and bop
C . In the

following, we will indicate the task these refer to as addi-
tional subscript and show that a reduction for a disjoint set
does not affect them.

Lemma 9. Let C be a symmetric constant set of task Π and
C ′ ⊆ C be a subset with |C ′| ≥ max{blit

C,Π, b
ax
C,Π, b

op
C,Π}.

For all constant sets C ′′ with C ∩ C ′′ = ∅ it holds that

• blit
C′′,Π = blit

C′′,RC↓C′ (Π),

• bop
C′′,Π = bop

C′′,RC↓C′ (Π), and

• bax
C′′,Π = bax

C′′,RC↓C′ (Π).

Proof sketch. We again show the lemma exemplarily for the
operators. The proof for the literals and axioms is analogous.
For an individual operator, the computation of the bound
does not change due to the reduction, but in RC↓C′(Π) the
maximum bound is determined from a subset of the opera-
tors. Therefore bop

C′′,Π ≥ bop
C′′,RC↓C′ (Π). The maximum also

cannot get lower: let o be an operator that establishes bop
C′′,Π.

If it is not removed by the reduction, we are done. If it is
removed by the reduction this is because it mentions con-
stants from C \ C ′. As C is a symmetric constant set of
Π, the task contains operator σ̃(o) for all C-permutations
σ. Analogous to the proof of Lemma 6 we can construct a
permutation σ that swaps all constants from C \ C ′ occur-
ring in o with constants from C ′ not occurring in o. Then
σ̃(o) is preserved by the reduction. Because a bound on
the constants from C ′′ in any operator induced by σ̃(o) is
also a bound for the operators induced by o, it follows that
bop
C′′,Π = bop

C′′,RC↓C′ (Π).

Also note that for two disjoint constant sets C1 and C2,
the order of subsequent reductions or subsequent expan-
sions does not matter, i. e., for C ′i ⊆ Ci (i ∈ {1, 2}),
RC1↓C′

1
(RC2↓C′

2
(Π)) = RC2↓C′

2
(RC1↓C′

1
(Π)), and for a set

L of literals, EC1
(EC2

(L)) = EC2
(EC1

(L)). This observa-
tion enables the following generalization of Theorem 1.

Corollary 1. Let C = {C1, . . . , Cn} be a collection
of disjoint symmetric constant sets of task Π. For each
Ci ∈ C, let C ′i ⊆ Ci be a subset of size |C ′i| ≥
max{blit

Ci
, bax

Ci
, bop

Ci
}. For k ∈ N0, let Rk be the set of k-

reachable ground literals of Π and R′k be the set of k-
reachable ground literals ofRCn↓C′

n
(. . . (RC1↓C′

1
(Π)) . . .).

Then Rk =
⋃

`′∈R′
k
ECn(. . . (EC1(`′)) . . .).

Proof. The claim follows from subsequent applications of
Theorem 1, using Lemmas 8 and 9 to preserve the premises
of the theorem.

In a practical implementation, it is not necessary to apply
one reduction after the other but we can use a single scan for
any constant from the set

⋃
i∈{1,...,n}(Ci \ C ′i).

10 Reachability of Conjunctions
So far, we only considered the relaxed reachability of in-
dividual literals. However, for the application of computing
so-called mutex groups, this does not suffice. Mutex groups
are sets of atoms of which at most one can be true in ev-
ery reachable state of the task. These mutex groups are the
basis of the transformation of a task in finite-domain repre-
sentation (Helmert 2009), which is for example crucial for
the performance of abstraction-based heuristics. To compute
mutex groups, we need to determine relaxed (un)reachability
of conjunctions A ∧A′.

For this application, we use the following extended notion
of relaxed reachability:

Definition 6. For k ∈ N0, the set Mk of k-reachable pairs
of ground literals is the smallest set that contains pair {`, `′}
if one of the following holds:

1. ` ∧ `′ is true in the initial state.
2. ` = `′ and there is a ground axiom `← ψ such that each

pair {`′′, `′′′} with ψ |= `′′ ∧ `′′′ is in Mk.
3. ` 6= `′ and there is a ground axiom `← ψ such that ψ∧`′

is consistent and each pair {`′′, `′′′} with ψ∧`′ |= `′′∧`′′′
is in Mk.

4. k > 0 and there is a ground operator o such that
(i) o has effects ϕ . ` and ϕ′ . `′,

(ii) pre(o) ∧ ϕ ∧ ϕ′ is consistent,
(iii) every pair {`′′, `′′′} with pre(o)∧ ϕ∧ ϕ′ |= `′′ ∧ `′′′ is

in Mk−1, and
(iv) if ` is a negative literal then for all effects ψ . ¯̀ it holds

that pre(o) ∧ ϕ ∧ ϕ′ 6|= ψ, and analogously if `′ is a
negative literal.

5. k > 0, ` 6= `′ and there is a ground operator o such that
(i) o has an effect ϕ . `,

(ii) pre(o) ∧ ϕ ∧ `′ is consistent,
(iii) for every effect ψ . ¯̀′ it holds that pre(o) ∧ ϕ 6|= ψ.
(iv) every pair {`′′, `′′′} with ϕ ∧ pre(o) ∧ `′ |= `′′ ∧ `′′′ is

in Mk−1, and
(v) if ` is a negative literal then for all effects ψ . ¯̀ it holds

that pre(o) ∧ ϕ ∧ `′ 6|= ψ, and analogously if `′ is a
negative literal.

Case 1 covers the initial state and cases 2 and 3 reachabil-
ity with axioms for individual literals and pairs, respectively.
Case 4 considers the pairs of literals that are reachable to-
gether by effects of the same operator. Case 5 covers the sit-
uation in which `′ is preserved true by an operator that makes
` true. Cases 4 (iv) and 5 (v) only tighten the definition, ex-
cluding delete effects that are guaranteed to be voided by an
add effect in the relevant situations. Note that on grounded
tasks, we only need to test ϕ 6|= ψ where ϕ,ψ are conjunc-
tions of ground literals. This can be done by testing that no
literal occurs both positively and negatively in ϕ and that all
literals from ψ occur in ϕ.

This definition of relaxed reachability of pairs of literals is
inspired by the reachability in the Πm-compilation (Haslum
2009). Indeed, on STRIPS tasks, the unreachable pairs of
atoms correspond to the mutexes detected by the h2 heuris-
tic (Haslum and Geffner 2000). These also can be com-
puted by Rintanen’s more general invariant synthesis (Rin-
tanen 2008), and our notion is very close to his algorithm for
the conjunctions of two literals. However, Rintanen does not
support axioms and uses slightly different semantics: in the
case of conflicting effects, he considers an operator inappli-
cable, whereas we let the add effect cover the delete effect.

For the transformation to finite-domain variables, we are
mainly interested in conjunctions ` ∧ `′ where both literals
are atoms: if `∧ `′ is relaxed unreachable, the two atoms can
be represented by the same finite-domain variable. In this
case, we can significantly speed up the computation with
a further relaxation, only requiring all pairs of atoms to be
relaxed reachable in 2, 3, 4 (iii), and 5 (iv).

To extend our earlier result for the reachability of indi-
vidual literals to pairs of literals, we naturally extend the
definition of expansion to pairs of literals as EC({`, `′}) =
{{σ̃(`), σ̃(`′)} | σ is a C-permutation}.

For computing suitable bounds, we can use the same
Horn rules as in Section 8. However, as case 4 consid-
ers two effects together, we need to compute the opera-
tor bound bop

C as maxo∈O(|Co,pre| + |{x | o-x ∈ M}| +
maxeffects e,e′ of o:e 6=e′(|Co,e ∪ Co,e′ |+ |{k | o-e-k ∈M}|+
|{k | o-e′-k ∈M}|)).

Theorem 2. Let C = {C1, . . . , Cn} be a collection
of disjoint symmetric constant sets for a PDDL task Π.
For each Ci ∈ C, let C ′i ⊆ Ci be a subset of size
|C ′i| ≥ max{blit

Ci
, bax

Ci
, bop

Ci
} + blit

Ci
. For k ∈ N0, let

Mk be the set of k-reachable pairs of ground literals of
Π and M ′k be the set of k-reachable pairs of ground
literals of RCn↓C′

n
(. . . (RC1↓C′

1
(Π)) . . .). Then Mk =⋃

{`,`′}∈M ′
k
ECn

(. . . (EC1
({`, `′})) . . .).

Proof sketch. The proof follows the same structure and
ideas that lead to Corollary 1. There are two key insights:

Firstly, in Definition 6, whenever one of the cases makes
{`, `′} k-reachable, the same case also makes {σ̃(`), σ̃(`′)}
k-reachable for all structural symmetries σ.

Secondly, previously the bounds ensured that there always
is a symmetry that maps all constants that are removed by
the reduction to those that are not removed and not “used”
in the current context. In Definition 6, we need to consider

an additional literal, so we need to ensure that even in the
worst case where all constants from the literal get removed,
there are enough unused constants remaining to map to. We
therefore increased the bound accordingly by adding blit

Ci
.

11 Related Work
Over the years, symmetries have been exploited in many dif-
ferent ways in planning.

The work by Fox and Long (1999; 2002) is closely related
because they use the same kind of symmetric constant sets
as we do (not allowing constants that occur in operators to
be part of the sets), albeit in a different way for a different
purpose: in a Graphplan-style search, they use one constant
from the set as representative, pruning all other constants on
failure of the representative in the same search context.

Lin (2004) considers invariants in the situation calculus
for entire domains, i. e. during the invariant analysis, the
constants in the world are unknown. He uses a rank τ that
specifies a sufficient number of constants that need to be
considered to analyze the satisfiability and validity of for-
mulas. This rank is distantly related to our bounds bX

C .
Closest to our work is a recent approach by Rintanen

(2017) that considers limited grounding for regression-based
invariant synthesis, where invariants are represented as dis-
junctions of at most N literals. In contrast to our work, Rin-
tanen considers a much simpler class of planning tasks with
typed variables but without existential preconditions, condi-
tional effects and axioms. Where we use symmetric constant
sets, he considers sets of constants that have the same type.

12 Experiments
To evaluate the practical usefulness of our concepts, we an-
alyze the impact of the symmetry-based task reduction on
grounding and the computation of mutually exclusive pairs
of atoms. We implemented all techniques in the translator
component of Fast Downward (Helmert 2006).

To compute structural symmetries, we build on the imple-
mentation by Sievers et al. (2017) using the graph automor-
phism tool Bliss (Junttila and Kaski 2007). We restrict the
computation to symmetries that permute constants only and
do not stabilize the goal.

For all applications, we first determine the subset of trans-
positions and compute disjoint symmetric constant sets C
using Algorithm 1. In a second step, we compute the upper
bounds blit

C , bop
C and bax

C for each constant set C as described
in Section 8 and before Theorem 2. Then, we determine the
number bC of constants that we need to preserve for the in-
tended application (c. f. Theorems 1 and 2). We use all sets
C with |C| > bC for the reduction.

In our running example, we detect symmetric constant
sets {t3, t4, t5}, {t1, t2} and {p2, p3} of size > 1. For appli-
cations exploiting Theorem 1, we get bounds blit = bop = 1
and bax = 0 for all sets, so it is sufficient to preserve one
element from each set. For applications exploiting Theorem
2, we get the same individual bounds and, hence, must pre-
serve two elements from each set according to the theorem.

The regular grounding process of Fast Downward instan-
tiates a PDDL task based on a relaxed reachability analysis
of atoms. To make this process produce a symmetry-reduced
ground task, we modify the logic program that performs the
reachability analysis to ignore constants we disregard. With
this modification, the standard Fast Downward instantiation
yields exactly the symmetry-reduced task.

In our example, the reduced task (as in Theorem 1) has 20
reachable ground atoms and 64 ground actions, compared to
47 and 200, respectively, in the original task.

We can expand the symmetry-reduced task to receive the
full grounded task. If we have preserved constants accord-
ing to Theorem 2, we can alternatively use the grounded
symmetry-reduced task for mutex detection.

To compute mutex pairs for a given ground task, we im-
plemented a logic program to determine the relaxed reach-
ability of pairs of atoms according to Definition 6. As de-
scribed in Section 10, we use the further relaxation that only
requires positive literals to be relaxed reachable.2

Using the example task, we perform the mutex detection
on a task with 160 actions (instead of the original 200). We
identify 148 mutex pairs that get expanded to 185 pairs.

We ran experiments on the benchmarks from the sequen-
tial tracks of all International Planning Competitions (IPC),
removing domains that have been reused in later IPCs of the
same track, obtaining a total of 77 domains and 2518 tasks.3
We set a limit of 30 minutes and 3 GB for each run.

There is a total of 18875 symmetry generators that map
constants only, distributed across 65 domains, out of which
16566 are transpositions, distributed across 51 domains.

Using the bounds for symmetry-reduced grounding, we
find large enough symmetric constant sets in 1004 tasks of
49 domains. While creating the size-reduced ground task is
faster in all applicable domains (by at least an order of mag-
nitude in 3 domains), regular grounding is already so fast
that we do not save any computation time if we afterwards
expand the resulting task (the approach is even slower in
SATELLITE).

We instead focus on the more expensive computation of
mutex pairs. We compare the computation of the mutexes
on the original (grounded) task with the computation on the
symmetry-reduced task and a subsequent expansion. Both
approaches compute the same set of mutexes.

Computing mutexes on the original ground task fails 320
times due to reaching the memory limit and 481 times due
to reaching the time limit. We can use symmetry reduction
for the mutex computation in 610 tasks of 38 domains. This
slightly reduces the number of times reaching the memory
or time limit to 303 and 448, respectively. To illustrate the
gain in runtime, Figure 2 compares the computation time on
the 38 applicable domains, highlighting those that exhibit a
significant difference.

2We also experimented with the computation of mutex literal
pairs. The results in this scenario are qualitatively the same, how-
ever with larger runtime and memory requirements and hence more
tasks for which the computation does not complete.

3The quantitative results are similar up to a few percentage
points if also using duplicate domains.

100 101 102 103

100

101

102

103

t/o

timeout

Regular task
Sy

m
m

et
ry

-r
ed

uc
ed

ta
sk

other domains ASSEMBLY

BARMAN-OPT14-STRIPS BARMAN-SAT14-STRIPS

CHILDSNACK-OPT14-STRIPS CHILDSNACK-SAT14-STRIPS

CITYCAR-SAT14-ADL ELEVATORS-SAT11-STRIPS

GRIPPER LOGISTICS98
MYSTERY SATELLITE

TPP WOODWORKING-SAT11-STRIPS

ZENOTRAVEL

Figure 2: Runtime of regular and symmetry-reduced (includ-
ing expansion) computation of h2 mutexes on all applicable
domains, highlighting domains where at least one task re-
quires an order of magnitude more/less time.

Our approach works particularly well on the GRIPPER,
the CHILDSNACK, and the BARMAN domains, which is not
surprising given that these were specifically designed to ex-
hibit a large number of symmetries. But independent from
this, we observe that symmetry reduction strictly decreases
the required runtime to compute mutexes, including the time
to expand the resulting set of mutexes of the reduced task.

13 Conclusion
We explored the potential of symmetry-based task size re-
ductions for relaxed reachability analysis. For this kind of
analysis it is often possible to only consider a subset of a
collection of pair-wise symmetric constants and to recover
the full result in a post-processing step.

Our theory provides sufficient lower bounds on the size
of these subsets for two types of relaxed reachability, which
are particularly useful for grounding and mutex detection.

We experimentally verified the theoretical findings that
the results with a direct reachability analysis and a detour via
a task reduction including a post-processing step are equiva-
lent. For grounding, the path via the task reduction gave only
minor runtime improvements, mostly because the method
used by Fast Downward is already very fast on the original
task. In contrast, for mutex detection we observed substan-
tial runtime improvements.

Acknowledgments
This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications” (SSX).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1–
2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Dean, T., ed.,
Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI 1999), 956–961. Morgan
Kaufmann.
Fox, M., and Long, D. 2002. Extending the exploitation
of symmetries in planning. In Ghallab, M.; Hertzberg, J.;
and Traverso, P., eds., Proceedings of the Sixth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2002), 83–91. AAAI Press.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds., Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2000), 140–149. AAAI Press.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Pro-
ceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005), 1163–1168. AAAI Press.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Gerevini,
A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 354–357. AAAI
Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In Pro-
ceedings of the Ninth Workshop on Algorithm Engineering
and Experiments (ALENEX 2007), 135–149. SIAM.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. Journal of Artificial Intelligence Research 39:51–
126.
Lin, F. 2004. Discovering state invariants. In Dubois, D.;
Welty, C. A.; and Williams, M.-A., eds., Proceedings of the
Ninth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2004), 536–544. AAAI
Press.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL
– The Planning Domain Definition Language – Version
1.2. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Yale Univer-
sity.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI 2008), 568–572.
Rintanen, J. 2017. Schematic invariants by reduction to
ground invariants. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (AAAI 2017), 3644–
3650. AAAI Press.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Borrajo, D.; Kambham-
pati, S.; Oddi, A.; and Fratini, S., eds., Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013), 347–351. AAAI Press.
Sievers, S.; Röger, G.; Wehrle, M.; and Katz, M. 2017.
Structural symmetries of the lifted representation of classi-
cal planning tasks. In ICAPS 2017 Workshop on Heuristics
and Search for Domain-independent Planning, 67–74.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1–2):38–69.

